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Thin film models for an active gel
Georgy Kitavtsev, Andreas Münch, Barbara Wagner

Abstract

In this study we present a free-boundary problem for an active liquid crystal based on the
Beris-Edwards theory that uses a tensorial order parameter and includes active contributions
to the stress tensor to analyse the rich defect structure observed in applications such as the
Adenosinetriphosphate (ATP) driven motion of a thin film of an actin filament network. The small
aspect ratio of the film geometry allows for an asymptotic approximation of the free-boundary
problem in the limit of weak elasticity of the network and strong active terms. The new thin film
model captures the defect dynamics in the bulk as well as wall defects and thus presents a
significant extension of previous models based on the Leslie-Erickson-Parodi theory. Analytic
expressions are derived that reveal the interplay of anchoring conditions, film thickness and active
terms and their control of transitions of flow structure.

1 Introduction

Since the works by Simha and Ramaswamy[1] and Kruse et al. [2] active liquid crystals have been
used extensively as a hydrodynamic theory to describe the ordered motion of large numbers of self-
propelled particles, such as bacterial suspensions, fibroblast monolayers, or the ATP driven actin net-
work that underlies the movement of the lamelopodium of a crawling cell. The different levels of de-
scription, from the microcopic to the continuum hydrdynamic theory of this rapidly expanding research
field has been reviewed in Marchetti et al. [3].

In many studies active matter extensions are based on the Leslie-Ericksen-Parodi (LEP) theory [4, 5]
such as in [6, 7], where active polar gels were derived from thermodynamic principles. As in passive
liquid crystals, defects are a common phenomenon and their dynamics is strongly influenced by the
fact that the system is out-of-equilibrium due to the energy source from the active terms. Observations
in in-vitro experiments [8] show that they may directly depend on strength of the activity, where it was
demonstrated that the observed defects tend to disappear again for sufficiently high levels of activity
[9].

Based on the LEP theory, point defects such as asters, vortices and spirals were described [2, 6].
Furthermore, phase diagrams of unbounded two-dimensional states [10] as well as flow transitions
in confined films [11] were investigated. In particular, it was found that spontaneous flow arises in a
confined active polar gel (with no-slip or free-slip conditions at the domain walls) above a critical layer
thickness. This transition was also described within a thin-film model with a free, capillary surface [12].

However, there are some inherent deficiencies to desribe the complete defect structure of passive
liquid crystals based on the Leslie-Ericksen-Parodi theory, which is connected to the discontinuity of
the director field and the infinite associated local elastic energy at the defect points. This problem
becomes even more critical for the description of wall and line defects along which the elastic energy
in the Leslie-Ericksen-Parodi theory is essentially discontinuous and, in particular, standard energy
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renormalization techniques can not be applied. Moreover, when modelling the evolution of thin ne-
matic films with moving contact lines using LEP theory, related problems occur due to singularity of
the director field at the contact line [13–20]. Therefore, more general approaches such as the Beris-
Edwards theory [21, 22] of liquid crystal hydrodynamics, that use a tensorial order parameter, the
so-called Q-tensor, instead of a director field, have been devised. Extensions of this theory by active
terms go back to Marenduzzo et al. [23, 24] and have been extended in two- and three dimensions
to various problems involving different geometries, such as spherical shells [25–30]. But even for the
passive Beris-Edwards theory, the conditions at boundaries and in particular, stress and anchoring
conditions at free interfaces are less well studied within this model. Important contributions to these is-
sues can be found in [16, 31, 32]. In particular, it was conjectured [33] that aQ-tensor based approach
might facilitate the resolution of nematic point defects in the vicinity of moving film contact lines [34].

The derivation of the corresponding thin-film model is the goal of this article. We begin by formulating
the active Beris-Edwards model (section 2) including all the boundary conditions for a two-dimensional
cross section of a thin film. We emphasize that the two-dimensional Beris-Edwards model resembles
basic features of its full three-dimensional version, but also finds independent interesting applications
for modelling biological films on curved surfaces [26, 35–37]. In this case, we are able to represent
of the Q-tensor variable through a scalar order parameter q and the director field n and reduce the
active Beris-Edwards model to the corresponding active Ericksen model [22] describing the evolution
of q and n. Making use of the scale separation of the thin-film geometry, a leading order approximation
is derived (section 3) in the limit of weak elasticity and strong active terms to arrive at a new thin-film
model, both for the passive and active cases. We also show that our model formally reduces to the
one based on Leslie-Ericksen-Parodi theory, when the scalar order parameter q is homogeneous, and
coincides with one of [16] in the passive case.

Finally, we derive explicit solutions for special cases of flat constant films and small angle mismatch be-
tween the anchoring conditions. They show that in the passive case a solution with non-homogeneous
nematic field exists when certain relations between film thickness and nematic boundary conditions
are satisfied. In the active case, this solution also demonstrates nonzero flow and can be sponta-
neously initiated from the homogeneous one, for example by increasing the film thickness, similar to
the effect observed in [10, 11].

A discussion of further extensions and applications concludes the paper (section 5). In Appendix A we
present the rescaled Ericksen model under the thin-film approximation. In Appendix B we derive the
polar thin-film model based on the Leslie-Ericksen-Parodi system with active terms.

2 Formulations of active liquid crystals

2.1 Beris-Edwards model for an active gel

The model in [6] and the simplified version in [11] can be viewed as based on the framework of liquid
crystal theory augmented by sources of energy due to ATP hydrolysis that drives the system and
makes the bulk of the cell an active (polar) gel. The bulk liquid i.e. the gel is characterized mainly by
the velocity and the director field, which describes the averaged orientation of the actin filaments at a
given point in space and time. The driving force is provided in their models via the chemical potential
difference of ATP and its hydrolysis products. This hydrolysis of ATP fuels the molecular motors (and
is also used for the polymerization and depolymerization of the actin filaments). Instead of treating the
chemical potential difference as a local quantity or a fixed constant as is done for the Leslie-Ericksen-
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Figure 1: Sketch of the geometry of a thin film together with variables involved in theQ-tensor system
(2.4)-(2.6).

Prodi formulation [4, 5, 38], we include the corresponding terms into the Beris-Edwards theory that
uses Q-tensors and is popular in the liquid crystal literature [22, 39–42] nd the recent overview [43, 44]
as a more general alternative theory for liquid crystals. In a subsequent step, we express the Q-tensor
in terms of the director field and an additional scalar order parameter to obtain the Ericksen model, for
which we then derive the thin film model in section 3. An active gel model in terms of Q-tensors and
its subsequent reformulation is also given in [24], but we also need to include appropriate conditions
at the free interface, which we base on [31, 45].

We only consider two-dimensional models here and introduce a spatial domain Ω with coordinates
(x1, x3), while t represents time, (see Fig. 1 for a schematic sketch of the geometry and variables
involved). The Beris-Edwards model is associated with the standard Landau-de Gennes energy in the
form [46]

FLG[Q; Ω] =

∫
Ω

(fe(Q) + fb(Q)) dx, (2.1)

where Q ∈ H1(Ω, L0) takes on values in the space of the symmetric and traceless matrices, or
Q-tensors,

L0 := {Q ∈ R 2×2, Q = QT , tr(Q) = 0}.

In (2.1), the bulk contribution is given by

fb(Q) = −a
2

2
tr(Q2) +

c2

4

(
tr(Q2)

)2
(2.2)

with c > 0 and

fe(Q) =
L1

2
Qij,kQij,k (2.3)

is the elastic contribution, with an elastic constantL1 > 0. (We deliberately avoid further complications
by consider a model with only one elastic constant.) Here, and elsewhere, we use the usual convention
that duplicate indices are summed over and indices with commas indicate spatial derivatives, e.g.Qij,k

is used for the derivative of Qij with respect to xk.

In the most general form, the Beris-Edwards model can be written as (see e.g. [22, 40–42] and refer-
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ences therein):

0 = ∂ivi, (2.4)

0 = −∂ip+ µ∂2
j vi + ∂j(τij + σij − ζ∆χQij) (2.5)

Qt + (v · ∇)Q = ΓH + S(∇v,Q) + λ1∆χQ, (2.6)

where vi and p are the velocity components and the pressure, and µ the isotropic viscosity. The term

S(∇v,Q) = (ξe+ ω)(Q+ I/2) + (Q+ I/2)(ξe− ω)− 2ξ(Q+ I/2)tr(Q∇u), (2.7)

with

eij =
1

2
(∂jvi + ∂ivj) , ωij =

1

2
(∂jvi − ∂ivj) , Iij = δij, (2.8)

describes how the flow gradient rotates and stretches the order-parameter. The scalar parameter ξ
appearing both in equations (2.5) and (2.6) depends on the molecular details of a given liquid crystal
and measures the ratio between the tumbling and the aligning effect that a shear flow exert over the
liquid crystal directors. The active terms are associated with the activity parameters ζ and λ1 and have
been introduced in (2.5) and (2.6) as in [24, 42]. The molecular field H in (2.6) is the first variation of
the Landau-de Gennes energy (2.1) with respect to Q,

Hij =
δFLG
δQij

= a2Qij − c2Qijtr(Q
2) + λ(x)δij + L1∂

2
kQij. (2.9)

The Lagrange multiplier arises from the constraint trQ = 0. We note that this constraint is equivalent
to the normalisation condition of the director field, as can be seen by taking the trace of the repre-
sentation (2.19) for Q. However, taking the trace of equation (2.6), gives, after some algebra, that
λ(x) = −2(ξ + 1)Qilωli = 0, where the last equality follows from Qil = Qli. We will therefore drop
the λ(x)I term from (2.9). The symmetric and antisymmetric parts of the stress tensor σij and τij
that appear in (2.5) are due to the director-flow interaction and have the form

τij = −ξ(Qik + δik/2)Hkj − ξHik(Qkj + δkj/2)

+ 2ξ(Qij + δij/2)HkmQkm − L1∂jQkm∂iQkm (2.10)

and
σij = QikHkj −HikQkj. (2.11)

For future reference, we also introduce the total stress tensor T , which includes all contributions,
including those from the active term, that is

Tij = −pδij + 2µeij + τij + σij − ζ∆χQij. (2.12)

Boundary conditions at the substrate. We assume that the substrate is impermeable and that the
no-slip condition holds for the liquid, hence both components of the liquid vanish at x3 = 0,

v = 0. (2.13a)

We also impose strong anchoring, so that at x3 = 0, we have

Q = Q1 = q1(n1 ⊗ n1 −
1

2
I), (2.13b)

with a given constant q1 ∈ R and n1 = [sin(θ1), cos(θ1)] ∈ R2 (see also [47]).
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Thin film models for an active gel 5

Boundary conditions at the free interface. We use the isotropic surface energy from [45] (retaining
only the first constant term),

Fs(Q, ν) = g0, (2.14)

which leads to the surface stress (with Is ≡ I − ν ⊗ ν)

T s = FsIs (2.15)

that appears in the right hand side of stress condition at the interface x3 = η(x1, t)

νiTij = (δik − νiνk)∂kT sij. (2.16)

In addition, we have the kinematic condition

ηt = v3 − v1η,1 (2.17)

at x3 = η(x1, t) and we impose the conical anchoring condition on Q, see also [44, 48, 49],

Q = q2

(
R(θ2)ν ⊗R(θ2)ν − 1

2
I

)
, (2.18)

with a given constant q2 ∈ R and θ2 ∈ [0, π), where

R(θ) =

[
cos θ sin θ,
− sin θ cos θ

]
is the rotation by angle θ2. We note, however, that in the thin film limit, the normal to the free boundary
is, to leading order, equal to the canonical unit vector e3, hence this boundary condition reduces to a
strong anchoring condition with a fixed angle θ2 with respect to the x3 coordinate direction.

2.2 Reduction to an active Ericksen model

The reduction of the model (2.4)–(2.6) proceeds as follows: By definition the two eigenvalues of Q are
±q/2 for some scalar order parameter q ∈ R . Moreover, one can show that for each Q ∈ L0 there
exists a unit vector n ∈ S1 (called director) such that representation

Q = q[n⊗ n− I/2] (2.19)

holds. From this it also follows that each two-dimensional Q-tensor on a plane is completely character-
ized by two degrees of freedom: the order parameter q and the director n. The representation (2.19)
does not distinguish between +n and −n. For definiteness, we fix the sign at the free interface, and
hence by continuity everywhere in the film, by requiring that n points out of the liquid and the director
field is continuous everywhere in the film bulk. In section 5 we will describe situations when the reduc-
tion presented in this section can be extended without changes to the case of singular director fields
n having defects.

We note also that under representation (2.19) the bulk energy (2.2) reduces to

fb(Q) = fb(q) = −a
2q2

8
+
c2q4

64
, (2.20)

which attains its global minima at qmin = ±2a/c.
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Substituting (2.19) into (2.9) (and taking into account that λ = 0) one obtains

Hij =

(
a2q − c2q3

2

)[
ninj −

δij
2

]
+ L1q,kk

[
ninj −

δij
2

]
+2L1q,kni,knj + 2L1q,kninj,k + L1q[2ni,knj,k + ni,kknj + ninj,kk]

On the other hand, expressing of H from (2.6) gives

ΓHij = q(njNi+niNj)+(qt+vkq,k)

[
ninj −

δij
2

]
−S(∇v,Q)−λ1∆χq(ninj−δij/2) (2.21)

where we denote the rate of change of the director with respect to the background fluid

Ni = ṅi − ωijnj, ṅi = ∂tni + vj∂jni, (2.22)

and ṅi denotes the material derivative.

Calculating the variational quantity Γ(Hijnj + niHij) for both of the last two representations for H
and subsequently equating them one obtains the following equation:

L1Γ[2qni,kk−2q|ni,k|2ni + q,kkni + 4q,kni,k] + Γ(a2q − c2q3

2
)ni

=2qNi + (qt + vkq,k)ni −
2

3
(q + 2)ξejinj − λ1∆χqni. (2.23)

Multiplying the last equation by ni and using relationsNini = n2
i − 1 = 0 one obtains an Allen-Cahn

type equation for the scalar order parameter

qt + vkq,k −
2

3
(q + 2)ξejinjni = L1Γq,kk − 4qL1Γ|nj,k|2 + Γ

(
a2q − c2q3

2

)
+λ1∆χq, (2.24)

Using (2.24) one can simplify (2.23) to a parabolic equation for the director field n(x):

L1Γ[2qni,kk + 4q,kni,k] = 2qNi − 2qL1Γ|nj,k|2ni −
2

3
(q + 2)ξ[ejinj − elknlnkni]. (2.25)

Finally, the expressions (2.11) and (2.10) for the symmetric and antisymmetric stresses become

Γσij = q2(niNj −Ninj)−
ξq(q + 2)

3
(ninkekj − eiknknj)

and

Γτij =− qξ

3
(q + 2)(njNi + niNj) +

qξ2

3
(4− q)(eiknknj + ninkekj)

+
2ξ2

3
(q − 1)2eij −

8q2ξ2

3
(
3

4
+ q − q2)ξninjeiknlnk

+
ξq

2
ninj(qt + vkq,k)− ΓL1

(
3

4
q,iq,j + 2q2nk,ink,j

)
+ ξλ1∆χ(1− q2)q(ninj − δij/2),

where the last term appears upon inserting the expression (2.21) for Hij into (2.10). Finally, we also
have the explicit appearance of the active stress in (2.5),

−ζ∆χQij = −ζ∆χq(ninj − δij/2),
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so that the total stress tensor (2.12) becomes

Tij = −pδij + TEij + T̃ij, (2.26)

with

TEij = −L1

(
3

4
q,iq,j + 2q2nk,ink,j

)
, (2.27)

T̃ij = α1nknpekpninj + α2Ninj + α3Njni

+ α4eij + α5eiknknj + α6ejknkni +
ξq

2Γ
ninj(qt + vkq,k)

+ [ξλ1(1− q2)/Γ− ζ]∆χq(ninj − δij/2). (2.28)

The Leslie constants αi and the parameters of Beris-Edwards model are related by (see (2.10)-(2.15)
in [40])

α1(q) = −2

3
q2(3 + 4q − 4q2)ξ2/Γ, (2.29a)

α2(q) =

{
−1

3
q(2 + q)ξ − q2

}
/Γ, (2.29b)

α3(q) =

{
−1

3
q(2 + q)ξ + q2

}
/Γ, (2.29c)

α4(q) =
4

9
(1− q)2ξ2/Γ + 2µ, (2.29d)

α5(q) =

{
1

3
q(4− q)ξ2 +

1

3
q(2 + q)ξ

}
/Γ, (2.29e)

α6(q) =

{
1

3
q(4− q)ξ2 − 1

3
q(2 + q)ξ

}
/Γ. (2.29f)

We conclude that under representation (2.19) the model (2.4)–(2.6) turns into four equations

0 = ∂ivi, (2.30a)

0 = −∂ip− L1∂j

(
3

4
q,iq,j + 2q2nk,ink,j

)
+ ∂jT̃ij, (2.30b)

L1Γ[2qni,kk + 4q,kni,k] = 2qNi−2qL1Γ|nj,k|2ni

− 2

3
(q + 2)ξ[ejinj − elknlnkni], (2.30c)

qt + vkq,k =
2

3
(q + 2)ξejinjni + L1Γq,kk−4qL1Γ|nj,k|2

+ Γ

(
a2q − c2q3

2

)
+ λ1∆χq, (2.30d)

where T̃ij is given by (2.28).

Boundary conditions at the substrate. Using (2.19) in (2.13), the boundary conditions at x3 = 0
become

v1 = 0, v3 = 0, (2.31a)

n3 = cos θ1, (2.31b)

q = q1. (2.31c)
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Boundary conditions at the free interface. The condition (2.15) now takes the form

T sij = g0(δij − νiνj). (2.32)

Projecting this condition onto the normal and tangential directions at the interface gives

νiTijνj = −g0∂iνi (2.33a)

νiTijtj = 0. (2.33b)

The remaining conditions at the free interface x3 = η(x1, t) are

ηt = v3 − v1∂1η, (2.33c)

n = R(θ2)ν, (2.33d)

q = q2. (2.33e)

3 Derivation of thin-film models

3.1 Thin-film model for active the Erickson theory

We now non-dimensionalize this model using length scales L for x1 and εL for x3, where L denotes
the characteristic lateral extend of the cell and εL denote its height. Hence, ε is the ratio between the
two length sales and in a thin-film settimg assumed to be small. We denote

x3 = εLx̄3, x1 = Lx̄1, η = εLη̄,
v1 = Uv̄1, v3 = V v̄3, t = (L/U) t̄,
p = p0 + P p̄, h = E h̄,

(3.1)

where E and P are are defined as

E =
L1

ε2L2
, (3.2)

P =
µU

ε2L
. (3.3)

The order parameter q and the the director field n are dimensionless and do not need to be scaled. In
the normal stress condition at the free surface, balancing the pressure with surface tension requires

P =
ε g0

L
. (3.4)

Together with (3.3) this means

ε3 =
µU

g0

. (3.5)
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Further scalings are obtained as

Ni =
U

εL
N̄i, (3.6a)

e11 =
U

L
ē11, e13 =

U

εL
ē13, e31 =

U

εL
ē31, e33 =

U

L
ē33, (3.6b)

ω13 =
U

εL
ω̄13, ω31 =

U

εL
ω̄31, (3.6c)

αi = µᾱi Γ = Γ̄/µ, a2 = E ā2, c2 = E c̄2, (3.6d)

T̃ij =
µU

εL
¯̃Tij,

[
TE11, T

E
13, T

E
31, T

E
33

]
=
µU

εL

[
ε2TE11, εT

E
13, εT

E
31, T

E
33

]
, (3.6e)

L̄1 =
L1

εµUL
, ζ̄∆χ̄ =

ΓL

U
ζ∆χ, λ̄1∆χ̄ =

L

U
λ1∆χ. (3.6f)

Retaining only the leading order terms in ε in the rescaled system (2.30), given in appendix A, and
assuming the weak elasticity limit, by which we mean that as we introduce the thin-film approximation
ε→ 0, we assume L̄1 = O(1) and ∆χ̄ = O(ε−1), the leading order system in the bulk becomes

0 = v1,1 + v3,3, (3.7a)

0 = −p,1 +
1

2
(v1,3fA(n1, n3)),3

+
ε

Γ
∆χ

[(
ξλ1(1− q2)− ζ

)
qn1n3

]
,3
, (3.7b)

0 = −p,3, (3.7c)

L1Γ[2qn1,33 + 4q,3n1,3] = −2q
v1,3n3

2
− 2qL1Γ

(
|n1,3|2 + |n3,3|2

)
n1

− 2v1,3

3
(q + 2)ξ[n3/2− n2

1n3], (3.7d)

L1Γ[2qn3,33 + 4q,3n3,3] = 2q
v1,3n1

2
− 2qL1Γ

(
|n1,3|2 + |n3,3|2

)
n3

− 2v1,3

3
(q + 2)ξ[n1/2− n1n

2
3], (3.7e)

−2

3
(q + 2)ξv1,3n1n3 = −4qL1Γ

(
|n1,3|2 + |n3,3|2

)
+ L1Γq,33

+ Γ

(
a2q − c2q3

2

)
+ελ1∆χq, (3.7f)

where here and below for convenience we have skipped the overbars everywhere and in the horizontal
momentum equation we introduced the notation

fA(n1, n3) ≡ 2α1(n1n3)2 + (α5 − α2)n2
3 + (α3 + α6)n2

1 + α4. (3.8)

The leading order system for the boundary conditions at z = 0 is given by

v1 = 0, v3 = 0, (3.9a)

n3 = cos θ1, (3.9b)

q = q1, (3.9c)
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and at the free surface, x3 = η(x1, t) by (cf. (A.11) in Appendix A).

ηt = v3 − v1∂1η, (3.10a)

−p = η,11, (3.10b)

1

2
v1,3fB(n1, n3) = − ε

Γ
∆χ

(
ξλ1(1− q2)− ζ

)
qn3n1, (3.10c)

n3 = cos θ2, (3.10d)

q = q2, (3.10e)

with a given function q2(x, t), and where we define

fB(n1, n3) ≡ 2α1(n1n3)2 + (α6 − α3)n2
3 + (α2 + α5)n2

1 + α4. (3.11)

Next, similar to [16] we rewrite equations (3.7a)–(3.7f) in the bulk in terms of the director angle θ using
the representation

n1 = sin θ, n3 = cos θ. (3.12)

First, let us multiply equations (3.7d) and (3.7e) by −n3 and n1, respectively, and then sum up them.
The resulting equation has the form:

L1Γ[−2qn1,33n3−4q,3n1,3n3+2qn3,33n1+4q3n3,3n1] = qv1,3+
v1,3

3
(q+2)ξ

[
n2

3 − n2
1

]
. (3.13)

Using (3.12) and definitions

γ1 = α3 − α2, γ2 = α2 + α3 = α6 − α5 (3.14)

and (2.29) the latter equation can be reduced to (3.18) which we include with the other equations of
the system (3.7a)–(3.7f), rewritten in terms of θ, giving

0 = v1,1 + v3,3, (3.15)

0 = −p,1 +
1

2
(v1,3fA(θ)),3

+
ε

2Γ
∆χ

[(
ξλ1(1− q2)− ζ

)
q sin(2θ)

]
,3
, (3.16)

0 = −p,3, (3.17)

L1q [2qθ,33 + 4q,3θ,3] = −v1,3

2
[γ1 − γ2 cos(2θ)] (3.18)

−1

3
(q + 2)ξv1,3 sin(2θ) = −4qL1Γ|θ,3|2

+ L1Γq,33 + Γ(a2q − c2q3

2
)+ελ1∆χq, (3.19)

where we define

fA(θ) = (α1/2) sin2(2θ) + (α5 − α2) cos2 θ + (α3 + α6) sin2 θ + α4. (3.20)

The leading order system for the boundary conditions at z = 0 is given by

v1 = 0, v3 = 0, (3.21a)

θ = θ1, (3.21b)

q = q1, (3.21c)
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and at the free surface, x3 = η(x1, t) by

ηt = v3 − v1∂1η, (3.22a)

−p = η,11, (3.22b)

1

2
v1,3fB(θ) = − ε

2Γ
∆χ

(
ξλ1(1− q2)− ζ

)
q sin(2θ), (3.22c)

θ = θ2, (3.22d)

q = q2, (3.22e)

where we define

fB(θ) = (α1/2) sin2(2θ) + (α6 − α3) cos2 θ + (α2 + α5) sin2 θ + α4. (3.23)

We now integrate these equations. First, the combination of (3.15) and (3.22a) gives

ηt(x1, t) = −∂1

∫ η

0

v1(x1, x3, t)dx3.

which is in fact exact i.e. also valid for the full governing equations. From (3.17), (3.22b), (3.16), (3.22c),
we get

p = −η,11, (3.24)

fA(q, θ)v1,3 = 2η,111(η − x3)− ε

Γ
∆χ

(
ξλ1(1− q2)− ζ

)
q sin(2θ)

+
ε

Γ
∆χ

(
ξλ1(1− q2

2)− ζ
)
q2 sin(2θ2)

− ε

Γ
∆χ

fA(q2, θ2)

fB(q2, θ2)

(
ξλ1(1− q2

2)− ζ
)
q2 sin(2θ2)

= 2η,111(η − x3)− ε

Γ
∆χ

(
ξλ1(1− q2)− ζ

)
q sin(2θ)

+
ε

Γ
∆χ

γ1 − γ2 cos(2θ2)

fB(q2, θ2)

(
ξλ1(1− q2

2)− ζ
)
q2 sin(2θ2), (3.25)

provided fB(q2, θ2) 6= 0.

Therefore, the last three equations combined together result in a closed
lubrication system:

ηt(x1, t) = −∂1

∫ η

0

v1(x1, x3, t)dx3, (3.26a)

v1,3 =
2η,111

fA(q, θ)
(η − x3)

− ε∆χ

ΓfA(q, θ)

[(
ξλ1(1− q2)− ζ

)
q sin(2θ)

−γ1 − γ2 cos(2θ2)

fB(q2, θ2)

(
ξλ1(1− q2

2)− ζ
)
q2 sin(2θ2)

]
, (3.26b)(

q2θ,3
)
,3

= − 1

4L1

(γ1 − γ2 cos(2θ)) v1,3, (3.26c)

q,33 = 4q(θ,3)2 − ξ(q + 2)

3L1Γ
sin(2θ)v1,3 −

q

L1

(
a2 − c2q2

2

)
− ελ1∆χ

L1Γ
q. (3.26d)
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Notice that if fA(q(x1, x3, t), θ(q(x1, x3, t)) 6= 0 for all x1, x3 and t, we can solve (3.25) for v1,3 and
use the result in (3.18) and (3.19) to eliminate v1,3, thus decoupling the system for θ and q from the
velocity field. Because of the size of the resulting equations, we have not done this here.

v1 = 0 at x3 = 0, (3.26e)

θ = θ1 at x3 = 0, (3.26f)

q = q1 at x3 = 0, (3.26g)

θ = θ2 at x3 = η, (3.26h)

q = q2 at x3 = η. (3.26i)

3.2 Thin-film model for the active Leslie-Erickson-Parodi theory

If we use the Leslie-Erickson-Parodi theory with correspnding active terms as a model for the active
liquid crystal [6, 7, 11, 12] and nondimensionalise as before we derive in appendix B the following
coupled system for the leading order thin-film approximation

∂tη = −∂1

∫ η

0

v1 dx3, (3.27a)

0 = η,111(x3 − η) +
1

2
v1,3fA(θ) +

ζELP∆χELP

2

fA(θ2)

fB(θ2)
sin(2θ2)

+
ζELP∆χELP

2
(sin(2θ)− sin(2θ2)) , (3.27b)

2Kθ,33 = −(γ1 − γ2 cos(2θ))v1,3, (3.27c)

with the boundary conditions at x3 = 0 given by

v3 = 0, (3.28a)

θ = θ1, (3.28b)

and at the free surface, x3 = η(x1, t),

θ = θ2. (3.29)

Formal comparison of (3.27) with equations (3.26a)-(3.26c) considered with q = q1 = q2 = const
provides the following relations between the active and elastic parameters in the Eriksen-Leslie-Parodi
and Ericksen thin-film models:

λELP1 = λ1, ζ
ELP = (ζ − ξλ1(1− q2))q, K = 2L1q

2, ∆χELP =
ε

Γ
∆χ. (3.30)

At the same time, in absence of the active terms ∆χELP = 0 our model (3.27) can be shown to
coincide with the (passive) thin-film model derived in [16] for the weak elasticity regime, cf. system
(A17)-(A20) there. Note that the special anchoring boundary conditions θ1 = π/2 and θ2 = 0 were
considered in Lin et al. [16].
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4 Impact of activity terms

At this point, further reductions of the thin-film model (3.26) or (3.27) are not, in general, possible
without additional assumptions, since the remaining equations cannot be easily integrated with respect
to x3. We will instead look at two special cases of the more generalQ-tensor system (3.26): one, where
the interface is flat (η = 1) and the other where the misalignment of the director at the substrate and
the interface is small, |θ2 − θ1| � 1.

4.1 Flat film

Passive case We first consider the case, where η = const is any positive constant. This yields
v1 = 0 and

q2θ,3 = c1, (4.1a)

q,33 = 4q(θ,3)2 − 1

L1

(
a2q − c2q3

2

)
(4.1b)

Under the additional assumption that q1 = q2 ≡ q0 and that q remains constant we obtain the solution

θ = (θ2 − θ1)x3 + θ1, q = q0 =

[
2a2

c2
− 8L1

c2
(θ2 − θ1)2

]1/2

. (4.2)

We note that a similar solution for the director angle θ and for q has been found for the case of channel
flow in [50].

Alternatively, one can also substitute (4.1a) into (4.1b) to obtain one ODE for q:

q,33 =
4c2

1

q
− 1

L1

(a2q − c2q3

2
). (4.3)

Multiplying the last equation by q,3 and integrating in x3 one obtains

1

2
q2
,3 = 4c2

1 log(q)− 1

L1

(
a2

2
q2 − c2q4

8
) + c2,

where we have assumed that q 6= const and

c2 =

(
−4c2

1 log(q1) +
1

L1

(
a2

2
q2

1 −
c2q4

1

8
) +

1

2
q2
,3

) ∣∣∣
x3=0

. (4.4)

The last ODE is separable and can be integrated as

x3 =

∫ q

q1

ds√
8c2

1 log(s)− 1
L1

(a2s2 − c2s4

4
) + 2c2

, (4.5)

where we have assumed that q2 > q1. Correspondingly, using (4.1a) one finds

θ(x3)− θ1 =

∫ x3

0

c1

q2(x3)
dx3 = c1

∫ q

q1

ds

s2

√
8c2

1 log(s)− 1
L1

(a2s2 − c2s4

4
) + 2c2

. (4.6)
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In the last expression the constants c1 and c2 are determined by the boundary condition for θ at
x3 = η = const:

θ2 − θ1 = c1

∫ q2

q1

ds

s2

√
8c2

1 log(s)− 1
L1

(a2s2 − c2s4

4
) + 2c2

,

η =

∫ q2

q1

ds√
8c2

1 log(s)− 1
L1

(a2s2 − c2s4

4
) + 2c2

. (4.7)

The compatibility conditions (4.7) do not have always solutions. For example, if θ2 = θ1 and q1 is large
enough the denominator in (4.7) is non-negative for all q ≥ q1 and the first integral in (4.7) can not be
zero. Therefore, in this case one has only the trivial solution (4.2).

Active flat film The compatibility condition of η(x1, x3, t) = η = const with (3.26a) implies that
v1, q, θ are functions of x3 only. By that, system (3.26b)-(3.26d) reduces to

v1,3 = − ε∆χ

ΓfA(q, θ)

[ (
ξλ1(1− q2)− ζ

)
q sin(2θ) (4.8a)

− γ1 − γ2 cos(2θ2)

fB(q2, θ2)

(
ξλ1(1− q2

2)− ζ
)
q2 sin(2θ2)

]
(4.8b)(

q2θ,3
)
,3

= − 1

4L1

(γ1 − γ2 cos(2θ)) v1,3, (4.8c)

q,33 = 4q(θ,3)2 − ξ(q + 2)

3L1Γ
sin(2θ)v1,3 −

q

L1

(
a2 − c2q2

2

)
− ελ1∆χ

L1Γ
q, (4.8d)

which further reduce to two coupled ODEs for θ(x3) and q(x3) by eliminating v1,3. The latter ODEs
can be effectively integrated numerically.

Note, that in absence of the active terms (λ1 = 0 or ζ = 0) the nontrivial solution to the system (4.8) is
given by (4.5)-(4.6) combined with v1 = 0 and it exists only when the compatibility conditions (4.7) on
the boundary data (3.26f)-(3.26i) are satisfied. Given q2 > q1, such that the square root in the denom-
inator of (4.5) is real for all q ∈ (q1, q2), by taking η and θ2− θ1 sufficiently large, one can realize this
passive solution. Moreover, also for small active terms with ∆χ� 1 this non-homogeneous solution
to the system (4.8) continously persists and by (4.8b) exibits the non-homogeneous flow v1(x3) with
|v1| � 1. This effect of inducing a non-zero flow in a channel geometry, when the thickness of the
latter η becomes sufficiently large, has been observed in [10, 11] for the polar Leslie-Ericksen-Parodi
based models.

Finally, note that when active terms are present in (4.8) there is no analogous solution to (4.2). One
can show that the ansatz (4.2) does not satisfy equations (4.8b)-(4.8c), unless q0 = 0.

4.2 Film with small angle change in the director boundary condition

Another special case, where it is possible to discuss analytical solutions is obtained if the difference in
the director angle is small.

Passive case Assuming |θ2 − θ1| � 1, then to leading order θ = θ2 = θ1 is constant and (3.26c)
imples v1,3 = v1 = 0 and η = const. As a result the whole dynamics reduces to (3.26d), which can
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be further reduced to (4.3) with c1 = 0. Then the corresponding solution is given by

x3 =
1√
2

∫ q

q1

ds

− 1
L1

(a
2

2
s2 − c2s4

8
) + c2

. (4.9)

The compatibility conditions (4.7) reduce to

η =

∫ q

q1

ds√
8c2

1 log(s)− 1
L1

(a2s2 − c2s4

4
) + 2c2

(4.10)

We note that the solution (4.9) with θ = θ1 = const to the system (3.26a), (3.26b)-(3.26d) does not
exist in the case when active terms are present (λ1 6= 0 or ζ 6= 0), since in that case (3.26b)-(3.26c)
are not satisfied.

Active film Another way to initiate a nontrivial dynamics in the case θ = θ2 = θ1 = const is to
assume

γ1 − γ2 cos(2θ) = 0. (4.11)

This would imply that (3.26c) is satisfied and q = q1 = q2 = const. Furthermore, (3.26b) can be
integrated and introduced into (3.26a) yields a new modified thin-film equation

ηt = − 2

3fA(q1, θ1)
∂1

[
η3η,111

]
+ C(q1, θ1)∂1(η2). (4.12)

Note that in this case, besides the trivial isotropic solution q1 = 0, only special values of q1 and θ1 are
allowed. These have to be compatible with both, equation (4.11) and the algebraic relation

0 =

(
a2 − c2q2

2

)
+
ελ1∆χ

Γ
. (4.13)

which arises from (3.26d).

For given activity λ1∆χ ∈ R , solutions for q1 and θ1 can be obtained from (4.11) and (4.13) as

cos(2θ) = −3

ξ
+

6

(2 + q)ξ
, q2 =

2a2

c2
+

2ελ1∆χ

c2Γ
. (4.14)

Finally, note that solution (4.14) to system (3.26) does not always exists. In particular, it does not exists
for ξ = 0, i.e. when liquid crystal molecules align perfectly with the hydrodynamic flow. In absence of
active terms (λ1 = 0 or ζ = 0) one has C(q1, θ1) = 0 in (4.12), and therefore the hydrodynamic
flow decouples from the nematics via the rescaling of time by fA(q1, θ1).

5 Discussion and outlook

In this article we presented a systematic asymptotic derivation of the thin-film model given by the
system (3.26) from the free-boundary problem for the Beris-Edwards model to describe the evolution
and flow structure of an active nematic liquid crystal. We also showed that the new thin-film model
formally reduces to the polar one based on Leslie-Ericksen-Parodi theory (3.27), when the scalar order
parameter q is homogeneous, which in the passive case coincides with the model derived previously
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Figure 2: Examples of defects of degree 1 at the contact line (left) and a wall defect (right), which
mathematically can be described by the point defect of degree −1 located at the intersection of the
wall (depicted by dashed line) and the substrate. The direction of the director filed in the neighborhood
of the defect is shown by red arrows. The magnitude of scalar order parameter q is represented by
the arrow size. The derived Q-tensor lubrication model (3.26) can smoothly resolve such integer point
defects through continous reduction of the scalar parameter field to q = 0 when approaching the
defect.

in [16]. In the active case our analytical solution to (3.26) demonstrates nonzero flow that can be
spontaneously initiated from the homogeneous one by increasing the film thickness, as previously
observed in [10, 11].

We now point to some further applications as well as extensions of our results. The derivation of
the coupled model (3.26) starting from the Ericksen type model (2.30) considered with boundary
conditions (2.31)–(2.33) has been conveyed under the assumption of continuity of the director field
n in the film bulk and at the free surface. We note that these models are capable to describe solutions
having point defects of integer degree k with k ∈ Z . Two typical examples of defects with degree−1
in the film bulk and of degree 1 at the film contact line are presented in Fig. 2. One observes that when
approaching the defect points the magnitude of the scalar order parameter q goes to zero and by that
preserving the continuity of the full Q-tensor field (2.19). We should also point out that, being derived
in the weak elasticity regime (cf. scaling for L1 in (3.6f)) and under the large pressure scaling (3.3), the
model (3.26a),(3.26) allows for O(1) variation of the director field n along the vertical x3 direction of
the film. This is the case, for example, in the wall defect of degree−1 in a confined flat film presented
in Fig. 1 (right plot), where the director angle θ changes from 0 to π/2 along the vertical film direction.
Such wall defects were observed before in experiments on thin passive nematic films [51].

However, the Ericksen model may not always resolve defects of rational degree k + 1/2, k ∈ Z ,
because the latter exibit special disclination lines along which n changes to −n [46, 52, 53]. Never-
theless, such defects can be described by the lubrication model (3.26) if the special condition

lim
(x1, x3)→(x∗1, x

∗
3)
|
√
q(x1, x3)∇n(x1, x3)| <∞ (5.1)

is fulfilled, where (x∗1, x
∗
3) is an instant defect location. It is easy to check that (5.1) ensures then that

the associated local Ericksen elastic energy and the corresponding terms involving director gradients
in (3.26c)–(3.26d) are kept finite.

In the Ericksen theory the defects are defined as singular points where the scalar order parameter
q = 0 [22]. We note, that besides the singularities of the director field, considered in the previous
point, the solutions to (3.26) may exibit singular lines along which q = 0 but n ist still continous. These
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lines have special physical meaning, because Q-tensor in (2.19) is zero and, therefore, the nematic
field is isotropic along them. A typical example of such a line is given by the middle line of the channel
at the right imbedded Q-tensor plot in Fig. 2 of [50].

In the future, we plan to investigate system (3.26) numerically, where the nematic part of the model,
equations (3.26c)-(3.26d), is given by two coupled ODEs in x3 direction. A quasi one-dimensional nu-
merical scheme could then be developed by solving the hydrodynamic equations (3.26a), (3.26b) and
the nematic ones (3.26c)-(3.26d) separately and iteratively. We expect complicated solution patterns
for (3.26) to arise with dynamical formation, mutual interaction and anighilation of point defects in the
film bulk similar to ones observed recently in [27, 42]. As in the latter works, it would be important to
investigate the interrelation of these patterns with the evolution of the liquid vorticity field [29].

Finally, we note that by imposing the constant scalar order parameter q = q2 in (2.18) we neglected
possible Marangoni effects at the free surface and, in particular, in condition (2.33b) for the tangential
stress. This was motivated by the fact that under the balance (3.5), that keeps the surface tension
term at leading order in (2.33a), the equation for the Marangoni force (see e.g. formula (8) in [45]) nec-
essarily impies that q should be constant at the film free surface. Nevertheless, by relaxing condition
(3.5) and neglecting surface tension one would be able to derive a model analogous to (3.26) for pure
Marangoni driven active nematic thin films.
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A Thin-film approximation

After application of scalings (3.1)–(3.6) to Ericksen system (2.30) the non-dimensional equations for
the bulk, after skipping overbars everywhere, take the form:

0 = v1,1 + v3,3, (A.1)

0 = −p,1 − ε3TE11,1 − εTE13,3 + εT̃11,1 + T̃13,3 (A.2)

0 = −p,3 − ε3TE31,1 − εTE33,3 + ε2T̃31,1 + εT̃33,3 (A.3)
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L1Γ
(
2ε2qn1,11 + 2qn1,33 + 4ε2q,1n1,1 + 4q,3n1,3

)
= 2qN1 − 2qL1Γ

(
ε2|n1,1|2 + |n1,3|2 + ε2|n3,1|2 + |n3,3|2

)
n1

−2

3
(q + 2)ξ (εe11n1 + e31n3 − (εe11n1n1 + e13n1n3 + e31n3n1 + εe33n3n3)n1) ; (A.4)

L1Γ
(
2ε2qn3,11 + 2qn3,33 + 4ε2q,1n3,1 + 4q,3n3,3

)
= 2qN3 − 2qL1Γ

(
ε2|n1,1|2 + |n1,3|2 + ε2|n3,1|2 + |n3,3|2

)
n3

−2

3
(q + 2)ξ (e13n1 + εe33n3 − (εe11n1n1 + e13n1n3 + e31n3n1 + εe33n3n3)n3) ; (A.5)

ε (qt + vkq,k)−
2

3
(q + 2)ξ (εe11n1n1 + e13n1n3 + e31n3n1 + εe33n3n3)

= −4qL1Γ
(
ε2|n1,1|2 + |n1,3|2 + ε2|n3,1|2 + |n3,3|2

)
+

L1Γ
(
ε2q,11 + q,33

)
+ L1Γ

(
a2q − c2q3

2

)
+ ελ1∆χq, (A.6)

where

TE11 =L1

(
3

4
|q,1|2 + 2q2|nk,1|2

)
, (A.7a)

TE13 = TE31 =L1

(
3

4
q,1q,3 + 2q2nk,1nk,3

)
, (A.7b)

TE33 =L1

(
3

4
|q,3|2 + 2q2|nk,3|2

)
, (A.7c)

T̃11 =α1 (εn1n1e11n1n1 + n1n3e13n1n1 + n3n1e31n1n1 + εn3n3e33n1n1)

+ α2N1n1 + α3N1n1 + α4εe11

+ α5 (εe11n1n1 + e13n3n1) + α6 (εe11n1n1 + e13n3n1)

+
ε

Γ

ξq

2
n1n1(qt + vkq,k) +

ε

Γ
[ξλ1(1− q2)− ζ]∆χq(n1n1 − 1/2), (A.7d)

T̃13 =α1 (εn1n1e11n1n3 + n1n3e13n1n3 + n3n1e31n1n3 + εn3n3e33n1n3)

+ α2N1n3 + α3N3n1 + α4e13

+ α5 (εe11n1n3 + e13n3n3) + α6 (e31n1n1 + εe33n3n1)

+
ε

Γ

ξq

2
n1n3(qt + vkq,k) +

ε

Γ
[ξλ1(1− q2)− ζ]∆χqn1n3, (A.7e)

T̃31 =α1 (εn1n1e11n3n1 + n1n3e13n3n1 + n3n1e31n3n1 + εn3n3e33n3n1)

+ α2N3n1 + α3N1n3 + α4e31

+ α5 (e31n1n1 + εe33n3n1) + α6 (εe11n1n3 + e13n3n3)

+
ε

Γ

ξq

2
n3n1(qt + vkq,k) +

ε

Γ
[ξλ1(1− q2)− ζ]∆χqn3n1, (A.7f)

T̃33 =α1 (εn1n1e11n3n3 + n1n3e13n3n3 + n3n1e31n3n3 + εn3n3e33n3n3)

+ α2N3n3 + α3N3n3 + α4εe33

+ α5 (e31n1n3 + εe33n3n3) + α6 (e31n1n3 + εe33n3n3)

+
ε

Γ

ξq

2
n3n3(qt + vkq,k) +

ε

Γ
[ξλ1(1− q2)− ζ]∆χq(n3n3 − 1/2), (A.7g)
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e11 =∂1v1, ω11 =0, (A.8a)

e13 =
1

2

(
∂3v1 + ε2∂1v3

)
, ω13 =

1

2

(
∂3v1 − ε2∂1v3

)
, (A.8b)

e31 =
1

2

(
ε2∂1v3 + ∂3v1

)
, ω31 =

1

2

(
ε2∂1v3 − ∂3v1

)
, (A.8c)

e33 =∂3v3, ω33 =0, (A.8d)

N1 =ε∂tn1 + εvj∂jn1 −
1

2
∂3v1n3 + ε2 1

2
∂1v3n3, (A.9a)

N3 =ε∂tn3 + εvj∂jn3 − ε2 1

2
∂1v3n1 +

1

2
∂3v1n1. (A.9b)

In turn, at the substrate x3 = 0, the non-dimensional boundary conditions are

v1 = 0, v3 = 0, (A.10a)

n3 = cos θ1, (A.10b)

q = q1, (A.10c)

and at the free surface, x3 = η(x1, t), they are

ηt = v3 − v1∂1η, (A.11a)

−p+
ε

(1 + ε2η2
1,1)

[
(ε2TE11 + T̃11)η2

1,1

−(εTE13 + T̃13)η1,1 − (εTE31 + T̃31)η1,1

+(TE33 + T̃33)
]

=
η,11

(1 + ε2η2
1,1)3/2

, (A.11b)

−εη1,1(ε2TE11 + T̃11)− ε2η2
1,1(εTE13 + T̃13)

+(εTE31 + T̃31) + εη1,1(TE33 + T̃33) = 0, (A.11c)
−εη1,1n1 + n3

(1 + ε2η2
1,1)1/2

= cos θ2, (A.11d)

q = q2, (A.11e)

where in the normal stress equation we have used again our earlier choice for ε in (3.5).

B Derivation of the thin-film model for the active Eriksen-Leslie-
Parodi theory

B.1 Governing equations

In this appendix, we give a brief account of the derivation of the thin-film model for the Eriksen-Leslie-
Parodi theory augmented by activity terms. Conventions and notations carry over from the main text.
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The conservation of mass, linear and angular momentum balance equations are given by

0 = ∂ivi, (B.1)

0 = −∂ip− ∂j
(
∂∂jnk

W ∂ink
)

+ ∂jT̃ij (B.2)

0 = hi − γ1Ni − γ2eijnj + λELP1 ∆χELPni, (B.3)

The bulk free energy density W is

2W =K1 (∇ · n)2 +K2 (n · curln)2

+K3 (n× curln)2 + (K2 +K4)[tr(∇n)2 − (∇ · n)2] (B.4)

The parameters K1, K2 and K3 are the splay, twist and bend elastic moduli (see de Gennes & Prost
[54]), and K2 +K4 is the saddle-splay constant. Notice that in the case of strong anchoring, the final
term does not contribute to the governing equations [16], and that in 2D, there is also no twist term.
Again, we will assume that all the K1 = K2 = K3 ≡ K and K4 = 0. This assumption is discussed
for liquid crystals in section 3.1.3.2 of [54]), and we use it here for simplification; see also [11]. Notice
that under this assumption the elastic energy is reduced to the Dirichlet energy (see also equation (4)
in [16])

2W = K∂kni∂kni. (B.5)

In turn, the rate of change of the director with respect to the background fluidNi is defined as in (2.22).
The molecular field is given by

hi = γni −
δW

δni
(B.6)

where γ appears as a Lagrange multiplier in the variational formulation to satisfy the condition nini =
1 and may in general depend on xi and t.

Here and in the following sections, we consider several stress tensors. The total stress tensor is given
by

Tij = −pδij + TEij + T̃ij, (B.7)

where the Eriksen-Leslie tensor is
TEij = −∂∂ink

W ∂jnk (B.8)

and the extra stress tensor is

T̃ij = α1nknpekpninj + α2Ninj + α3Njni + α4eij

+ α5eiknknj + α6ejknkni + ζELP∆χELPninj. (B.9)

We remark that in some of the literature, e.g. [31], Tij includes an additional term−Wδij , which, how-
ever, amounts to a redefinition of the pressure [16]. As in the nematic system (2.4)-(2.6) we introduced
in system (B.1)-(B.3) two active parameters λELP1 and ζELP .

Director field boundary conditions. At the substrate x3 = 0, the strong anchoring condition reads

n = sin θ1 e1 + cos θ1 e3, (B.10)

where e1 and e3 are the canonical unit vectors, and at the free surface x3 = η(x,t), we have analo-
gously

n = cos θ2 ν + sin θ2 t. (B.11)
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Flow field and stress boundary conditions. For the boundary conditions of the flow field we as-
sume at the substrate x3 = 0 no-slip and impermeability, respectively

v1 = 0, v3 = 0, (B.12)

and at the interface x3 = η(x1, t), we have the kinematic condition

∂tη = v3 − v1∂1η. (B.13)

The interfacial stress boundary condition is

νiTij = −g0∂iνiνj, (B.14)

or in components

νiTijνj = −g0∂iνi, (B.15)

νiTijtj = 0. (B.16)

From (B.7), we obtain for the normal bulk stress

νiTijνj = −p+ νiT
E
ij νj + νiT̃ijνj, (B.17)

νiT
E
ij νj = −νi∂∂ink

W ∂jnkνj, (B.18)

νiT̃ijνj = α1nknpekpνininjνj + α2νiNinjνj + α3νiNjniνj

+α4νieijνj + α5νieiknknjνj + α6νiejknkniνj

+ζELP∆χELPνininjνj. (B.19)

Similarly, we obtain for the tangential boundary condition

νiTijtj = νiT
E
ij tj + νiT̃ijtj, (B.20)

νiT
E
ij tj = −νi∂∂ink

W ∂jnktj, (B.21)

νiT̃ijtj = α1nknpekpνininjtj + α2νiNinjtj + α3νiNjnitj

+α4νieijtj + α5νieiknknjtj + α6νiejknknitj

+ζELP∆χELPνininjtj. (B.22)

B.2 Thin-film approximation

Using the same nondimensionalisation (3.1)–(3.5) as before together with W = EW̄ and

E =
K

ε2L2
, (B.23)

we obtain that the non-dimensional bulk free energy becomes

2W̄ = (∂3n3)2 + (∂3n1)2 +O(ε2). (B.24)

The scaled molecular field is then to leading order

h̄1 = n1 + ∂2
3n1 +O(ε2) (B.25)

h̄3 = n3 + ∂2
3n3 +O(ε2) (B.26)
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Further on, we introduce the dimensionless parameters

ᾱi = αi/µ, γ̄i = γi/µ,∆χ̄
ELP =

εL

µU
∆χELP , ζ̄EPL = ζEPL/µ, (B.27)

where µ is the kinematic viscosity. Then we nondimensionalize (B.3) to obtain (upon neglecting lower
order terms) that

0 =

(
K

ε2L2

)
h̄1 −

(
α2

µ

)(
µU

εL

)
n3∂3v̄1 +

µU

εL
λ̄ELP1 ∆χ̄ELPn1 (B.28)

0 =

(
K

ε2L2

)
h̄3 −

(
α3

µ

)(
µU

εL

)
n1∂3v̄1 +

µU

εL
λ̄ELP1 ∆χ̄ELPn3 (B.29)

IfK/ε2L2 � µU/εL the flow field decouples from the director field in these equations. Therefore, we
require the case of weak elasticity K/εµUL = O(1), so that all three terms in each of the equations
(B.28) and (B.29) remain.

The scale P for the pressure is obtained, as before, by balancing it with the dominant viscous con-
tributions in the horizontal momentum equation (B.2) (i.e. for i = 1). We drop the overbars from this
point onwards and introduce θ as in (3.12). The leading order bulk equations then are

0 = v1,1 + v3,3, (B.30a)

0 = −p,1 +
1

2
(v1,3fA(θ)),3 + ζELP∆χELP (sin(2θ)),3, (B.30b)

0 = −p,3, (B.30c)

0 = γ sin θ +K(sin θ),33 +
1

2
(γ1 − γ2)v1,3 cos θ + λELP1 ∆χELP sin θ, (B.30d)

0 = γ cos θ +K(cos θ),33 −
1

2
(γ1 + γ2)v1,3 sin θ + λELP1 ∆χELP cos θ, (B.30e)

with the Lagrange parameter γ and

fA(θ) = (α1/2) sin2(2θ) + (α5 − α2) cos2 θ + (α3 + α6) sin2 θ + α4. (B.30f)

Notice that in the above all terms in ∂j
(
∂∂jnk

W ∂1nk
)

are of order ε or smaller and hence do not
contribute. The leading order boundary conditions are as follows: At x3 = 0, we have

v1 = 0, v3 = 0, (B.31a)

θ = θ1, (B.31b)

and at the free surface, x3 = η(x1, t),

ηt = v3 − v1∂1η, (B.32a)

−p = η,11, (B.32b)

1

2
v1,3fB(θ2) = −ζ

ELP∆χELP

2
sin(2θ2), (B.32c)

θ = θ2, (B.32d)

where we have defined

fB(θ) = (α1/2) sin2(2θ) + (α6 − α3) cos2 θ + (α2 + α5) sin2 θ + α4. (B.33)

Similarly as it was done in [16] for its passive counterpart, the system (B.30)–(B.33) can be partly
integrated to yield the active thin-film model (3.27) based on the Leslie-Erickson-Parodi theory. In
particular, the mass conservation relation (3.27a) can be derived from (B.30a), (B.32a) and (B.31a).
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