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Fractal homogenization of a multiscale interface problem
Martin Heida , Ralf Kornhuber , Joscha Podlesny

Abstract

Inspired by continuum mechanical contact problems with geological fault networks, we con-
sider elliptic second order differential equations with jump conditions on a sequence of multiscale
networks of interfaces with a finite number of non-separating scales. Our aim is to derive and
analyse a description of the asymptotic limit of infinitely many scales in order to quantify the
effect of resolving the network only up to some finite number of interfaces and to consider all
further effects as homogeneous. As classical homogenization techniques are not suited for such
kind of geometrical setting, we suggest a new concept, called fractal homogenization, to derive
and analyze an asymptotic limit problem from a corresponding sequence of finite-scale interface
problems. We provide an intuitive characterization of the corresponding fractal solution space in
terms of generalized jumps and gradients together with continuous embeddings into L2 and Hs,
s < 1/2. We show existence and uniqueness of the solution of the asymptotic limit problem and
exponential convergence of the approximating finite-scale solutions. Computational experiments
involving a related numerical homogenization technique illustrate our theoretical findings.

1 Introduction

Classical elliptic homogenization is concerned with second order differential equations of the form

−∇ (Aε∇uε) = f , (1)

denoting Aε(x) = A (x
ε
) with ε > 0 and some uniformly bounded, positive coefficient field A. Hence,

Aε is oscillating on a spatial scale of size ε compared to the diameter of the macroscopic computa-
tional domainQ ⊂ Rd. In periodic homogenization, the coefficient A is Y-periodic, where Y = [0,1[d
is the unit cell in Rd. In stochastic homogenization, the coefficientAε(x) = Aω (x

ε
) is a stationary (i.e.

statistically shift invariant) and ergodic (asymptotically uncorrelated) random variable on a probability
space (Ω,F , P ) with ω ∈ Ω. A variety of results have been derived in the field of homogenization,
and we refer to (1; 2; 11; 22) for the periodic case and to (24; 37) for the stochastic case. For error
estimates in homogenization, we refer to (3; 4; 11; 17; 18). Mathematical modelling of polycrystals or
composite materials typically leads to elliptic interface problems with appropriate jump conditions on a
microscopic interface Γε ⊂Q. A periodic setting is obtained by Γε = εΓ0 with scaling parameter ε > 0
and a piecewise smooth hypermanifold Γ0 with Y-periodic cells. The size of the cells is then of order
ε compared to the macroscopic domain. Denoting by ⟦uε⟧ν the jump of uε in normal direction ν on
Γε, the condition

−∂νuε = ⟦uε⟧ν (2)

on the normal derivatives ∂νuε is imposed at the boundary of each cell. Corresponding stochastic
variants have been studied in (20; 23). The homogenization of such kind of periodic multiscale inter-
face problems has been studied in great detail, see (12; 13; 19; 21) and references therein. Similar
concepts have been applied to foam-like elastic media like the human lung, cf., e.g., (5; 10). Classical
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Figure 1: Level-K interface network Γ(K) for K = 4, 5, and 6, taken from (34).

(stochastic) homogenization relies on periodicity (or ergodicity) and scale separation. The latter means
that homogenized problems in the asymptotic limit ε → 0 usually decouple into a global problem that
describes the macroscopically observed behavior of the system, and one or more local problems,
often referred to as cell-problems, that capture the oscillatory behavior.

In contrast to analytic homogenization, numerical homogenization is addressing the lack of regularity
of solutions of problems with highly oscillatory coefficients Aε in numerical computations, either by
local corrections of standard finite elements (14; 28) or by multigrid-type iterative schemes (26; 27).
Both approaches are closely related (25) and usually do not rely on periodicity or scale separation.

In this work, we consider elliptic multiscale interface problems without scale separation in a non-
periodic geometric setting motivated by geology. Experimental studies suggest that grains in fractured
rock are distributed in a fractal manner (30; 34). In particular, this means that the size of grains and
interfaces follows an exponential law: The total numberN(r) of grains larger than some r > 0 behaves
according to

N(r) = Cr−D (3)

andD is often called the fractal dimension. This observation is also captured by geophysical modelling
of fragmentation by tectonic deformation (33) which is based on the assumption that deformation of
two neighboring blocks of equal size might lead to breakage of one of these blocks. It is unlikely
and therefore excluded in this model, that bigger blocks break smaller ones or vice versa. A typical
example for corresponding multiscale interface networks is given by the Cantor-type geometry (34)
as depicted in Figure 1. While each level-K interface network Γ(K) clearly is two-dimensional, the
limiting multiscale network Γ = Γ(∞) has fractal dimension ln 6/ ln 2 which is in good agreement with
experimental studies that often yield D ≈ 2.5. Observe that the cells representing the different grains
are not periodically distributed. They can also be arbitrarily small and cover the whole range up to half
of the given domain Q so that there is no scale parameter ε separating a small from a large scale.
Similar geometric settings but with a completely different scope occur for thin fractal fibers (29).

Geological applications give rise to continuum mechanical problems with frictional contact on such
multiscale networks of interfaces or faults. The level-K network Γ(K) = ⋃Kk=1 Γk consists of single
faults Γk which are ordered from strong to weak in the sense that discontinuities of displacements
along Γk are expected to decrease for increasing k, because “more fractured” media are expected to
show higher resistance (for a more detailed dicussion, see, e.g., (7; 16; 31) and the references cited
therein).

In this paper, we restrict our considerations to scalar elliptic model problems on Q ∖ Γ(K) for each
level K ∈ N with weighted jumps along the network of interfaces Γ(K), replacing nonlinear frictional
contact conditions. The ordering of the single interfaces Γk from strong to weak is reflected by scal-
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Fractal homogenization of a multiscale interface problem 3

ing of the energy of the jumps along Γk with exponential weights Ck(1 + c)k in the corresponding
energy functional. Here, Ck > 0 is a geometrical constant measuring the rate of fracturing for each
k and c > 0 is a kind of material constant that determines the growth of resistance to jumps with
increasing fracturing. We exploit the hierarchical structure of the interface networks Γ(K) to derive a
hierarchy of solution spaces HK for the above-mentioned level-K interface problems. Under usual
ellipticity conditions, the problems admit unique solutions uK ∈ HK for all K ∈ N. The main concern
of this paper is to investigate the asymptotic behavior of uK for K →∞. As classical homogenization
techniques are not suited for this purpose, we develop a new concept which is referred to as fractal
homogenization. The starting point is the construction of an asymptotic fractal limit space H which
arises in a natural way by completion of the union of the level-K spaces HK , K ∈ N. We provide
continuous embeddings inH ⊂ L2 andH ⊂Hs, s < 1

2 , and a characterization ofH in terms of gener-
alized jumps and gradients. We then formulate an associated fractal limit problem and show existence
of a unique solution u ∈ H together with convergence uK → u in H. Imposing additional regularity
assumptions on the geometry of the multiscale interface networks Γ(K), K ∈ N, we are able to even
show exponential estimates of the fractal homogenization error ∥u − uK∥H for K → ∞. In order to
illustrate our theoretical findings by numerical experiments, we introduce a fractal numerical homoge-
nization scheme in the spirit of (26; 27) that is based on a hierarchy of local patches from a hierarchy
of meshes T1, ..., TK successively resolving the interfaces Γ(1), ..., Γ(K). This decomposition induces
an additive Schwarz preconditioner to accelerate the convergence of a conjugate gradient iteration. In
numerical experiments with a Cantor-type geometry, we found the theoretically predicted behavior of
(finite element approximations ũK of) uK . We also observed that the convergence rates of our itera-
tive scheme appear to be robust with respect to increasing K . Theoretical justification and extensions
to model reduction in the spirit of (25; 28) are subject of current research.

The paper is structured as follows. In Section 2 we introduce multiscale interface networks together
with associated level-K interface problems and prove existence and uniqueness of solutions uK ,K ∈
N. In Section 3, we derive and analyze an associated fractal limit space H and provide some basic
properties, such as Sobolev embeddings and a Poincaré-type inequality. Then, we introduce a fractal
interface problem, show existence of a unique solution u ∈ H together with convergence uK → u
in H. Exploiting additional assumptions on the geometry, we prove exponential homogenization error
estimates in Section 4. Section 5 is devoted to numerical computations with a kind of fractal numerical
homogenization to illustrate our theoretical findings.

2 Multiscale interface problems

2.1 Multiscale interface networks

Let Q ⊂ Rd be a bounded domain with Lipschitz boundary ∂Q that contains mutually disjoint inter-
faces Γk, k ∈ N. We assume that each interface Γk has finite (d−1)-dimensional Hausdorff measure
and is piecewise affine. We consider the multiscale interface network Γ and its level-K approximation
Γ(K), given by

Γ =
∞
⋃
k=1

Γk, Γ(K) =
K

⋃
k=1

Γk, K ∈ N ,

respectively. For each K ∈ N, the set

Q/Γ(K) = ⋃
G∈G(K)

G
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Figure 2: Construction of Γ(K), K = 1,2,3,4 of a Cantor interface network in 2D.

splits into mutually disjoint, open, simply connected cells G ∈ G(K) with the property ∂G = ∂G. The
subset of invariant cells in G(K) is denoted by

G(K)∞ = {G ∈ G(K) ∣ G ∈ G(L) ∀L >K} ,

and

dK = max{diamG ∣ G ∈ G(K)/G(K)∞ } (4)

is the maximal size of cells G ∈ G(K) to be divided on higher levels. Observe that dK ≥ dL holds for
L ≥K . We assume

dK → 0 for K →∞ . (5)

Denoting

(x, y) = {x + s(y − x) ∣ s ∈ (0,1)}

we also assume that

#(x, y) ∩ Γk ≤ Ck . (6)

holds for almost all x, y ∈Q with Ck ∈ R depending only on k ∈ N.

Example 2.1 (Cantor interface network in 3D (34)). Consider the unit cube I = [0,1]3 in R3 and the
canonical basis (ei)i=1,2,3. Then Γ(K), K ∈ N, is inductively constructed as follows. Set Γ(0) = Γ0 =
∂I. For k ∈ N ∪ {0} define

Γ̃k+1 = Γ(k)∪(e2 + Γ(k))∪(e3 + Γ(k))∪(e3 + e1 + Γ(k))∪(e2 + e1 + Γ(k))∪(e3 + e2 + e1 + Γ(k))

to obtain

Γk+1 = (1
2 Γ̃k+1) /Γk, Γ(K+1) = Γ(K) ∪ Γk+1.

Note that Γ(K) and Γ = ⋃∞
k=1 Γk are self-similar by construction. We infer dK = 2−K and Ck = 2k−1.

See Figure 1 for an illustration of the Cantor interface networks Γ(K), K = 4,5,6. The construction
process for a 2D-analogue is illustrated in Figure 2, where the newly added interfaces Γ1, Γ2, Γ3, and
Γ4 are depicted in boldface in the four pictures from left to right.

Remark 2.2. Since all Γk, k ∈ N, have Lebesgue measure zero in Rd, their countable union Γ has
Lebesgue measure zero as well. However, Γ might have fractal (Hausdorff-) dimension d− s for some
s ∈ (0,1) and infinite (d − 1)-dimensional measure.
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Fractal homogenization of a multiscale interface problem 5

2.2 A multiscale hierarchy of Hilbert spaces

For each fixed K ∈ N, we introduce the space

C1
K,0(Q) = {v ∶Q/Γ(K) → R ∣ v∣G ∈ C1(G) ∀G ∈ G(K) and v∣∂Q ≡ 0}

of piecewise smooth functions on Q/Γ(K). Let k = 1, . . . ,K . As Γk is piecewise affine, there is
a normal νξ to Γk at almost all ξ ∈ Γk and we fix the orientation of νξ such that νξ ⋅ em > 0 with
m = min{i = 1, . . . , d ∣ νξ ⋅ ei ≠ 0}, and {e1, . . . , ed} denotes the canonical basis of Rd. For
ξ ∈ Γ(K) such that νξ exists and for x ≠ y ∈ Rd such that (x − y) ⋅ νξ ≠ 0 the jump of v ∈ C1

K,0(Q)
across Γk at ξ in the direction y − x is defined by

⟦v⟧x,y(ξ) = lim
s↓0

(v (ξ + s(y − x)) − v (ξ − s(y − x))) .

Up to the sign, ⟦v⟧x,y(ξ) is equal to the normal jump of v ∈ C1
K,0(Q)

⟦v⟧(ξ) ∶= ⟦v⟧ξ−νξ,ξ+νξ(ξ)
and defined at almost all ξ ∈ Γk.

For some fixed material constant c > 0 that determines the growth of resistance to jumps with in-
creasing fracturing and the geometrical constant Ck taken from (6), we introduce the scalar product

⟨v, w⟩K,c =
ˆ
Q/Γ(K)

∇v ⋅ ∇w dx +
K

∑
k=1

(1 + c)kCk
ˆ

Γk

⟦v⟧⟦w⟧ dΓk , v, w ∈ C1
K,0(Q) , (7)

with the associated norm ∥v∥K,c = ⟨v, v⟩1/2
K,c. Observe that (1 + c)k generates an exponential scaling

of the jumps across Γk.

We set
HK = closure∥⋅∥K,cC

1
K,0(Q) (8)

to finally obtain a hierarchy of Hilbert spaces

H1 ⊂ ⋯ ⊂ HK−1 ⊂ HK , K ∈ N , (9)

with isometric embeddings.

2.3 Level-K interface problems

For a given measurable function
A ∶ Γ→ R (10)

satisfying
0 < a ≤ A(x) ≤ A <∞ a.e. on Γ (11)

with suitable a,A ∈ R and each K ∈ N, we define the symmetric bilinear form

aK(v,w) =
ˆ
Q/Γ(K)

∇v ⋅ ∇w dx +
K

∑
k=1

(1 + c)kCk
ˆ

Γk

A ⟦v⟧⟦w⟧ dΓk v,w ∈ HK .

For ease of presentation we assume a ≤ 1 ≤ A without loss of generality. Then aK(⋅, ⋅) is uniformly
coercive and bounded onHK in the sense that

a∥v∥2
K,c ≤ aK(v, v), aK(v,w) ≤ A∥v∥K,c∥w∥K,c

holds for all K ∈ N. With given functional ` ∈ H′
K , K ∈ N, we consider the following minimization

problem.
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Problem 2.3 (level-K interface problem). For fixed K ∈ N find a minimizer uK ∈ HK of the energy
functional

EK(v) = 1
2aK(v, v) − `(v), v ∈ HK . (12)

The following proposition is an immediate consequence of the Lax-Milgram lemma.

Proposition 2.4. Problem 2.3 is equivalent to the variational problem to find uK ∈ HK such that

aK(uK , v) = `(v) ∀v ∈ HK (13)

and admits a unique solution.

Successive resolution of the multiscale interface network Γ by level-K approximations Γ(K) with in-
creasing K ∈ N motivates investigation of the asymptotic behavior of finite level solutions uK for
K →∞. This will be done in the next section.

3 Fractal homogenization

3.1 Fractal function spaces

We consider the pre-Hilbert space

H○ =
∞
⋃
K=1

HK

equipped with the scalar product defined by

⟨v,w⟩c = ⟨v,w⟩max{K,L},c, v ∈ HL, w ∈ HK ,

and associated norm ∥ ⋅∥c = ⟨⋅, ⋅⟩1/2
c . A Hilbert space with dense subspaceH○ is obtained by classical

completion.

Definition 3.1 (Fractal space). The fractal space Hc consists of all equivalence classes of Cauchy
sequences (vK)K∈N inH○ with respect to the equivalence relation

(vK)K∈N ∼ (wK)K∈N ⇐⇒ ∥vK −wK∥c → 0 for K →∞ .

For each w ∈ Hc, we can select a Cauchy sequence (vK)K∈N in H○ with vK ∈ HK , K ∈ HK , such
that (vK)K∈N ∼ w by exploiting the hierarchy (9). From now on, we always use this representation.
The following result is a well-known consequence of the construction ofHc.

Proposition 3.2. The fractal spaceHc is a Hilbert space equipped with the scalar product

⟨v,w⟩c = lim
K→∞

⟨vK ,wK⟩K,c , v = (vK)K∈N, w = (wK)K∈N ∈ Hc (14)

and associated norm ∥ ⋅ ∥c = ⟨⋅, ⋅⟩1/2
c .

From now on, we identify the spacesHK with their isometric embeddings inHc defined by

HK ∋ vK ↦ (vL)L∈N ∈ Hc with vL = vK , if L ≥K and vL = 0 else.

By construction we have the following approximation result.
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Proposition 3.3. For any fixed c > 0, the hierarchy

H1 ⊂ ⋯ ⊂ HK ⊂ ⋯ ⊂ Hc (15)

consists of closed subspacesHK ofHc, K ∈ N, with the property

inf
v∈HK

∥w − v∥c → 0 for K →∞ ∀w ∈ Hc , (16)

and ⋃K∈N C1
K,0(Q) is dense inHc.

Remark 3.4. For each fixed K ∈ N the spaces HK are independent of c. This is no longer the
case for the limit space Hc, because w = (uK)K∈N ∈ Hc for a certain c > 0 implies that the jumps
∥⟦uK⟧∥L2(Γk) are decreasing fast enough to compensate the exponential weights Ck(1 + c)k for this
c, which might be no longer the case for larger weights Ck(1 + c′)k with some c′ > c so that w /∈ Hc′ .

From now on, we will mostly skip the subscript c for notational convenience. A more intuitive represen-
tation of the scalar product ⟨⋅, ⋅⟩ in H and its associated norm ∥ ⋅ ∥ in terms of generalized jumps and
gradients will be derived in Section 3.3 below.

3.2 Sobolev embeddings

We now investigate the embedding of the fractal spaceH into the fractional Sobolev spaces Hs(Q),
s ∈ (0, 1

2), equipped with the Sobolev-Slobodeckij norm

∥v∥Hs(Q) = (
ˆ
Q

∣v∣2 dx +
ˆ
Q

ˆ
Q

∣v(x) − v(y)∣2
∣x − y∣d+2s

dxdy)
1
2

.

Lemma 3.5. Let K ∈ N, v ∈ C1
K,0(Q), and x ≠ y ∈ Q. Then the following inequality holds for every

c > 0 and for a.e. x, y ∈ Rd

∣v(x) − v(y)∣2 ≤ (1 + 1
c
) ∣x − y∣2

ˆ 1

0

∣∇v (x + s(y − x))∣2 ds

+ (1 + 1
c
)
K

∑
k=1

(1 + c)kCk ∑
ξ∈(x,y)∩Γk

⟦v⟧2
x,y(ξ) ,

(17)

where ∇v(x + s(y − x)) is understood to be zero, if x + s(y − x) ∈ Γ(K).

Proof. Let x, y be such that (x, y) ∩ Γ(K) is finite. Using the Cauchy-Schwarz inequality and the
binomial estimate 2ab < 1

ca
2 + cb2 with c > 0 and a, b ∈ R, we infer

∣v(x) − v(y)∣2 ≤
⎛
⎝
K

∑
k=1

∑
ξ∈(x,y)∩Γk

⟦v⟧x,y(ξ) +
ˆ 1

0

∇v (x + s(y − x)) ⋅ (y − x) ds
⎞
⎠

2

≤ (1 + 1
c
) ∣x − y∣2

ˆ 1

0

∣∇v (x + s(y − x))∣2 ds + (1 + c)
⎛
⎝
K

∑
k=1

∑
ξ∈(x,y)∩Γk

⟦v⟧x,y(ξ)
⎞
⎠

2

≤ (1 + 1
c
) ∣x − y∣2

ˆ 1

0

∣∇v (x + s(y − x))∣2 ds

+ (1 + c) (1 + 1
c
)
⎛
⎝ ∑
ξ∈(x,y)∩Γ1

⟦v⟧x,y(ξ)
⎞
⎠

2

+ (1 + c)2 ⎛
⎝
K

∑
k=2

∑
ξ∈(x,y)∩Γk

⟦v⟧x,y(ξ)
⎞
⎠

2

.
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According to the Cauchy-Schwarz inequality and the definition of Ck in (6), we have

⎛
⎝ ∑
ξ∈(x,y)∩Γk

⟦v⟧x,y(ξ)
⎞
⎠

2

≤ Ck ∑
ξ∈(x,y)∩Γk

⟦v⟧2
x,y(ξ)

and the assertion follows by induction.

We are ready to state the main result of this subsection.

Theorem 3.6. The continuous embeddings

Hc ⊂ L2(Q) and Hc ⊂Hs(Q) (18)

hold for every c > 0 and every s ∈ [0, 1
2). In particular, the following Poincaré-type inequality

∥v∥2
L2(Q) ≤ C0 (∥∇v∥2

L2(Q/Γ) +
∞
∑
k=1

(1 + c)kCk∥⟦v⟧∥2
L2(Γk)) , (19)

holds with C0 = (1 + 1
c
)diam(Q)max{diam(Q),1}.

Proof. We use an approach introduced by Hummel (23). LetK ∈ N, v ∈ C1
K,0(Q), and k = 1, . . . ,K .

We extend v by zero to a function v ∶ Rd → R, fix some η > 0 to be specified later, and consider the
orthonormal basis (ei)i=1,...,d of Rd. Exploiting that the determinant gk of the first fundamental form of
Γk satisfies gk ≥ 1, we obtain

ˆ
Q

∑
ξ∈(x,x+ηe1)∩Γk

⟦v⟧2
(x,x+ηe1)(ξ)dx ≤

ˆ
R

⎛
⎝

ˆ
Rd−1

∑
ξ∈(x,x+ηe1)∩Γk

⟦v⟧2
(x,x+ηe1)(ξ)

√
gk dx2 . . .dxd

⎞
⎠

dx1

≤
ˆ
R
(
ˆ

Γk∩((x1,x1+η)×Rd−1)
⟦v⟧2

(x,x+ηe1)(ξ)dΓk)dx1

=
ˆ

Γk

(
ˆ ξ1

ξ1−η
⟦v⟧2

(x,x+ηe1) dx1)(ξ)dΓk = η
ˆ

Γk

⟦v⟧2(ξ)dΓk ,

where we used that ⟦v⟧2(ξ) is well defined a.e. on Γk and ξ = (ξ1, ξ′) ∈ Γk ∩ ((x1, x1 + η) ×Rd−1)
is equivalent to x1 ∈ (ξ1 − η, ξ1) with ξ = (ξ1, ξ′) ∈ Γk. The same arguments provide

ˆ
Q

∑
ξ∈(x,x+ηe)∩Γk

⟦v⟧2(ξ)dx ≤ η
ˆ

Γk

⟦v⟧2 dΓk (20)

for any unit vector e ∈ Rd. Inserting (20) after integrating (17) with y = x + ηe overQ leads to

ˆ
Q

∣v(x) − v(x + ηe)∣2 dx ≤ η (1 + 1
c
)(η ∥∇v∥2

L2(Q/Γ(K)) +
K

∑
k=1

(1 + c)kCk∥⟦v⟧∥2
L2(Γk)) . (21)

We select η ≥ diam(Q) to obtain the Poincaré-type inequality (19) and thusHc ⊂ L2(Q).

Next, we divide (21) by ∣η∣d+2s and integrate over

Q ⊂ {ηe ∣ η ≤ diam(Q), e ∈ Sd}
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Fractal homogenization of a multiscale interface problem 9

to find that

∥v∥2
Hs(Q) ≤ (1 + 1

c
)Cs (∥∇v∥2

L2(Q/Γ(K)) +
K

∑
k=1

(1 + c)kCk∥⟦v⟧∥2
L2(Γk)) , (22)

holds for all v ∈ C1
K,0(Q) and all K ∈ N with Cs = max{diam(Q),1}∣Sd∣

´ diam(Q)
0

η−2sdη <∞ for

every s ∈ [0, 1
2). By Proposition 3.3, the subspace ⋃K∈N C1

K,0(Q) is dense in H. This concludes the
proof.

Remark 3.7. For any given (vK)K∈N ∈ H there is a unique v ∈ ⋂0<s< 1
2
Hs(Q) such that

∥v − vK∥Hs(Q) → 0 for K →∞ ∀s ∈ (0, 1
2) (23)

as a consequence of Theorem 3.6.

3.3 Weak gradients and generalized jumps

Let (vK)K∈N ∈ H and observe that

Q/Γ =Q ∩ (⋃Γk)∁ ⊂Q/Γ(K)

is Lebesgue measurable. Hence, we have

∥∇vK∥2
L2(Q/Γ) +

K

∑
k=1

(1 + c)kCk∥⟦vK⟧∥2
L2(Γk) ≤ ∥vK∥2

K ∀K ∈ N .

Therefore, (∇vK)K∈N and ([[vK]])K∈N are Cauchy sequences in L2(Q/Γ)d and in the sequence
space (L2(Γk))k∈N equipped with the weighted norm

∥j∥Γ = (
∞
∑
k=1

(1 + c)kCk∥jk∥2
L2(Γk))

1
2

, j = (jk)k∈N ∈ (L2(Γk))k∈N ,

respectively. In light of the completeness of L2(Q/Γ)d and of (L2(Γk))k∈N, this leads to the following
definition.

Definition 3.8. Let (vK)K∈N ∈ H with associated v ∈ ⋂0<s< 1
2
Hs(Q) that is characterized by (23).

Then the limits

∇v = lim
K→∞

∇vK in L2(Q/Γ) and ⟦v⟧ = lim
K→∞

⟦vK⟧ in (L2(Γk))k∈N

are called the weak gradient and generalized jump of v, respectively.

Since the fractal (and Hausdorff-) dimension of Γ might be larger than d− 1, it is not obvious to define
L2(Γ) (and to infer convergence of (⟦uK⟧)K∈N in L2(Γ)), because it is not obvious which measure
to choose.

Proposition 3.9. Let (vK)K∈N ∈ H with associated v ∈ ⋂0<s< 1
2
Hs(Q) that is characterized by (23).

Then the weak gradient ∇v and the generalized jump ⟦v⟧ of v are related by the identity
ˆ
Q

v∇ ⋅ ϕ dx = −
ˆ
Q/Γ

∇v ⋅ ϕ dx +
∞
∑
k=1

ˆ
Γk

⟦v⟧ϕ ⋅ νk dΓk ∀ϕ ∈ C∞
0 (Rd)d . (24)
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Proof. Let ϕ ∈ C∞
0 (Rd)d and recall that Γ has Lebesgue measure zero in Rd according to Remark

2.2. As a consequence, we have
ˆ
Q/Γ(K)

∇vK ⋅ ϕ dx =
ˆ
Q/Γ

∇vK ⋅ ϕ dx +
ˆ

Γ/Γ(K)
∇vK ⋅ ϕ dx →

ˆ
Q/Γ

∇v ⋅ ϕ dx for K →∞

which by Definition 3.8 leads to
ˆ
Q

v∇ ⋅ ϕ dx = lim
K→∞

ˆ
Q

vK∇ ⋅ ϕ dx

= lim
K→∞

(−
ˆ
Q/Γ(K)

∇vK ⋅ ϕ dx +
K

∑
k=1

ˆ
Γk

⟦vK⟧ϕ ⋅ νk dΓk)

= −
ˆ
Q/Γ

∇v ⋅ ϕ dx +
∞
∑
k=1

ˆ
Γk

⟦v⟧ϕ ⋅ νk dΓk .

Theorem 3.10. Let vH = (vK)K∈N,wH = (wK)K∈N ∈ H with associated v, w ∈ ⋂0<s< 1
2
Hs(Q) that

are characterized by (23). Then we have

⟨vH, wH⟩ =
ˆ
Q/Γ

∇v ⋅ ∇w dx +
∞
∑
k=1

(1 + c)kCk
ˆ

Γk

⟦v⟧⟦w⟧ dΓk . (25)

Proof. By definition of generalized jumps, we have

K

∑
k=1

(1 + c)kCk
ˆ

Γk

⟦v⟧K⟦w⟧K dΓk →
∞
∑
k=1

(1 + c)kCk
ˆ

Γk

⟦v⟧⟦w⟧ dΓk for K →∞

and as Γ has Lebesgue measure zero in Rd (cf. Remark 2.2), we obtain
ˆ
Q/Γ(K)

∇vK ⋅ ∇wK dx =
ˆ
Q/Γ

∇vK ⋅ ∇wK dx →
ˆ
Q/Γ

∇v ⋅ ∇w dx for K →∞ .

This concludes the proof.

From now on, we identify (vK)K∈N ∈ H with v ∈ ⋂0<s< 1
2
Hs(Q) characterized by (23) and use the

representation (25) of the scalar product ⟨⋅, ⋅⟩ inH.

For the Cantor interface network, cf. Example 2.1, the weighting factors (1 + c)kCk in (25) are expo-
nentially increasing with k, causing exponentially decreasing generalized jumps accross Γk.

3.4 Fractal interface problems

We consider the functional

`(v) =
ˆ
Q

fv dx

with some given f ∈ L2(Q). Note that the Poincaré-type inequality (19) implies ` ∈ H′ ⊂ H′
K for all

K ∈ N. The solutions uK of the level-K interface Problems 2.3 for K ∈ N then satisfy the uniform
stability estimate

∥uK∥ ≤ C0a
−1∥f∥L2(Q), K ∈ N, (26)
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Fractal homogenization of a multiscale interface problem 11

with the constant C0 appearing in (19).

We define the symmetric bilinear form

a(v,w) =
ˆ
Q/Γ

∇v ⋅ ∇w dx +
∞
∑
k=1

(1 + c)kCk
ˆ

Γk

A ⟦v⟧⟦w⟧ dΓk, v,w ∈ H,

with A ∶ Γ → R taken from (10). Note that a(⋅, ⋅) is well-defined, coercive and bounded in light of
Definition 3.8 and assumption (11). Now we are in the position to formulate an asymptotic limit of the
level-K interface Problems 2.3 for K →∞.

Problem 3.11 (Fractal interface problem). Find a minimizer u ∈ H of the energy functional

E(v) = 1
2a(v, v) − `(v), v ∈ H.

In the light of Proposition 3.3 the following existence and approximation result is a consequence of the
Lax-Milgram lemma and the Céa’s lemma.

Theorem 3.12. Problem 3.11 is equivalent to the variational problem to find u ∈ H such that

a(u, v) = `(v) ∀v ∈ H (27)

and admits a unique solution. Moreover, the error estimate

∥u − uK∥ ≤ A
a inf
v∈HK

∥u − v∥ (28)

implies convergence ∥u − uK∥→ 0 for K →∞.

We will improve the straightforward error estimate (28) on more restrictive assumptions on the geom-
etry of the multiscale interface network in the next section.

4 Exponential Error estimates

We concentrate on the special case that all cells G ∈ G(K), K ∈ N, are hyper-cuboids with edges
eG,i, i = 1, . . . , d2d−1, either parallel or perpendicular to the unit vectors ei, i = 1, . . . , d. For K ∈ N,
we set

dmax
G = max

i
∣eG,i∣, dmin

G = min
i

∣eG,i∣ , G ∈ G(K) and dmin
K = min

G∈G(K)
dmin
G

and assume that there is a constant g > 0 such that

d−1/2dk ≤ dmax
G ≤ d−1/2gdmin

G ∀G ∈ G(K), K ∈ N (29)

with dK taken from (4). Note that (29) implies uniform shape regularity of all G ∈ G(K) together with
quasi-uniformity of the partition G(K)∖G(K)∞ . We also assume that G(K) is regular for allK ∈ N in the
sense that two cells G ∈ G(K) ∖ G(K)∞ and G′ ∈ G(K) have an intersection F = G ∩G′ with non-zero
(d− 1)-dimensional Hausdorff measure, if and only if F is a common (d− 1)-face of G and G′. Note
that the Cantor set described in subsection 2.1 satisfies both of these additional assumptions.

The derivation of error estimates will rely on the representation of the residual of the approximate
solution uK of Problem 2.3 in terms of its normal traces on ΓL, L > K (cf., e.g., the variational
formulation of substructuring methods (32)). This requires additional regularity in the neighborhood of
ΓL, L >K .
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Lemma 4.1. Let K ∈ N, G ∈ G(K) ∖ G(K)∞ , L > K , and ΓL ∩G = ⋃di=1 γL,G,i, such that ei ⊥ γL,G,i,
i = 1, . . . , d. Then, for each i = 1, . . . , d there are open sets UL,G,i ⊂ G with γL,G,i ⊂ UL,G,i such
that ∂iuK ∈H1(UL,G,i) and the a priori estimate

dL∥∂iuK∥2
L2(γL,G,i) ≤ c (d

2
L∥f∥2

L2(G∗

i )
+ ∥∂iuK∥2

L2(G∗

i ∖Γ(K))) (30)

holds with a constant c depending only on g and d.

Proof. The main idea of the proof is to first provide local a priori H1 bounds for difference quotients
Dh
i uK = 1

h (uK(⋅ + eih) − uK) that are uniform in h on suitable subsets UL,G,i. These H1 bounds
then lead to related H1 bounds for ∂iuK by well-known arguments of Evans (15) so that the desired
a priori estimates (30) finally follow from the trace theorem. Most part the proof is devoted to the local
a priori H1- error bounds for Dh

i uK . They are derived from the weak formulation (2.3) of the problem
by inserting test functions of the form v = −D−h

i (ξ2Dh
i )uK ∈ HK with sophistically constructed

smooth functions ξ = ξL,G,i with local support in some suitable U∗
L,G,i and ξ ≡ 1 on the final subset

UL,G,i ⊂ U∗
L,G,i.

Let G = (−g, g)d ∈ G(K) ∖ G(K)∞ , for simplicity, and consider some fixed i = 1, . . . , d. We first prove
regularity in a suitable set UL,G,i ⊂ G.

To this end, we select ξL ∈ C∞
0 (R) with support in [−g + dmin

L /2, g − dmin
L /2] and the properties

0 ≤ ξL(x) ≤ 1 ∀x ∈ R, ξL(x) = 1 if ∣x∣ ≤ g − dmin
L , and ξ′L(x) ≤ 2(dmin

L )−1 ≤ 2gd−1
L .

We further select ξG ∈ C∞
0 (Rd) with support in G∗

i ,

G∗
i = {x ∈ Rd ∣ ∃y ∈ G ∶ ∣x − y∣ < dK , (x − y) ⋅ ei = 0} ,

satisfying 0 ≤ ξG(x) ≤ 1 for all x ∈ Rd, ξG(x) = 1 for all x ∈ G with ∣xi∣ ≤ g − dmin
L , and ∣∇ξG(x)∣ ≤

(dmin
K )−1 ≤ gd−1

K ≤ gd−1
L for all x ∈ Rd.

We finally set ξL,G,i(x) = ξL(xi)ξG(x), x ∈ Rd and

U∗
L,G,i = int supp ξL,G,i ⊂ G∗

i

For notational convenience, we write U∗ ∶= U∗
L,G,i and ξ ∶= ξL,G,i in the sequel. Note that

∣∇ξ∣ ≤ ∣ξL∇ξG∣ + ∣ξ′LξG∣ ≤ 3gd−1
L . (31)

Extending v ∈ H fromQ by zero to Rd, we define

Dh
i v = 1

h (v(x + eih) − v(x)) , v ∈ H ,

with ∣h∣ > 0. Let h > 0 be sufficiently small, to provide −D−h
i (ξ2Dh

i uK) ∈ HK . Then (13) yields

a(uK ,−D−h
i (ξ2Dh

i uK)) = `(−D−h
i (ξ2Dh

i uK)) . (32)

Exploiting
Γ(K) ∩ (hei +U∗) ⊂ Γ(K) ∩G∗

i (33)

for sufficiently small ∣h∣ > 0, we get
ˆ
Q∖Γ(K)

∇uK ⋅ ∇(−D−h
i (ξ2Dh

i uK)) dx

=
ˆ
U∗∖Γ(K)

∣∇Dh
i uK ∣2ξ2 dx +

ˆ
U∗∖Γ(K)

∇Dh
i uK ⋅ ∇(ξ2)Dh

i uK dx .
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Similarly, (33) leads to
ˆ

Γk

A⟦uK⟧⟦−D−h
i (ξ2Dh

i uK)⟧ dΓk =
ˆ
U∗∩Γk

A⟦Dh
i uK⟧2ξ2 dΓk

for all k = 1, . . .K . Utilizing (33), the fundamental theorem of calculus and a density argument, it can
be shown that ˆ

U∗

∣D−h
i v∣2 dx ≤

ˆ
U∗∖Γ(K)

∣∂iv∣2 dx ∀v ∈ H . (34)

Together with the Cauchy-Schwarz inequality and U∗ ⊂ G∗
i this leads to

∣`(−D−h
i (ξ2Dh

i uK))∣ ≤ ∥f∥L2(G∗

i )∥D
−h
i (ξ2Dh

i uK)∥L2(U∗)

≤ ∥f∥L2(G∗

i ) (
ˆ
U∗∖Γ(K)

∣∂i(ξ2Dh
i uK)∣2 dx)

1/2
.

We insert the above identities and this estimate into (32) to obtain

ˆ
U∗∖Γ(K)

∣∇Dh
i uK ∣2ξ2 dx +

K

∑
k=1

(1 + c)kCk
ˆ
U∗∩Γk

A ⟦Dh
i uK⟧2ξ2 dΓk

≤ ∥f∥L2(G∗

i ) (
ˆ
U∗∖Γ(K)

∣∂i(ξ2Dh
i uK)∣2 dx)

1/2
+
ˆ
U∗∖Γ(K)

∣∇Dh
i uK ∣ ∣∇(ξ2)∣ ∣Dh

i uK ∣ dx .

Now (31) and multiple applications of Young’s inequality yield
ˆ
U∗∖Γ(K)

∣∇Dh
i uK ∣2ξ2 dx ≤ 2∥f∥2

L2(G∗

i )
+ 9g2d−2

L ∥ξDh
i uK∥2

L2(G∗

i )
+ 36g2d−2

L ∥Dh
i uK∥2

L2(G∗

i )

+1
4

ˆ
U∗∖Γ(K)

∣∇Dh
i uK ∣2ξ4 dx + 1

4

ˆ
U∗∖Γ(K)

∣∇Dh
i uK ∣2ξ2 dx .

Utilizing ξ4 ≤ ξ2 ≤ 1 and (34), this leads to
ˆ
UL,G,i

∣∇Dh
i uK ∣2 dx ≤ c (∥f∥2

L2(G∗

i )
+ d−2

L ∥∂iuK∥2
L2(G∗

i ∖Γ(K)))

denoting
UL,G,i = int {x ∈ G ∣ ξ(x) = 1} .

Now the desired regularity ∂iuK ∈H1(UL,G,i) and the corresponding a priori estimate

∥∇∂iuK∥2
L2(UL,G,i) ≤ c (∥f∥L2(G∗

i ) + d
−2
L ∥∂iuK∥2

L2(G∗

i ∖Γ(K))) (35)

are a consequence of (15, Chapter 5.8.2, Theorem 3).

It remains to show the a priori bound (30). Let i = 1, . . . , d be fixed, γ = γL,G,i, and Gγ ∈ G(L) such
that γ is a (d − 1) face of Gγ . Utilizing affine transformations of Gγ ∩ UL,G,i and γ to the reference
domains (0,1)d and (0,1)d−1 × {0}, respectively, we obtain

ˆ
γ

∣v∣2 dγ ≤ Cgd (dd2
L∥∇v∥2

L2(Gγ∩UL,G,i) + ∥v∥2
L2(Gγ∩UL,G,i)) ∀v ∈H1(Gγ ∩UL,G,i)

with the generic constantC emerging from the trace theorem on (0,1)d. Now (30) follows by inserting
v = ∂iuK and utilizing the a priori estimate (35).
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After these preparations, we are ready to state the main result of this section.

Theorem 4.2. For each K ∈ N, the approximate solution uK of Problem 2.3 satisfies the error esti-
mate

∥u − uK∥2 ≤ C (sup
k>K

C−1
k d

−1
k ) ∥f∥2

L2(Q)(1 + c)−K (36)

with C only depending on the space dimension d, shape regularity g in (29), coercivity a in (11), the
Poincaré-type constant C0 in (19) and on the material constant c in (7).

Proof. For u ≠ uK we get the residual error estimate

∥u − uK∥ ≤ a−1rK(u − uK)/∥u − uK∥ ≤ a−1∥rK∥H′

which is trivially holds for u = uK as well. Hence, we derive an upper bound for ∥rK∥H′ .

Let G ∈ G(K) and G̃ ∈ G(L) for some L > K such that G̃ ⊂ G. Furthermore, let ν and ν̃ be the
outer normal of G and G̃ respectively. We first observe that −∆uK = f on G with −∂νuK = ⟦uK⟧
on ∂G. In particular, we observe that ∇uK ⋅ ν ∈ L2(∂G). Furthermore, by the regularity obtained in
Lemma 4.1, we see that ∇uK ⋅ ν̃ ∈ L2(∂G̃). Now we can use a version of Green’s formula proved by
Casas and Fernández (9, Corollary 1), exploiting (in the notation of (9)) that ∇uK ∈W 2(div,G) and
v ∈W 1(G̃) ∩L∞(G̃), to obtain

rK(v) = `(v) − a(uK , v) =
L

∑
k=K+1

ˆ
Γk

∂νuK⟦v⟧ dΓk (37)

for any test function v ∈ C1
L,0(Q). The Cauchy-Schwarz inequality then yields

rK(v) =
L

∑
k=K+1

ˆ
Γk

((1 + c)−k/2C−1/2
k ∂νuK) ((1 + c)k/2C1/2

k ⟦v⟧) dΓk

≤ (
L

∑
k=K+1

ˆ
Γk

(1 + c)−kC−1
k ∣∂νuK ∣2 dΓk)

1/2

∥v∥ .

Since L can be arbitrary large, we infer

∥rK∥2
H′ ≤ (sup

k>K
C−1
k d

−1
k )(sup

k>K
dk∥∂νuK∥2

L2(Γk)) (1 + c)−K (
∞
∑
k=1

(1 + c)−k)

and Lemma 4.1 provides the a priori estimate

dk∥∂νuK∥2
L2(Γk) = ∑

G∈G(K)∖G(K)∞

d

∑
i=1

dk∥∂iuK∥2
L2(γk,D,i)

≤ 3dc (d2
k∥f∥2

L2(Q) + ∥∇uK∥2
L2(Q∖Γ(K))) ≤ C∥f∥2

L2(Q)

for all k > K with C depending only on d, g, a, and the Poincaré-type constant C0 in (19). This
concludes the proof.

Recall that the factor supk>K C
−1
k d

−1
k depends on the geometry of the actual interface network.
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Remark 4.3. For the Cantor interface network described in Example 2.1, we have C−1
K d

−1
K = 2 for all

K ∈ N.with Hence, Theorem 4.2 implies exponential convergence of the solution uK of the level-K
interface Problem 2.3 to the solution u of the fractal interface Problem 3.11 according to the error
estimate

∥u − uK∥ ≤ C∥f∥L2(Q)(1 + c)−K

with C only depending on d, g, a, c, and on the Poincaré-type constant C0 in (19).

Remark 4.4. The exponential decay of ∥u − uK∥ is essentially due to the exponential growth of
the weights (1 + c)k on the interfaces. It is an interesting question for future investigations whether
these weights can be replaced by another monotone increasing function f(k). However, note that the
Poincaré-type inequality (19) indicates exponentially growth of f(k).

5 Numerical computations

Let T (1) be a partition ofQ into simplices with maximal diameter h1 > 0 which is regular in the sense
that the intersection of two simplices from T (1) is either a common n-simplex for some n = 0, . . . , d
or empty. Then T (K) denotes the partition of Q resulting from K − 1 uniform regular refinements of
T (1) (cf., e.g., (6; 8)) for each K ∈ N. The maximal diameter is hK = h12K−1, and N (K) stands for
the set of vertices of simplices in T (K). We assume that the partition T (K) resolves the piecewise
affine interface network Γ(K), i.e., for all k ≤ K the interfaces Γk can be represented as a sequence
of (d−1)-faces of simplices from T (K). For eachK ∈ N and eachG ∈ G(K), we introduce the space

S(K)G of piecewise affine finite elements with respect to the local partition T (K)G = {T ∈ T (K) ∣ T ⊂
G}. The discretization of the level-K interface Problem 2.3 with respect to the corresponding broken
finite element space

S(K) = {v ∶Q→ R ∣ v∣G ∈ S(K)G ∀G ∈ G(K)} ⊂ HK
amounts to find ũK ∈ S(K) such that

a(ũK , v) = `(v) ∀v ∈ S(K) . (38)

For each K ∈ N, existence and uniqueness of a solution follows from the Lax-Milgram lemma.

5.1 Exponential convergence of multiscale interface problems

In case of the Cantor interface network (cf. Example 2.1) the solutions uK of the level-K interface
Problem 2.3 for K ∈ N converge exponentially to the solution u of the fractal interface Problem 3.11
(cf. Remark 4.3). For a numerical illustration, we consider this example in d = 2 space dimensions
with c = 1, f ≡ 1, A ≡ 1, and the geometrical parameter CK = 2K−1. Note that the ∥ ⋅ ∥ norm inH (cf.
(25)) is identical with the energy norm induced by a(⋅, ⋅) (cf. (??)) in this instance.

The initial triangulation T (1) with h1 = 2−1 is depicted in the left picture of Figure 3 (grey) together with
the initial Cantor network Γ(1) (black). Successive uniform refinement of T (1) provides the triangula-
tions T (K) with hK = 2−K resolving the interfaces Γ(K) on subsequent levels K . The case K = 2 is
illustrated in the middle while the right picture of Figure 3 shows the Cantor network Γ(8).

The linear systems associated with the corresponding finite element discretizations (38) on each level
K are solved directly. Exploiting

∥u − uK∥ ≤ ∥u − u9∥ + ∥u9 − uK∥ , K ∈ N ,
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Figure 3: Initial triangulation T (1), uniform refinement T (2) together with the Cantor interface network
Γ(K) for K = 1, 2, and 8 in d = 2 space dimensions

Figure 4: Exponential decay of fractal homogenization error

the fractal homogenization error is replaced by the heuristic error estimate

eK = ∥ũ10 − ũ9∥ + ∥ũ9 − ũK∥ , K = 1, . . . ,8 . (39)

The first term in (39) is intended to capture the error made by resolving a “large” but finite number of
interfaces instead of infinitely many, while the second term aims at the additional contribution made by
resolving only the actual “small” number of K = 1, . . . ,8 levels.

Figure 4 shows the error estimates eK over the levels K (dotted line) together with the expected
asymptotic bound of order (1+ c)−K (solid line) for K = 1, . . . ,8. Both curves have very similar slope
which nicely confirms our theoretical findings. As ∥u−u9∥ ≥ ∥u10−u9∥ and ∥ũ9− ũK∥ = 0 forK = 9,
we would expect that eK might underestimate the fractal homogenization error for increasing K . This
could explain slight underestimation of the expected asymptotic behavior.

5.2 Fractal numerical homogenization

Aiming at an iterative solution of the discrete problems (38) with a convergence speed that is indepen-
dent of the number of levelsK ∈ N, we now present a multilevel preconditioner in the spirit of (26; 27).

To this end, we introduce the sets of local patches

Q(k) =
⎧⎪⎪⎨⎪⎪⎩

{Q} for k = 1

{ω(k)x ⊂Q ∣ x ∈ N (k−1)} for k ≥ 2
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with ω(k)x ⊂Q consisting of all simplices T ∈ T (k−1) with common vertex x ∈ N (k−1). The decompo-
sition ofQ into patches ω ∈Q(k) gives rise to the decomposition

S(k) = ∑
ω∈Q(k)

S
(k)
ω , k ∈ N , (40)

into the local finite element spaces

S
(k)
ω = {v ∈ S(k) ∣ v∣Q/int ω = 0} , ω ∈Q(k) .

For each fixed K ∈ N this leads to the splitting

S(K) =
K

∑
k=1

∑
ω∈Q(k)

S
(k)
ω

and the corresponding multilevel preconditioner (35; 36)

TK =
K

∑
k=0

∑
ω∈Q(k)

P
S
(k)
ω
. (41)

with PV ∶ S(K) Ð→ V denoting the Ritz projection,

defined by
a(PVw, v) = a(w, v), ∀v ∈ V. (42)

Note that the evaluation of each local projection P
S
(k)
ω

amounts to the solution of a (small) self-adjoint

linear system on the patchω ∈Q(k) so that TK can be regarded as a multilevel version of the classical
block Jacobi preconditioner.

The analysis of upper bounds for the condition number of TK as well as fractal counterparts of multi-
scale finite elements (25; 28) will be considered in a separate publication.

5.2.1 Cantor interface network

We consider the level-K interface Problem 2.3 for the Cantor interface network with parameters, finite
element discretization, and initial triangulation T (1) as already described in subsection 5.1.

Let ũ(ν)K , ν ∈ N, denote the iterates of the preconditioned conjugate gradient method with precondi-

tioner TK given in (41) and initial iterate ũ(0)K = ũ0. The corresponding algebraic error reduction factors

ρ
(ν)
K = ∥ũK − ũ(ν)K ∥

∥ũK − ũ(ν−1)
K ∥

(43)

of each iteration step are depicted in Figure 5 for ν = 1, . . . ,8 together with their geometric average
ρK for K = 5, . . . ,9. The averaged reduction factors ρK seem to saturate with increasing level K .

In practical computations, it is sufficient to reduce the algebraic error ∥ũK − ũ(ν)K ∥ up to discretization
accuracy ∥uK − ũK∥. Galerkin orthogonality implies

∥ũK+1 − ũK∥2 + ∥u − ũK+1∥2 = ∥u − ũK∥2 .

We utilize the stopping criterion

∥ũK − ũ(ν0)K ∥ ≤ ∥ũK+1 − ũK∥ ≤ ∥u − ũK∥ (44)
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ν K = 5 K = 6 K = 7 K = 8 K = 9
1 0.479 0.481 0.481 0.482 0.482
2 0.445 0.464 0.483 0.500 0.514
3 0.453 0.448 0.442 0.437 0.439
4 0.429 0.452 0.474 0.493 0.503
5 0.451 0.465 0.468 0.472 0.477
6 0.432 0.444 0.459 0.477 0.494
7 0.447 0.467 0.463 0.456 0.455
8 0.450 0.483 0.487 0.489 0.490
ρK 0.448 0.463 0.469 0.475 0.481

Figure 5: Algebraic error reduction factors for the Cantor interface network

provided by the resulting lower bound for the discretization error and the final iterate on the preceding
level K − 1 as the initial iterate on the actual level K (nested iteration). Then, only ν0 = 1 step of the
preconditioned conjugate gradient iteration is enough to provide an approximation ũ(ν0)K of ũK with
discretization accuracy for all K = 2, . . . ,9.

5.2.2 Layered interfaces

We consider the level-K interface Problem 2.3 in d = 2 space dimensions with parameters c = 1,
f ≡ 1, A ≡ 1, and non-intersecting interfaces Γk ⊂ Q = (0,1)2 described as follows. Figure 6
shows the initial triangulation T (1) (grey) with h1 = 2−4 together with the 3 macro interfaces forming
Γ(1). Again, T (k) is obtained by uniform refinement of T (1) and Γk = Γ(K)/Γ(K−1) is composed of
6 randomly selected, non-intersecting polygons consisting of edges of triangles T ∈ T (K) one above
and one below each macro interface from Γ(1). For K = 2, this is illustrated in the middle picture of
Figure 6. Note that at most CK = 2K − 1 interfaces are cut by any straight line through Q. The final
interface Γ(6) is depicted in the right picture.

Figure 6: Initial triangulation T (1), uniform refinement T (2) together with the layered interface network
Γ(K) for K = 1, 2, and 6

As in Subsection 5.2.1, we consider the cg iteration with the multilevel preconditioner defined in (41)
and initial iterate u(0)K = ũ0 for K = 2, . . . ,6. Figure 7 shows the algebraic error reduction factors

ρ
(ν)
K defined in (43), together with their geometric average ρK . The averaged reduction factors ρK are

slightly increasing with increasing level K .
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ν K = 2 K = 3 K = 4 K = 5 K = 6
1 0.303 0.377 0.376 0.392 0.423
2 0.177 0.431 0.473 0.496 0.523
3 0.329 0.316 0.418 0.492 0.542
4 0.372 0.404 0.405 0.497 0.517
5 0.247 0.409 0.501 0.503 0.525
6 0.329 0.405 0.421 0.497 0.533
7 0.366 0.362 0.458 0.488 0.539
8 0.328 0.440 0.426 0.497 0.527
ρK 0.299 0.391 0.433 0.481 0.515

Figure 7: Algebraic error reduction factors for the layered interface network

If nested iteration is applied, only one iteration step is needed to reach discretization accuracy accord-
ing to the stopping criterion (44) in Subsection 5.2.1.
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