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Routeing properties in a Gibbsian model
for highly dense multihop networks

Wolfgang König, András Tóbiás

Abstract

We investigate a probabilistic model for routeing in a multihop ad-hoc communication network, where each user
sends a message to the base station. Messages travel in hops via the other users, used as relays. Their trajectories
are chosen at random according to a Gibbs distribution that favours trajectories with low interference, measured
in terms of sum of the signal-to-interference ratios for all the hops, and collections of trajectories with little total
congestion, measured in terms of the number of pairs of hops arriving at each relay. This model was introduced in
our earlier paper [KT17], where we expressed, in the high-density limit, the distribution of the optimal trajectories as
the minimizer of a characteristic variational formula.

In the present work, in the special case in which congestion is not penalized, we derive qualitative properties
of this minimizer. We encounter and quantify emerging typical pictures in analytic terms in three extreme regimes.
We analyze the typical number of hops and the typical length of a hop, and the deviation of the trajectory from the
straight line in two regimes, (1) in the limit of a large communication area and large distances, and (2) in the limit of
a strong interference weight. In both regimes, the typical trajectory turns out to quickly approach a straight line, in
regime (1) with equally-sized hops. Surprisingly, in regime (1), the typical length of a hop diverges logarithmically as
the distance of the transmitter to the base station diverges. We further analyze the local and global repulsive effect
of (3) a densely populated area on the trajectories. Our findings are illustrated by numerical examples. We also
discuss a game-theoretic relation of our Gibbsian model with a joint optimization of message trajectories opposite
to a selfish optimization, in case congestion is also penalized.

1 Introduction

In this work, we continue our research [KT17] on a spatial Gibbsian model for message routeing in a multi-hop ad-hoc
network. In [KT17] we prepared for an analysis of the qualitative properties of the model by deriving simplifying formulas
that describe the situation in a densely populated area in the sense of a law of large numbers. In the present work, we
carry out this analysis and describe a number of characteristic properties of the message trajectories. In particular, we
are interested in the counterplay between probabilistic properties like entropy and energetic properties like interference
and congestion and how it develops geometric properties like number and lengths of the hops or straightness of the
trajectories. Our goal is to detect some rules of thumbs in the relationships between all these quantities in asymp-
totic regimes in which they become particularly pronounced, like large areas and long trajectories, strong influence of
interference, or local regions with a particularly high population. While [KT17] used mainly probabilistic methods, the
present paper entirely employs analytic tools.

1.1 The main features of the model

Let us introduce the reader to the nature of our telecommunication model. The communication area is a bounded set in
Rd, and it has a unique base station at the origin o. Many users are randomly distributed according to some measure.
Each user sends out a message to the base station along a random multi-hop trajectory that uses other users as
relays and has at most kmax steps. The model that we are interested in is a joint distribution of all these message
trajectories, conditional on the (random) locations of the users. It is based on a Gibbsian ansatz: the a priori distribution
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is uniform (i.e., each message chooses first a hop number k and then a k-hop trajectory, both uniformly at random, and
trajectories of different users are independent), and there are two exponential weight terms that punish interference
and congestion, respectively. More precisely, the first one weights the interference of each of the hops, measured in
terms of the well-known signal-to-interference ratio (SIR), while the other term punishes the entire trajectory family for
high total congestion in the system, measured as constant times the sum of the number of pairs of incoming hops at the
relays. Note that the SIR term is linear in the number of hops, hence this number is upper bounded by some geometric
random variable and thus almost surely finite, even without an artificial upper bound by kmax.

The highest probability is attached to those trajectory families that realize the best compromise between entropy
(i.e., probability) and energy (i.e., interference plus congestion). In Section 2.4.2, we give a thorough discussion of the
motivation for studying such a type of model, in particular the randomness of the trajectories.

The interesting feature is that the total punishment is given to the entire system in terms of a probability weight, in the
spirit of a “common-welfare” mechanism, instead of selfish routeing optimization. In Section 6, we give a game-theoretic
discussion of the two weight terms in the exponent in the light of traffic theory; more precisely we ask the question
under what circumstances the optimization of these two terms can be called selfish or non-selfish. In Section 2.4.2,
we also make a connection between this optimization and our model from the viewpoint of stochastic algorithms for an
experimental realization of the optimum.

The idea of an optimal compromise between entropy and energy is most clearly realized in a certain limiting sense
in [KT17, Theorem 1.4], which will be the starting point of the present paper and will be summarized in Section 2
below. There, we carried out the limit of a high density of users, and we derived a kind of law of large numbers for
the “typical” trajectory distribution, i.e., the joint trajectory distribution that has the highest probability under the Gibbs
measure. This was done using large-deviation theory, and the answer came with a characteristic variational formula in
[KT17, Theorem 1.2], whose minimizer(s) describe(s) that object. Roughly speaking, the variational formula is of the
form “minimize the sum of entropy and energy among all admissible trajectory families”.

1.2 Goals

Our goal in the present paper is to understand the global effects that are induced in the Gibbsian system exclusively
by entropy and energy into geometric properties of the joint behaviour of the trajectory family. We will be working in an
analytical way; our goal is to reveal macroscopic phenomena in important settings and regimes. As our model depends
on various parameters (size and form of the communication area, density of users, choice of the SIR term, strength
of interference and congestion weighting, etc.), this can be done rigorously only in certain limiting regimes. We are
interested in the most important and obvious geometric properties: number and lengths of the hops, and the spatial
shape of the trajectory.

In the following three limiting regimes we will encounter particularly clear pictures:

(1) large communication area and long distances (and large hop numbers),

(2) strong interference punishment, and

(3) high local density of users on a subset of the communication area.

In regimes (1) and (2), we expect that the typical trajectories approach straight lines, and in (1) there is an additional
question about the typical length of a hop and the number of hops. Here, we would like to understand how the quality
of service becomes bad in a large telecommunication area and how many and how large steps the messages would
like to make if the artificial constraint by kmax is dropped.

However, the regime (3) and our questions here are of a different nature: We would like to understand if the presence
of a subarea with a particularly high population density has a significant (positive or negative) impact on the effective
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use of the relaying system: on one hand, the trajectories have more available relays in such an area, but on the other
hand, the interference achieves high values there. It is a competition between entropy and energy of a particular type
that we want to understand.

Let us announce that we are going to work on these questions only in the case where only interference is penalized,
but not congestion. This is due to the case that the minimizer(s) are characterized in [KT17, Proposition 1.3] in a way
that is enormously implicit and cumbersome in general, but reduces, if the congestion term is dropped, to relatively
simple formulas that are amenable for analytical investigations [KT17, Proposition 1.5]. In particular, we know only here
that the minimizer is unique. Therefore, we decided to analyze the limiting regimes (1)–(3) under the assumption that
only interference is penalized. We believe that the main qualitative properties persist to the case where also congestion
is penalized, as this is purely combinatorial and not spatial. In Section 6 we will discuss non-selfishness and other
game-theoretic properties of the Gibbsian model in the presence of both terms.

1.3 Our findings

In regimes (1)–(2), we will see that the typical trajectory follows a straight line with exponential decay of probabilities
of macroscopic deviations from the straight line. Moreover, in the regime (1) we will also find simple formulas for the
asymptotic number of hops and the average length of a hop, which turns out to be the same for each hop of the
trajectory.

However, in regime (3), we encounter different effects. First we see the following global effect on the total number
of relaying hops in the entire system: If the communication area is small (in the sense that all the interferences in
the system do not vary much), then the total number of relaying hops vanishes exponentially fast in the diverging
parameter of the dense population, regardless of the choice of the densely populated subset. In some cases, we also
detect a local effect on the relaying hops if the densely populated subset is very small: We demonstrate that a certain
neighbourhood of that subset is definitely unfavourable for relaying hops for practically all the other users, a very clear
effect coming from the high interference of the densely populated area, which expels the trajectories away.

Some of our results are more or less expected, and the main value of our work is the explicit characterization of the
quantities and the derivation of exponential bounds for deviations. However, one of our most strinking findings is that,
in the regime (1), the typical hop length diverges as a logarithmic function of the distance between the transmitter and
the base station, and hence the typical number of hops is sub-linear in the distance. This effect seems to come from
the fact that a priori, i.e., before switching on the interference weight, every message trajectory of a given length has
the same weight, even very ridiculous ones that have long spatial detours, e.g., many loops.

We formulated our results in quite simple settings, by putting the communication area equal to a ball and the user
density equal to the Lebesgue measure, but it is clear that they can be extended into various directions with respect to
more complex shapes and/or user distributions.

Based on our explicit formulas, we also provide some simulations at the end, in Section 7. They illustrate that most
of the effects that we derived analytically in limiting settings, i.e., for large values of the parameters, already appear in
a very pronounced way for quite moderate values of the parameters.

1.4 Related literature

The quality of service in highly dense relay-augmented ad-hoc networks has received particular interest in the last
years. A multi-hop network with users distributed according to a Poisson point process, the intensity of which tends
to infinity, was investigated in [HJKP15]. Using large-deviation methods, this paper derives the asymptotic behaviour
of rare frustration events such as many users having an unlikely bad quality of service for an unusually long period of
time. [HJP16] also describes frustration probabilities in a network, where relays have a bounded capacity, and users
become frustrated when their connection to a relay is refused because it is already occupied; see also [HJ17].
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One difference between these works and the model of the present paper introduced in [KT17] is that the latter one
uses a notion of quality of service for the entire system rather than for single transmissions. In particular, trajectories
with bad SIR are a priori not excluded. [KT17] defines a random mechanism for choosing the message trajectories of
all users, given the user locations, and its results hold almost surely with respect to all users. For these results, users
need not form a Poisson point process, and they can even be located deterministically [KT17, Section 1.7.4]. This is
also a difference from [HJKP15], [HJP16] and [HJ17], where user locations are not fixed and their randomness is (at
least partially) responsible for unlikely frustration events.

For literature remarks on the notion and use of SIR, in particular for multiple hops, and about the interference
penalization term see Section 2.4.1 below.

In Section 2.4.2, we discuss the use of Gibbs sampling for an experimental realization of our Gibbs distribution. Gibbs
sampling was used for telecommunication networks, e.g., in [CBK16] for optimal placement of contents in a cellular
network, and in [BC12] for power control and for associating users to base stations. These Monte Carlo Markov chain
methods are used to decrease some kind of cost in the system via a random mechanism, with no easily implementable
deterministic methods being available. Our Gibbsian model also has this property, at least if congestion is penalized
as well, and approximating our Gibbs distribution by Markov chain methods such as the Gibbs sampler is imaginable.
However, the main focus of our research is the high-density limit, unlike for [CBK16] and [BC12].

1.5 Organization of this paper

In the fundamental Section 2, we present our Gibbsian model and the results of [KT17] that are relevant for the
investigations of the current paper. In particular, in Section 2.3, we comment on the objects of our study, the “typical
trajectory”, and Section 2.4 contains discussions about modeling questions such as our motivation for the Gibbsian
ansatz, the choice of the interference penalization term and possible extensions of the model.

Each of the following three sections is devoted to one of our three theoretical investigations, which form the core of
this paper, i.e., the analysis of the large-distance limit (1) in Section 3, the limit of strong interference punishment (2) in
Section 4 and limit of high local density of users (3) in Section 5. Each of these sections gives the question, the results,
the proofs and a discussion in the respective setting.

Section 6 discusses the relevance and properties of our Gibbsian model and the related optimization problem in the
light of game-theoretic considerations in traffic theory.

Finally, Section 7 gives numerical plots and studies about qualitative properties of our model.

2 The Gibbsian model and its behaviour in the high-density limit

In this section, we introduce the Gibbsian model of [KT17] and its properties in the limit of high density of users that
are most relevant for the analysis of the current paper. We present the model in Section 2.1, describe its behaviour in
the high-density limit in Section 2.2, comment on the notion of the typical trajectory sent out by a user in Section 2.3
and provide motivations and discussions about our setting in Section 2.4.

2.1 The Gibbsian model

We introduce the model that we study in the present paper. This model was introduced in [KT17, Section 1.2.4]; it is a
special case of the general model of [KT17].

For any n ∈ N and for any measurable subset V of Rn, letM(V ) denote the set of all finite nonnegative Borel
measures on V .
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The model is defined as follows, on Rd with d ∈ N fixed. Let W ⊂ Rd be compact, the territory of the telecom-
munication system, containing the origin o of Rd. Let µ ∈ M(W ) be an absolutely continuous measure on W with

µ(W ) > 0. For λ > 0, we let Xλ = (Xi)i∈Iλ = (Xi)
N(λ)
i=1 be a Poisson point process in W with intensity measure

λµ, such that the empirical measure of Xλ normalized by 1/λ,

Lλ =
1

λ

∑
i∈Iλ

δXi , (2.1)

converges to µ almost surely as λ → ∞. This condition is satisfied e.g. if λ 7→ Xλ is increasing; for further details
see [KT17, Section 1.7.4].

Now we introduce message trajectories. For any i ∈ Iλ, we call a vector of the form

Si = (Si−1 = Ki, S
i
0 = Xi, S

i
1 ∈ Xλ, . . . , SiKi−1 ∈ Xλ, SiKi = o) ∈ N×

( ⋃
k∈N

W k
)
× {o}, (2.2)

a message trajectory fromXi to o withKi hops. That is, Si starts fromXi and ends in o after a random numberKi of
hops from user to user ∈ Xλ. Hence, the users also serve as relays. We fix kmax ∈ N and write Sikmax

(Xλ) for the
set of all possible realizations of the random variable Si withKi ≤ kmax hops. Hence, elements of Sikmax

(Xλ) satisfy
si−1 ∈ {1, . . . , kmax}, si0 = Xi and si

si−1
= o. We write Skmax(Xλ) =

∏
i∈Iλ Sikmax

(Xλ) and [k] = {1, . . . , k}
for k ∈ N. Given i ∈ Iλ, we consider each trajectory Si in (2.2) as an Sikmax

(Xλ)-valued random variable.

With this definition of message trajectories, we only consider uplink communication, i.e., users transmitting mes-
sages to the base station, such as in [KT17]. As we have mentioned in [KT17, Section 1.2.4], the downlink, i.e., the
reversed direction, works very similarly, and all results of [KT17] have an analogue for the downlink with an analogous
proof. We are certain that the same applies to the results of the current paper, and we abstain from spelling out the
downlink case.

Next, interference is introduced as follows. We choose a path-loss function, which describes the propagation of
signal strength over distance. This is a monotone decreasing, continuous function ` : [0,∞) → (0,∞). A typical
choice is ` corresponding to isotropic antennas with ideal Hertzian propagation, i.e. `(r) = min{1, r−α}, for some
α > 0 (see e.g. [GT08, Section II.]). We write `max = maxx,y∈W `(|x − y|) and `min = minx,y∈W `(|x − y|)
for the maximal and the minimal path-loss values in the system, respectively.The signal-to-interference ratio (SIR) of a
transmission from Xi ∈ Xλ to x ∈W in the presence of the users in Xλ is defined [HJKP15] as

SIR(Xi, x,X
λ) =

`(|Xi − x|)
1
λ

∑
j∈Iλ `(|Xj − x|)

. (2.3)

The denominator of the r.h.s of (2.3) is the interference. See Section 2.4.1 for more details about the notion of SIR and
the normalization term 1/λ in the interference.

If one wants to optimize the joint routeing of many messages in a multihop telecommunication network, the first
question that arises is what cost function should be minimized. According to [BC12, Section II.A] and [SPW07], a
routeing of trajectories is optimal w.r.t. interference if it minimizes the sum of the inverses of the SIR values over all
hops of all messages. For more details, we refer the reader to Section 2.4.1.

Now, given a trajectory configuration s = (si)i∈Iλ ∈ Skmax(Xλ), we put

S(s) =
∑
i∈Iλ

si−1∑
l=1

SIR(sil−1, s
i
l, X

λ)−1. (2.4)
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Next, congestion is defined as follows. We put

mi(s) =
∑
j∈Iλ

sj−1−1∑
l=1

1{sjl = si0}, i ∈ Iλ, (2.5)

as the number of incoming hops into the user (relay) si0 = Xi of any of the trajectories. For s ∈ Skmax(Xλ) we define

M(s) =
∑
i∈Iλ

mi(s)(mi(s)− 1). (2.6)

Note that mi(s)(mi(s) − 1) is the number of pairs of hops arriving at the relay Xi = si0, and mi(s)(mi(s) − 1) if
mi(s) ∈ {0, 1}, i.e., it only penalizes multiple hops arriving at the same relay.

The central object of study of [KT17] is a Gibbs distribution on the set of collections of trajectories as follows. For
any s = (si)i∈Iλ ∈ Skmax(Xλ) put

Pγ,β
λ,Xλ(s) :=

1

Zγ,βλ (Xλ)

( ∏
i∈Iλ

1

N(λ)s
i
−1−1

)
exp

{
− γS(s)− βM(s)

}
, (2.7)

where γ > 0 is a parameter. This is the Gibbs distribution with a uniform and independent reference measure (see
[KT17, Section 1.2.2] for more details), subject to an exponential weight with the SIR term in (2.4). Here

Zγ,βλ (Xλ) =
∑

r∈Skmax (Xλ)

( ∏
i∈Iλ

1

N(λ)r
i
−1−1

)
exp

{
− γS(r)− βM(r)

}
(2.8)

is the normalizing constant, which is referred to as partition function. Note that Pγ,β
λ,Xλ(·) is random conditional on Xλ,

and it is a probability measure on Skmax(Xλ).

[KT17] derived the properties of this system in the high-density limit λ → ∞. Due to the discontinuity of the con-
gestion term in this limit, the case γ, β > 0 is substantially more involved than the case of no congestion penalization
γ > 0, β = 0. As we already mentioned in Section 1.2, for the main part of the present paper, we will concentrate
on the case β = 0 in which congestion is not penalized. The case β > 0 will occur again in the game-theoretic in-
vestigations of Section 6 and in the discussion of Section 2.4.2 about the relation of our model to Monte Carlo Markov
chains.

2.2 The limiting behaviour of the telecommunication system

In this section, we summarize those results of [KT17] about the behaviour of the model described in Section 2.1 in the
high-density limit λ → ∞ that are relevant for the investigations of the present paper. These assertions will allow us
to derive variational characterization of qualitative properties of the network, such as the typical number, length and
shape of the message trajectories, in limits of some of the parameters tending to infinity. We consider only the case
β = 0.

For k ∈ N, elements of the product space W k = W {0,1,...,k−1} are denoted as (x0, . . . , xk−1). For l =

0, . . . , k − 1, the l-th marginal of a measure νk ∈ M(W k) is denoted by πlνk ∈ M(W ), i.e., πlνk(A) =

νk(W
{0,...,l−1} ×A×W {l+1,...,k−1}) for any Borel set A of W .

Indeed, for fixed k ∈ [kmax] and for a trajectory family s ∈ Skmax(Xλ), we define

Rλ,k(s) =
1

λ

∑
i∈Iλ

δ(si0,...,s
i
k−1)1{s

i
−1 = k}, (2.9)
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the empirical measures of all the k-hop trajectories, which is an element of M(W k). Since each user sends out
exactly one message, we have for any s ∈ Skmax(Xλ)

kmax∑
k=1

π0Rλ,k(s) = Lλ. (2.10)

This assumption can be relaxed, see Section 2.4.3 for a discussion about this.

Note that (2.4) can be expressed in terms of (Rλ,k(s))k∈[kmax] as follows

S(s) =

kmax∑
k=1

∫
W
Rλ,k(s)(dx0, . . . ,dxk−1)

k∑
l=1

∫
W `(|y − xl|)Lλ(dy)

`(|xl−1 − xl|)
, xk = o. (2.11)

Since Lλ ⇒ µ as λ → ∞ and (2.10) holds for any λ > 0, for S = (Si)i∈Iλ , subsequential limits of
(Rλ,k((S))k∈[kmax] in the coordinatewise weak topology are easily seen to have the form Σ = (νk)k∈[kmax] with
νk ∈M(W k), satisfying

kmax∑
k=1

π0νk = µ. (2.12)

For such Σ, in [KT17, Section 1.6] we have defined the following continuous analogue of (2.11)

S(Σ) =

kmax∑
k=1

∫
W
νk(dx0, . . . ,dxk−1)

k∑
l=1

g(xl−1, xl), xk = o,

with

g(x, y) =

∫
W µ(dz)`(|z − y|)

`(|x− y|)
, (2.13)

moreover the following entropy term that describes counting complexity in the limit λ→∞:

J(Σ) =

kmax∑
k=1

∫
Wk

dνk log
dνk

dµ⊗ k
+ logµ(W )

kmax∑
k=1

(k − 1)νk(W ) ∈ [0,∞], (2.14)

with the understanding that 0 log 0 = 0 log(0/0) = 0 and J(Σ) =∞ whenever νk 6� µ⊗ k for some k.

The key result [KT17, Proposition 1.5, parts (3), (4)] about the limiting behaviour of the telecommunication system
that we will use this paper is the following.

Proposition 2.1 (Law of large numbers for the empirical measures). Let γ > 0 and kmax ∈ N. Then, almost surely
w.r.t.Xλ, as λ→∞, the distribution of Σλ(S) = (Rλ,k(S))k∈[kmax] under Pγ,0

λ,Xλ converges coordinatewise weakly
to the unique minimizer of the variational formula

inf
Σ=(νk)kmax

k=1 :
∑kmax
k=1 π0νk=µ

(
J(Σ) + γS(Σ)

)
. (2.15)

For kmax > 1, the minimizer is given as Σ = (νk)
kmax
k=1 , where

νk(dx0, . . . ,dxk−1) = µ(dx0)A(x0)

k−1∏
l=1

µ(dxl)

µ(W )
e−γ

∑k
l=1 g(xl−1,xl), xk = o, k ∈ [kmax], (2.16)

where the normalizating function A is defined as

1

A(x0)
=

kmax∑
k=1

∫
Wk−1

k−1∏
l=1

µ(dxl)

µ(W )
e−γ

∑k
l=1 g(xl−1,xl), x0 ∈W (2.17)

so that (2.12) holds.
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In case kmax = 1, it is easy to see that the unique minimizer of (2.15) is Σ = (ν1) with ν1 = µ, as this is the
unique Σ satisfying (2.12).

Note that the variational formula (2.15) has indeed the form of “entropy plus energy", as anticipated before. In the
minimizer (2.16), the starting points of the k-hop message trajectories, k ∈ [kmax], are chosen according to the
measure µ(dx0)A(x0) and all relaying steps according to the measure µ(dxl)/µ(W ), l ∈ [k − 1], exponentially
weighted by the limiting SIR penalization term γ

∑k
l=1 g(xl−1, xl).

We refer the reader to [KT17, Section 1.7] for further details about the limiting behaviour of the system. The proof of
Proposition 2.1 is carried out in [KT17, Section 5].

Using the exponential decay of the summands in the denominator of (2.17) in k, it is easy to see that the measures
νk in (2.16) are also well-defined if kmax =∞. However, the proof techniques of [KT17] do not allow us to generalize
Proposition 2.1 to the case kmax =∞ or kmax being a function of λ and tending to infinity as λ→∞.

2.3 Interpretation of the limiting trajectory distribution

It is the purpose of the present paper to make further qualitative assertions about the “typical” trajectory from a given
transmission site x0 ∈ W to the origin, after having taken the high-density limit λ→∞. First we need to think about
what quantity we should look at and what properties of the system are reflected in it.

A definition of the “typical” trajectory as a random variable is not immediate, due to the nature of this setting. One
possible definition would be something like the random variable Si0 with i0 ∈ Iλ such that Si00 is the Poisson point
that is closest to x0. Another one would be the sum of the (random) empirical measureRλ(S) =

∑
k∈[kmax]Rλ,k(S)

on all trajectory families such that Si0 ∈ Bε(x0), properly normalized with the Lλ-mass of the ε-ball Bε(x0) around ε
(cf. (2.10)).

However, since we want to start from the limit as λ→∞, we will consider Σ = (νk)k∈[kmax] instead, the minimizer
introduced in Proposition 2.1. Therefore, for fixed x0 ∈W , we will in this paper concentrate on the probability measure
on
⋃
k∈[kmax]({k} ×W k−1) given by its density

Tx0(k, x1, . . . , xk−1) =
νk(dx0, dx1, . . . ,dxk−1)(∑kmax

k=1 π0νk(dx0)
)
µ(dx1) . . . µ(dxk−1)

=
νk(dx0,dx1, . . . ,dxk−1)

µ(dx0)µ(dx1) . . . µ(dxk−1)
, (2.18)

w.r.t.
∑

k∈[kmax](δk ⊗ µ⊗(k−1)). This measure carries rightfully the interpretation of the distribution of the “typical”
trajectory from x0 to the origin, after the limit λ→∞ has been taken. This is the main object of our study in the present
paper. We normalized Tx0 in such a way that

∑
k∈[kmax]

∫
Wk−1 Tx0(k, x1, . . . , xk−1)µ(dx1) . . . µ(dxk−1) = 1.

According to Proposition 2.1,

Tx0(k, x1, . . . , xk−1) = A(x0)µ(W )−(k−1)
k−1∏
l=1

e−γ
∑k
l=1 g(xl−1,xl), (2.19)

where we recall (2.13). We will use the convention that the 0th coordinate of Tx0 is the one corresponding to k and the
lth is the one corresponding to xl, for l ∈ {1, . . . , k − 1}. This way, the marginal π0Tx0 is a measure on [kmax].

We note that also the measure M =
∑kmax

k=1

∑k−1
l=1 πlνk carries interesting information about the system. Indeed,

in [KT17, Section 1.3] is was explained that M(dx) is the density of the number of incoming messages at a position
x ∈W , the typical number of incoming messages of a user at x is Poisson distributed with parameterM(dx)/µ(dx),
and the total mass M(W ) is the amount of relaying hops in the entire system, with the understanding that it is zero if
every message steps directly into o without any relaying hop. Part of our analysis will also be devoted explicitly to M ,
see Section 5.
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2.4 Discussion and motivation

In this section, we explain our motivation for several aspects of the model and for the questions that we address. In
Section 2.4.1 we interpret the SIR-related quantities of the model, in Section 2.4.2 we argue about the relevance of
our Gibbsian ansatz, and in Section 2.4.3 we explain possible extensions of the model via allowing users to send no or
multiple messages.

2.4.1 The SIR term

In this section, we discuss the SIR-related quantities of our model. We comment on the relevance of our choice of the
SIR penalization term S(s) in (2.4), explain the conventional definition of SIR and its relation to our understanding of
SIR, discuss about the continuity of the path-loss function at 0 and sketch more realistic notions of SIR than the one
(2.3).

The SIR term S(s) in (2.4) quantifies the quality of the transmission of the messages when using the trajectories si

from Xi to o. The choice of the reciprocals of the SIRs comes from the fact that the bandwidth used for a transmission
is defined [SPW07] as

R

log2(1 + SIR(·))
, (2.20)

where R is the data transmission rate, and SIR is defined as in (2.3) without the factor of 1/λ in the denominator of
(2.3). This quantity is of order 1/λ for λ large, under the assumption that Lλ ⇒ µ. In the high-density setting λ→∞
that we study, (2.20) can be approached well by (a constant times) the reciprocals of the SIR, since log(1+x) ∼ x as
x→ 0. [SPW07, Section 3] suggests that in case of multi-hop communication, the used bandwidth equals the sum of
the used bandwidth values corresponding to the individual hops, which explains our choice of the sum over l in (2.4).

Note that the conventional definition of interference of a transmission from Xi to x is
∑

j∈Iλ\{i} `(|Xj − x|),

in contrast to our definition in (2.3), where we added a factor of 1
λ , following [HJKP15, Section 1]. According to this

convention, we should say “total received powerïnstead of “interference", cf. [KB14, Section II.]. As we are interested in
the limit λ→∞, where it makes no difference whether or not we add 1

λ`(|Xi − x|) to the denominator, we will stick
to our notions “SIRänd “interference". For the same reason, our model does not include noise. However, note also our
additional factor of 1/λ, which we think is appropriate, at least mathematically, to our setting, in which we consider the
high-density limit λ → ∞. We actually scale the “usual” SIR by the density parameter. Indeed, in order to cope with
an enormous number of messages in a system with one base station and a fixed bandwidth, one can either distribute
the messages over a longer time stretch or decompose the messages into many smaller ones. The factor of 1/λ is a
crude approximation of a combination of these two strategies.

The assumption that the path-loss function ` is continuous at 0 comes from [GT08, HJKP15] and is unlike the works
[GK00, KB14], which make mathematical use of the perfect scaling of the path-loss function `(r) = r−α, which is
for this reason one of the standard choices. However, for small r, this is an unrealistic choice, cf. [GK00, Section I.A],
[GT08, Section I.].

We note that the notion of interference can be made more realistic according to [GK00, Section I.A] via introducing
time dependence in our model. E.g., one introduces kmax discrete time slots, and for l ∈ [kmax], the lth hop of any
message trajectory is assumed to happen at time l. Then, the interference of a transmission at time l is obtained
from the starting points of all hops that happen at the same time. The SIR is defined analogously to (2.3) but with this
notion of interference, which depends on the entire message trajectories rather than only on the users. Time-dependent
versions of our model can be set up in various ways; for example, one could allow for messages standing still or for a
longer time horizon and users transmitting multiple messages. The new notion of SIR comes with significant changes
in the behaviour of the system in the high-density limit, and we decided to defer such investigations to a later work.
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2.4.2 Why a Gibbsian ansatz?

Let us comment on the relevance of our ansatz of the model as a Gibbsian probability measure.

In a mathematical description of a telecommunication system, one typically requires that the SIR be larger than a
given threshold τ > 0, in order that the signal can be successfully transmitted. However, our model is designed in
the spirit of a common wealth approach, where we do not want to consider any single message, but the total quality
of transmission in the entire system. This quantity is the sum of all the reciprocal values of the SIRs of all the (hops of
the) messages, which we explained in Section 2.4.1. It is exponentially weighted with a negative factor, which “softly”
keeps all the SIRs at high values on an average.

One can also modify our Gibbs distribution in such a way that trajectory families exhibiting hops with SIR
SIR(sil−1, s

i
l, X

λ) less than or equal to τ have probability zero, simply by changing the SIR penalization value (2.4)
to ∞ for such families, similarly to [BC12, Section III.A]. For τ large enough, almost surely, the modified model is
well-posed for all λ > 0 sufficiently large. This means a change from the penalization function x 7→ γ/x (applied to
SIR(sil−1, s

i
l, X

λ)) into the function x 7→ ∞ × 1l[0,τ ](x). We expect that an analogue of Proposition 2.1 in [KT17,
Section 5] is valid, but additional topological problems have to be addressed.

One of our motivations is to explore the physical effect of the punishment of the joint probability of the random paths,
which are a priori randomly picked with equal probability: Does the (soft) requirement of a good transmission quality
force the trajectories already to choose geometrically the shortest route? What step sizes do they choose? We would
like to understand the interplay between entropy and SIR-energy and the result coming out of this by optimizing their
relation.

Another motivation for us to study this model is the fact that one can use it for experimentally produce optimal
routeings in a given wireless telecomunication system by making explicit simulations. Here we connect up with the
theory of finding the (deterministic) optimal message routeing in a given graph whose bonds are equipped with weights
that express the transmission quality. Here we consider the complete graph, where every two vertices (user locations)
are connected with each other, and the weights are the reciprocals of the SIR-values along that bond. The quality of a
routeing is then the sum of the weights along the trajectory, precisely as in (2.4). This optimization problem searches
for the best routeing of all the messages that are to be delivered to the origin, i.e., for the minimum of S(s) over s. It
becomes much more interesting and relevant if also the congestion term is considered, i.e., if the term γS(s)+βM(s)

is optimized. See Section 6 for a discussion of this problem in game-theoretic terms.

We think that our model is a good starting point for a numerical realization of this optimum, using a stochastic
algorithm in the spirit of the famous simulated annealing algorithm, see [H02, Section 13], based on running a Monte
Carlo Markov chain algorithm. In order to do this, one first has to determine an explicit Markov chain on the set
of trajectory families that has our measure Pγ,β

λ,Xλ in (2.7) as its invariant distribution (in the best case, satisfying
the detailed balance condition). Afterwards, one needs to determine a suitable cooling strategy, i.e., a recipe how to
choose the parameters β and γ diverging to infinity as a function of the number of Markovian steps carried out so far.
We believe that adapting classical methods such as the Gibbs sampler or the Metropolis algorithm [H02, Section 7] will
turn out to be appropriate for this purpose. Then one would have to characterize the speed of convergence of such a
chain to equilibrium, which is an interesting problem on its own.

2.4.3 Extensions: sending no or multiple messages

One easily sees from the proofs in [KT17, Sections 2–5] that Proposition 2.1 can be extended to the situation where
users send no message or multiple messages. This models the standard situation in which large messages are cut
into many smaller ones, who independently find their ways through the system.

For this, we have to enlarge the trajectory probability space: to each userXi ∈ Xλ, we attach the number Pi ∈ N0

of transmitted messages, and for each j ∈ {1, . . . , Pi}, there is an independent trajectory Xi → o. The empirical
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trajectory measure Rλ,k(·) must be augmented by these trajectories. The main additional assumption then is that∑kmax
k=1 π0Rλ,k(·) converges to some measure µ0 ∈M(W ) with 0 6= µ0 � µ.

The SIR term also has to be changed. The number Pi can be interpreted as a signal power of the user Xi. Thus,
according to [BB09, Sections 2.3.1, 5.1], the SIR of his transmission of a message to x ∈ W should be defined as
follows

SIR((Xi, Pi), x, (Xj , Pj)j∈Iλ) =
`(|Xi − x|)Pi

1
λ

∑
j∈Iλ `(|Xj − x|)Pj

.

One could also incorporate (possibly random) sizes of the messages, which would require an additional enlargement
of the trajectory space.

3 Large communication areas with large transmitter–receiver distances

This section is devoted to the analysis of the highly dense telecommunication system described in Section 2.2 in regime
(1), i.e., in the limit of a large communication area coupled with a large distance of the user from the base station. In
Section 3.1, we present our main results. Section 3.2 discusses these results, and Section 3.3 includes their proofs.

3.1 The typical number, length and direction of hops in a large-distance limit

In this section, the main object of interest is the shape of the optimal trajectory from a certain site to the origin, in
particular the typical spatial length of any of the hops, the number of hops and the spatial progress of the trajectory, in
particular whether or not it runs along the straight line or how strongly it deviates from it. We will answer these questions
for the special choice that W is a closed ball around the origin, µ is the Lebesgue measure on W , and the path-loss
function ` corresponds to ideal Hertzian propagation so that b =

∫
Rd `(|x|)dx < ∞, that is, `(r) = min{1, r−α}

for some α > d.

Furthermore, in order to obtain a pronounced picture and to make a strong assertion, we will have to assume that
the starting site of our trajectory is far away from the origin. In such a setting, it is plausible to expect that as the radius
of the ball tends to infinity, a proportion of users that tends to one takes the same order of magnitude of number of
hops. This also gives information about the typical size and direction of each hop, already in large but still compact
communication areas.

We will see that this setting exhibits the surprising property that the typical number of hops diverges to infinity as the
distance of the user x0 from o tends to infinity, however, in a sublinear way, more precisely, like the distance divided
by a power of its logarithm. Second, using the asymptotics of the value of this largest summand, one can conclude
about the typical size of the hops and about how much they deviate from the straight line between the transmitter
and the receiver o. In our specific setting, we will be able to give precise and explicit asymptotics for all these effects
encountered.

Let us now become more precise. We denote the radius of the communication areaW = Br(o) by r, and we recall
that kmax is the maximal hop number. We consider the limit of large r and large kmax. We consider one user placed
at x0 ∈ W with a distance to the origin |x0| = r0 being large, such that r > r0, but r � r0. Then one can say that
x0 is a “typical” location of a user in W , chosen uniformly at random.

In our first result, Theorem 3.1, we examine the “typical” number of hops of a trajectory from x0 to o as a random
variable under the marginal distribution π0Tx0 on N. According to (2.19), in the present setting, this is given by

π0Tx0(k) = A(x0)ak(x0) where ak(x0) =

∫
(Br(o))k−1

k−1∏
l=1

(
ωdr
−d e−γg(xl−1,xl) dxl

)
, xk = o, (3.1)
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where ωd is the volume of the unit ball in Rd, and we recall that g(xl−1, xl) =
∫
W dy `(|y−xl|)
`(|xl−1−xl|) . Note that ak(x0) does

not depend on whether k ≤ kmax or k > kmax, so it will be our first task to find its asymptotics without any reference
to kmax. Interestingly, we encounter a large-deviation principle on a quite surprising scale.

Theorem 3.1 (Large deviations for the hop number). Fix t ∈ (0,∞). Then, in the limit that r0 → ∞ with r > r0 =

|x0| � r, for any choice of r0 7→ k(r0) ∈ N,

1

r0 log1−1/α r0

log ak(r0)(x0)


= −(dt+ bγt1−α

)
+ o(1),

≤ −bγt1−α + o(1),

≤ −dt+ o(1),

if
k(r0)

r0 log−1/α r0


→ t,

≤ t+ o(1)

≥ t+ o(1),

(3.2)

where we recall that b =
∫
Rd dy `(|y|).

The upper bounds in the second line of (3.2) follow from the convexity of 1/`(| · |) and a comparison between the
functionals (x, y) 7→ g(x, y) and (x, y) 7→ b/`(|x − y|). Theorem 3.1 says that ak(x0) satisfies, with k(r0) �
r0 log−1/α(r0), a large-deviation principle on the scale r0 log1−1/α r0 with explicit rate function t 7→ dt+ bγt1−α. It
is easily seen that this rate function has a unique minimizer:

min
t∈(0,∞)

(
dt+bγt1−α

)
= dt∗+bγ(t∗)1−α =

(bγ)1/α

(α− 1)d

[
d+
(
(α−1)d

)1/α]
, with t∗ =

(bγ(α− 1)

d

)1/α
. (3.3)

As a consequence, we have the following kind of law of large numbers.

Corollary 3.2. In the limit r0 →∞ with r > r0 = |x0| � r, any maximizer k∗(r0) of N 3 k 7→ ak(x0) satisfies

k∗(r0) ∼ t∗ r0

log1/α r0

. (3.4)

Further, if kmax ≥ k∗(r0) for at least one such maximizer for all sufficiently large r0 > 0, then we have

1

r0 log1−1/α r0

log
1

A(x0)
→ −(dt∗ + bγ(t∗)1−α). (3.5)

If kmax is smaller than all the minimizers, then the asymptotics of A(x0) depend on those of akmax(x0) rather than
on ak∗(r0)(r0), and (3.5) has to be adapted accordingly. We note that (3.5) requires only a lower bound on kmax,
and in Corollary 3.2, kmax could be equal to +∞ for each r0. (3.5) says that the asymptotic logarithmic behaviour of
1/A(x0) on scale r0 log1−1/α r0 coincides with the one of the single maximal summand ak∗(r0)(r0). Formulated in
terms of the marginal distribution π0Tx0 of Tx0 on the length k of the path from x0 to o, since the behaviour of the
Lebesgue measure restricted to Br(o) is subexponential in r0 in the large-distance limit that we are considering, we
have that

π0Tx0

(
[t∗ − ε, t∗ + ε]c

r0

log1/α(r0)

)
tends to zero exponentially fast on the scale r0 log1−1/α r0. In Section 3.2.1 we give an explanation of how these
scales come about.

In the proof of the lower bound of (3.4), the consideration of a uniform step distribution was sufficient, i.e.,
t∗r0/ log1/α r0 straight steps directed from x0 to o with size r0/k(r0) ∼ 1

t∗ log1/α r0 each. We now show, again
in terms of a large-deviation estimate on the scale r0 log1−1/α r0, that macroscopic deviations from this optimal step
size on the scale log1/α r0 have extremely small probability.
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Proposition 3.3. For ε, δ > 0 and k ∈ N, let

Dε,δ(k, x0) =
{

(x1, . . . , xk−1) ∈ Br(o)k−1 : ∃I ⊆ [k − 1] : #I ≥ δk,

1

#I

∑
l∈I

|xl−1 − xl| −
∣∣|xl−1| − |xl|

∣∣
log1/α r0

> ε
}
, xk = o.

(3.6)

Then, in the limit r0 →∞ with r > r0 = |x0| � r, for k(r0) ∼ t∗r0/ log1/α r0,

lim sup
1

r0 log1−1/α r0

log Tx0
(
k(r0), Dε,δ(k(r0), x0)

)
< 0. (3.7)

In words, the probability that there are � k(r0) steps xl − xl−1 in the trajectory of relays such that their average
step length 1

#I

∑#I
i=1 |xli − xli−1| deviates, for any index set I of cardinality � k(r0), from the optimal step length

1
t∗ log1/α r0 ≈ r0/k

∗(r0) on that scale, decays exponentially fast to zero on the scale r0 log1−1/α r0.

The proofs of Theorem 3.1, Corollary 3.2 and Proposition 3.3 are carried out in Sections 3.3.1, 3.3.2 and 3.3.3,
respectively. A discussion about their relevance and an explanation of the results is found in Section 3.2.1.

We remarked in [KT17, Section 1.2.4] that the downlink scenario (i.e., messages are transmitted from o to all the
users instead of the other way around) can be handled in an analogous way, as it concerns the high-density limit of the
Gibbsian model. We are also sure that the results of the present section have an analogue for this setting; we abstain
from spelling out the details.

Certainly, our results of this section hold for much more general communication areasW , not only for balls. Essential
for our approach is only that a – in every space dimension diverging – neighbourhood of the straight line between x0

and o is contained in W in the limit considered. The parameter d appearing in the rate function goes back to our
assumption that the volume of W grows like the d-th power of r; however, other powers than d in [1, d] are also
possible by putting other geometric assumptions on W .

3.2 Discussion of Section 3

This section discusses the relevance, extensions and possible alternative proofs of the results of Section 3.1. In Sec-
tion 3.2.1 we interpret our large-distance limit, in Section 3.2.2 we explain how the choice of the path-loss function
influences our results and in Section 3.2.3 we discuss the possibility of alternative large-deviation approaches.

3.2.1 Discussion about the large-distance limit

In Section 3.1, we consider the typical trajectory in a large homogeneous multi-hop communication system with one
base station in the area W , after the high-density limit has been taken. According to the basic rules in this system,
virtually every step in the area W is homogeneously admitted (even those that do not bring the message any closer to
the base station or even further away), but an exponential interference weight is given to the joint configuration of all the
trajectories. It may appear somewhat absurd to consider a limit of large area, large distances and many steps, since
with an increasing number of hops the technical difficulties and annoying side-effects become larger, but our work is
meant to reveal the basic effects coming from such a setting, in particular the effect from the interference punishment,
and our result in terms of a large-deviation principle gives also bounds on deviations from the extreme regime in a
certain way.

Since the interference term in particular gives small weights to large steps, it may be expected that the typical
trajectory turns out to follow a straight line with all the steps being of the same size, but it may also come as a surprise
that the typical step size diverges like a power of the logarithm of the distance. The reason for this is the fact that a
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priori all the steps (within the area) are admitted and that, in the distribution Tx0 of the typical trajectory, a very small
weight term 1/|W | for each step appears. This favours a small number of steps. The best compromise between this
effect and the interference effect turns out to be on a logarithmic scale.

One could think of a model in which the search for the next hop is done only in a neighbourhood of the current
location, which would presumably lead to a removal of the small weight term 1/|W | per hop and finally to a number
of hops that is linear in the distance to the origin, but this would make the decay of the path-loss function ` obsolete
and describes a fundamentally different technical organization of the telecommunication system. Such an organization
is found e.g. in the continuum percolation setting of [YCG11], where the optimal number of hops turns out to be
asymptotically linear in the distance from the user to the origin in a large-distance limit. Further, [YCG11, Theorem 2.1]
claims that the probability of having trajectories of a significantly unusual length decays exponentially fast, which can
be seen as an analogue of our Proposition 3.3.

If one wants to study the large-area limit, another idea might be to pick the intensity measure µ of the user locations
as a finite measure on Rd, e.g., a probability measure, with positive density throughout Rd. However, in areas that are
far out and with very small density, the consideration of taking first the limit λ → ∞ of a high density and afterwards
the limit of a low density makes no sense.

3.2.2 The role of the choice of the path-loss function

We derived our large-distance statements for the path-loss function `(r) = min{1, r−α} for α > d, since this ` is
thought to describe propagation of signal strength realistically, see e.g. [BB09, GT08, HJKP15]. However, following the
proofs of the results of Section 3.1 in Section 3.3, we see that analogues of these results hold whenever the path-loss
function ` has the following two properties:

∫
Rd `(|x|)dx < ∞ and 1/` is convex. If ` satisfies these assumptions,

then in our large-distance limit, in the optimal strategy (cf. Section 3.3.1), the user takes∼ const.×k(r0) hops, where
r0 7→ k(r0) satisfies

log(r0) ∼ `
( r0

k(r0)

)
. (3.8)

This shows that the optimal scale depends only on the tail behaviour of `. Thus, for example, the results of Section 3.1
also hold for the path-loss function `(r) = (K + r)−α, K > 0, α > d. In general, (3.8) shows that under the two
above assumptions on `, the optimal scale diverges to∞ and is sublinear. The faster ` decays, the slower r0/k(r0)

grows. E.g., if `(r) = e−αr for some α > 0, then the decisive scale is k(r0) � r0/ log log r0.

3.2.3 Alternative large-deviation approaches

The explicit form of the trajectory distribution Tx0 in (2.19) seems to suggest a Markovian approach, combined with
a large-deviation argument for an exponential functional of the Markov chain. One might think that a large-deviation
principle for the empirical measure Lk of the k steps xl−xl−1 could be the core of a proof, possibly after some spatial
rescaling and under conditioning on having a fixed integral of the identity with respect to Lk. The main reasons why
such an argument does not work are the following. The state space and the transition kernel of the chain depend onW
and on x0 in a particularly irregular way: they induce two different scales in the interaction of the chain and therefore
also change the scale of the probabilities in a non-standard way. Another problem, which is not only technical, is that
the integration area for each step is unbounded in the limit W ↑ Rd, and the steps are integrated with respect to the
Lebesgue measure. We found no way to make this route work.

3.3 Proof of the results of Section 3.1

We prove Theorem 3.1, Corollary 3.2 and Proposition 3.3 in Sections 3.3.1, 3.3.2 and 3.3.3, respectively.
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All these three results tell about the limit r0 →∞ with r > r0 � r, where x0 ∈ W = Br(o) has Euclidean norm
|x0| = r0. Throughout this section, we will use the notation limr,r0 for this limit.

3.3.1 Proof of Theorem 3.1

We start with the lower bound in the first line of (3.2). Let us first consider k(r0) satisfying just k(r0) = o(r0). Recall
(3.1). We obtain a lower bound for ak(r0)(r0) by restricting the xl-integral to the ball with radius one around (k(r0)−l)

k(r0) x0

for l = 1, . . . , k(r0) − 1. Then |x0|/k(r0) − 2 ≤ |xl−1 − xl| ≤ |x0|/k(r0) + 2 for l = 1, . . . , k(r0). Note that
g(xl−1, xl) ≤ b/`(|xl−1 − xl|), where we recall that b =

∫
Rd dy `(|y|). Hence, for any ε ∈ (0, 1), eventually,

g(xl−1, xl) ≤ b|xl−1−xl|α ≤ (1+ε)brα0 /k(r0)α, since the latter goes to infinity in our current situation. This gives

ak(r0)(x0) ≥ (ωdr
d)−k(r0)+1e−γbk(r0)(1+ε)(r0/k(r0))α ≥ e−(d+ε)k(r0) log r0−γbk(r0)(1+ε)(r0/k(r0))α ,

where the second inequality holds eventually, since r0 � r. Now an elementary optimization on k(r0) shows that
k(r0) � r0 log−1/α r0 is the decisive scale. Then, taking k(r0) ∼ tr0 log−1/α r0 for some t ∈ (0,∞), carrying out
the limit and making ε ↓ 0 afterwards, we have

lim inf
r,r0

1

r0 log1−1/α r0

log ak(r0)(x0) ≥ −
(
dt+ γbt1−α

)
,

which is the lower bound in the first line of (3.2).

Next, we verify the second line of (3.2). We actually show more, namely that if k(r0) ≤ 1
2r0 for all r0, then

lim sup
r,r0

ak(r0)

e−bγr
α
0 k(r0)1−α

≤ 1. (3.9)

This will imply the second line of (3.2). Indeed, let t > 0 and let r0 7→ k(r0) be such that k(r0) ≤ (t +

o(1))r0/ log1/α r0 . Then, by (3.9)

lim sup
r,r0

1

r0 log1−1/α r0

log ak(r0)(x0) ≤ lim sup
r,r0

−bγk(r0)1−αrα0

r0 log1−1/α r0

= lim sup
r,r0

−bγ
(k(r0) log1/α(r0)

r0

)1−α
≤ −bγt1−α,

(3.10)

as wanted.

In order to verify (3.9), we will first concentrate on the function (x, y) 7→ b/`(|x− y|) instead of (x, y) 7→ g(x, y).
For any k ∈ N and any x0, . . . , xk ∈ Br(o) satisfying xk = o, using Jensen’s inequality for the convex function
1/`(| · |) and some elementary estimates, we obtain

1

k

k∑
l=1

1

`(|xl−1 − xl|)
≥ 1

`
(

1
k

∑k
l=1 |xl−1 − xl|

) ≥ (1

k

k∑
l=1

|xl−1 − xl|
)α
≥
(∣∣∑k

l=1(xl−1 − xl)
∣∣

k

)α
=
( |x0 − xk|

k

)α
=
(r0

k

)α (3.11)

Thus the version of ak(r0) with b/`(|x− y|) instead of g(x, y) can be estimated as follows.∫
Br(o)

k−1

( k−1∏
l=1

dxl

Leb(Br(o))

)
e
−γ

∑k
l=1

b
`(|xl−1−xl|) ≤

∫
Br(o)

k−1

( k−1∏
l=1

dxl

Leb(Br(o))

)
e−γbk

1−αrα0 = e−γbk
1−αrα0 ,

(3.12)
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which implies (3.9) for this version.

We now conclude (3.9), for any k(r0) ∈ N satisfying k(r0) ≤ 1
2r0. For this, we need to approximate the numerator∫

W `(|y − xl|) dy by b for sufficiently many l, more precisely to derive, for any ε > 0, a bound of the form

k(r0)∑
l=1

g(xl−1, xl) ≥ (1− ε)α(b− ε)k(r0)1−αrα0 (3.13)

eventually in our limit. Indeed, then, using this in the definition of ak(r0)(x0) just as in (3.12), carrying out our limit will
imply (3.9), after letting ε ↓ 0.

Now we derive (3.13). Let us now define an auxiliary function s : (0,∞) → (0,∞) such that r − s(r) → ∞ and
0 < r − s(r) = o(r) in our limit. Fix ε ∈ (0, 1

4). The idea is to pick r so large that∣∣∣ ∫
Br(o)

`(|y − x|) dy − b
∣∣∣ ≤ ε, ∀x ∈ Bs(r)(o). (3.14)

Let us assume that we are given a trajectory (x0, x1, . . . , xk(r0)−1, xk(r0) = o) with k(r0) ≤ 1
2r0. Let us define the

index of the last step outside Bs(r)(o):

k0(r0) =

{
max{l ∈ {0, 1, . . . , k(r0)− 1} : |xl| ≥ s(r)}, if ∃l{0, 1, . . . , k(r0)− 1} : |xl| ≥ s(r)},
0 otherwise.

(3.15)

Let r0 > 0 be so large that s(r) > (1− ε)r and (3.14) holds. Then we have

k(r0)∑
l=1

g(xl−1, xl) ≥
k(r0)∑

l=k0(r0)+1

g(xl−1, xl) ≥
k(r0)∑

l=k0(r0)+1

b− ε
`(|xl−1 − xl|)

(3.16)

≥ (b− ε)(k(r0)− k0(r0))

`
(

1
k(r0)−k0(r0)

∑k(r0)
l=k0(r0)+1 |xl−1 − xl|

) (3.17)

≥ (b− ε)(k(r0)− k0(r0))

`
(

1
k(r0)−k0(r0)(1− ε)r0

) (3.18)

≥ (1− ε)α(b− ε)(k(r0)− k0(r0))1−αrα0 ≥ (1− ε)α(b− ε)(k(r0))1−αrα0 . (3.19)

Here in (3.16) we used the fact that xk0(r0), . . . , xk(r0)−1, xk(r0) lie in Bs(r)(o) and therefore, for the numerator
of each g(xl−1, xl) with l > k0(r0), (3.14) can be applied. Next, (3.17) is an application of Jensen’s inequality for
1/`(| · |), and (3.18) uses the following fact. Either k0(r0) = 0, in which case

k(r0)∑
l=k0(r0)+1

|xl−1 − xl| ≥
k(r0)∑

l=k0(r0)+1

(|xl−1| − |xl|) ≥ |x0| = r0 ≥ 2k(r0) ≥ k(r0)− k0(r0), (3.20)

or k0(r0) > 0, and thus

k(r0)∑
l=k0(r0)+1

|xl−1 − xl| ≥
k(r0)∑

l=k0(r0)+1

(|xl−1| − |xl|) ≥ s(r) ≥ (1− ε)r > (1− ε)r0 ≥ k(r0) ≥ k(r0)− k0(r0).

(3.21)
In both cases, the argument in `(| · |) is ≥ 1, and we can write the term in terms of the α-norm and the first step in
(3.19) also follows. Hence, we have derived (3.13).

DOI 10.20347/WIAS.PREPRINT.2466 Berlin 2017



Routeing properties in a Gibbsian model 17

As for the third line of (3.2), we have the following. Note that for any x ∈ Br(o), we have∫
Br(o)

`(|y − re1|) dy ≤
∫
Br(o)

`(|y − x|) dy,

where e1 = (1, 0, . . . , 0) is the first unit vector of Rd.

Let us introduce the quantity b0 = limr→∞
∫
Br(o)

`(|y−re1|) dy = supr∈(0,∞)

∫
Br(o)

`(|y−re1|) dy ∈ (0, b).
Now, for any k : (0,∞)→ N, in our limit,

Leb(Br(o))
−(k(r0)−1)ak(r0)(x0) =

∫
(Br(o))k(r0)−1

( k(r0)−1∏
l=1

dxl

)
e
−γ

∑k(r0)
l=1

∫
Br(o)

`(|y−xl|) dy
`(|xl−1−xl|)

≤
∫

(Rd)k(r0)−1

k(r0)−1∏
l=1

(
dxl e

−γ b0−o(1)
`(|xl−1−xl|)

)
≤
(∫

Rd
e
−γ b0−o(1)

`(|y|) dy
)k(r0)−1

= O(1)k(r0) = exp
(
o(k(r0) log r0)

)
,

(3.22)
where the first step in the last line follows from an elementary substitution and a reversion of the order of integration.
Now, recall that in our limit r � r0. If t > 0 and k(r0) ≥ (t+ o(1))r0/ log1/α r0, we have that

Leb(Br(o))
−(k(r0)−1) = exp(−(dt+ o(1))k(r0) log r0)) = exp

(
− (dt+ o(1))r0 log1−1/α r0

)
.

This implies the third line of (3.2).

Next, we shall combine our arguments from the proofs of the upper bounds in the second line and in the third line
of (3.2) in order to obtain the upper bound in the first line of (3.2). Indeed, for t > 0 and k(r0) ∼ tr0/ log1/α r0 and
ε > 0, let us write g(xl−1, xl) = εg(xl−1, xl) + (1 − ε)g(xl−1, xl), estimate the first term like in (3.22) and the
second term with the help of (3.13). This gives eventually

ak(r0)(x0) ≤
∫
Wk(r0)−1

( k(r0)−1∏
l=1

dxl
Leb(Br(o))

)
e
−εγ

∑k(r0)
l=1

b0−o(1)
`(|xl−1−xl|) e−(1−ε)(1−ε)α(b−ε)γt1−αr0 log1−1/α r0

≤ exp
(
− (dt− ε)r0 log1−1/α r0 − (1− ε)α+1γ(b− ε)t1−αr0 log1−1/α r0

)
. (3.23)

Carrying out our limit and letting ε ↓ 0 implies the upper bound in the first line of (3.2). This finishes the proof of
Theorem 3.1. �

3.3.2 Proof of Corollary 3.2

The equality (3.4) follows immediately from the three lines of (3.2). As for (3.5), let k∗(r0) be the smallest maximizer
of k 7→ ak(x0), and let r0 7→ kmax(r0) satisfy the assumption of the corollary, i.e., kmax(r0) ≥ k∗(r0). The lower
bound easily follows from (3.2) by estimating 1/A(x0) from below by the single summand ak∗(r0)(x0) and using (3.4).
As for an upper bound, we first write

lim sup
r,r0

1

r0 log1−1/α r0

log
1

A(x0)
≤ lim sup

r,r0

1

r0 log1−1/α r0

log
( b 12 r0c∑

k=1

ak(x0) +

∞∑
k=b 1

2
r0c+1

ak(x0)
)

= max
{

lim sup
r,r0

1
1
2r0 log1−1/α r0

log
( b 12 r0c∑

k=1

ak(x0)
)
, lim sup

r,r0

1

r0 log1−1/α r0

log
( ∞∑
k=b 1

2
r0c+1

ak(x0)
)}
.
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Then the bound (3.22) implies that there exists a constant D > 0 such that we have

∞∑
k=b 1

2
r0c+1

ak(x0) ≤
∞∑

k=b 1
2
r0c+1

(Drd0)−k =
(Drd0)−b

1
2
r0c+1

1− 1
Drd0

≤ exp(−(1
2 − o(1))r0 log r0),

wherefore

lim sup
r,r0

1

r0 log1−1/α r0

log
( ∞∑
k=b 1

2
r0c+1

ak(x0)
)

= −∞.

Moreover, the lower bound on r0 7→ kmax(r0) assumed in Corollary 3.2 and the first line of (3.2) together yield

lim sup
r,r0

1

r0 log1−1/α r0

log
( b 12 r0c∑

k=1

ak(x0)
)

= lim sup
r,r0

1

r0 log1−1/α r0

log(br0/2c) + lim sup
r,r0

1

r0 log1−1/α r0

log ak∗(x0) = −(dt∗ + γbt∗1−α),

where we recall that t∗ = (bγ(α − 1)/d)1/α is the unique minimizer of t 7→ dt + t1−α on (0,∞), cf. (3.3). This
implies the upper bound between the leftmost and the rightmost side of (3.5). �

3.3.3 Proof of Proposition 3.3

Let ε, δ > 0 be fixed. First, let us note that by the definition of Tx0 and the fact that the behaviour of the Lebesgue
measure restricted to Br(o) is subexponential in our limit, (3.7) is equivalent to

lim sup
r,r0

1

r0 log1−1/α r0

log

∫
Dε,δ(k(r0),x0)

( k(r0)−1∏
l=1

dxl
Leb(Br(o))

)
e−γ

∑k(r0)
l=1 g(xl−1,xl)

< lim sup
r,r0

1

r0 log1−1/α r0

log ak(r0)(x0) = −
(
dt∗ + bγt∗1−α

)
, (3.24)

with k(r0) ∼ t∗r0 log−1/α r0 and xk(r0) = o, where in the last step we used the first line of (3.2). For this, it suffices to
show that there exists ε′ > 0 such that for any choice of x0 7→ (x1, . . . , xk(r0)−1) = (x1(x0), . . . , xk(r0)−1(x0)) ∈
Dε,δ(k(r0), x0)) writing I = I(x0, x1, . . . , xk(r0)−1) as in (3.6), we have

lim inf
r,r0

∑k(r0)
l=1 g(xl−1, xl)

k(r0) log r0
= lim inf

r,r0

∑k(r0)
l=1 g(xl−1, xl)

t∗r0 log1−1/α r0

≥ bt∗−α + ε′. (3.25)

Indeed, then one can argue analogously to (3.23) to conclude the first inequality in (3.24).

Now we prove (3.25). Similarly to the proof of the second line of (3.2), we will first replace the functional (x, y) 7→
g(x, y) by (x, y) 7→ b

`(|x−y|) everywhere.

We have, first using Jensen’s inequality for the convex function | · |α, then the definition of Dε,δ(k(r0), x0) together
with the fact that α > 1,

1

#I

∑
l∈I
|xl − xl−1|α ≥

( 1

#I

∑
l∈I
|xl − xl−1|

)α
≥
( 1

#I

∑
l∈I

∣∣|xl| − |xl−1|
∣∣) + ε log1/α r0

)α
≥
( 1

#I

∑
l∈I

∣∣|xl| − |xl−1|
∣∣)α + (ε log1/α r0)α. (3.26)
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Similarly, by Jensen’s inequality and the triangle inequality,∑
l∈[k(r0)]\I |xl − xl−1|α

k(r0)−#I
≥
( 1

k(r0)−#I

∑
l∈[k(r0)]\I

|xl−xl−1|
)α
≥

∑
l∈[k(r0)]\I

( 1

k(r0)−#I

∣∣|xl|−|xl−1|
∣∣)α.

Hence, more applications of Jensen’s inequality yield

1

k(r0)

∑
l∈[k(r0)]

|xl − xl−1|α

=
#I

k(r0)

1

#I

∑
l∈I
|xl − xl−1|α +

k(r0)−#I

k(r0)

1

k(r0)−#I

∑
l∈[k(r0)]\I

|xl − xl−1|α

≥ #I

k(r0)

( 1

#I

∑
l∈I

∣∣|xl| − |xl−1|
∣∣)α +

k(r0)−#I

k(r0)

(∑
l∈[k(r0)]\I

∣∣|xl| − |xl−1|
∣∣

k(r0)−#I

)α
+

#I(ε log1/α r0)α

k(r0)

≥
( 1

k(r0)

∑
l∈[k(r0)]

∣∣|xl−1| − |xl|
∣∣)α + δεα log r0 ≥

( r0

k(r0)

)α
+ δεα log r0

= (t∗−α + δεα) log r0, (3.27)

where in the penultimate step we used that #I ≥ δk(r0).

Now, we turn to `(| · |) instead of | · |−α. Hence, we have to distinguish | · | ≤ 1 and | · | > 1. Let us define
I ′ = I ′(x0, (x1, . . . , xk(r0)−1)) ⊆ [k(r0)] as the set of l ∈ [k(r0)] such that |xl − xl−1| ≤ 1. Without loss of
generality, I ′ is not empty. Then, after passing to a subsequence, if needed, we have that #I ′ ∼ δ′k(r0) for some
δ′ ∈ [0, 1]. Thus, ∣∣∣ 1

#I ′

∑
l∈I′

|xl−1 − xl| −
∣∣|xl−1| − |xl|

∣∣
log1/α r0

∣∣∣ = O(1/ log1/α r0) = o(1). (3.28)

Let us assume for a moment that I ∩ I ′ = ∅ and δ′ < 1. Splitting into I ′ and [k(r0)] \ I ′, we obtain

1

k(r0)

∑
l∈[k(r0)]

1

`(|xl − xl−1|)
≥ 1

k(r0)

(
O(#I ′) +

∑
l∈[k(r0)]\I′

|xl − xl−1|α
)

≥ δ′ − o(1) +
1− δ′ − o(1)

k(r0)−#I ′

∑
l∈[k(r0)]\I′

|xl − xl−1|α.
(3.29)

We want to apply to the last term a lower bound analogous to (3.27), i.e., for the sum over [k(r0)]\I ′ instead of [k(r0)].
For this, we need that the sum of the ||xl−1| − |xl|| satisfies a lower bound against ≈ r0. Using that I ∩ I ′ = ∅, we
indeed see this as follows:∑

l∈[k(r0)]\I′

∣∣|xl−1| − |xl|
∣∣ ≥ −(δ′ + o(1))k(r0) +

∑
l∈[k(r0)]

∣∣|xl−1| − |xl|
∣∣ ≥ r0(1− o(1)).

Now, making a computation analogous to (3.27) for the right-hand side of (3.29), we obtain in our limit

1

k(r0)

∑
l∈[k(r0)]

1

`(|xl − xl−1|)
≥ δ′ − o(1) + (1− δ′ − o(1))

[( r0

#([k(r0)] \ I ′)

)α
+

δ

1− δ′
εα log r0

]
≥
(

(1− δ′)1−αt∗−α + δεα − o(1)
)

log r0 ≥ (t∗−α + δεα − o(1)) log r0.

(3.30)
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The case I ∩ I ′ 6= ∅ can be handled analogously as long as δ′ < 1. Indeed, in this case, (3.28) implies that
lim infr,r0 #(I \ I ′)/k(r0) and lim infr,r0

1
k(r0)

∑
l∈I\I′(|xl−1 − xl| − ||xl−1 − xl||) are positive. Thus, a lower

estimate on 1
k(r0)

∑
l∈[k(r0)](|xl−1−xl| − ||xl−1−xl||) can still be obtained analogously to (3.29), and we observe

that this lower bound tends to infinity as δ′ ↑ 1.

Hence, we have in any case that (3.30) holds with δεα replaced by some positive number. From this, (3.25) follows
for (x, y) 7→ g(x, y) replaced by (x, y) 7→ b

`(|x−y|) for some ε′ > 0.

In order to conclude (3.25), now we will proceed similarly to the proof of the second part of (3.2), that is, we use
uniform convergence of the interferences to b within Br(o) away from the boundary. Let us recall the auxiliary function
s and the index k0(r0) at (3.15). We essentially show that either a non-negligible part of the deviations from the straight
line induced by the definition of Dε,δ(k(r0), x0) takes place after the k0(r0)th hop, or the first k0(r0) hops have a
very high SIR penalization value, and in both cases, (3.25) holds.

For each x0 with |x0| = r0, let us choose (x1(x0), . . . , xk(r0)−1(x0)) ∈ Dε,δ(k(r0), x0). We use

the notation τ(r0) = τ(x0, x1(x0), . . . , xk(r0)−1(x0)) for τ(r0) = k0(r0)
k(r0) . Let us further write I(r0) =

I(x0, x1(x0), . . . , xk(r0)−1(x0)) for a choice of a set I according to (3.6). According to (3.30), without loss of gener-
ality we can assume that I ′ = I ′(x0, x1(x0), . . . , xk(r0)−1(x0)) = ∅ for all x0 considered.

In our limit,
∫
Br(o)

`(|z − y|)dz = b − o(1) uniformly in y ∈ Bs(r)(o). Thus, in case τ(r0) = 0, (3.30) implies
that (3.25) holds with some ε′. Hence, in order to conclude (3.25), we can assume that τ(r0) 6= 0 eventually in our
limit. Further, by our assumptions on the function s, for any ε′′ > 0, eventually s(r) > (1 − ε′′)r0. Now, on the one
hand, since xl(x0) ∈ Bs(r)(o) for all l > k0(r0), similarly to (3.30), the convexity of 1/`(| · |) implies the following

1

k(r0)

∑
l∈[k(r0)]

g(xl−1, xl) ≥
1

k(r0)

k(r0)∑
l=k0(r0)+1

g(xl−1, xl) ≥
1

k(r0)

k(r0)∑
l=k0(r0)+1

b− o(1)

`(|xl−1 − xl|)

≥ κ(ε′′)(1− τ(r0))1−α(b− o(1))t∗−α log r0

(3.31)

for some function κ : [0, 1] → R with lim%↓0 κ(%) = 1. Now, taking first our limit and then ε′′ ↓ 0, we see that if
lim infr,r0 τ(r0) > 0, then the proof of our goal (3.25) is finished. Now assume that lim infr,r0 τ(r0) = 0. After
passing to a subsequence, we can assume that limr,r0 τ(r0) = 0.

Let us first consider the case that lim infr,r0
1
r0

∑k(r0)
l=k0(r0)+1(|xl−1| − |xl|) ≥ 1 (observe that the total sum over

all l ∈ [k(r0)] is telescoping and hence equal to r0) and

lim inf
r,r0

1

#I(r0)

∑
l∈I(r0) : l>k0(r0)

|xl−1 − xl| −
∣∣|xl−1| − |xl|

∣∣
log1/α r0

> 0. (3.32)

Then one can employ an estimate analogous to (3.27) in order to conclude (3.25). Next, we investigate the case that
lim supr,r0

1
r0

∑k(r0)
l=k0(r0)+1(|xl−1| − |xl|) < 1. Then we have

lim inf
r,r0

1

r0

k0(r0)∑
l=1

∣∣|xl−1| − |xl|
∣∣ ≥ lim inf

r,r0

1

r0

k0(r0)∑
l=1

(|xl−1| − |xl|) > ε′′′

for some ε′′′ > 0. Thus, using that
∫
Br(o)

`(|z − y|)dz ≥ b0 − o(1) uniformly for y ∈ Br(o) in our limit (where b0
was defined before (3.22)), a convexity argument similar to (3.27) yields

lim inf
r,r0

1

k(r0) log r0

∑
l∈[k(r0)]

g(xl−1, xl) ≥ lim inf
r,r0

1

t∗αk(r0)1−αrα0

k0(r0)∑
l=1

g(xl−1, xl)

≥ lim inf
r,r0

ε′′′αt∗−α(b0 − o(1))
(k0(r0)

k(r0)

)1−α
=∞.

(3.33)
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Hence, in order to finish the proof of (3.25), it remains to consider the case that lim infr,r0
1
r0

∑k(r0)
l=k0(r0)+1(|xl−1|−

|xl|) ≥ 1 but (3.32) fails. After passing to a subsequence, we can assume that limr,r0 w(r0) ≥ ε, where we put

w(r0) =
1

#I(r0)

∑
l∈I(r0)∩[k0(r0)]

|xl−1 − xl| −
∣∣|xl−1| − |xl|

∣∣
log1/α r0

.

Using also that #I(r0) ≥ δk(r0) ∼ δt∗r0 log1/α r0, we have

ε− o(1) ≤ 1

#I(r0)

∑
l∈I(r0)∩[k0(r0)]

|xl−1 − xl|
log1/α r0

≤
( 1

δt∗
+ o(1)

) ∑
l∈I(r0)∩[k0(r0)]

|xl−1 − xl|
r0

.

Thus, a convexity argument similar to (3.27) implies

lim inf
r,r0

1

k(r0) log r0

∑
l∈[k(r0)]

g(xl−1, xl) ≥ lim inf
r,r0

1

k(r0) log r0

∑
l∈I(r0)∩[k0(r0)]

g(xl−1, xl)

≥ lim inf
r,r0

1

k(r0) log r0
(b0 − o(1))

( r0δt
∗ε

#(I(r0) ∩ [k0(r0)])

)α
#(I(r0) ∩ [k0(r0)])

≥ lim inf
r,r0

τ(r0)1−αb0(δε)α =∞.

This shows that (3.25) holds with a suitable choice of ε′ > 0. �

4 Strong punishment for the interference

This section is devoted to regime (2), i.e., the limit of strong penalization of interference. Our main result corresponding
to this, Proposition 4.1, is stated in Section 4.1 and proven in Section 4.2.

4.1 Strong interference punishment makes message trajectories straight

Proposition 3.3 shows that in the large-distance limit, with µ being the Lebesgue measure in a large ballW , the typical
message trajectory from the transmitter x0 to xk = o under Tx0 does not deviate much from the straight line with high
probability. In this proposition, |x0|, k = k(|x0|) and the radius of W are assumed to tend to infinity in a certain way.
From an application point of view, it is also desirable to see a similar effect for a fixed compact communication areaW ,
a fixed starting site x0 and a fixed upper bound kmax ∈ N on the hop number. One way to find such an effect is to
consider the limit of a large SIR penalization parameter γ. It is easily seen from (2.19) that this limit should entirely be
determined by the minimizer of W k−1 3 (x1, . . . , xk−1) 7→

∑k
l=1 g(xl−1, xl). Our next result gives criteria under

which this minimizer follows a straight line and we have exponential estimates for deviations of trajectories from that.

Let us consider the case where W is a closed ball Br(o), r > 0, the path-loss function ` is strictly monotone
decreasing (but satisfies the original condition that it is continuous and positive on [0,∞)). A typical choice [BB09,
Section 22.1.2] is `(r) = (1 + r)−α. Further, let us assume that the intensity measure is rotationally invariant,
i.e., µ ◦ O−1 = µ for any orthogonal d × d matrix O. Under these conditions, we conclude that any minimizer of
W k−1 3 (x1, . . . , xk−1) 7→

∑k
l=1 g(xl−1, xl) is of the form xl = clx0 for l = 1, . . . , k− 1 with positive constants

1 > c1 > . . . > ck−1 > 0. Moreover, the total probability mass carried by trajectories deviating from the straight line
segment between the transmitter and o at least by some fixed positive quantity decays exponentially fast as γ →∞.

More precisely, writing [[x, y]] = {αx+ (1− α)y|α ∈ R} for the line through x, y ∈ Rd, we state the following.

Proposition 4.1. Let r > 0,W = Br(o), kmax ≥ 2, ` and µ be fixed. Let us assume that ` is strictly monotone
decreasing and µ is rotationally invariant.
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1 For x0 ∈W , let us write

mkmax(x0) = min
k∈[kmax]

min
x1,...,xk−1∈W

k∑
l=1

g(xl−1, xl), xk = o.

Then, for any minimizer k ∈ [kmax] and x1, . . . , xk−1, there exist 1 > c1 > . . . > ck−1 > 0 such that
xl = clx0 for all l ∈ [k − 1].

2 For k ∈ [kmax] and ε > 0, let us define

Dε
k(x0) = {(x1, . . . , xk−1) ∈W k−1 | ∃l ∈ {1, . . . , k − 1} : dist(xl, [[x0, o]]) > ε}. (4.1)

Then, writing T γx0 = Tx0 for the measure in (2.19) corresponding to γ, we have

sup
x0∈W

sup
k∈[kmax]

lim sup
γ→∞

1

γ
log sup

(x1,...,xk−1)∈Dεk(x0)
T γx0(k, x1, . . . , xk−1) < 0. (4.2)

The proof of the first part of this proposition is based on simple geometric arguments, while the proof of the second
part additionally uses the Laplace method. Note that in the first part, a minimizer always exists because W is compact
and g is continuous. The proof is carried out in Section 4.2.

4.2 Proof of Proposition 4.1

Throughout the proof, given any number of hops k ∈ [kmax], we will always assume that xk = o.

We start with proving part (1). Let us fix x0 ∈ Br(o). The fact that (x, y) 7→ g(x, y) is bounded away from 0
implies that for x0 = o, mkmax(x0) is uniquely attained by the 1-hop trajectory from x0 to x1 = o. Thus, we can
assume that x0 6= o.

Let now k ∈ [kmax] and (x1, . . . , xk−1) ∈ Br(o)
k−1

. Let us assume that
∑k

l=1 g(xl−1, xl) = mkmax(x0). We
show that there are 1 > c1 > . . . > ck−1 > 0 such that xj = cjx0 for all j ∈ [k − 1], proceeding in the following
steps.

(i) LetH denote the closed half-space of Rd that contains x0 and whose boundary is orthogonal to the vector from
x0 to o and contains o. Then (x1, . . . , xk−1) ∈ Hk−1.

(ii) (x1, . . . , xk−1) ∈ (H ∩ [x0, o])
k−1, where we write [x, y] = {αx + (1 − α)y : α ∈ [0, 1]} for the closed

segment between x, y ∈ Rd.

(iii) |x0| > |x1| > . . . > |xk−1| > 0.

We prove these claims respectively as follows.

(i) Assume that the assertion does not hold, then let us define another trajectory (x′1, . . . , x
′
k−1) ∈ Hk−1 via

x′l = xl if xl ∈ H and x′l being the image of xl under reflection across the boundary hyperplane ofH otherwise,
for all l ∈ [k − 1]. The rotation invariance of µ and W , combined with |xl| = |x′l|, implies that∫

W
µ(dy)`(|xl − y|) =

∫
W
µ(dy)`(|x′l − y|), l ∈ [kmax]. (4.3)

But, since |xl−1 − xl| ≥ |x′l−1 − x′l| and ` is strictly decreasing,

`(|xl−1 − xl|) ≤ `(|x′l−1 − x′l|), (4.4)

where equality holds if and only if xl−1, xl are both inH or both in Rd\H. We conclude that
∑k

l=1 g(xl−1, xl) >∑k
l=1 g(x′l−1, x

′
l), which contradicts (x1, . . . , xk−1) being the minimizer in (4.1).
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(ii) The case d = 1 is trivial. Let us consider the case d ≥ 2. Assume (x1, . . . , xk−1) ∈ Hk−1. Let us define
another trajectory (x′1, . . . , x

′
k−1) ∈ (H ∩ [x0, o])

k−1 such that for all l ∈ [k − 1], x′l satisfies |x′l| = |xl| and
x′l ∈ [x0, o]. That is, x′l = x0|xl|/|x0|. Then, the radial symmetry of µ implies that (4.3) holds. Furthermore, the
fact that ` is strictly decreasing but |xl−1 − xl| ≥ |x′l−1 − x′l| implies that also (4.4) is true in this case, where
equality holds if and only if xl = x′l for all l ∈ [k − 1], i.e., if xl ∈ [x0, o] for all l ∈ [k − 1].

(iii) Let (x1, . . . , xk−1) ∈ [x0, o]
k−1. In the following argument, we cancel in this trajctory all steps that increase the

distance to o, and we show that the sum of the SIR terms gets smaller by this. Indeed, let us define i0 = 0 and
ij = inf{l ∈ [k] : |xl| < |xij−1 |}, j = 1, . . . , k. Let m be the largest index j such that ij <∞, then it is clear
that 1 ≤ m ≤ k since x0 6= o. Now, let us define an m-hop trajectory with relay sequence (y1, . . . , ym−1) =

(xi1 , . . . , xim−1), writing y0 = x0 and ym = o. Let us further define ε′ = min
x,y∈Br(o) g(x, y) > 0. Then,

since for any j ∈ [m− 1] we have that |xij−1 − xij | ≥ |xij−1 − xij |, we conclude that

m∑
j=1

g(yj−1, yj) =

m∑
j=1

g(xij−1 , xij ) ≤
m∑
j=1

g(xij−1, xij ) ≤
k∑
l=1

g(xl−1, xl)− (k −m)ε′.

Thus, (x1, . . . , xk−1) can only minimize (4.1) if k = m, that is, if |x0| > |x1| > . . . > |xk−1| > 0.

This finishes the proof of part (1) of Proposition 4.1.

As for part (2), we note that the case d = 1 is trivial since Dε
k(x0) = ∅ for all x0 ∈ Br(o). Throughout the rest of

the proof, let d ≥ 2. First, we fix x0 ∈ Br(o) and k ∈ [kmax], and we verify that

lim sup
γ→∞

1

γ
log sup

(x1,...,xk−1)∈Dεk(x0)
T γx0(k, x1, . . . , xk−1) < −κ (4.5)

for some κ > 0 that neither depends on x0 nor on k. This will imply (4.2).

Again, it is easy to see that if x0 = 0, then (4.5) holds for some κ > 0, let us therefore assume that x0 6= o. We
first verify that there exists δ = δ(ε) > 0, independent of x0 and k, such that

mε
kmax

(x0) = inf
(x1,...,xk−1)∈Dεk(x0)

k∑
l=1

g(xl−1, xl) ≥ mkmax + δ(ε). (4.6)

In the construction of (x1, . . . , xk−1) 7→ (x′1, . . . , x
′
k−1) in the proof of (i) above, the fact that dist(xl, [[x0, o]]) =

dist(x′l, [[x0, o]]) for all l ∈ [k−1] and k ∈ [kmax] implies that if (x1, . . . , xk−1) ∈ Dε
k(x0), then (x′1, . . . , x

′
k−1) ∈

Dε
k(x0) ∩ Hk−1. It follows that the infimum in (4.6) can be realized along sequences of trajectories that have all their

relays x1, . . . , xk−1 inH.

Let now (x1, . . . , xk−1) ∈ Dε
k(x0)∩Hk−1, and consider the construction of (x1, . . . , xk−1) 7→ (x′1, . . . , x

′
k−1)

in the proof of (ii) above. We observe the following. Since x0 ∈ [x0, o] and (x1, . . . , xk−1) ∈ Dε
k(x0), there exists

l1 ∈ [k] such that

dist(xl1 , [[x0, o]]) > dist(xl1−1, [[x0, o]]) +
ε

k
≥ dist(xl1−1, [[x0, o]]) +

ε

kmax
,

where each [[x0, o]] can also be replaced by [x0, o]. One easily sees that this bound holds uniformly in x0 ∈ W and
k ∈ [kmax].

Now, the Pythagoras theorem together with the fact that ` is strictly monotone decreasing yields that in this case
there exists δ′(ε) > 0 such that `(|xl1−1 − xl1 |) < `(|x′l1−1 − x′l1 |)− δ

′(ε). Note that δ′(ε) depends only on `, r
and ε but not on k or l1. On the other hand, by the rotational symmetry of µ, the equality (4.3) holds for all l ∈ [k] for
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this choice of the relays xl and x′l. Therefore, we conclude that there exists a constant δ = δ(ε) > 0 such that for all
n ∈ N we have

k∑
l=1

g(xl−1, xl) >

k∑
l=1

g(x′l−1, x
′
l) + δ(ε) ≥ mkmax + δ(ε).

This implies (4.6), and the construction shows that δ(ε) > 0 can be chosen independently of x0 and k.

We now finish the proof of part (2). Let us use the notation Aγ(x0) = A(x0) for the normalization term in (2.17)
corresponding to γ and recall the notation T γx0 = Tx0 from Proposition 4.1. It is clear from the Laplace method [DZ98,
Section 4.3] that we have

Aγ(x0) = eo(γ)+γmkmax (x0) as γ →∞.

For any (x1, . . . , xk−1) ∈ Dε
k, using (2.16) and (4.6), we can estimate

T γx0(k, x1, . . . , xk−1) =
νγk (dx0, . . . ,dxk−1)

µ(dx0)µ(dx1) . . . µ(dxk−1)
≤ eo(γ)+γmkmax (x0)−γmεmax(x0) ≤ eo(γ)−γδ(ε).

We conclude (4.5) (with κ > 0 being independent of x0 ∈ W and k ∈ [kmax]). Thus, part (2) of Proposition 4.1
follows.

5 High local density of users

This section describes the behaviour of the system in regime (3), i.e., in the limit of a high local density of users in a
subset of the communication area. In Section 5.1, we explain both global and local aspects of this limit. We formulate
a result, Proposition 5.1, about the global aspects, the proof of which is carried out in Section 5.2.

5.1 Global and local relaying behaviour

We consider the following question about the behaviour of our model given by (2.16), assuming always that kmax ≥ 2.

Does the density of trajectories increase unboundedly in a densely populated subarea, or do the mes-
sages avoid such area for the sake of having lower interference?

In order to give substance to this question, we replace our user density measure µ by

µa = µ+ aLeb|∆ ∈M(W ), a ∈ (0,∞), (5.1)

where Leb|∆ is the Lebesgue measure concentrated on a compact set ∆ ⊆W , seen as a measure on W . We think
of ∆ as of a set of very high concentration of users and will consider the behaviour of the optimal path trajectory in the
limit a→∞. We will from now on label all objects that depend on µa instead of µ with the index a. We will study the
measure

Ma =

kmax∑
k=1

k−1∑
l=1

πlν
a
k , (5.2)

where νak is defined according to (2.16). It receives the interpretation [KT17, Section 1.3] of the measure of all the
incoming messages at a given location (see also Section 2.3). Note that the total massMa(W ) is zero if all messages
go directly to the base station without any relaying hop; hence it is a measure for the total amount of hops. Explicitly,
we have

Ma(dx) = µa(dx)

∫
W
µa(dx0)

∑kmax
k=1

∑k−1
l=1

∫
Wk−2

∏
l′∈[k−1]\{l} µ

a(dxl′) e
−γ

∑k
l′=1 g

a(xl′−1,xl′ )
∣∣
xl=x∑kmax

k=1

∫
Wk−1

∏k−1
l=1 µ

a(dxl)e
−γ

∑k−1
l=1 g

a(xl−1,xl)
. (5.3)
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Now we are interested in the behaviour of the measure Ma as a→∞. Since (x, y) 7→ `(|x− y|) is bounded away
from 0 on W ×W , we first note that the large-a behaviour of the SIR term is given by

lim
a→∞

1

a
ga(x, y) =

∫
∆ dz `(|y − z|)
`(|x− y|)

=: g∆(x, y), x, y ∈W. (5.4)

The limiting function g∆ measures the SIR only in relation with the interference coming from ∆. This ratio will turn out
to be decisive and the effective SIR term in the limit a→∞.

Our first result is that, when the path-loss function (x, y) 7→ `(|x − y|) does not vary much on W × W , the
presence of the highly dense area ∆ has a strongly repellent effect anywhere in the system and suppresses all the
relaying hops; indeed, the total mass of the measure Ma tends to zero as a→∞.

Proposition 5.1 (Criterion for exponential decay of the amount of relays). We have

sup
x∈W

lim sup
a→∞

1

a
log

Ma(dx)

dx
< 0 (5.5)

if and only if

min
x0∈W

[
min
x1∈W

(
g∆(x0, x1) + g∆(x1, o)

)
− g∆(x0, o)

]
> 0, (5.6)

Remark 5.2. (i) The condition (5.5) implies an exponential decay of the total mass of Ma, i.e.,

lim sup
a→∞

1

a
logMa(W ) < 0.

(ii) Since µa is clearly subexponential in a→∞, (5.5) is equivalent with an exponential decay of the density of Ma

with respect to µa instead of Leb|W .

(iii) The condition in (5.6) says that the effective SIR for a two-hop trajectory is uniformly worse than the one of a direct
hop to the origin. This criterion involves only one- and two-hop trajectories and is valid even when kmax is much
larger than 2.

(iv) Multiplying with two of the three denominators in (5.6) and using that the map W ×W 3 (x, y) 7→ `(|x − y|)
is bounded and bounded away from zero, we easily see that (5.6) holds if and only if

min
x0,x1∈W

[
`(|x1|)

∫
∆
`(|z − x1|) dz + `(|x0 − x1|)

∫
∆
`(|z|) dz − `(|x1|)`(|x0 − x1|)

`(|x0|)

∫
∆
`(|z|)dz

]
> 0.

(5.7)

(v) A sufficient criterion for (5.6) to hold is as follows. Let p ∈ (0, 1] be such that p`max = `min, where we recall that
`max and `min are the maximal and minimal values of W ×W 3 (x, y) 7→ `(|x − y|), respectively. Then, a
lower bound for the left-hand side of (5.7) is `2maxLeb(∆)(2p2 − 1

p). This is positive as long as p is larger than

2−1/3 ≈ 0.794.

Similarly, an upper bound on the left-hand side of (5.7) in terms of p is `2maxLeb(∆)(2 − p3), but this is larger
than zero for all p ∈ (0, 1], so such a general estimate cannot be used for disproving (5.7) in any case.

The proof of Proposition 5.1 is carried out in Section 5.2.

In our numerical results in Examples 7.1 and 7.2 with W = ∆, the condition (5.6) does not hold.

We give now a discussion of spatial statements saying that the quality of service (SIR penalization with interference
coming only from ∆) is significantly worse for messages relaying through a neighbourhood of ∆ than through an area
sufficiently far away from ∆. For simplicity, we do this only for kmax = 2, a very small set ∆ and a special choice of
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the path-loss function. We will give arguments that suggest that, for any large a, it is strictly suboptimal to relay through
a neighbourhood of ∆ as opposed to circumventing ∆ sufficiently far.

Analogously to (5.10)–(5.11), the large-a limit for the mass of all relaying hops from x0 into a setA ⊂W (assumed
nice, e.g., being equal to the closure of its interior) and further to o is given by

− lim
a→∞

1

a
log T ax0(2, A) = γ

[
Ξx0(A)−min

{
g∆(x0, o),Ξx0(W )

}]
, (5.8)

where
Ξx0(A) = min

x1∈W∩A
[g∆(x0, x1) + g∆(x1, o)].

We want to discuss under what circumstances Ξx0(A) is smaller for sets A that are bounded away from ∆ than for A
being a neighbourhood of ∆. For simplicity, let us do that for W = Rd and very small sets ∆ = Br(y0) with r � 1

only, i.e., we approximate

g∆(x, y) ≈ |∆|`(|y − y0|)
`(|y − x|)

, x, y ∈ Rd. (5.9)

Hence, we will put ∆ = {y0} and discuss the function

fx0,y0(ε) = min
x1∈W : |x1−y0|=ε

[ `(|x1 − y0|)
`(|x0 − x1|)

+
`(|y0|)
`(|x1|)

]
, ε ≥ 0.

This is an approximation of Ξx0(∂Bε(y0)). We will see that, under quite general conditions, fx0,y0(ε) < fx0,y0(0)

for all ε ∈ [0, ε0] for some ε0 > 0. This means that, for all sufficiently large a, the probability weight for trajectories
x0 → Bε0−δ(y0)→ o is exponentially smaller than the one for trajectories x0 → Bε0(y0)c → o for any ε0 > δ > 0.

To do this, use the triangle inequality and the monotonicity of ` to see that

fx0,y0(ε) ≤ f̃x0,y0(ε) :=
`(ε)

`(|x0 − y0|+ ε)
+

`(|y0|)
`(|y0|+ ε)

.

Note that f̃x0,y0(0) = fx0,y0(0) and that

f̃ ′x0,y0(0) =
`′(0)

`(|x0 − y0|)
− `(0)`′(|x0 − y0|)

`(|x0 − y0|)2
− `′(|y0|)
`(|y0|)

.

Note that for the choice `(r) = (1+r)−α for some α > 0, this is negative as soon as |x0−y0|(1+ |x0−y0|)α−1 >

(1 + |y0|)−1, i.e., as soon as y0 is sufficiently far away from o, given the distance of the transmission site x0 from
y0. This proves the announced conclusion that a two-hop transmission from x0 to the origin is strictly not optimal if the
relaying step uses a neighbourhood of y0; here we used no information about the spatial relation of the three sites x0,
y0 and o, but the fact that `′(0) < 0. However, for the path-loss function `(r) = min{1, r−α}, this argument does
not work, since f̃ ′x0,y0(0) > 0 (because `′(0) = 0).

5.2 Proof of Proposition 5.1

We analyze the behaviour of the left-hand side of (5.5). Taking the limit a→∞, we obtain for fixed x, x0 ∈W for the
numerator of (5.3)

lim
a→∞

1

a
log
[ kmax∑
k=1

k−1∑
l=1

∫
Wk−2

∏
l′∈[k−1]\{l}

µa(dxl′) exp
(
− γ

k∑
l′=1

ga(xl′−1, xl′)
∣∣∣
xl=x

)]

= −γ min
k∈[kmax]\{1}

min
l∈[k−1]

min
x1,...,xl−1,xl+1,...,xk−1∈W

k∑
l′=1

g∆(xl′−1, xl′)
∣∣∣
xl=x

.

(5.10)
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On the other hand, for the denominator of (5.3) for x0 fixed, we have

lim
a→∞

1

a
log
[ kmax∑
k=1

∫
Wk−1

k−1∏
l=1

µa(dxl) exp
(
− γ

k−1∑
l=1

ga(xl−1, xl)
)]

= −γ min
k∈[kmax]

min
x1,...,xk−1∈W

k∑
l=1

g∆(xl−1, xl).

(5.11)

These two assertions follow from the Laplace method [DZ98, Section 4.3] in a standard way, since the a-dependence
of the integrating measure µa is clearly subexponential. Hence, we obtain that

lim
a→∞

1

a
logMa(dx) = −γ min

x0∈W

[
min

k∈[kmax]\{1}
min
l∈[k−1]

min
x1,...,xl−1,xl+1,...,xk−1∈W

k∑
l′=1

g∆(xl′−1, xl′)
∣∣∣
xl=x

− min
k∈[kmax]

min
x1,...,xk−1∈W

k∑
l=1

g∆(xl−1, xl)
]
.

(5.12)

Note that after taking supremum over x ∈ W on the right-hand side of (5.12), we obtain a negative number if and
only if

min
x0∈W

[
min

k∈[kmax]\{1}
min

x1,...,xk−1∈W

k∑
l=1

g∆(xl−1, xl)− g∆(x0, o)
]
> 0. (5.13)

Now, assume that the condition (5.6) does not hold. Then we may pick x′0, x
′
1 ∈W with (g∆(x′0, x

′
1) + g∆(x′1, o)−

g∆(x′0, o)) ≤ 0. But this implies that (5.13) is false, as is shown by taking k = 2, x0 = x′0 and x = x′1. We conclude
that (5.5) does not hold.

Conversely, let us assume that (5.5) is not satisfied and let us conclude that (5.6) also does not hold. Using (5.5)
and (5.12), we can choose x0 ∈W , k ∈ [kmax] \ {1} and x1, . . . , xk−1 ∈W such that

k∑
l=1

g∆(xl−1, xl) ≤ g∆(x0, o), xk = o. (5.14)

Let k be minimal for x0 with this property. We show that there exists x′0, x
′
1 ∈W such that g∆(x′0, x

′
1)+g∆(x′1, o) ≤

g∆(x′0, o), wherefore (5.6) does not hold. Indeed, if this is not the case for x′0 = xk−2 and x′1 = xk−1, then we have

k−2∑
l=1

g∆(xl−1, xl) + g∆(xk−2, o) ≤
k∑
l=1

g∆(xl−1, xl) ≤ g∆(x0, o) <
k−2∑
l=1

g∆(xl−1, xl) + g∆(xk−2, o),

where in the last step we used the minimality of k for x0. This is a contradiction, and thus (5.6) has been disproven.
The proposition follows. �

6 Game-theoretic interpretation of the optimization problem

In Section 2.4.2 we explained how our model that we introduced in Section 2.1 can be employed for obtaining a
numerical simulation algorithm for finding minimizer(s) s of γS(s) + βM(s), i.e., including the congestion term. In
this section, we give a more thorough discussion of this optimization problem from a game-theoretical point of view.
In particular, we explain in which sense our model is selfish or not selfish and give a number of explicit examples for
illustration. Note that in the term S(s) there is no interaction between the trajectories (only with the users), but in the
term M(s). We therefore keep both β > 0 and γ > 0 fixed.
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Let Xλ = {X1, . . . , Xn} be fixed, where n ∈ N. For the rest of this section, we simplify the notation as follows.
We write S = Skmax(Xλ) and for i ∈ [n], Si = Sikmax

(Xλ). Let now s = (si)ni=1 ∈ S be a collection of message
trajectories. For i ∈ [n], let us write ki(s) = si−1 for the number of hops taken by the ith trajectory si sent out from
Xi to o. Then, in terms of interference and congestion, the individual cost Ci(s) of si w.r.t. the entire family s is the
individual interference penalization of si, together with the congestion penalization at all the relays that si uses:

Ci(s) = γ

ki(s)∑
l=1

SIR−1(sil−1, s
i
l, X

λ) + β

ki(s)−1∑
l=1

n∑
j=1

(mj(s)− 1)1{sil = j}. (6.1)

The total cost of the telecommunication system is defined as

C(s) =

n∑
i=1

Ci(s) = γS(s) + βM(s) = γ

n∑
i=1

ki(s)∑
l=1

SIR−1(sil−1, s
i
l, X

λ) + β

n∑
j=1

mj(s)(mj(s)− 1).

We say that s is system-optimal if C(s) ≤ C(s′) for all s′ ∈ S .

For a collection s = (si)ni=1 of trajectories we write s = si(s
i, s−i), where s−i = (sj)j∈[n],j 6=i. Now, given

i and s−i = (sj)j 6=i with sj ∈ Sj for all j 6= i, a best response of the ith user for s−i is ui ∈ Si such that
Ci(si(u

i, s−i)) ≤ Ci(si(s
i, s−i)) = Ci(s) for all si ∈ Si. We say [NRTV07, Section 1.3.3] that s = (si)ni=1 is a

pure Nash equilibrium if si is a best response for s−i = (sj)j 6=i for all i ∈ [n].

Claim 6.1. For β, γ, λ > 0, given Xλ (with n > 0), a pure Nash equilibrium always exists.

Proof. The claim follows from the well-known result [NRTV07, Theorem 18.12] that unweighted atomic congestion
games always have a pure Nash equilibrium. Indeed, the cost functions Ci, i ∈ [n], and C are the individual respec-
tively total costs in an unweighted atomic congestion game (atomic instance) [NRTV07, Section 18], which is defined
as follows. For each i ∈ [n], the set of all possible paths si ∈ Si of length at most kmax from Xi to o via users in
Xj ∈ Xλ without visiting the same Xj twice can be seen as the set of the strategies of the ith user (player) Xi. Each
user uses precisely one of its strategies, i.e., the game is unweighted, and each user has a finite number of strategies.
Indeed, for the sake of optimization of individual and total costs, we can neglect trajectories with loops since removing
any loop from the trajectory of the ith user strictly decreases Ci and does not increase Cj for j 6= i, neither C .

The cost function in this game is defined as follows. Each hop from Xi to Xj has a constant cost equal to
γSIR−1(Xi, Xj , X

λ), and each used relay Xj has a linear cost equal to β(mj(s) − 1), depending on the tra-
jectory configuration s. This way, by (6.1), the cost of the strategy of Xi corresponding to s ∈ S equals Ci(s). Thus,
the claim follows.

Now, if there exists a system-optimal s ∈ S such that C(s) < C(s′) for all Nash equilibria s′, then we call s a
non-selfish optimum, since there exists i ∈ [n] such that si is not the best response of the ith user for the remaining
coordinates of the trajectory collection. Example 6.2 shows a two-dimensional example that has a non-selfish optimum,
and Remark 6.4 tells more about the relation of the individual and the total costs.

Example 6.2. Let d = 2, λ = 1 and kmax = 2, and let Xλ = X1 = {X1, X2, X3}, ` and γ > 0 be cho-
sen in the following way. X1, X2, X3 and o,X2, X3 are vertices of two equilateral triangles with X1 being in the
interior of the latter triangle, so that |X1 − X2| = |X1 − X3| and |X2| = |X3|, so that γSIR−1(X1, o,X

1) =

γSIR−1(Xi, X1, X
1) = 1 and γSIR−1(Xi, o,X

1) = 1 + q for all i ∈ {2, 3} for some q > 0 (see Figure 1).

The boundedness of `(| · − · |) away from 0 on W ×W implies that for any β > 0 and i ∈ {2, 3}, any si ∈ Si
that uses some Xj with j ∈ {2, 3} as a relay is suboptimal both w.r.t. total and individual costs. Indeed, leaving
out this relay and moving on to the next step of the same trajectory instead decreases Ci(s) without increasing any
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1

1

1+
q1+q

1

o

X1

X3X2

Figure 1: SIR weights per hop in Example 6.2. In the relevant cases, the congestion at X1 is βy(y − 1), where y is
the number of elements of {X2, X3} relaying through X1.

Number of hops of s2 Number of hops of s3 C2(s) C3(s) C(s)

1 1 2 + q 2 + q 5 + 2q

2 1 2 2 + q 5 + q

2 2 2 + β 2 + β 5 + 2β

Table 1: Individual and total costs in standard representatives of the relevant cases in Example 6.2.

Cm(s), m 6= i. Using analogous arguments, one easily concludes that in any optimal trajectory and also in any Nash
equilibrium, X1 submits directly to o, and the two users X2, X3 use either the direct link to o or the two-hop path via
X1 to o. Table 1 shows the individual costs and the total cost in some standard representatives of these cases.

The positive parameters q and β can be chosen such that the following holds. Given that X2 uses its two-hop
path X2 → X1 → o, the best response of X3 is to also use its two-hop path X3 → X1 → o and vice versa, so
that both users using their two-hop paths forms the unique Nash equilibrium, but the system optima are the trajectory
configurations in which only one of them relays via X1 and the other one submits directly to o. According to Table 1,
this holds if q > 0 and β ∈ (q/2, q). Thus, in such cases, the optimum is non-selfish.

Similar effects occur in all dimensions d ≥ 2, with d + 1 users X1, X2, . . . , Xd+1 situated so that |Xj −X1| =
|Xi−X1| and |X1| < |Xi| = |Xj | for all i, j ≥ 2. In such cases, one can choose the parameters in such a way that
for all j ≥ 2, knowing that X1 transmits directly to o and each Xi, j 6= i ≥ 2 relays through X1, the best response
of Xj is to use also the relayed link via X1, but w.r.t. total costs it would be better if Xj transmitted directly to o. Note
that if this holds, it may still happen that neither of these two joint strategies is system-optimal. �

Remark 6.3. In the setting of our Gibbsian model, Nash equilibria are not necessarily unique. Consider Example 6.2
in the boundary case β = q. Then one easily checks that the system exhibits three different Nash equilibria, namely
the three ones that appear in Table 1. Also for β > q, there are two Nash equilibria, namely the ones where exactly
one of s2, s3 transmits directly to o and the other one via X1, by the symmetry between X2 and X3.

Remark 6.4. A situation opposite to Example 6.2 is not possible. I.e., if plugging in an additional relay to a trajectory
decreases the total cost, it also decreases the individual cost of the transmitter of that trajectory.

Indeed, consider Figure 2 with λ > 0, Xi, Xh ∈ Xλ and x ∈ Xλ ∪ {o}, where the direct hop from Xi to x
has SIR penalization p0 > 0, while the two-hop path via Xh has SIR penalization p1 + p2 with p1, p2 > 0. Now, if
s−i = (sj)j 6=i is given and the number of incoming messages at Xh coming from all trajectories but the one of Xi

equals m ≥ 0, then the direct link from Xi to x has individual cost p0 +K and the Xi → Xh → o relayed link has
individual cost m + p1 + p2 + K for some K ≥ 0. On the other hand, the total cost of the configuration with the
Xi → x direct link is 2m + p1 + p2 + K ′, and the one with the Xi → Xh → x relayed link is p0 + K ′ for some
K ′ ≥ 0. So if plugging in the relay Xh increases the individual cost Ci, then it also increases the total cost C . This
implies the claim.

DOI 10.20347/WIAS.PREPRINT.2466 Berlin 2017



W. König, A. Tóbiás 30

p2

p1
p0

x

Xh

Xi

Figure 2: A situation opposite to Example 6.2 is not possible.

7 Numerical studies

In this section, we give numerical illustrations of various properties of the minimizer (νk)k∈[kmax] of (2.16), which
describes the limiting empirical trajectory measure according to Proposition 2.1. We consider kmax = 2, d = 1, 2, `
satisfying `(r) ∼ r−4 as r →∞, W being a ball sufficiently large such that both direct communication and two-hop
communication are non-negligible, and µ being the Lebesgue measure on W . We do not consider congestion, i.e., we
put β = 0. One of our questions is how strongly the effects that we proved in Sections 4 in the limit γ →∞ emerge.
We will see that they are already very pronounced for γ = 1. We will not only look at the areas where one-hop and
two-hop communication dominate, respectively, and the approximation of a straight line of the latter trajectories, but we
will also see further effects.

First, let us choose `(t) = min{1, t−4}. Let W = Br(o) be a ball around the origin o. We will pick r so large that
the effect of the path-loss function ` is strong enough in the sense that we can study areas in W from which a direct
hop to o is preferred and areas from which a two-hop trajectory is preferred. We are interested in seeing how sharp the
transition between these two areas is. By rotational invariance, we expect that the first area is a centred ball and the
second the complement of a ball in W . Hence, we do not lose much when going to d = 1. We expect the transition
close to the point where the interference term gives the transition from optimality of one-step trajectories to two-step
trajectories, i.e., at the radius |x0|, where the number

g(x0, o)− min
x1∈W

(
g(x0, x1) + g(x1, o)

)
(7.1)

switches the sign. Let r∗0 denote that point. Our main question is whether already for moderate values of γ, we see a
pronounced transition in the measures ν1(dx0) and π0ν2(dx0) of the form that ν1(dx0) ≈ µ(dx0) for all x0 with
|x0| smaller than r∗0 and π0ν2(dx0) ≈ µ(dx0) for all x0 with |x0| significantly larger than r∗0 , with a fast change
around r∗0 .

In the following one-dimensional numerical example, the answer is yes, already for γ = 1. The plots presented here
were created using Wolfram Mathematica.

Example 7.1. Let kmax = 2, d = 1, W = [−5, 5] = B5(o) ⊂ R, and `(r) = min{1, r−4}. According to
Proposition 2.1, the minimizing measures Σ = (ν1, ν2) are given as follows. With

1

A(x0)
= exp

(
− γ

∫ 5
−5 `(|y|)dy
`(|x0|)

)
+

1

10

∫ 5

−5
dx1 exp

(
− γ
(∫ 5
−5 `(|y − x1|)dy
`(|x0 − x1|)

+

∫ 5
−5 `(|y|)dy
`(|x1|)

))
, (7.2)

we have

ν1(dx0) = dx0A(x0) exp
(
− γ

∫ 5
−5 `(|y|)dy
`(|x0|)

)
(7.3)

and

ν2(dx0,dx1) =
1

10
dx0dx1A(x0) exp

(
− γ
(∫ 5
−5 `(|y − x1|)dy
`(|x0 − x1|)

+

∫ 5
−5 `(|y|)dy
`(|x1|)

))
. (7.4)
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Figure 3: The graphs of x0 7→ ν1(dx0)/dx0 as in Example 7.1 for γ = 0, 0.001, 0.01, 0.1, 0.4, 0.7, 1,∞.

Figure 4: The graphs of (x0, x1) 7→ log(ν2(dx0, dx1)/dx0 dx1) as in Example 7.1 for γ = 1 from two different
views.

All integrals are numerically tractable for γ ∈ [0, 1]. As seen in Figure 3, already for γ = 1, the density of ν1 is very
close to the step function with a jump at the point r∗0 where (7.1) switches its sign. Also the density of two-hops paths,
ν2(dx0, dx1)/(dx0dx1), is extremely small for |x0 − x1| large, already for γ = 1, so that we prefer to plot it on a
logarithmic scale, see Figure 4.

Now we ask the question which x∗1 maximizes x1 7→ ν2(dx0,dx1)/dx0 dx1 for given x0 ∈ W . In Figure 5, we
see one approximate maximizer x∗1(x0) mapped to each x0 ∈W . For x0 with |x0| not exceeding the critical distance
r∗0 ∈ (1.45, 1.5) significantly, the picture is very noisy. Due to multiple approximate maximizers, the numerical plot is
even not symmetric to 0, although it is clear that ν2(dx0,dx1) = ν2(−dx0,−dx1) must hold for any x0, x1 ∈ W
(cf. [KT17, Section 1.7.3]). When |x0| becomes large enough so that it leaves the noisy area, the function becomes
close to linear in x0 with slope 1, followed by two symmetrically located breakpoints around |x0| ≈ 2.5 and afterwards,
the function continues to be approximately linear but with a slope smaller than 1. We observe that in the steeper linear
part, only the length of the second hop increases, and the optimal first step always has length equal to 1, which is the
maximal distance for which ` takes its maximal value `max = 1. This eventually ceases to be the optimal strategy for

Figure 5: The graph of x0 ∈ W , mapped to a maximizer x∗1(x0) ∈ W of x1 7→ ν1(dx0,dx1)/dx0 dx1 in Exam-
ple 7.1. The function ceases to be noisy shortly after x0 enters the regime where (7.1) switches sign.
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x0 x∗1(x0) (7.1)
x coord. y coord. x coord. y coord. positive for x0?

0 0 8.92× 10−11 6.80× 10−11 no

0.1 0 0.05002 4.44× 10−13 no

0.4 0 0.20007 7.37× 10−13 no

0.6 0.2 0.30001 0.10003 yes

1 0 0.50010 −5.68× 10−9 yes

3 4 1.49893 1.99859 yes

5 0 2.49823 1.94× 10−8 yes

Table 2: In Example 7.2, the optimal relay x∗1(x0) of transmitter x0 is close to x0/2. For |x0| large, using this relay is
more favourable than the direct link towards o.

|x0| ≈ 2.5, and after this breakpoint, the path-loss causes a slow, continuous increase in the length of the first hop
as well. For further details about what we expect instead of the picture shown in Figure 3 for larger γ and/or higher
numerical precision in this example, see Example 7.2.

�

In the next, two-dimensional example, we illustrate the large-γ limit of Section 4. We choose a rotationally invariant
intensity µ and a strictly monotone decreasing path-loss function `. We observe that the density ν2 concentrates very
strongly on the straight line already for γ = 1.

Example 7.2. We choose d = 2, kmax = 2, W = B5(o) ⊂ R2, µ = Leb|W , `(r) = (1 + r)−4 and γ = 1. Now,
the one-hop trajectory measure ν1 is a measure onW ⊂ R2 and the two-hop one ν2 is a measure onW 2 ⊂ R4; they
are defined as in (2.16), analogously to the concrete case (7.2)–(7.4), with a suitable adaptation to the new parameters.

We observe that for any user x0 ∈ W , the map x1 7→ ν2(dx0,dx1)/dx0 dx1 is maximized in x∗1(x0) ≈ x0/2

with a very high accuracy, even for x0 close to o for which the optimal trajectory towards o is the direct one. This
implies in particular that ν2(dx0, ·) is strongly concentrated on the straight line [x0, o] for any x0 ∈ W . The critical
distance r∗0 = |x0| from o at which (7.1) switches sign is in (0.4, 0.45). We note that, approximately, the same x∗1(x0)

minimizes the SIR penalization term on the right-hand side of (7.1). Thus, in this example with γ = 1, the qualitative
behaviour of the system is already close to the one described in Section 4 for large γ. Table 7.2 shows x∗1(x0) as a
function of x0.

Note that in this example 1/`(| · |) is convex, and for two-hop trajectories of the form W 3 x0 → x0/2 → o, the
interference at x0/2 is almost the same as the one at o (at o it is about 0.970 and at x0 with |x0| = 2.5 it is about
0.937). Consequently, optimizing the SIR penalty over 2-hop trajectories is almost the same as optimizing 1/` over the
same trajectories, and the latter optimization clearly leads to an optimal trajectory with two equal-sized hops. Similar
properties also hold for ` in the setting of Example 7.1. However, the constant part of the path-loss function makes
the SIR landscape much more disordered, at least when it comes to the numerical approximations such as the one in
Figure (5). For larger γ and/or better numerical precision, we expect that also in Example 7.1, νk(dx0, ·) concentrates
around x0/2.

The properties of ` (and µ = Leb on the rotationally symmetric W ) in this second example have a strong reg-
ularizing effect on the trajectories; otherwise, the cutoff phenomenon in ν1(dx0) around the values of x0 satisfying
|x0| = r∗0 is less strong for γ = 1 than in Example 7.1. Indeed, on the one hand, for |x0| small, the proportion
of one-hop trajectories ν1(dx0)/µ(dx0) is further away from 1; indeed, even for x0 = o, a non-negligible amount
0,18% of the messages takes a two-hop trajectory, and for |x0| = 0.4 < r∗0 , already 2,82%. On the other hand,
for |x0| = 0.5 > r∗0 , still only 8,67% of the messages goes via two hops, and for |x0| = 0.8, still only 94,86%. In
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comparison, in the setting of Example 7.1, we have 1.45 < r∗0 < 1.5, and for |x0| = 1.4, already only 0.07% of
the messages takes a two-hop path and for |x0| = 0, less than 0.01%. For |x0| = 1.5, already 11,91%, and for
|x0| = 1.7, an overwhelming proportion 99.83%. �
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