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Regression on particle systems connected to mean-field SDEs
with applications

Denis Belomestny, John G. M. Schoenmakers

Abstract

In this note we consider the problem of using regression on interacting particles to compute
conditional expectations for McKean-Vlasov SDEs. We prove general result on convergence of
linear regression algorithms and establish the corresponding rates of convergence. Application to
optimal stopping and variance reduction are considered.

1 Introduction

McKean-Vlasov or mean-field SDEs are a class of stochastic differential equations where the drift and
diffusion depend on the current position along the path and on the current distribution. They were
derived to describe propagation of chaos in a system of particles that interact only by their empirical
mean in the limit of large number of particles.

Let [0, T ] be a finite time interval and (Ω,F ,P) be a complete probability space, where a standard
m-dimensional Brownian motion W is defined. We consider a class of McKean-Vlasov SDEs, i.e.,
stochastic differential equations (SDE), whose drift and diffusion coefficients may depend on the cur-
rent distribution of the process, of the form:{

Xt = ξ +
∫ t
0

∫
Rd a(Xs, y)µs(dy)ds+

∫ t
0

∫
Rd b(Xs, y)µs(dy)dWs

µt = Law(Xt), t ≥ 0, X0 ∼ µ0
(1)

where µ0 is a distribution in Rd, a : Rd × Rd → Rd and b : Rd × Rd → Rd×m.

A popular way of simulating the MVSDE (1) is to sample from the N -particle interacting diffusion
model, or particle system for short,

X i,N
t = ξi +

1

N

N∑
j=1

∫ t

0

a(X i,N
s , Xj,N

s ) ds+
1

N

N∑
j=1

∫ t

0

b(X i,N
s , Xj,N

s ) dW i
s (2)

for i = 1, . . . , N, where ξi, i = 1, . . . , N, are i.i.d copies of a r.v. ξ, distributed according the law µ0,
and W i, i = 1, ..., N, are independent copies of W. Due to [1] one has that∥∥∥∥ sup

0≤r≤T

∣∣X ·,Nr −X ·r
∣∣∥∥∥∥
p

≤ CpN
−1/2. (3)

In reality of course of course, N -dimensional SDE the system (2) cannot be exactly solved either and
one has to approximate it by some suitable numerical integration scheme such as the Euler method,
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leading to a next approximation XN,h
t =

(
X1,N,h
t , ..., XN,N,h

t

)
if h is the size of each Euler time

step. Following [1], one then has∥∥∥∥ sup
0≤r≤T

∣∣X ·,N,hr −X ·,Nr
∣∣∥∥∥∥
p

.
√
h, (4)

where . involves a constant that does not depend on N and h.

Remark 1. In order to focus on our main ideas and to avoid a notational blow up, we assume in this
paper that the system XN

t (cf. (2)) is constructed exactly, hence we neglect the numerical integration
error (4) due to the Euler scheme for example. On the other hand, due to (4) it will be clear how several
results in this paper have to be adapted in case (2) is approximated using the Euler scheme.

The central problem in this paper is the computation of functionals of the form

w(x) = E [f (XT ) | Xt = x] , x ∈ Rd, (5)

for fixed t ≥ 0 and T > t, globally in space, whereX is the solution to (1). In this respect we propose
a regression approach based on the particle system (2) and analyze its convergence properties.

2 Regression for expected functionals on particle systems

Let XN
t := (X1,N

t , ..., XN,N
t ), t ≥ 0 be a particle system (2). Let for each K ∈ N, HK be a K-

dimensional linear space of functions h : Rd → R, where the dimension K may depend on N. Next
consider

w̃N (·) = arg min
h∈HK

{
1

N

N∑
i=1

(
f(X i,N

T )− h(X i,N
t )
)2}

(6)

as a least-squares estimate of (5). In this section we are going to analyze the properties of the estimate
w̃N . Note that the paths X1,N

· , . . . , XN,N
· are generally dependent, so that the known results from

regression analysis (see, e.g. [3]) can not be applied directly. At the same time let Xt =
(
X1
t , ..., X

N
t

)
be a vector of i.i.d. copies of the exact solution to (1), and define for a fixed t > 0,

wN(·) = arg min
h∈HK

{
1

N

N∑
i=1

(
f(X i

T )− h(X i
t)
)2}

.

Now let (ψk)k=1,2,... be a sequence of linearly independent basis functions and letHK := span {ψ1, ..., ψK} .
Further let us denote by V, Ṽ ∈ RN the column vectors with coordinates

Vi =
f(X i

T )√
N

, Ṽi =
f(X i,N

T )√
N

, i = 1, . . . , N,

respectively, and consider the RN×K matrices

Z̃ =
(
ψk(X

i,N
t )/

√
N, i = 1, . . . , N, k = 1, . . . , K

)
,

Z =
(
ψk
(
X i
t

)
/
√
N, i = 1, . . . , N, k = 1, . . . , K

)
.
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Regression on particle systems with applications 3

Then we have

w̃N (·) = β̃>NψK (·) , β̃N =
(
Z̃>Z̃

)−1
Z̃>Ṽ = Z̃†Ṽ

and

wN (·) = β>NψK (·) , βN =
(
Z>Z

)−1
Z>V = Z†V

with ψK = (ψ1, . . . , ψK)> . Let us now consider the truncated versions of the estimates w̃N and
wN defined as TM w̃N and TMwN , respectively, where TM is a truncation operator of the form:

TMf =


M, f > M,

f, −M ≤ f ≤M,

−M, f < −M.

(7)

The following theorem, proved in Section 2, relays on perturbation analysis in the context of linear
regression carried out in Section 4.

Theorem 2. Suppose that supx∈Rd |f(x)| ≤ Cf , supx∈Rd |w(x)| ≤M, and that

σ2 := sup
x∈Rd

Var [f(XT )|Xt = x] <∞,

for some constants Cf > 0, M > 0, and σ > 0, respectively. Further assume that all functions ψk,
k = 1, 2, . . . and f are Lipschitz continuous, i.e.,

|ψk(x)− ψk(y)| ≤ Lk |x− y| , |f(x)− f(y)| ≤ Lf |x− y|

for all x, y ∈ Rd and some constants Lf , Lk, k = 1, 2, . . . , and that

1

K

K∑
k=1

∫
ψ2
k(x)µt(dx) ≤ D2

ψ (8)

for some constant Dψ not depending on K. Finally, suppose that

0 < κ◦ ≤ λmin (ΣK) < λmax (ΣK) ≤ κ◦ <∞

for all K ∈ N with

ΣK =

(∫
ψk (x)ψl (x)µt(dx), k, l = 1, . . . , K

)
,

where κ◦,κ◦ do not depend on K. If K/N → 0 as N →∞, then it holds

E

[∫
(TM w̃N (x)− w (x))2 µt(dx)

]
.
K

N

[
K∑
k=1

L2
k + log(N)

]

+ exp

(
−N
D

)
+ inf

h∈HK

(∫
(h(x)− w(x))2 µt(dx)

)
(9)

for constant D depending on κ◦, κ◦ only, where . stands for ≤ up to a constant depending on M,
σ, Lf , Cf and Dψ.
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2.1 Error bounds for piecewise polynomial regression

There are different ways to choose the basis functions ψ1, . . . , ψK . In this section we describe piece-
wise polynomial partitioning estimates and present L2-upper bounds for the estimation error. We fix
some p ∈ N, which will denote the maximal degree of polynomials involved in our basis functions.
The piecewise polynomial partitioning estimate of w works as follows: consider some R > 0 and
an equidistant partition of [−R,R]d in Sd cubes Q1, . . . , QSd , where S ∈ N denotes the number
of equidistant subintervals of [−R,R]. Further, consider the basis functions ψk,1, . . . , ψk,cp,d with

k ∈
{

1, . . . , Sd
}

and cp,d :=
(
p+d
d

)
such that ψk,1(x), . . . , ψk,cp,d(x) are polynomials with degree

less than or equal to p for x ∈ Qk and ψk,1(x) = . . . = ψk,cp,d(x) = 0 for x /∈ Qk. Then we
obtain the least squares regression estimate w̃N(x) for x ∈ Rd as described in the previous sec-
tion, based on K = Sdcp,d = O(Sdpd) basis functions. In particular, we have w̃N(x) = 0 for
any x /∈ [−R,R]d. We note that the cost of computing w̃N isO(NrS

dp2d) rather thanO(NrS
2dp2d)

due to a block diagonal matrix structure of
(
Z̃>Z̃

)−1
Z̃>. An equivalent approach, which leads to the

same estimator w̃N , is to perform separate regressions for each cubeQ1, . . . , QSd . Here, the number
of basis functions at each regression is of order pd so that the overall cost is of order NrS

dp2d, too.
For x = (x1, . . . , xd) ∈ Rd and h ∈ [1,∞), we will use the notations

|x|h
.
=

( d∑
i=1

|xi|h
)1/h

, |x|∞
.
= max

i=1,...,d
|xi|.

Let us define the operator Dα as follows

Dαg(x)
.
=

∂|α|g(x)

∂xα1
1 · · · ∂x

αd
d

, (10)

where g is a real-valued function, α ∈ Nd
0 and |·| means the cardinality of a set. For s ∈ N0,

C > 0 and h ∈ [1,∞], we say that a function g : Rd → R is (s+ 1, C)-smooth w.r.t. the norm |·|h
whenever, for all α with |α| =

∑d
i=1 αi = s, we have

|Dαg(x)−Dαg(y)| ≤ C|x− y|h, x, y ∈ Rd,

i.e. the function Dαg is globally Lipschitz with the Lipschitz constant C with respect to the norm | · |h
on Rd (cf. Definition 3.3 in [3]). We assume that, for some constant h ∈ [1,∞] and some positive
constants Ch, ν, Bν , it holds:

(A1) w is (p+ 1, Ch)-smooth w.r.t. the norm | · |h,

(A2) supt∈[0,T ] P(|Xt| > R) ≤ BνR
−ν for all R > 0.

Theorem 3. Suppose that the conditions of Theorem 2 hold, then under (A1) and (A2) we have

E

[∫
(TM w̃N (x)− w (x))2 µt(dx)

]
.
Sdcp,d
N

Sdcp,d∑
k=1

L2
k + log(N)


+ exp

(
−N
Q

)
+

8C2
h

(p+ 1)!2d2−2/h

(
Rd

S

)2(p+1)

+ 8A2BνR
−ν . (11)

Moreover, if Lk . kρ, k → ∞ for some ρ ≥ 0, then under a proper choice of K and S depending
on N we get

E

[∫
(TM w̃N (x)− w (x))2 µt(dx)

]
. N−

2ν(p+1)
((2ρ+1)d+1)(ν+2(p+1))+2ν(p+1) , N →∞.
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3 Applications

3.1 Optimal stopping

Let Z : R≥0×Rd → R≥0 be a measurable reward map and 0 < t1 < . . . < tn := T , T > 0, be a
given sequence of n exercise dates. Let us take n fixed (for the time being) and consider the stopping
problem

V0 := sup
F-stopping times τ

E [Z (τ,Xτ )] . (12)

In (12) a generic F-stopping time τ takes values in the set {t1, . . . , tn} and satisfies

{τ ≤ tk} ∈ Ftk , k = 1, . . . , n,

where the filtration Ft is generated by W and augmented in the usual way. In fact, the MVSDE (1)
may be considered as a usual non-autonomous, Markovian diffusion SDE, since {µs : 0 ≤ s ≤ T}
is some deterministic flow of distributions, although not explicitly known beforehand. Therefore, con-
nected with (12) the standard notions of Snell envelope and Bellman principle apply. That is, we may
introduce the Snell envelope,

Vj := sup
F-stopping times τ, τ≥tj

E
[
Z (τ,Xτ )| Ftj

]
, j = 0, ..., n (13)

(with sup standing for the essential supremum), as being a discrete time Markovian process that
satisfies the Bellman principle,

Vj = max
(
Zj,E

[
Vj+1| Ftj

])
= max

(
Zj,E

[
Vj+1|Xtj

])
, j = 0, . . . , n− 1. (14)

with Zj := Z
(
tj, Xtj

)
.

Due to the Bellman principle (14) and the Markov property of (1), it is natural to treat the stopping
problem (12) by regression based simulation methods in the spirit of [2], [5], and [6]. There exist
functions Vj : Rd → R≥0, j = 0, . . . , n, that satisfies

Vj = Vj
(
Xtj

)
.

Our goal is a backward construction of the functions Vj, for j = n, n− 1, . . . , 0. Let us first suppose
that we are given an independent (and identically distributed) set of trajectories (X i

t : 0 ≤ t ≤ T ) ,
that solve (1) for i = 1, . . . , N. We then may consider the following backward pseudo-algorithm in
the spirit of [2], [5], and [6]:

3.1.1 Backward pseudo-algorithm

� j = n : The function Vn is trivially known, i.e., Vn(·) = Z (tn, ·) .

� Suppose for some j, 0 < j < n, an approximation Vj+1 to Vj+1 is established. We then, in
principle, aim at the estimation of a function Cj representing the conditional expectation

Cj(Xtj) := E
[
Vj+1

(
Xtj+1

)∣∣Xtj

]
(15)
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via a regression algorithm based on the sample (X1
tj
,Vj+1(X

1
tj+1

)), . . . , (XN
tj
,Vj+1(X

N
tj+1

))

on a suitable system of basis functions (ψ1, . . . , ψK) with ψk : Rd → R. One thus obtains a
function

Ĉj =
K∑
k=1

β̂kψk, where (16)

β̂ := arg min
β∈RK

N∑
i=1

(
Vj+1(X

i
tj+1

)−
K∑
k=1

βkψk(X
i
tj

)

)2

,

and then proceed with

Vj := max
(
Z (tj, ·) , Ĉj (·)

)
.

� The above step may be repeated backwardly until j = 1, and then an approximation for (12) is
finally obtained via straight forward Monte Carlo,

V 0 :=
N∑
i=1

V1(X
i
t1

).

In reality the implementation (3.1.1) in the context of the MVSDE (1) is not possible, since the in-
dependent solution trajectories (X i

t : 0 ≤ t ≤ T ) are not available. Rather, we suppose that we are
given an approximation to (1) by the particle system (2) and, in view of Theorem 2, consider to re-
place the independent solutions (X i

t : 0 ≤ t ≤ T ) with the (generally dependent) approximations(
X i,N
t : 0 ≤ t ≤ T

)
, i = 1, ..., N, in the regression procedure (16). That is, we propose the follow-

ing algorithm.

3.1.2 Backward algorithm for (12) based on (2)

� j = n : Vn(·) = Z (tn, ·) .

� Suppose for some j, 0 < j < n, an approximation Vj+1 to Vj+1 is established. Then, estimate
the function Cj representing the conditional expectation

Cj(x) := E
[
Vj+1

(
Xtj+1

)∣∣Xtj = x
]

via regression of the sample
(
X1,N
tj ,Vj+1

(
X1,N
tj+1

))
, ...,

(
XN,N
tj ,Vj+1

(
XN,N
tj+1

))
on the

system of basis functions (ψ1, ..., ψK) with ψk : Rd → R as spelled out in Section 2 be-
low. That is, set

Ĉj =
K∑
k=1

β̂kψk, where

β̂ := arg min
β∈RK

N∑
i=1

(
Vj+1

(
X i,N
tj+1

)
−

K∑
k=1

βkψk

(
X i,N
tj

))2

,

and then proceed with

Vj := max
(
Z (tj, ·) , TM Ĉj (·)

)
,

where, TM is a truncation operator (7) and M is some a-priori upper bound for the function Cj.

DOI 10.20347/WIAS.PREPRINT.2464 Berlin 2017



Regression on particle systems with applications 7

� Repeat the above step backwardly until j = 1, and then approximate (12) finally obtained via,

V 0 :=
N∑
i=1

V1(X
i,N
t1 ).

3.2 Variance reduction

Given the solution µt that satisfies the nonlinear Fokker-Planck equation

∂tµt(y) = −
d∑
i=1

∂yi

(
µt(y)

∫
ai(y, v)µt(v)dv

)
(17)

+
1

2

d∑
i,j=1

∂yiyj

(
µt(y)

m∑
l=1

∫ ∫
bil(y, u)bjl(y, v)µt(u)µt(v)dudv

)

with initial density µ0(y) dy = δ(y − x0)dy, with δ(·) being the dirach delta function, (1) may be
considered as a non-autonomous standard SDE in fact. We thus may consider the martingale

w(t,X0,x0
t ) = EFt

[∫
f
(
X0,x0
T , u

)
µ0,x0
T (du)

]
. (18)

Applying Itô to (18) yields,

dw(t,X0,x0
t ) =

d∑
i=1

∂yiw(t,X0,x0
t )

[
m∑
l=1

∫
bil(X0,x0

t , u)µ0,x0
t (u) du dW l

t

]

since w(t,Xt) is a martingale. Thus, if

Yt = w(t,X0,x0
t ) +

∫ t

0

F (s,X0,x0
s ) · dWs

for some F : R≥0 × Rd → Rm × Rd, it holds

Yt = EFt
[∫

f
(
X0,x0
T , u

)
µ0,x0
T (du) +

∫ T

0

F (s,X0,x0
s ) · dWs

]
.

That is, if

F l(t, y) = −
d∑
i=1

∂yiw(t, y)

∫
bil(y, u)µ0,x0

t (u)du (19)

we have

w(0, x0) = w(T,X0,x0
T ) +

∫ T

0

F (s,X0,x0
s ) · dWs

=

∫
f
(
X0,x0
T , u

)
µ0,x0
T (du) +

∫ T

0

F (s,X0,x0
s ) · dWs almost surely.

DOI 10.20347/WIAS.PREPRINT.2464 Berlin 2017
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3.2.1 Practical variance reduction

By a pre-simulation of the particle system of size Nr, compute for (several) fixed t the regression
estimate,

(α̂1
t , . . . , α̂

Kw
t ) := arg min

α∈RKw

1

Nr

Nr∑
i=1

(
1

Nr

Nr∑
j=1

f(X i,Nr
T , Xj,Nr

T )−
Kw∑
l=0

αlϕl(X
i,Nr
t )

)2

,

where ϕ1, . . . , ϕKw is the set of basis functions. Hence we can define

w(t, y) ≈
Kw∑
r=0

α̂rtϕr(y), and ∂yiw(t, y) ≈
Kw∑
r=0

α̂rt∂yiϕr(y). (20)

Next, based on a new simulation with N particles we consider in view of (19) and (20), the control
functional

F̃ l(t, y) = −
Kw∑
r=0

α̂rt
1

N

N∑
j=1

d∑
i=1

∂yiϕr(y)bil(y,Xj
t ). (21)

To analyze the variance reduction effect of this control functional, we can use Theorem 3.

4 Perturbation analysis for linear regression

Consider a least squares problem of the form

β◦ = arg min
β∈Rd

n∑
i=1

(Yi − β>Ui)2, (22)

where for i = 1, ..., n, (Yi, Ui) are i.i.d. pairs of a random variable Yi and a random (column) vector
Ui ∈ Rd. With U := (U1, . . . , Un) ∈ Rd×n, Z = n−1/2U>, and V = n−1/2 (Y1, . . . , Yn)> , the
solution of the problem (22) can be written in terms of pseudo inverses (denoted with †),

β◦ =
(
UU>

)−1
UY =

(
Z>Z

)−1
Z>V = Z†V. (23)

Consider now the least squares problem (22) due to a perturbation
(
Ỹi, Ũi

)
of the pairs (Yi, Ui) ,

and define Z̃ and Ṽ accordingly. We so consider (cf. (23))

β̃◦ =
(
Z̃>Z̃

)−1
Z̃>Ṽ = Z̃†Ṽ (24)

and set

Z̃ = Z + E, Ṽ = V + F. (25)

While the rows of Z and the components of V are independent, the rows of the perturbation matrix
E and the components of the perturbation vector F are generally dependent. Also we note that we
don’t assume any kind of independence between the perturbations E and F and the matrix Z and
vector V, respectively.

DOI 10.20347/WIAS.PREPRINT.2464 Berlin 2017



Regression on particle systems with applications 9

Theorem 4. Consider the least squares problem (22) with solution (23), and its perturbation due to
(25) with solution (24), respectively. Assume that U1, . . . , Un in (22) are i.i.d. random vectors in Rd

such that for some γ > 0,

E
[
exp

(
α>U1

)]
≤ exp

(
|α|2 γ/2

)
,

for all α ∈ Rd, and set
E
[
U1U

>
1

]
= Σ,

hence

Z>Z =
1

n
UU> =

1

n

n∑
i=1

UiU
>
i .

Let λmin(Σ) be the smallest eigenvalue, and λmax(Σ) be the largest eigenvalue of Σ, respectively.
Then for any ρ ∈ (0, λmin(Σ)) and ε ∈ (0, (λmin (Σ)− ρ) ∧ γ) we have on the set C := C1 ∩ C2 ∩
C3 ∩ C4 with

C1 : λmax

(
Z>Z

)
< λmax (Σ) + ε,

C2 : λmin

(
Z>Z

)
> λmin (Σ)− ε,

C3 : λmin (Σ)−
(

2
√
λmax (Σ) + ε+ 1

)
|E| > ρ+ ε,

C4 : |E| < 1.

that ∣∣∣β̃◦ − β◦∣∣∣ ≤ c1(Σ, ε, ρ) |E| |V |+ c2(Σ, ε, ρ) |F | ,

where

c1(Σ, ε, ρ) :=
1

ρ
+

2 (λmax (Σ) + ε) +
√
λmax (Σ) + ε

ρ2
and

c2(Σ, ε, ρ) := c1(Σ, ε, ρ) +

√
λmax (Σ) + ε

λmin (Σ)− ε
.

For the probability of C we have that

P [C] ≥ 1− 2 · 9d exp
(
− n

144
ε2/γ2

)
− Cp

((
2
√
λmax (Σ) + ε+ 1

λmin (Σ)− ε− ρ

)p

+ 1

)
,

where Cp := E [|E|p] is small enough (such that the above bound is positive).

Proof. Note that C := C1 ∩ C2 ∩ C3 ∩ C4 implies (28) in Lemma 6 and so by this Lemma,

∣∣(Z + E)† − Z†
∣∣ ≤ |E|

ρ

[
1 +

(2 |Z|+ 1) |Z|
ρ

]
≤ |E|

ρ

[
1 +

2 (λmax (Σ) + ε) +
√
λmax (Σ) + ε

ρ

]
= c1(Σ, ε, ρ) |E|
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Thus, on C one has also, ∣∣∣(Z + E)†
∣∣∣ ≤ ∣∣(Z + E)† − Z†

∣∣+
∣∣Z†∣∣

≤ c1(Σ, ε, ρ) +

√
λmax (Σ) + ε

λmin (Σ)− ε
= c2(Σ, ε, ρ),

using that
∣∣Z†∣∣ ≤ ∣∣∣(Z>Z)−1∣∣∣ |Z| . So on C we get,

∣∣∣β̃◦ − β◦∣∣∣ =
∣∣∣Z̃†Ṽ − Z†V ∣∣∣ =

∣∣∣(Z + E)† (V + F )− Z†V
∣∣∣

≤ c1(Σ, ε, ρ) |E| |V |+ c2(Σ, ε, ρ) |F | .

For the probability of C one has

P [C] ≥ 1− P [Ω\C1 ∪ Ω\C2]− P [Ω\C3]− P [Ω\C3] . (26)

For the term P [Ω\C1 ∪ Ω\C2] we are going to apply Lemma 7. A straightforward calculation shows
that (32) can be transformed into

δ = 2 · 9d exp

−n
4

ε2/γ2(√
ε/γ + 8 + 2

√
2
)2
 (27)

≤ 2 · 9d exp

(
− n

128

ε2/γ2

1 + 1
8
ε/γ

)
≤ 2 · 9d exp

(
− n

144
ε2/γ2

)
since by assumption ε/γ < 1. By using (27), Lemma 7 now yields that

P [Ω\C1 ∪ Ω\C2] ≤ 2 · 9d exp
(
− n

144
ε2/γ2

)
.

Further,

P [Ω\C3] = P
[
λmin (Σ)−

(
2
√
λmax (Σ) + ε+ 1

)
|E| ≤ ρ+ ε

]
= P

[
λmin (Σ)− ε− ρ

2
√
λmax (Σ) + ε+ 1

≤ |E|

]

≤

(
2
√
λmax (Σ) + ε+ 1

λmin (Σ)− ε− ρ

)p

E [|E|p] ,

and

P [Ω\C4] = P [|E| ≥ 1] ≤ E [|E|p] .

The statement now follows from (26).

DOI 10.20347/WIAS.PREPRINT.2464 Berlin 2017
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Corollary 5. Take ρ = λmin (Σ) /4, ε = γ ∧ (λmin (Σ) /4) . Then with

c1(Σ) :=
1

λmin (Σ) /4
+

2 (λmax (Σ) + γ ∧ (λmin (Σ) /4)) +
√
λmax (Σ) + γ ∧ (λmin (Σ) /4)

(λmin (Σ) /4)2
and

c2(Σ) := c1(Σ) +

√
λmax (Σ) + γ ∧ (λmin (Σ) /4)

λmin (Σ)− γ ∧ (λmin (Σ) /4)
,

we have on C, ∣∣∣β̃◦ − β◦∣∣∣ ≤ c1(Σ) |E| |V |+ c2(Σ) |F | ,

with probability

P [C] ≥ 1− 2 · 9d exp

(
− n

144

(
1 ∧ λ

2
min (Σ)

16γ2

))
− Cp

((
2
√
λmax (Σ) + λmin (Σ) /4 + 1

λmin (Σ) /2

)p

+ 1

)
.

5 Proofs

5.1 Proof of Theorem 2

Proof. By using that ∣∣TM w̃N (x)− TMwN (x)
∣∣ ≤ ∣∣w̃N (x)− wN (x)

∣∣
almost surely, one has for any event C ∈ F(

E

[∫ (
TM w̃

N (x)− w (x)
)2
µt(dx)

])1/2

≤(
E

[∫
1C
(
w̃N (x)− wN (x)

)2
µt(dx)

])1/2

+ 2M (P [Ω\C])1/2

+

(
E

[∫ (
TMw

N (x)− w (x)
)2
µt(dx)

])1/2

≤ Dψ
K

(
E

[∣∣∣β̃N − βN ∣∣∣2 1C

])1/2

+2M (P [Ω\C])1/2

+

(
E

[∫ (
TMw

N (x)− w (x)
)2
µt(dx)

])1/2

.

Now let

V =
(

(f(X i,N
t )/

√
N, i = 1, . . . , N

)>
∈ RN

E =
(

(ψk(X
i,N
t )− ψk(X i

t))/
√
N, i = 1, . . . , N, k = 1, . . . , K,

)
∈ RN×K ,

F =
(

(f(X i,N
t )− f(X i

t))/
√
N, i = 1, . . . , N

)>
∈ RN

DOI 10.20347/WIAS.PREPRINT.2464 Berlin 2017



D. Belomestny, J. G. M. Schoenmakers 12

and then Theorem 4 implies via Corollary 5 that∣∣∣β̃N − βN ∣∣∣2 ≤ 2c21(Σ) |E|2 |V |2 + 2c22(Σ) |F |

≤ 2d21 |E|
2C2

f + 2d22 |F |

on a set C with probability

P [C] ≥ 1− 2 · 9K exp

(
− N

144

(
1 ∧ κ2

◦
16γ2

))
− E[|E|p]

((√
5κ◦ + 1

κ◦/2

)p

+ 1

)
where the constants d1, d2 depend only on κ◦, κ◦. In particular we may take

d1 :=
4

κ◦
+ 8

5κ◦ +
√

5κ◦
κ2
◦

, and

d2 := d1 +

√
5κ◦
κ◦

=
4 +
√

5κ◦
κ◦

+ 8
5κ◦ +

√
5κ◦

κ2
◦

.

As a result

E

[∣∣∣β̃N − βN ∣∣∣2 1C

]
≤ 2d21C

2
fE
[
|E|2

]
+ 2d22E

[
|F |2

]
≤ 2d21C

2
f

(
E

[
1

N

N∑
i=1

K∑
k=1

(
ψk

(
X i,N
t

)
− ψk

(
X i
t

))2])

+ 2d22E

[
1

N

N∑
i=1

(
f
(
X i,N
t

)
− f

(
X i
t

))2]

≤

(
2d21C

2
f

K∑
k=1

L2
k + 2d22L

2
f

)
E

[∣∣∣X ·,Nt −X ·t
∣∣∣2]

We further have for p ≥ 2,

(E [|E|p])1/p ≤

E

( 1

N

N∑
i=1

K∑
k=1

(
ψk

(
X i,N
t

)
− ψk

(
X i
t

))2)p/2
1/p

=


E

( 1

N

N∑
i=1

K∑
k=1

(
ψk

(
X i,N
t

)
− ψk

(
X i
t

))2)p/2
2/p


1/2

≤

(
1

N

N∑
i=1

K∑
k=1

(
E
[(
ψk

(
X i,N
t

)
− ψk

(
X i
t

))p])2/p)1/2

≤

(
1

N

N∑
i=1

K∑
k=1

L2
k

(
E
[∣∣∣X i,N

t −X i
t

∣∣∣p])2/p)1/2

=

√√√√ K∑
k=1

L2
k

(
E
[∣∣∣X ·,Nt −X ·t

∣∣∣p])1/p .
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Combining the latter bounds with (3) and Theorem 11.3 from [3], and taking p = 2 for simplicity, we
get

(
E

[∫ (
TM w̃

N (x)− w (x)
)2
µt(dx)

])1/2

≤

≤ Dψ
K

(
2d21C

2
f

K∑
k=1

L2
k + 2d22L

2
f

)1/2

C2√
N

+4M · 9K/2 exp

(
− N

288

(
1 ∧ κ2

◦
16γ2

))

+2
√

2M

(
K∑
k=1

L2
k

)1/2
(√5κ◦ + 1

κ◦/2

)2

+ 1

1/2

C2√
N

+c1 max (σ,M)

√
1 + logN

√
K√

N

+c2 inf
h∈HK

(∫
(h(x)− w(t, x))2 µt(dx)

)1/2

for universal constants c1, c2. Summarizing we obtain (9) (using (8)).

6 Appendix

Lemma 6. Let ρ > 0 and the matrix Z ∈ Rn×d be of full rank with n > d. Let Z and E ∈ Rn×d be
such that

λmin

(
Z>Z

)
− (2 |Z|+ 1) |E| > ρ, |E| < 1. (28)

Then we have ∣∣(Z + E)† − Z†
∣∣ ≤ |E|

ρ

[
1 +

(2 |Z|+ 1) |Z|
ρ

]
. (29)

Proof. Denote

∆ = Z>E + E>Z + E>E,

then using the identity(
(Z + E)>(Z + E)

)−1 − (Z>Z)−1 = −
(
(Z + E)>(Z + E)

)−1
∆
(
Z>Z

)−1
= −

(
Z>Z + ∆

)−1
∆
(
Z>Z

)−1
,

we derive∣∣∣(((Z + E)>(Z + E)
)−1 − (Z>Z)−1)Z>∣∣∣ ≤ ∣∣∣(Z>Z + ∆

)−1∣∣∣ ∣∣∣(Z>Z)−1∣∣∣ (2 |Z|+ 1) |E| |Z|

≤ (2 |Z|+ 1) |E| |Z|
ρ2

, (30)

DOI 10.20347/WIAS.PREPRINT.2464 Berlin 2017



D. Belomestny, J. G. M. Schoenmakers 14

since we have
∣∣∣(Z>Z)−1∣∣∣ = λ−1min

(
Z>Z

)
< ρ−1 and

λmin

(
Z>Z + ∆

)
= inf
|x|=1

x>
(
Z>Z + ∆

)
x ≥ inf

|x|=1
x>Z>Zx+ inf

|x|=1
x>∆x

≥ λmin

(
Z>Z

)
− |∆| ≥ λmin

(
Z>Z

)
− (2 |Z|+ 1) |E|

> ρ > 0.

Analogously we have∣∣∣((Z + E)>(Z + E)
)−1

E
∣∣∣ =

∣∣∣(Z>Z + ∆
)−1

E
∣∣∣ ≤ |E|

ρ
, (31)

and then (29) follows by (30), (31), and the triangle inequality.

Lemma 7. Let X1, . . . , Xn be independent random vectors in Rd such that

E
[
XiX

>
i

]
= Σ,

and for some γ > 0,
E
[
exp

(
α>Xi

)]
≤ exp

(
|α|2 γ/2

)
for all α ∈ Rd and all i = 1, . . . , n. Then for all δ ∈ (0, 1),

P

({
λmax

(
1

n

n∑
i=1

XiX
>
i

)
> λmax (Σ) + εδ,n

}
∪{

λmin

(
1

n

n∑
i=1

XiX
>
i

)
< λmin (Σ)− εδ,n

})
≤ δ,

where

εδ,n/γ = 8
√

2

√
d log 9 + log (2/δ)

n
+ 4

d log 9 + log (2/δ)

n
. (32)

Proof. See [4].
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