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Variational approach to contact line dynamics for thin films
Dirk Peschka

Abstract

This paper investigates a variational approach to viscous flows with contact line dynamics
based on energy-dissipation modeling. The corresponding model is reduced to a thin-film equa-
tion and its variational structure is also constructed and discussed. Feasibility of this modeling
approach is shown by constructing a numerical scheme in 1D and by computing numerical solu-
tions for the problem of gravity driven droplets. Some implications of the contact line model are
highlighted in this setting.

1 Introduction

The wetting and dewetting flow of a thin layer of a viscous liquid over a solid planar surface has sup-
plied researchers with a valuable model system to study a number of interesting problems [1, 2, 3].
Related phenomena appear in nature, but are also of great importance for applications, e.g., droplet
splashing, wetting, coating, painting, pattern formation processes, multiphase flows, and microfluidics,
to name only a few. The mathematical and numerical analysis of the corresponding free boundary
problem is considered quite challenging. Moving contact lines create a classical singularity that needs
to be resolved and different mechanisms for this have been proposed [4, 5, 6, 7]. Such models allow
contact lines to move and to relax towards an equilibrium. However, usually one observes dynamic
contact angles and phenomena related to advancing and receding angles or even hysteretic con-
tact line motion. For an introduction and an overview of different approaches for contact line models,
including variational approaches, we refer to [8, 9, 10, 11, 12].

The general idea of a gradient flow is to construct an abstract state space q ∈ Q and a corresponding
vector space of velocities q̇ ∈ V . The evolution of states q(t) is then driven by an energy E : Q→ R.
In the context of physical systems, this energy could be a thermodynamic potential for systems with
diffusion and heat transport or it could be a potential energy for mechanical systems. Additionally, the
construction requires a dissipation functional D : Q× V → R, which in many cases is non-negative
and quadratic in the second argument and depends on the state. The dissipation D operates similar to
a Riemanian metric and allows to define gradients∇DE ∈ V by 〈Dq̇D(q,∇DE ), ṗ〉 = 〈DqE (q), ṗ〉
for all ṗ ∈ V . The corresponding gradient flow then solves

q̇(t) = −∇DE
(
q(t)

)
, (1)

with decreasing energy d
dt

E
(
q(t)

)
= 〈DqE , q̇〉 = −〈Dq̇D(q, q̇), q̇〉 ≤ 0 by construction. We de-

liberately employ the dot notation to indicate both membership ṗ ∈ V and time-derivatives q̇ = ∂
∂t
q.

The gradient flow is mathematically equivalent to the minimization problem

q̇ = argmin
ṗ∈V

(1

2
D(q, ṗ) + 〈DqE , ṗ〉

)
, (2)
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Figure 1: Sketch of viscous liquid on a planar solid surface parametrized by h

which is a useful statement when considering alternative approaches and when adding constraints to
the state space Q and to the velocity space V , see e.g. Peletier [13]. The gradient flow construction
usually applies to the irreversible dynamics of systems where driving forces are entirely balanced
by friction. Other examples of variational structures are Poisson or symplectic structures, which are
suitable for reversible processes and conserve energy. In the context of fluid flow the Euler equation
has a Poisson structure, whereas the Stokes equation is dissipative.

The goal of this paper is to support the development of models for moving contact lines by the for-
mal construction of a variational gradient flow model, by establishing efficient numerical algorithms,
and by further exploring modeling ideas. Even though this work contains some useful ideas for the
Navier-Stokes or Stokes equation, the primary focus of this work is to translate these concepts to
thin-film models. Therefore, in Section 2 we introduce the Stokes gradient flow construction with free
boundaries and provide the necessary definitions for the problem geometry, for the energy and for the
dissipation of viscous Newtonian fluids. The highlight in this construction is a dissipation term at the
contact line, which creates a particular model relating contact line velocity and contact angle, i.e., a
contact line model. We show that the Stokes flow with free boundaries and contact line model can be
recovered using a Helmholtz-Rayleigh dissipation principle, i.e., a gradient flow, using the so-called
flow-map as the state variable. Then, in Section 3 we perform a thin-film reduction, which is based on
scaling arguments in the energy and the dissipation. Particular care is taken in treating all the terms at
boundaries and contact lines correctly. We also derive a variational formulation of the thin-film model,
which includes dissipation in bulk (viscosity), at interfaces (Navier-slip), and at contact lines (contact
line dissipation). We discuss the numerical implementation of this model in detail in one spatial di-
mension. The generalization to higher dimensions is straight-forward. Finally, we present a couple of
examples showing gravity driven moving droplets, where we highlight the effect of contact line dissi-
pation and perform some robustness tests with the proposed numerical algorithm. For the clarity of
presentation some helpful calculations and definitions have been moved to the Appendix A.

2 Stokes gradient flow

2.1 Geometry, flows, and functionals

The motion of a viscous liquid layer occupying the domain

Ω(t) = {(x, z) ∈ Rd+1 : 0 < z < h(t,x)}, (3a)

can often be described using a non-negative time-dependent function h(t,x) ≥ 0, which para-
metrizes the height of the liquid-air interface over the solid surface at z = 0 as shown in Fig. 1.
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Variational approach to contact line dynamics for thin films 3

Furthermore, we denote the support of the function h with

ω(t) = {x ∈ Rd : h(t,x) > 0}, (3b)

and the contact line is the set γ(t) = (∂ω(t), 0). Due to its prominent appearance ν ∈ Rd is used
for the outer normal to ω on ∂ω. Otherwise, the notation νS refers to the outer normal to S on ∂S.
Later on, we consider the special case d = 1 and ω is connected, so the support is a single interval
written as ω(t) =

(
x−(t), x+(t)

)
for x±(t) ∈ R and correspondingly the contact line consists of the

two points γ(t) = {(x−(t), 0
)
,
(
x+(t), 0)}. In order to emphasize the relation of these sets and the

state-space Q one usually uses the concept of flow maps

q(t) =
(
X(t, ·), Z(t, ·)

)
: Ω0 → Ω, (4)

that are homeomorphisms between Ω0 = Ω(0) and admissible shapes Ω = Ω(t) at time t. Thereby
q also maps any of the introduced domains at t = 0 to their shape at time t > 0. On the level of
coordinates y ∈ Ω0 we write x = X(t,y), z = Z(t,y) with (x, z) ∈ Ω. For fluids the corresponding
velocity field q̇(t) =

(
Ẋ(t, ·), Ż(t, ·)

)
: Ω0 → Rd+1 is often expressed in Eulerian coordinates

q̇ ' u = (ux, uz) : Ω→ Rd+1 by composing q̇ with the inverse map q−1.

In this sense, the Stokes or Navier-Stokes equation for the flow field u(t,x, z) can be understood as
an evolution equation for the flow map q. For incompressible liquids this flow field is divergence free
∇ ·u = 0. For the moment assume that the evolution is driven purely by a surface energy of the form

E (t) = θ`|Γ`(t)|+ θs`|Γs`(t)|, (5)

where Γ`(t) = {(x, z) : z = h(t,x) > 0} denotes the free liquid-air interface, the free solid-liquid
interface is Γs`(t) = (ω(t), 0), with |S| we denote the Lebesgue measure of the set S, and the
surface tension coefficients are θ` = θliquid,air > 0 and θs` = θsolid,liquid − θsolid,air. By introducing the
flow map the energy depends on the state E (t) ≡ E

(
q(t)

)
. Using (h, ω) to represent the flow map,

one can rewrite the surface measures |Γ`| and |Γs`| explicitly as

|Γ`|(q) =

∫
Γ`

ds =

∫
ω

√
1 + |∇h|2 dx, (6a)

|Γs`|(q) =

∫
Γs`

ds =

∫
ω

dx = |ω| d=1
= x+ − x−. (6b)

Throughout this paper∇ and∇· denote the gradient and divergence in both d+1 and in d dimensions
acting on all available spatial arguments, i.e., on (x, z) or on x as it should be clear from the context.
For the model derivation it is instructive to write all relevant friction mechanism of this system. First,
the dissipation for the bulk velocity is

DΩ(u) =

∫
Ω

τ (u) : ∇u dx dz, (7a)

where for Newtonian fluids the shear stress is of the form τ (u) = 2µΩD(u) with liquid viscosity
µΩ > 0 and the symmetric gradient D(u) = 1

2
(∇u + ∇u>). Moving contact lines are known to

produce logarithmic singularities for no-slip conditions, i.e., when we would simply set u = 0 on Γs`.
Instead, we just require impermeability u · ez ≡ uz = 0 on Γs` and introduce the dissipation at the
solid-liquid interface

Dω(u) =

∫
Γs`

µωu
2
x ds, (7b)
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D. Peschka 4

where µω ≥ 0 is related to the well-known Navier-slip length b via µω = µΩ/b. Consequently, we
also introduce a quadratic dissipation mechanism at the contact line γ, which reads

Dγ(u) =

∫
γ

µγu
2
x dγ = µγ

(
ẋ2
− + ẋ2

+

)
, (7c)

where the latter reformulation is only meaningful for d = 1 and ẋ± = d
dt
x± denotes the contact line

velocity and µγ ≥ 0 is the friction coefficient. For higher dimensions d > 1 it makes sense to further
decompose the contact line dissipation according to Dγ(u) =

∫
γ
µ⊥(ux·ν)2+µ‖([1−νν>]ux)2 dγ.

When all dissipation terms are collected, the total dissipation is

D(u) = DΩ(u) + Dω(u) + Dγ(u), (7d)

which is a positive quadratic functional for incompressible flow fields u. The obvious dependence of
D : Q × V → R on the state q through the shape of Ω, ω, γ not stated explicitly as an argument.
The evolution of the domain, which can be represented by (h, ω), is restricted by the constraints of
incompressibility and by the kinematic condition

ḣ+∇ ·
(∫ h

0

ux dz

)
= 0. (8)

This allows to assign velocities (ḣ, ẋ) to (h, ω), where ẋ : γ → Rd is the velocity of γ obtained by
restricting ux to γ. While the states are still the flow-maps, this concept of (h, ω) will be helpful later.

2.2 Gradient flow construction

Following the gradient flow recipe, we obtain the Stokes equation for the unknown domain via the
constrained minimization problem

u(t, ·) = argmin
v∈V

(1

2
D(v) + 〈DqE ,v〉

)
, (9)

which gives the weak formulation a(u,v) = f(v). The bilinear form a(u,v) := 1
2
〈Dq̇D(u),v〉 is

a(u,v) =

∫
Ω

µΩ D(u) :D(v) dx dz +

∫
Γs`

µωux · vx ds+

∫
γ

µγ ẋ · vx dγ, (10a)

and the linear functional is f(v) := 〈−DqE ,v〉, which using the tangential gradient ∇̄ can be written

〈DqE ,v〉 = θ`

∫
Γ`

∇̄idΓ : ∇̄v ds+ θs`

∫
Γs`

∇̄idΓ : ∇̄v ds. (10b)

In order to (formally) reconstruct the strong form of the differential equation, we use integration by
parts on curved surfaces∫

Γ

∇̄idΓ:∇̄v ds = −d
∫

Γ

κνΩ · v ds+

∫
∂Γ

v · νΓ dγ,

where κ denotes the signed mean curvature (see Appendix A.1), idΓ is the coordinate identity on the
surface, νΩ is the outer normal of Ω on the free surface Γ ⊂ ∂Ω, νΓ is the outer normal of Γ on
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Figure 2: Sketch of contact lines x± and angles ϑ and of advancing and receding contact angles for
an exemplary liquid droplet sliding to the right

∂Γ, and finally ds and dγ are the integration measures of Γ and ∂Γ. Note that due to impermeability
v · ez = 0 only the term at ∂Γs` contributes from Dq|Γs`|, so that in total we have

〈DqE ,v〉 = −dθ`
∫

Γ`

κνΩ · v ds+

∫
γ

fγ · v dγ,

with the force assigned to the contact line is defined as fγ = (θ`νΓ`
+ θs`νΓs`

). Sometimes fγ is
referred to as uncompensated Young force (see Appendix A.3). In total this produces the strong form
of the PDE for the unknown velocity u(t, ·) : Ω(t)→ Rd+1 so that

−∇p+∇ · τ (u) = 0 in Ω(t), (11a)

∇ · u = 0 in Ω(t), (11b)

t · (τ · νΩ + µωu) = 0 on Γs`(t), (11c)

(−pI + τ ) · νΩ = dθ`κνΩ on Γ`, (t) (11d)

(ẋ, uz)
> = µ−1

γ (I− eze
>
z ) fγ at γ(t), (11e)

where the pressure p(t, ·) : Ω(t) → R is added as a Lagrange multiplier to account for the in-
compressibility in the constrained minimization (9). Then, the domain Ω(t) evolves according to the
kinematic condition (8). The first mathematical analysis of well-posedness of such a problem (without
contact lines) is by Beale [14]. The discretization of such a model and in particular the discretization
of the curvature using finite elements was discussed by Bänsch [15]. Note that (11e) in the Stokes
equation is a contact line model with receding and advancing contact angle terminology as sketched
in Fig. 2 and corresponds to the continuum model proposed by Ren & E [11]. For an introduction to
variational modeling and gradient flows, and in particular the mathematical equivalence of different
energetic variational principles, we refer to the lecture notes by Peletier [13].

3 Thin-film models

3.1 Model dimension reduction

Now we discuss, how the free boundary problem (11) can be reduced to a thin-film type model for
the film height h and its support set ω. Particular care will be taken in the treatment of boundary and
interface terms. A cornerstone of the lubrication model is the non-dimensionalization of length and
velocity scales via

x = Lx̃, z = εLz̃, ux = U ũx, uz = εUũz,

DOI 10.20347/WIAS.PREPRINT.2477 Berlin 2018



D. Peschka 6

for typical length L and typical velocity U = L/T with a small parameter 0 < ε � 1. If we expand
the solution ũ in an asymptotic series in ε and expand the weak form to leading order we get

a(u,v)

U2Ld−1µΩ

=
1

ε

∫
Ω

(∂z̃ũx)(∂z̃ṽx) dx̃ dz̃ +
L

b

∫
Γs`

ũx · ṽx ds̃+
µγ
µΩ

∫
γ

ũx · ṽx dγ̃ + l.o.t.,

where all terms contribute to the leading order if b ∼ εL and µγ ∼ ε−1µΩ as ε → 0. Therefore, we
denote by b̃ = b/(εL) and µ̃γ = εµ̃γ/µΩ the rescaled non-dimensional parameters. The remaining
lower order terms (l.o.t.) are omitted for brevity. Having b̃ ∼ 1 is realistic in some microfluidic settings
since slip-lengths between nanometers and micrometers have been observed experimentally. When
one is interested macroscopic dynamic of thin films, the contact line singularity might only be resolved
at a microscopic length scale 0 < Lm � εL, which then leads to an apparent contact line friction
µγ ∼ µΩ log(εL/Lm). However, µγ might very well be an intrinsic physical parameter on its own right.
For the moment, we consider the energy contribution from (6a) and perform the thin-film reduction by
expanding

|Γ`| =
∫
ω

√
1 + |∇h|2 dx = Ld

∫
ω

(
1 +

ε2

2
|∇̃h̃|2

)
dx̃ + l.o.t.,

so that the derivative of this functional is

〈Dq|Γ`|,v〉
Ld−1U

=

∫
ω

ε2∇̃h̃ · ∇̃ ˙̃hv dx̃ +

∫
γ

(
1 +

ε2

2
|∇̃h̃|2

)
ṽx · ν dγ̃ + l.o.t.,

where we associate ḣv +∇·
∫ h

0
vx dz = 0 to any v ∈ V as in (8) and ∇̃ acts on x̃. In order to arrive

at this derivative one needs to use Reynold’s transport theorem, to take into account the derivative
with respect to the motion of the support. Using the definition of ḣv we can rewrite the first term as∫

ω

∇̃h̃ · ∇̃ ˙̃hv dx̃ = −
∫
ω

(∆̃h̃) ˙̃hv dx̃ +

∫
γ

˙̃hv∇̃ν h̃ dγ̃

=

∫
ω

∆̃h̃

[
∇̃ ·
∫ h

0

ṽx dz̃

]
dx̃ +

∫
γ

˙̃hv∇̃ν h̃ dγ̃

=

∫
Ω

−∇̃∆̃h̃ · ṽx dx̃ dz̃ +

∫
γ

˙̃hv∇̃ν h̃ dγ̃,

where the last boundary term in the integration-by-parts vanished, because
∫ h

0
ṽx dz̃ ≡ 0 on γ. Since

h ≡ 0 on γ we have ḣv + vx · ∇h = 0 for the convective derivative. This allows to transform the last
term into ∫

γ

˙̃hv∇̃ν h̃ dγ̃ =

∫
γ

−ṽx · ν|∇̃h̃2| dγ̃.

For each of the surfaces we get the derivative to be

〈Dq|Γ`|,v〉
Ld−1U

=

∫
Ω

−ε2∇̃∆̃h̃ · ṽx dx̃ dz̃ +

∫
γ

(1− ε2

2
|∇̃h̃|2)ṽx · ν dγ̃ + l.o.t.,

〈Dq|Γs`|,v〉
Ld−1U

=

∫
γ

ṽx · ν dγ̃,

DOI 10.20347/WIAS.PREPRINT.2477 Berlin 2018



Variational approach to contact line dynamics for thin films 7

so that for the derivative of the energy we get

〈DqE ,v〉
Ld−1U

=

∫
Ω

−ε2θ`∇̃∆̃h̃ · ṽx dx̃ dz̃ +∫
γ

[
θs` + θ`(1− ε2

2
|∇̃h̃|2)

]
ṽx · ν dγ̃ + l.o.t.

For all terms to contribute at the same order, we require θ` + θs` ∼ ε2. This lets us define ε so that
ε2 = (θ` + θs`)/θ` is indeed small. Finally, in order to balance dissipation and energy we define the
velocity scale

U = ε3 θ`
µΩ

, (12)

so that only the global length scale L remains to be defined. Putting all contributions from energy and
dissipation in one expression and dropping the tilde from all expressions gives∫

ω

(∫ h

0

−∂zzuxvx dz

)
+
(
∂zuxvx

)h
0

dx +

∫
Γs`

b−1ux · vx dx +

∫
γ

µγ ẋ · vxdγ =∫
Ω

∇∆h · vx dx dz −
∫
γ

(1− 1
2
|∇h|2)vx · ν dγ,

which needs to hold for all test functions v ∈ V . We can integrate this equation for ux(t,x, z) in z
and obtain the explicit expression

ux = −z
2

2
∇∆h+ c1z + c0, (13)

where c0(t,x), c1(t,x) are determined by the boundary conditions ∂zux = 0 at z = h and b ∂zux +
ux = 0 at z = 0 implied by the boundary terms before. At the contact line γ one obtains the law

µγ ẋ =

(
1

2
|∇h|2 − 1

)
ν, (14)

so that the contact line is advancing, receding, or stationary for |∇h| >
√

2, |∇h| <
√

2, or |∇h| =√
2, respectively. In the thin-film approximation we have contact angles ϑ ∼ ε∇h and the equilibrium

contact angle ϑe = ε
√

2, so that we have the contact line dynamics in the slightly more familiar form

µγ ẋ =
1

2ε2

(
ϑ2 − ϑ2

e

)
ν. (15)

The last step is to insert the explicit expression for ux into the kinematic condition (8). This returns the
degenerate, fourth-order parabolic equation

ḣ = ∇ ·
(
m(h)∇ (−∆h)

)
, (16a)

µγ ẋ =

(
1

2
|∇h|2 − 1

)
ν, (16b)

for the height h and the boundary x alone. Additionally we have the constraint ḣ + ẋ · ∇h = 0
on γ. The mobility m encodes the dissipation mechanism in the bulk and at the interface, where our
integration gives

m(h) =
h3

3
+ bh2, (16c)
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where b encodes the rescaled slip-length that we introduced before.

Employing the rescaled parametrization on the original energy E gives

E = Ld
∫
ω

θ`
√

1 + ε2|∇h|2 + θs` dx

=

∫
ω

θ`

(
1 +

ε2

2
|∇h|2

)
+ θs` dx + l.o.t.

≈ ε2Ldθ`

∫
ω

(
1 +

1

2
|∇h|2

)
dx =: ε2Ldθ` Etf,

where in the last step we used the previous definition of ε2 = (θ` + θs`)/θ` to define the thin-film
energy Etf. Additionally, we are going to add a trivial bulk term

∫
ω
f(h;x) dx to the thin-film energy

Etf. Since we assume f(0;x) ≡ 0, this term does not directly contribute to the contact line law. The
variational formulation of the thin-film model is discussed now in more detail.

3.2 Variational thin-film model

Let us consider the simpler problem of finding the velocities ḣ ∈ V with ḣ : ω → R that solve the
a thin-film model in the weak form on a fixed domain ω and strictly positive h. The corresponding
variational formulation requires the introduction of an additional variable π : ω → R, which is related
to a given ḣ ∈ V through the degenerate elliptic equation

ḣ−∇ · (m(h)∇π) = 0, (17)

with homogeneous natural boundary conditions mν · ∇π = 0. Then, the thin-film model on a fixed
domain has a gradient structure with the dissipation

Dtf(ḣv) =

∫
ω

m(h)|∇π|2 dx, (18a)

and with the driving thin-film energy

Etf(h) =

∫
ω

1 +
1

2
|∇h|2 + f(h;x) dx. (18b)

The evolution of the height h(t,x) is again governed by a constrained minimization problem similar to
the one in (9) stated as

ḣ(t, ·) = argmin
ḣv∈V

(1

2
Dtf(ḣv) + 〈DhEtf, ḣv〉

)
, (19)

and can be written in the block form 0 0 M∗

0 D D∗

M D 0

ḣπ
λ

 =

−Sh−M∂hf
0
0

 , (20)

DOI 10.20347/WIAS.PREPRINT.2477 Berlin 2018



Variational approach to contact line dynamics for thin films 9

where λ : ω → R is the Lagrange multiplier enforcing (17) and the operators M,D, S are defined as

〈v,Mw〉 =

∫
ω

vw dx, (21a)

〈v,D w〉 =

∫
ω

m(h)∇v · ∇w dx, (21b)

〈v, S w〉 =

∫
ω

∇v · ∇w dx, (21c)

and map function spaces for ḣ, π, λ into appropriate dual function spaces. We presume the operators
D,M, S are self-adjoint. The first line of (20) implies λ = ∆h − ∂hf , whereas the second line
implies basically π = −λ = −∆h = δEtf/δh, so that the third line ḣ −∇ · (m∇π) = 0 produces
the thin-film equation as in (16a)

ḣ−∇ ·
(
m(h)∇π

)
= 0, π = −∆h+ ∂hf(h;x). (22)

We introduced the saddle-point problem (20) in preparation for the more complex gradient structure
with contact line dynamics, where additional bulk-interface coupling terms are required. Now we will
state the gradient form of the contact line model.

As before, in the presence of a moving contact line, h is supported only on the set ω(t) with the
contact line defined as the set γ(t) = ∂ω(t). Let x(t) ∈ γ(t) be a point on the contact line, then
h(t,x(t)) ≡ 0 for all t and consequently

d
dt
h(t,x(t)) = ḣ(t,x(t)) + ẋ(t) · ∇h

(
t,x(t)

)
= 0, (23)

Since (23) does not depend on the parameterization, one can simply write ḣ + ẋ · ∇h = 0 with
ẋ : γ → Rd the contact line speed introduced before. This condition relates the normal component of
ẋ with the Eulerian time derivative ḣ.

Analogous to the gradient structure of the Stokes model we can now understand q = (h, ω) as the
general state space with velocities q̇ = (ḣ, ẋ). The corresponding dissipation for the thin-film model
analogous to (18a) but with contact line dynamics is

Dtf(q̇) =

∫
ω

m(h)|∇π|2 dx +

∫
γ

µγẋ
2 dγ, (24)

and the driving thin-film energy Etf from (18b). Since now the support can change we use Reynolds’
transport theorem to include variations of the energy (18b) with respect to the shape of ω via

〈DqEtf, q̇〉 =

∫
ω

∇h · ∇ḣ+ ∂hf(h;x) dx +

∫
γ

(
1 + 1

2
|∇h|2

)
(ẋ · ν) dγ.

In the standard thin-film model we only have to enforce the constraint ḣ−∇ · (m∇π) = 0 in ω using
a multiplier λ : ω → R, whereas now we additionally have to enforce ḣ+ ẋ · ∇h = 0 on the contact
line γ with a multiplier κ : γ → R. Additionally, the resulting linear system has a potential ambiguity
with respect to adding a constant to π, which we resolve by adding a constraint

∫
π dx = 0 with a

multiplier ρ ∈ R. Therefore we seek u = (ḣ, π, ẋ, λ, κ, ρ)> solving the corresponding constrained
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minimization problem leading to Au = −b where A : W → W ∗ and b ∈ W ∗ are

Au =


· · · M∗ M∗

γ ·
· D · D∗ · M∗

0

· · Dγ · C∗γ ·
M D · · · ·
Mγ · Cγ · · ·
· M0 · · · ·




ḣ
π
ẋ
λ
κ
ρ

 , (25a)

b =


δhEtf

0
δxEtf

0
0
0

 =


Sh+M∂hf

0
νMγ(1 + 1

2
|∇h|2)

0
0
0

. (25b)

Note that M,D, S are defined in (21), whereas Mγ, Cγ, Dγ act as follows

〈v, Dγ w〉 =

∫
γ

µγv ·w dγ, (26a)

〈v,Mγw〉 =

∫
γ

vw dγ, (26b)

〈v, Cγw〉 =

∫
γ

vw · ∇h dγ, (26c)

where v,w : γ → Rd, v : γ → R and w : ω → R. Additionally we defined M0 π =
∫
ω
π dx.

The dashed lines in the definition of the matrix A divide the dissipation part (upper left block) and the
constraints of the problem (remaining blocks). All the parts of A with a dot (·) are entirely zero. As
before, from the block structure of A we can reconstruct the PDE with the contact line model, which
we briefly outline. As before, we first eliminate the unknown Lagrange multiplier λ, κ, ρ. The first line
of A gives λ = ∆h− ∂hf and κ = −ν · ∇h. The third line then gives

µγẋ = −κ∇h− ν
(

1 +
1

2
|∇h|2

)
= ν

(
1

2
|∇h|2 − 1

)
,

where we used ∇h = −ν|∇h| and ν · ∇h = −|∇h| to arrive at the contact line model which we
already observed directly in (16b). From the second line we get ρ = 0 and π = −λ and by inserting
this into the constraint ḣ − ∇ · (m∇π) = 0 recover the thin-film model in (16). Note, including ρ
removes a potential zero eigenvalue from the algebraic system. This identification confirms that the
gradient structure in (25) corresponds to the thin-film model we obtained by the formal asymptotics.

3.3 Numerical implementation

The spatial discretization of weak formulation in (25) and is performed using standard P1 finite ele-
ments. Since the resulting PDE will be of fourth-order parabolic type, an implicit time-discretization is
advantageous to overcome restrictions of the time-step size τ due to a CFL-type condition. A semiim-
plicit discretization can be achieved by replacing Sh in b with S(h + τ ḣ), which effectively modifies
A such that we have the component Aḣḣ = τS. A similar strategy might be useful for δxEtf, but was
not needed so far. Once ḣ is computed by solving Au = −b, one can extract ḣ. However, it makes
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Figure 3: Solutions of the thin-film model with contact line dynamics for µγ = 0 (static angle model)
and µγ = 1, 2, 4 (dynamic angle model) showing (left) the shifted height profile h(t, x−x−) (middle)
contact angle vs time and (right) contact line velocity vs time

absolutely no sense to define h(t+ τ, ·) = h(t, ·) + τ ḣ, since h(t+ τ, ·) and h(t, ·) are defined on
different domains ω(t) and ω(t+ τ). However, using a diffeomorphism ξ(t, ·) : ω(t0)→ ω(t) as we
have defined it in Appendix A.2, we can pull-back H(t,y) = h

(
t, ξ(t,y)

)
to the reference domain

and recover time-derivates (Ḣ, ξ̇) in the Arbitrary Lagrangian-Eulerian (ALE) frame and update the
corresponding discrete solution

H(t+ τ,y) = H(t,y) + τḢ(y), (27a)

ξ(t+ τ,y) = ξ(t,y) + τ ξ̇(y), (27b)

in the ALE reference frame. More details for the decomposition ḣ 7→ (Ḣ, ξ̇) and for the construction
of mappings in higher spatial dimensions but without contact line dynamics can be found in [16]. The
corresponding 1D MATLAB code thinfilm_clm.m is available as a GitHub repository [17].

3.4 Gravity driven droplets in d = 1

For L = 2 and ω = (0, L) we use the initial data

h0(x) =

√
2

L
x(L− x),

constituting a d = 1 droplet with equilibrium contact angles at x±(0) = {0, L}. For the mobility we
use m(h) = h2 and study the evolution for contact line dissipation µγ = {0, 1, 2, 4}. Furthermore,
we use the extra contribution to the energy

f(h;x) = −ghx,

to include tangential gravity, where we set g = 3 to drive liquid volumes in the positive x-direction
and obtain traveling wave solutions for long times. The problem for µγ = 0 and µγ = 1 is solved for
0 ≤ t ≤ T = 8, whereas the problem for µγ = 2 and µγ = 4 is solved for 0 ≤ t ≤ T = 16.
In order to study the experimental rate of convergence in space we solve the problem on domains
discretized using 2m + 1 points for m = 1 . . . 10 using Nτ = 25 000 uniform time steps. We then
compare solutions at the final time T with respect to the convergence of x±(T ) and use an affine
map to pull back the solution h(T, x) to a fixed domain ω0 ≈ ω(T ). On the fixed domain we study
the convergence of h with respect to the L2(ω0) and the H1(ω0) norm as δx ∼ 2−mL→ 0.
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Figure 4: Convergence of solutions for µγ = 0 (blue) and µγ = 1 (red) for (left) the positions of the
contact points at t = 8 and (middle) for the L2 norm of the solution and (right) for the H1 norm of
the solution

In the left panel of Fig. 3 we show the solution of a droplet moving nearly with constant velocity, i.e.,
nearly a traveling wave solution, for different contact line dissipations µγ . Evidently, with static contact
angles ϑ = ϑe the droplet is rather symmetric with respect to reflections, whereas for µγ = 1, 2, 4 it
becomes increasingly asymmetric. This is most noticeable for µγ = 4, where it appears that contact
line friction can force droplets to develop a ’nose’ and for larger µγ possibly undergo a topological
transition. Also note the tendency for larger µγ that the contact angle at x−, i.e., the receding side, is
decreasing, while it is increasing at x+, i.e., the advancing side.

The middle panel of Fig. 3 depicts the evolution of the contact angle |∂xh
(
t, x±(t)

)
| versus time for

µ = 0, 1, which for µγ is close to the equilibrium value of
√

2, as for µγ = 1 we observe the before
mentioned behavior of 0 ≤ ∂xh(t, x−) <

√
2 <

(
−∂xh(t, x+)

)
. Note that for t > 3 the contact

angles are nearly constant, so that the solution is already quite close to a traveling wave.

Finally, the corresponding contact line velocities ẋ± for µγ = 0, 1 are shown in the right panel of
Fig. 3. As in the middle panel, the equality of velocities ẋ− ≈ ẋ+ for t > 3 suggests that the solution
is close to a traveling wave. As expected, with added contact line dissipation the traveling wave speed
for µγ = 1 is slower than the speed for µγ = 0. Additionally, for both ẋ± we also observe that the
evolution obeys the predicted contact line law (14), i.e.,

ẋ± = ±µ−1
γ

(
1

2
|∂xh

(
t, x±(t)

)
|2 − 1

)
, (28)

which is visible in the overlap of the dotted curve and the red dashed curve/red full curve for µγ = 1.

In order to study the experimental convergence order of solutions while δx ∼ 2−mL → 0, we
compare solutions at level m with solutions at neighboring levels m+ 1 at fixed time T = 8. The left
panel of Fig. 4 shows the linear convergence of |xm± −xm+1

± | as δx→ 0 in both cases µγ = 0, 1 with
similar errors for x− and x+. However, note that the magnitude of the error appears slightly better for
µγ = 1. The middle and right panel of Fig. 4 show the convergence of the height profile h(t, ψm0 (t, x))
with ψm0 (t, ·) : ω0 → ω(t) on a fixed domain ω0, since solutions for different m are generally defined
on different domains. Note that we have a linear rate of convergence in the L2(ω0) and even in the
H1(ω0) norm. Additionally, in Fig. 5 we show that the deviation of the total volume during the evolution
is of the order 10−6.

This shows that this type of algorithm is able to reproduce the predicted contact angle dynamics rather
accurately and stable. Due to the inherent coupling of space and time in the free boundary problem, it
is certainly a challenging but nevertheless interesting question how to construct a higher order method.
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Figure 5: Deviation of volume from exact value
∫
hdx =

√
8/9 for solution with µγ = 0, 1 for spatial

discretization level m = 10 as a function of time

Conclusion

This paper presented a gradient flow approach to contact line dynamics that is based on a quadratic
dissipation mechanism at the contact line. The original model is constructed for the Stokes flow and
then reduced to a thin-film model. For the reduced thin-film model the variational form including con-
straints is stated explicitly and a time- and space-discretization is proposed. In one spatial dimension a
novel numerical scheme is constructed explicitly and used to study the motion of gravity driven droplets
towards traveling wave solutions. These solutions confirm the general expectation of advancing and
receding contact angles, where the asymmetry of moving droplets can be strongly affected by the
contact line dissipation. It is expected that such a modification of the thin-film dynamics has a strong
impact on pattern formation processes observed during dewetting in the physically relevant case for
Ω(t) ⊂ R3 corresponding to d = 2.
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A Appendix

A.1 Hints concerning the notation

The integration
∫
. . . dx dz,

∫
. . . dx,

∫
. . . ds,

∫
. . . dγ refers to the d+ 1, d, d, and d− 1 dimen-

sional integration over Ω, ω, Γ, and γ, respectively. For d = 1 the latter is the point evaluation at
(x±, 0) ∈ R2. The signed mean curvature is defined

κ =
1

d

d∑
i=1

κi,

as the mean of the principle curvatures κi. The discretization of κ uses the identity κνΩ = ∆idΓ for
Γ ⊂ ∂Ω, where details concerning the definition of the Laplace-Beltrami operator using the coordinate
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identity vector field idΓ(x, z) = (x, z) can be found in [15, 18].

A.2 ALE mapping of ḣ

In one dimension d = 1 consider the reference interval at time t0 given by ω0 =
(
x0
−, x

0
+

)
with

x0
± = x±(t0). For arbitrary time t we define ξ(t, ·) : ω0 → ω(t) as

ξ(t, y) =
(
x+(t)− x−(t)

) y − x0
−

x0
+ − x0

−
+ x−(t),

so that ξ(t0, ·) = idω0 . Let h(t, ·) : ω(t) → R+ non-negative be defined on a time-dependent
domain ω(t) with h(t, ·) ≡ 0 on the boundary ∂ω(t). The pull-back H(t, ·) : ω0 → R+ of h(t, ·) to
the reference domain ω0 is defined

H(t, y) = h
(
t, ξ(t, y)

)
,

with the corresponding time-derivative

Ḣ(t, y) = ḣ(t, ξ) + ξ̇ · ∇h(t, ξ).

On ∂ω0 we have Ḣ ≡ 0 and thereby ḣ+ ξ̇ · ∇h = 0 with ξ̇ = ẋ±. Since ν = −∇h/|∇h| defines
the outer normal, we can reconstruct the normal component of ξ̇ as

ξ̇ · ν =
ḣ

|∇h|
.

Except for the explicit form of ξ using x±, all steps generalize to higher dimensions.

A.3 Uncompensated Young force

The uncompensated Young force fγ = (θ`νΓ`
+ θs`νΓs`

) in the contact line model (11e) is multiplied
with vectors t parallel to the x-plane. When using t = νΓ`

= (ν, 0), with ν the outer normal on ∂ω,
this produces

µγν · ux = θs` − θ` cosϑ, (29)

with surface tensions θs` = θsolid,liquid − θsolid,air and θ` = θliquid,air. The equilibrium contact angle, when
it can be defined, is θs` = θ` cosϑe so that (30) can be written

ν · ux =
θ`
µγ

(
cosϑe − cosϑ

)
. (30)
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