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A Gibbsian model for message routing

in highly dense multi-hop networks

Wolfgang König , András Tóbiás

Abstract

We investigate a probabilistic model for routing in relay-augmented multihop ad-hoc communication

networks, where each user sends one message to the base station. Given the (random) user locations,

we weigh the family of random, uniformly distributed message trajectories by an exponential probability

weight, favouring trajectories with low interference (measured in terms of signal-to-interference ratio) and

trajectory families with little congestion (measured by how many pairs of hops use the same relay). Under

the resulting Gibbs measure, the system targets the best compromise between entropy, interference and

congestion for a common welfare, instead of a selfish optimization.

We describe the joint routing strategy in terms of the empirical measure of all message trajectories.

In the limit of high spatial density of users, we derive the limiting free energy and analyze the optimal

strategy, given as the minimizer(s) of a characteristic variational formula. Interestingly, expressing the

congestion term requires introducing an additional empirical measure.

1 Introduction

1.1 Background

In spatial wireless telecommunication systems, one of the prominent problems is the question how to conduct

a message through the system in an optimal way. Optimality is often measured in terms of determining the

shortest path from the transmitter to the recipient, or, if interference is considered, determining the path

that yields the least interference. If many messages are considered at the same time, an additional aspect of

optimality may be to achieve a minimal amount of congestion. These are problems of optimal routing through

a network, a subject of mathematical traffic theory or optimization that is currently very popular and under

demand.

Many investigations concern the question just for one single transmitter/recipient pair, which is a question

that every single participant faces. However, a strategy found in such a setting may lead to a selfish routing,

and it is quite likely that the totality of all these routings for all the individuals is by far not optimal for the

community of all the users. Furthermore, the combinatorial or algorithmic efforts required to find all these

optimal routings may be huge. Instead, the entire system may work even better if an optimal compromise is

realized, by which we mean a joint strategy that leads to an optimum for the entire system, though possibly

not for every participant. An additional benefit might be that it follows simple rules that are easy to implement

and computationally little costly.

In this paper, we present a probabilistic ansatz for describing a jointly optimal routing that takes into

account the following three crucial properties of the family of message trajectories: entropy, interference and
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W. König, A. Tóbiás 2

congestion. That is, we consider a situation in which all the messages are directed through the system in a

random way, such that each hop prefers a low interference, and such that the total amount of congestion is

preferred to be low. Parameters control the strengths of influence of the three effects.

Let us describe our model in words. Let the locations of all the users be given randomly as the sites of

a Poisson point process, which we fix. Each user sends out precisely one message, which arrives at the

(unique) base station, which is located at the origin. We consider the entire collection of possible trajectories

of the messages through the system. We employ an ad-hoc relaying system with multiple hops, such that

all the users act as relays for the handoffs of the messages. The maximal number of hops is kmax ∈ N for

each message. Each k-step message trajectory is random and a priori uniformly distributed. The family of

all trajectories is a priori independent.

Now, the probability distribution of this family that we want to study is given in terms of a Gibbs ansatz by

introducing two exponential weight terms. The first one weighs the total amount of interference, measured

in terms of the signal-to-interference ratio for each hop, and the second one weighs the total congestion,

i.e., the number of times that any two trajectories use the same relay. Under the arising measure, there

is a competition between all the three decisive effects of the trajectory family: entropy, interference and

congestion. Furthermore, the users form a random environment for the family, which not only determines the

origins of all the trajectories, but also has a decisive effect on interference and congestion. While the latter

has a smoothing effect on the fine details of the spatial distribution of all the trajectories, the effect of the

former is not so clear to estimate, as the superposition of signals have a very non-local influence.

We consider this measure an interesting object to study. It describes an idealized situation in which the

operator distributes all the message trajectories uniformly randomly and jointly optimizes the interference

and the congestion of the entire system at the same time. Our main interest is in understanding the spatial

distribution of the totality of all the message trajectories.

In this generality, the measure under consideration is a highly complex object, as it depends on all the user

locations and on many detailed properties and quantities. However, we make a substantial step towards a

thorough understanding by deriving approximative formulas for the behaviour in the limit of a high spatial

density of the users. In this case, the limiting formulas turn out to be deterministic and to depend only on

general spatial considerations, not on the individual users. It turns out that the limiting situation is described

in terms of a large-deviation rate function and a variational formula, whose minimizers describe the optimal

joint choices of the trajectories. These are our main results in this paper.

The main object in terms of which we achieve this description is the empirical measure of message trajec-

tories sent out by the users, disintegrated with respect to their length and rescaled to finite asymptotic size.

These measures turn out to converge in the weak topology in the high-density limit that we consider in this

paper. The counting complexity of the statistics of the message trajectories can be written in terms of multi-

nomial expressions and afterwards, in the limit of finer and finer decompositions of the space, approximated

in terms of relative entropies, using to Stirling’s formula. The interference term can also be handled in a

standard way [HJKP15], since it is a continuous function of the collection of empirical measures of message

trajectories.

However, a key finding of our paper is that the congestion term is a highly discontinuous function of

these empirical measures. Indeed, one cannot express it in terms of these measures. Instead, one needs

to substantially enlarge the probability space of trajectories and introduce another collection of empirical

measures, the ones of the locations of users (relays) who receive given numbers of incoming messages. The

congestion expression then turns out to be a lower semi-continuous function of these empirical measures,
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A Gibbsian model for message routing 3

and hence the limiting congestion term is still expressible in terms of the weak limits of these measures.

Again, using explicit combinatorics and Stirling’s formula, we arrive at explicit entropic terms describing the

statistics of these measures. The two families of these crucial empirical measures together enable us to

describe all the properties of the message trajectories that we are interested in. We establish a full large-

deviation principle for the tuple of all these measures with an explicit rate function and obtain in particular their

convergence towards the minimizer(s) of a characteristic variational formula. We also derive their positivity

properties and characterize them in terms of Euler-Lagrange equations.

The purpose of the present paper is to introduce the model, provide a mathematical framework and to

establish the main analytical objects. However, there are a number of questions with regard to content about

this model, which we do not address here. Here are some of these questions:

1 How does the number of hops of a message depend on the distance of the transmission site to the

origin, e.g., in the long-distance limit?

2 Does the density of trajectories increase unboundedly in particularly highly dense areas, or do the

messages avoid such areas for the sake of having lower interference?

3 How long is a typical average length of a hop? Does this average length depend much on whether it

is one of the first hops or one of the last hops of the trajectory? Does it depend on the denseness of

the area that the hop traverses?

4 How do these crucial quantities depend on the parameters of the model, in particular on β and γ, in

particular in the limit of large values?

We decided to defer the analysis of such questions to future work, as they have a strongly analytic, rather

than probabilistic, nature. Even though we are stressing the applied nature of the model and the questions,

certainly the application of the mathematical framework that we introduce to telecommunication is by no

means the only source of interest for such a model. Indeed, instead of the very particular choices of the

interference and the congestion terms, our results can be easily extended to every other continuous (or at

least lower semi-continuous) functionals of the crucial empirical measures, and applications are generally

imaginable to other situations, e.g., in biology, chemistry or physics.

Apart from the potential value for the understanding of a new type of message routing models in telecom-

munication, the present paper provides also some interesting mathematical research on topological fine

properties of random paths in random environment in a high-density setting, a subject that received a lot

of interest for various types of such processes over the decades. We remind the reader on a number of

investigations of the intersection properties of random walks and Brownian motions (both self-intersections

and mutual intersections) in highly dense settings, see the monograph [Ch09] and some particular investiga-

tions in [KM02, KM13]; in all these works, one is interested in large-deviation properties of suitable empirical

measures, and the lack of continuity of the path properties is the main difficulty. Let us mention that the

main aspect of the approach in [KM02] is the same as in the present paper: an approximation of combina-

torics in finer and finer decompositions of the space by entropic terms. Another line of research in which

similar questions arise is a mean-field variant of a spatial version of Bose-Einstein statistics, like in [AK08],

where the statistics of the empirical measures of a diverging number of Brownian bridges with symmetrized

initial-terminal condition is analyzed in terms of a large-deviation principle in the weak topology. While [AK08]

works with the same method as we in the present paper (spatial discretization with limiting fineness), [T08]
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showed that a method based entirely on the notion of entropy is able to derive such results in a more general

framework.

Let us give a short guidance to the organization of the remainder of this paper. We introduce the model

and necessary notation in Section 1.2, present our main results in Sections 1.3 (the limiting free energy of the

model), 1.4 (the description of the minimizer(s)) and 1.5 (the large deviation principle and the convergence of

the empirical measures), and in Section 1.6 we discuss and comment our findings. The remaining sections

are devoted to the proofs: in Section 2 we prepare for the proofs by introducing our methods and deriving

asymptotic formulas for the probability terms and the functionals, in Section 3 we put all this together to a

proof of the limiting free energy, the large deviation principle and the convergence of the empirical measures,

and in Section 4 we analyze the minimizer(s) of the characteristic variational formula.

1.2 The Gibbsian model

We introduce now the mathematical setting. For any n ∈ N and for any measurable subset V of Rn, let

M(V ) denote the set of all finite nonnegative Borel measures on V . We are working in R
d with some fixed

d ∈ N.

Our model is defined as follows. Let W ⊆ R
d be compact, the territory of our telecommunication system,

containing the origin o of Rd.

1.2.1 Users

Let µ ∈ M(W ) be an absolutely continuous measure on W with µ(W ) > 0. Note that we do not require

that supp(µ) = W . For λ > 0, we denote by Xλ a Poisson point process in W with intensity measure λµ.

They points Xi ∈ Xλ are interpreted as the locations of the users in the system, while the origin o of Rd is

the single base station. We assume that Xλ = {Xi : i ∈ Iλ} with Iλ = {1, . . . , N(λ)} and (N(λ))λ>0 a

standard Poisson process on N0 and (Xi)i∈N is an i.i.d. sequence of W -distributed random variables with

distribution µ(·)/µ(W ) defined on one probability space (Ω,F ,P). Since µ has a density, all points Xi

are mutually different with probability one. Furthermore, Xλ is increasing in λ, and its empirical measure,

normalized by 1/λ,

Lλ =
1

λ

∑

i∈Iλ

δXi
, (1.1)

converges towards µ almost surely as λ→ ∞.

These assumptions on the users can be relaxed, see Section 1.6.7.

1.2.2 Message trajectories

We now introduce the collection of trajectories sent out from the users to o, i.e., for uplink communication.

(The downlink scenario, that is, communication in the opposite direction, works very similarly and will be

described in Section 1.6.3.) For any i ∈ Iλ, we call a vector of the form

Si = (Si
−1 = Ki, S

i
0 = Xi, S

i
1 ∈ Xλ, . . . , Si

Ki−1 ∈ Xλ, Si
Ki

= o) ∈ N×
( ⋃

k∈N

W k
)
× {o}, (1.2)
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A Gibbsian model for message routing 5

a message trajectory from Xi to o with Ki hops. That is, Si starts from Xi and ends in o after Ki hops

from user to user ∈ Xλ. Hence, the users receive the function of a relay. We fix a number kmax ∈ N and

write S i
kmax

(Xλ) for the set of all possible realizations of the random variable Si with Ki ≤ kmax, i.e.,

with no more than kmax hops. Hence, elements si = (si−1, s
i
0, s

i
1, . . . , s

i
si−1−1

, si
si−1

) of S i
kmax

(Xλ) satisfy

si−1 ∈ {1, . . . , kmax} and si0 = Xi. We write Skmax(X
λ) =

∏
i∈Iλ S i

kmax
(Xλ) for the set of all possible

realizations of the families Sλ = (Si)i∈Iλ . We use the notation [kmax] = {1, . . . , kmax}.

Given i ∈ Iλ, we consider each trajectory Si in (1.2) as an Si
kmax

(Xλ)-valued random variable. Its a

priori measure is given by the formula

si 7→ 1

N(λ)s
i
−1−1

, si ∈ S i
kmax

(Xλ). (1.3)

That is, its restriction to {si ∈ S i
kmax

(Xλ) : si−1 = k} is the uniform distribution for any k ∈ [kmax], and its

total mass is equal to kmax. Recall that it fixes the starting point Xi and the terminal point o.

Under our joint reference measure, all the trajectories are independent; indeed it gives the value

s = (si)i∈Iλ 7→
∏

i∈Iλ

1

N(λ)s
i
−1−1

(1.4)

to the configuration s ∈ Skmax(X
λ). Thus, it gives a total mass of k

N(λ)
max to Skmax(X

λ).

1.2.3 Interference

Now we introduce interference. Let us choose a path-loss function, which describes the propagation of

signal strength over distance. This is a monotone decreasing, continuous function ℓ : [0,∞) → (0,∞). A

typical example for such ℓ is the one corresponding to isotropic antennas with ideal Hertzian propagation,

i.e. ℓ(r) = min{1, r−α}, for some α > 0, see e.g. [GT08, Section II.]. The signal-to-interference ratio (SIR)

of a transmission from Xi ∈ Iλ to x ∈ W in the presence of the users in Xλ is given as

SIR(Xi, x,X
λ) =

ℓ(|Xi − x|)
1
λ

∑
j∈Iλ ℓ(|Xj − x|) . (1.5)

We will call the denominator of the r.h.s of (1.5) the interference. See Section 1.6.2 for a discussion about

the relevance for telecommunication.

More generally, if µ0 ∈ M(W ), we define for any x, y ∈ W

SIR(x, y, µ0) =
ℓ(|x− y|)∫

W
ℓ(|z − y|)µ0(dz)

, (1.6)

where we call the denominator interference w.r.t. µ0. Then, in a slight abuse of notation, we have

SIR(Xi, x,X
λ) = SIR(Xi, x, Lλ), where we recall the empirical measure Lλ from (1.1).

Now, given a trajectory configuration s = (si)i∈Iλ ∈ Skmax(X
λ), we put

S(s) =
∑

i∈Iλ

si−1∑

l=1

SIR(sil−1, s
i
l, Lλ)

−1. (1.7)

We provide an interpretation of this in Section 1.6.2.
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1.2.4 Congestion

Now we introduce the congestion term. Given a trajectory configuration s = (si)i∈Iλ ∈ Skmax(X
λ), we

define

mi(s) =
∑

j∈Iλ

si−1−1∑

l=1

1{sjl = si0}, i ∈ Iλ, (1.8)

as the number of incoming hops into the user (relay) si0 = Xi of any of the trajectories. Then we take

M(s) =
∑

i∈Iλ

mi(s)(mi(s)− 1) (1.9)

as the total congestion term that is caused by the trajectory configuration s. Note that 1
2
M(s) is equal to the

number of pairs of hops that jump to the same relay.

1.2.5 Gibbsian trajectory distribution

Now we define the central object of this study: a Gibbs distribution on the set of collections of trajectories as

follows. For any s = (si)i∈Iλ ∈ Skmax(X
λ) put

Pγ,β
λ,Xλ(s) :=

1

Zγ,β
λ (Xλ)

(∏

i∈Iλ

1

N(λ)s
i
−1−1

)
exp

{
− γS(s)− βM(s)

}
, (1.10)

where γ > 0 and β > 0 are parameters. This is the Gibbs distribution with independent reference measure

given in (1.4), subject to two exponential weights with the SIR term in (1.7) and the congestion term in (1.9).

Here

Zγ,β
λ (Xλ) =

∑

r∈Skmax (X
λ)

(∏

i∈Iλ

1

N(λ)r
i
−1−1

)
exp

{
− γS(r)− βM(r)

}
(1.11)

is the normalizing constant, which we will refer to as partition function. Note that Pγ,β
λ,Xλ(·) is random con-

ditional on Xλ, and it is a probability measure on Skmax(X
λ). In the jargon of statistical mechanics, it is

a quenched measure, which we will consider almost surely with respect to the process (Xλ)λ>0. In the

annealed setting, one would average out over (Xλ)λ>0, see Section 1.6.8.

1.3 The limiting free energy

The main goal of this paper is the description of this model in the limit λ → ∞ in the quenched setting.

Our first result describes the limiting free energy, i.e., the exponential behaviour of the partition function.

In order to state this result, we introduce the following notation. For k ∈ N, elements of the product space

W k = W {0,1,...,k−1} will be denoted as (x0, . . . , xk−1). For l = 0, . . . , k−1, the l-th marginal of a measure

νk ∈ M(W k) is denoted by πlνk ∈ M(W ), i.e., πlνk(A) = νk(W
{0,...,l−1} × A ×W {l+1,...,k−1}) for

any Borel set A of W .

Now we introduce the objects in terms of which we will be able to describe the asymptotics of the entire

telecommunication system.
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A Gibbsian model for message routing 7

Definition 1.1. An admissible trajectory setting is a collection of measures Ψ = ((νk)
kmax
k=1 , (µm)

∞
m=0) with

νk ∈ M(W k) for all k and µm ∈ M(W ) for all m, satisfying the following properties.

(i)
kmax∑

k=1

π0νk = µ, (ii)
∞∑

m=0

µm = µ, (iii) M :=
∞∑

m=0

mµm =
kmax∑

k=1

k−1∑

l=1

πlνk. (1.12)

The measure νk is the measure of the k-step trajectories and µm the measure of the users that receive

precisely m incoming hops; note that there is no reason that they be normalized (like for µ). Observe that

both the length k of the trajectories and the number m of times that a user is used as a relay are random

in our model. Condition (i) expresses our assumption that each user transmits precisely one message, (ii)

says that each user serves as a relay for precisely m message trajectories for some m ∈ N0, and (iii) says

that the relays can be calculated in two ways: according to the number of incoming hops and according to

the index of the hop of a trajectory that uses it. See Section 1.6 for more explanations and interpretations,

moreover for a modified version of our model where the assumption (i) is relaxed. By

HV (ν | ν̃) =
{∫

V
dν log dν

dν̃
− ν(V ) + ν̃(V ), if the density dν

dν̃
exists,

+∞ otherwise,
(1.13)

we denote the relative entropy [GZ93, Section 2.3] of a Borel measure ν with respect to another Borel

measure ν̃ on a measurable set V .

For an admissible trajectory setting Ψ = ((νk)
kmax
k=1 , (µm)

∞
m=0) we define

S(Ψ) =
kmax∑

k=1

∫

W k

dνk fk, where fk(x0, . . . , xk−1) =
k∑

l=1

∫
W
µ(dy)ℓ(|y − xl|)
ℓ(|xl−1 − xl|)

, xk = o,

(1.14)

M(Ψ) =
∞∑

m=0

m(m− 1)µm(W ) (1.15)

and

I(Ψ) =
kmax∑

k=1

HW k

(
νk | µ⊗M⊗(k−1)

)
+

∞∑

m=0

HW (µm | µcm) + µ(W )
(
2−

kmax∑

k=1

M(W )k−1
)
− 1− 1

e
,

(1.16)

where we recall M =
∑

m∈N0
mµm from Definition 1.1(iii), and cm = exp(−1/(eµ(W ))(eµ(W ))−m/m!

are the weights of the Poisson distribution with parameter 1/(eµ(W )). Note that according to (i) and (iii) in

(1.12), we have M(W ) ≤ (kmax − 1)µ(W ). From the representation in (1.28) below, one easily sees that

I(Ψ) is well-defined as an element of (−∞,∞] and Ψ 7→ I(Ψ) is a lower semicontinuous function that is

bounded from below. A tedious but elementary calculation shows that I is convex. In Section 1.5, I will turn

out to govern the large deviations of the trajectory configuration.

We fix all the parameters W,µ, ℓ, kmax, γ and β of the model. Our first main result is the following.

Theorem 1.2 (Quenched exponential rate of the partition function). For P-almost all ω ∈ Ω,

lim
λ→∞

1

λ
logZγ,β

λ (Xλ(ω)) = − inf
Ψ admissible trajectory setting

(
I(Ψ) + γS(Ψ) + βM(Ψ)

)
. (1.17)

See Section 1.6 for a discussion and Section 3.4 for the proof. An analogous result holds for downlink

communication, see Section 1.6.3.
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1.4 Description of the minimizers

From the variational formula in (1.17), descriptive information about the typical behaviour of the telecommuni-

cation system can be deduced, see Sections 1.5 and 1.6. Hence, it is important to derive the Euler-Lagrange

equations and to characterize the minimizers in most explicit terms. Our main results in this respect are the

following. Note that the case kmax = 1 is trivial.

Proposition 1.3 (Characterization of the minimizer(s)). Let kmax > 1. The infimum in the variational formula

in (1.17) is attained, and every minimizer Ψ = ((νk)
kmax
k=1 , (µm)

∞
m=0) has the following form.

νk(dx0, . . . , dxk−1) = µ(dx0)A(x0)
k−1∏

l=1

(
C(xl)M(dxl)

)
e−γfk(x0,...,xk−1), k ∈ [kmax],(1.18)

µm(dx) = µ(dx)B(x)
C(x)m

m!
e−βm(m−1), m ∈ N0, (1.19)

where A,B,C : W → [0,∞) are functions such that the conditions in (1.12) are satisfied.

The proof of Proposition 1.3 is in Section 4.

While explicit formulas for the functions A and B can, given the function C , easily be derived from (i) and

(ii) in (1.12) (see (4.10)), the condition for C coming from (iii) is deeply involved and cannot be easily solved

intrinsically; see (4.12) – (4.14). We have no argument for its existence to offer other than via proving the

existence of a minimizer Ψ and deriving the Euler-Lagrange equations. By convexity of I, S and M, every

solution Ψ to these equations is a minimizer.

In case kmax = 1, the only admissible trajectory setting is Ψ = (ν1, (µm)m∈N0) with µ0 = ν1 = µ and

µm = 0 otherwise, therefore this Ψ minimizes (1.17). Thus, the limiting free energy is strictly negative, it has

value −γ
∫
W
µ(dz)

∫
W

µ(dy)ℓ(|y−o|)

ℓ(|z−o|)
.

1.5 Large deviations for the empirical trajectory measure

Actually, the minimizers of the variational formula in (1.17) receive a rigorous interpretation in terms of im-

portant objects that describe the telecommunication system. Indeed, for fixed k ∈ [kmax] and for a collection

of trajectories s ∈ Skmax(X
λ), we define

Rλ,k(s) =
1

λ

∑

i∈Iλ : si−1=k

δ(si0,...,sik−1)
, (1.20)

the empirical measures of all the k-hop trajectories, which is an element of M(W k). The second crucial

empirical measure is the one of the users whose number of incoming messages is equal to a fixed number

m ∈ N0:

Pλ,m(s) =
1

λ

∑

i∈Iλ : mi(s)=m

δsi0 . (1.21)

This is an element of M(W ). Then

Ψλ(s) =
(
(Rλ,k(s))k∈[kmax], (Pλ,m(s))m∈N0

)
(1.22)
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A Gibbsian model for message routing 9

satisfies the definition of an admissible trajectory setting, apart from the fact that instead of (i),∑kmax

k=1 π0Rλ,k(s) = Lλ holds, and instead of (ii),
∑∞

m=0 Pλ,m(s) = Lλ, where we recall that Lλ con-

verges to µ almost surely as λ → ∞. According to our remarks after Definition 1.1, Rλ,k(s) and Pλ,m(s)

play the roles of νk and µm, respectively, in an admissible trajectory setting, which explains this term. Fur-

thermore, for s ∈ Skmax(X
λ), we can express the congestion term as

M(s) = λM(Ψλ(s)).

Moreover, for the interference term we have

S(s) ≈ λS(Ψλ(s)), (1.23)

where we typically do not have an equality, because the interference terms in S are taken w.r.t. Lλ, while

the ones in S are taken w.r.t. µ. However, since Lλ tends to µ almost surely, this difference vanishes in the

limit, see Proposition 3.2.

We consider now the distribution of Ψλ(S) with S distributed under the product reference measure intro-

duced in (1.4), normalized to a probability measure, P0,0
λ,Xλ ; note that the normalization Z0,0

λ (Xλ) is equal

to k
N(λ)
max . Our next main result is a large-deviation principle (LDP; see (1.25)–(1.26)) and the convergence

towards the minimizers of the variational formula.

Theorem 1.4 (LDP and convergence for the empirical measures). The following statements hold almost

surely with respect to (Xλ)λ>0.

(i) The distribution of Ψλ(S) under P0,0
λ,Xλ satisfies an LDP as λ→ ∞ with scale λ on the set

A =
( kmax∏

k=1

M(W k)
)
×M(W )N0 (1.24)

with rate function given by A ∋ Ψ 7→ I(Ψ) + µ(W ) log kmax, which we define as ∞ if Ψ is not an

admissible trajectory setting.

(ii) For any γ, β ∈ (0,∞), the distribution of Ψλ(S) under Pγ,β
λ,Xλ converges towards the set of minimiz-

ers of the variational formula in (1.17).

For the reader’s convenience, we recall that the LDP states that the rate function I + µ(W ) log kmax is

lower semicontinuous and

lim sup
λ→∞

1

λ
log P0,0

λ,Xλ(Ψλ(S) ∈ F ) ≤ − inf
F

(
I + µ(W ) log kmax

)
, (1.25)

lim inf
λ→∞

1

λ
log P0,0

λ,Xλ(Ψλ(S) ∈ G) ≥ − inf
G

(
I + µ(W ) log kmax

)
, (1.26)

for any closed set F and any open set G in A. See [DZ98] for more on large deviation theory. On A, we

consider the product topology that is induced by weak convergence in each factor; this is equal to coordi-

natewise weak convergence, see Section 3.3 for more details. Convergence of a distribution towards a set is

defined by requiring that for any neighbourhood of the set, the probability of not being in the neighbourhood

vanishes.

DOI 10.20347/WIAS.PREPRINT.2392 Berlin 2017



W. König, A. Tóbiás 10

The proof of Theorem 1.4(i) is in Section 3.5. Assertion (ii) is a simple consequence of (i), since the

functionals S and M are bounded and continuous on the set BC = {Ψ ∈ A : M(Ψ) ≤ C} for any C ,

and BC is compact in A (see Lemma 4.1). Denoting the level sets of the rate function I + µ log kmax by

Φα = {Ψ ∈ A : I(Ψ) + µ(W ) log kmax ≤ α} for α ∈ R, we see that Φα ∩ BC is compact for any α and

C . Thus, Varadhan’s lemma can be applied to prove the assertion (ii).

1.6 Discussion

1.6.1 Mathematical essence

Going away from applications in telecommunication and formulating in more abstract terms, this work is

about a large-deviation description of a disintegration of the local times of a highly dense family of random

trajectories in Rd according to their number of hits in given sites. More precisely, we register the total number

of steps into a given site x coming from all the random trajectories, seen as a measure in x and disintegrated

according to this total step number. The reason why one has to introduce the measures µm,m ∈ N0, is that

the number of users receiving a given number of incoming messages cannot be expressed in terms of the

trajectory measures in a way that is continuous in the weak topology when taking the limit λ → ∞. Indeed,

it is possible to write, for each fixed λ > 0, the empirical measure Pλ,m as a functional of the collection of

the empirical trajectory measures Rλ,k, k ∈ [kmax], but this functional is highly discontinuous. In the high-

density limit, sites standing close to each other are identified with each other in the weak topology, and their

distinctness is washed out. On the other hand, after the introduction of the measures Pλ,m, the congestion

term is a lower semicontinuous function of them and can be handled in terms of an LDP.

We demonstrate the practical value of our analysis by an application to certain relevant functionals of both

the trajectory family and the local time family. It is clear that our results persist to many other choices of

these functionals; essentially to all (lower semi-)continuous and bounded ones. Our approach will be fruitful

for many other investigations of such mathematical models also in quite different applications.

1.6.2 The SIR term

In a mathematical description of a telecommunication system, one typically requires that the signal-to-

interference ratio be larger than a given threshold, in order that the signal can be successfully transmitted.

However, our model is designed in the spirit of a common wealth approach, where we do not want to con-

sider any single message, but the total quality of transmission in the entire system. This quantity is the sum

of all the reciprocal values of the SIRs of all the (hops of the) messages. It is exponentially weighted with a

negative factor, which “softly” keeps all the SIRs at positive values on an average.

The choice of the reciprocals of the SIRs comes from the fact that the bandwidth used for a transmission

is defined [SPW07] as
R

log2(1 + SIR(·)) ,

where R is the data transmission rate, and SIR is defined as in (1.5) without the factor of 1
λ

. In the high-

density setting λ → ∞ that we study, this quantity can be approached well by (a constant times) the

reciprocals of the SIR. [SPW07, Section 3] suggests that in case of multi-hop communication, the used
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bandwidth equals the sum of the used bandwidth values corresponding to the individual hops, which explains

our choice of the sum over l in (1.7).

Note that the conventional definition of interference of a transmission from Xi to x is
∑

j∈Iλ\{i} ℓ(|Xj −
x|), in contrast to our definition in (1.5), where we added a factor of 1

λ
. According to this convention, we

should say “total received powerïnstead of “interference", cf. [KB14, Section II.]. As we are interested in

the limit λ → ∞, where it makes no difference whether or not we add 1
λ
ℓ(|Xi − x|) to the denominator,

we will stick to our expressions “SIRänd “interference". However, note also our additional factor of 1/λ,

which we think is appropriate, at least mathematically, to our setting, in which we consider the high-density

limit λ → ∞. We actually weight the “usual” SIR term by the density parameter. The interpretation of the

appearance of the factor of 1/λ is that, in order to cope with an enormous number of messages in a system

with one base station and a fixed bandwidth, one can either distribute the messages over a longer time

stretch or decompose the messages into many smaller ones, and the factor of 1/λ is a crude approximation

of a combination of these two strategies.

1.6.3 Downlink communication

In the downlink scenario, instead of users sending messages to the base station, the base station sends

exactly one message to each of the users, using the same relaying rules. One can define a Gibbsian model

analogously to the one defined in Section 1.2, now for trajectories from o to Xi instead of the other way

around. The SIR term and the congestion term have to be redefined in an obvious way. We are certain that

analogues of all our results are true and can be proved in the same way, hence we abstained from spelling

them out.

1.6.4 Sending no or multiple messages

All our results can be extended to the possibility that users send no message or multiple messages. This

models the standard situation in which large messages are cut into many smaller ones, who independently

find their ways through the system.

For this, we have to enlarge the trajectory probability space: to each user Xi ∈ Xλ, we attach the

number Pi ∈ N0 of transmitted messages, and for each j ∈ {1, . . . , Pi}, there is an independent tra-

jectory Xi → o. The empirical trajectory measure Rλ,k must be augmented by these trajectories. The

main additional assumption then is that
∑kmax

k=1 π0Rλ,k converges to some measure µ0 ∈ M(W ) with

0 6= µ0 ≪ µ. Then the Definition 1.1 of an admissible trajectory setting Ψ = ((νk)k, (µm)m) changes so

that now
∑kmax

k=1 π0νk = µ0 is required instead of (i) of (1.12). ((ii) and (iii) remain unchanged, since they

refer only to the number of relaying hops.) Furthermore, in the definition (1.16) of the rate function I, in each

summand of the first of the three terms, µ must be replaced by µ0, while the two others remain unchanged.

The SIR term also has to be changed. The number Pi can be interpreted as a signal power of the user

Xi. Thus, according to [BB09, Sections 2.3.1, 5.1], the SIR of his transmission of a message to x ∈ W

should be defined as follows

SIR((Xi, Pi), x, (Xj, Pj)j∈Iλ) =
ℓ(|Xi − x|)Pi

1
λ

∑
j∈Iλ ℓ(|Xj − x|)Pj

.

One could also incorporate (possibly random) sizes of the messages, which would require an additional

enlargement of the trajectory space.
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1.6.5 Interpretation of the variational formula

The interpretation of an admissible trajectory setting Ψ = ((νk)
kmax
k=1 , (µm)

∞
m=0) is given after Definition 1.1;

they play the role of the empirical measures introduced in Section 1.5. For each k, the term fk(x0, . . . , xk−1)

describes the SIR-term of the k-step trajectory (x0, . . . , xk−1), and
∫
fk dνk is the average SIR-term of the

admissible trajectory setting. For each m, the term 1
2
m(m − 1)µm(W ) is the linear rate (in λ) of the

number of pairs of incoming messages experienced at users who receive precisely m incoming messages.

The entropic term I in (1.17) describes the entropy of the choices of the indices i of the users Xi and the

indices j = 1, . . . , Ki − 1 of the relays Si
j of the trajectories Si; it can be understood as the exponential

rate of counting complexity.

For a measurable set V and for ν, ν̃ ∈ M(V ), let us write

HV (ν | ν̃) =
∫

V

dν log
dν

dν̃
, if ν ≪ ν̃ and ∞ otherwise. (1.27)

Note that HV (ν | ν̃) = HV (ν | ν̃) if ν(V ) = ν̃(V ). Thus, we have

I(Ψ) = µ(W )H[kmax]

((νk(W k)

µ(W )

)
k∈[kmax]

∣∣∣ c
)
+ µ(W )HN0

((µm(W )

µ(W )

)
m∈N0

∣∣∣Po1/(eµ(W ))

)

−M(W ) log
M(W )

µ(W )
− 1

e

+
∑

k∈[kmax]

νk(W
k)HW k

(
νk
∣∣µ⊗M

⊗(k−1))
+
∑

m∈N0

µm(W )HW

(
µm

∣∣µ
)
.

(1.28)

where we wrote N = N/N(V ) for the normalized version of a measure N on a set V , Poα for the Poisson

distribution on N0 with parameter α and c for the counting measure on [kmax]. The terms on the r.h.s. in the

first line are entropies for the trajectory length and the number of incoming messages per relay with respect

to natural reference measures. The terms in the last line are entropies for the distribution of the trajectories

and of the locations of the relays that receive a given number of incoming messages. From (1.28) it is easy

to see that I is bounded from below, using Jensen’s inequality and the finiteness of the counting measure on

[kmax]. (From the LDP in Theorem 1.4(i), one obtains that inf I = −µ(W ) log kmax.)

1.6.6 Interpretation of the minimizer(s)

Proposition 1.3 tells us quite some information about the limiting trajectory distribution and the limiting spatial

distribution of users with a given number of incoming messages under the measure Pγ,β
λ,Xλ . Indeed, both

have densities that are µ⊗k-almost everywhere positive. It is remarkable that the k-step trajectories follow a

distribution that comes from choosing independently all the k sites with measures that do not depend on k

(the starting point according toA(x)µ(dx) and all the other k−1 sites each according to another measure),

weighted with the SIR-term. Furthermore, all the measures of the users receiving m messages superpose

each other on the full set supp(µ), and at each space point x, this number m is distributed according to

some Poisson distribution, weighted with the congestion term e−βm(m−1).
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1.6.7 Non-Poissonian users

In fact, the main results of this paper hold for any collection of (random or non-random) point processes

((Xi)i=1,...,N(λ))λ>0 on W for which Lλ = 1
λ

∑N(λ)
i=1 δXi

converges weakly (almost surely, if random) to µ

as λ → ∞. Neither the independence or monotonicity in λ, nor the Poissonity of (N(λ))λ>0 is used for

the proofs. For example, our results remain also true for the deterministic set Xλ = W ∩ ( 1
λ
Z

d) and µ the

Lebesgue measure on W .

1.6.8 The annealed setting

Of mathematical interest might also be the annealed setting, where we average also over the locations of the

users. In order to get an interesting result, we have to assume that Lλ satisfies a large deviation principle

on the set M(W ) with some good rate function J . (In the case of a Poisson point process with intensity

measure λµ, J would be [HJP16, Proposition 3.6] the relative entropy with respect to µ, see (1.13).) Then

the large-λ exponential rate of the annealed free energy should be equal to the negative infimum over

µ0 ∈ M(W ) of J(µ0) plus the quenched rate function terms from the right-hand side of (1.17) with µ

replaced by µ0 everywhere. Also our other results on the LDP and the form of the minimizer(s) should have

some analogue, which we do not spell out.

2 The distribution of the empirical measures

Having seen in Section 1.5 that the Gibbsian model can be entirely described in terms of the trajectory

setting Ψλ(s), i.e., of the crucial empirical measures Rλ,k(s) and Pλ,m(s) defined in (1.20)–(1.21), we

now consider the question how to describe their distributions. We have to quantify the number of message

trajectory families s that give the same family of empirical measures. The plain and short (but wrong) answer

is
∑

s∈Skmax (X
λ) : Rλ,k(s)=νk ∀k, Pλ,m(s)=µm ∀m

∏

i∈Iλ

1

N(λ)s
i
−1−1

≈ e−λI(Ψ), (2.1)

where we recall I(Ψ) from (1.16) and recall that Ψ = ((νk)k∈[kmax], (µm)m∈N0). From such an assertion,

it is indeed not far to conclude Theorem 1.2, but the problem is that this statement is not true like this.

Actually, there are very many Ψ’s such that the left-hand side is equal to zero, for example if any of the νk ’s

or µm’s has values outside 1
λ
N0. However, if we do not consider single Ψ’s, but open sets of Ψ’s, then the

idea behind (2.1) is sustainable. Therefore, we proceed in a standard way by decomposing the area W into

finitely many subsets and count the message trajectories only according to the discretization sets that they

visit. In Section 2.1 we introduce necessary notation for carrying out this strategy, and in Section 2.2 we

derive explicit formulas for the distribution of the empirical measures in this discretization.

For the purpose of the present paper, where we consider the high-density limit λ → ∞, we later need

to take this limit and afterwards the limit as the fineness parameter δ of the decomposition of W goes to

zero. The outcome of these parts of the procedure is formulated in Proposition 3.1. In Proposition 3.2 the

consequences for the interference term and for the congestion term are formulated.
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2.1 Our discretization procedure

Let us now head towards the formulation of the discretization procedure. We proceed by triadic spatial dis-

cretization of the Poisson point process (Xλ)λ>0, similarly to the approach of [HJKP15]. To be more precise,

we perform the following discretization argument. Note that we may assume that our telecommunication ter-

ritory W is taken as W = [−r, r]d, by accordingly extending µ trivially. We write B = {3−n|n ∈ N0}. For

δ ∈ B, we define the set

Wδ = {[x− rδ, x+ rδ]d : x ∈ (2rδZ)d ∩W}
of congruent sub-cubes of W of side length 2rδ and centers in (2rδZ)d. Note that Wδ is a finite set, o is a

center of an element ofWδ and any intersection of two distinct elements ofWδ has zero Lebesgue measure.

Elements ofWδ will be called δ-subcubes. We will assume that for all δ ∈ B, the δ-subcubes are canonically

numbered as W δ
1 , . . . ,W

δ
δ−d , which can be done e.g. according to the increasing lexicographic order of the

midpoints of the subcubes. For j = 1, . . . , δ−d, let C(W δ
j ) denote the centre of the δ-subcube W δ

j . Now,

for Lebesgue-almost every x ∈ W , for all δ ∈ B there exists a uniqueW δ
j that contains x; let us denote this

W δ
j by W x

δ , and the set of all x ∈ W for which W x
δ is well-defined by WB. For such x, the δ-discretization

operator is defined as ̺δ : x 7→ C(W x
δ ). We will often use the simplified notation xδ = ̺δ(x).

Now, if ν ∈ M(W ), then for any δ ∈ B, νδ = ν ◦ ̺−1
δ is an element of M(Wδ) with the property

νδ(W δ
j ) = ν(W δ

j ), ∀j = 1, . . . , δ−d. Note that M(Wδ) = [0,∞)Wδ , which can be embedded in R
Wδ .

Thus, weak convergence in M(Wδ) is equivalent to norm convergence. On the other hand, if ν ∈ M(Wδ)

for some δ ∈ B, then ν defines an atomic measure on W that has the same weights on each W δ
j as ν and

no mass anywhere else. Throughout the rest of this paper, we will denote this measure on W the same way

as ν, for simplicity. We proceed analogously for W k, k ∈ [kmax] instead of W .

Now we are able to define what a standard setting is, the interpretation of which will be given right after

the definition. For any set X , let P(X) denote the power set of X .

Definition 2.1. A standard setting is a collection of measures

Ψ =
(
(νk)

kmax
k=1 , ((ν

δ
k)

kmax
k=1 )δ∈B, ((ν

δ,λ
k )kmax

k=1 )δ∈B,λ>0,

(µm)
∞
m=0, ((µ

δ
m)

∞
m=0)δ∈B, ((µ

δ,λ
m )∞m=0)δ∈B,λ>0, (µ

δ,λ)δ∈B,λ>0

) (2.2)

with the following properties: For any δ, δ′ ∈ B, λ > 0, k ∈ [kmax], m ∈ N0 and s, s0, . . . , sk−1 =

1, . . . , δ−d, respectively,

1 µδ,λ ∈ M(W ), with the property that the event {Lδ
λ = µδ,λ} has positive probability,

2 δ′ ≤ δ =⇒ µδ′,λ|P(Wδ) = µδ,λ,

3 µδ,λ λ→∞
=⇒ µδ,

4 µδ = µ ◦ ̺−1
δ . In particular, µδ δ↓0

=⇒ µ,

5 νδ,λk ∈ M(W k). Further, we have
∑kmax

k=1 π0ν
δ,λ
k = µδ,λ, moreover λνδ,λk (W δ

s0
×. . .×W δ

sk−1
) ∈ N0.

6 δ′ ≤ δ =⇒ νδ
′,λ

k |P(W k
δ
) = νδ,λk
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7 νδ,λk

λ→∞
=⇒ νδk ,

8 νδk = νk ◦ (̺δ, . . . , ̺δ)−1. In particular, νδk
δ↓0
=⇒ νk,

9 νδ,λm ∈ M(W ) with the property that
∑∞

m=0 µ
δ,λ
m = µδ,λ, moreover λµδ,λ

m (W δ
s ) ∈ N0.

10
∑∞

m=0mµ
δ,λ
m =

∑kmax

k=1

∑k−1
l=1 πlν

δ,λ
k ,

11 δ′ ≤ δ =⇒ µδ′,λ
m |P(Wδ) = µδ,λ

m ,

12 µδ,λ
m

λ→∞
=⇒ µδ

m,

13 µδ
m = µm ◦ ̺−1

δ . In particular, µδ
m

δ↓0
=⇒ µm.

Let us introduce also the empirical measure

Pλ(s) =
∑

m∈N0

Pλ,m(s) =
1

λ

∑

i∈Iλ

δsi0 , s ∈ Skmax(X
λ). (2.3)

The interpretation of a standard setting Ψ is the following:

(i) For λ > 0 and δ ∈ B, µδ,λ is the δ-discretized version P δ
λ(s) of the empirical measure Pλ(s) of any

configuration s ∈ Skmax(X
λ); recall that this coincides with the empirical measure Lλ of the Poisson

point processXλ of users defined in (1.1) by means of our assumption that each user is picked precisely

once in such a configuration. The consistency criterion (2) ensures that µδ,λ = P δ
λ(s) for the same s.

For any δ ∈ B, µδ,λ converges to the δ-discretized version µδ of µ.

(ii) If µδ,λ corresponds to the discretized version of the rescaled empirical measure of the transmitters,

then νδ,λk equals the δ-discretized version Rδ
λ,k(s) of the rescaled empirical measure Rλ,k of the k-hop

trajectories, related to Lλ via the constraint
∑kmax

k=1 π0ν
δ,λ
k = µδ,λ in (5), which means that each user

sends out exactly one message. Again, we have a consistency relation (6), which ensures that for any

λ > 0 and k ∈ [kmax], ν
δ,λ
k = Rδ

λ,k(s) for the same s for all δ ∈ B. For fixed δ ∈ B and k ∈ [kmax],

νδ,λk converges to νδk , and the νδk ’s are the corresponding δ-discretized versions of a limiting (continuous)

measure νk describing the asymptotic spatial distribution of k-hop trajectories.

(iii) Finally, for any m ∈ N0, λ > 0 and δ ∈ B, µδ,λ
m equals the δ-discretized version (Lm

λ )
δ of the rescaled

empirical measure

Lm
λ =

∑

i∈Iλ: mi=m

δXi

of the spatial locations of users receiving exactly m incoming messages. The constraint
∑∞

m=0 µ
δ,λ
m =

µδ,λ in (9) means that each index i ∈ Iλ belongs to exactly one of the sets {i ∈ Iλ : mi(s) = m},

while the constraint
∑∞

m=0mµ
δ,λ
m =

∑kmax

k=1

∑k−1
l=1 πlν

δ,λ
k means that the total number of relaying hops

taken by all users equals the total number of incoming messages received by each relay, on any subset

of Wδ. The consistency relation (11) ensures that for any λ > 0 and n ∈ N, µδ,λ
m = P δ

λ,m(s) for the

same s for all δ ∈ B. For fixed δ ∈ B and m ∈ N0, µδ,λ
m converges to µδ

m, and the µδ
m’s are the

corresponding δ-discretized versions of a limiting (continuous) measure µm describing the asymptotic

spatial distribution of m-hop trajectories.
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Note that the condition (1) in Definition 2.1 in particular implies that for any λ′ > λ > 0 and δ ∈ B we

have

λ′µδ,λ′

(A) ≥ λµδ,λ(A), ∀A ⊂ Wδ.

as a direct consequence of the fact that almost surely, (Xλ)λ>0 is increasing.

Since in the definition of an admissible trajectory setting it is not required that µm(W ) > 0 holds only for

finitely many m, we will often need the following notion of controlled standard setting in order to perform our

large deviation analysis.

Definition 2.2. A controlled standard setting is a standard setting Ψ as in (2.2) with the following extra

property:

lim
λ→∞

∞∑

m=0

m2µδ,λ
m (Wδ) =

∞∑

m=0

m2µδ
m(Wδ) <∞, for all δ ∈ B. (2.4)

Note that by part (8) of Definition 2.1, we have
∑kmax

k=1 kν
δ
k(W

k
δ ) =

∑kmax

k=1 kνk(W
k) for any standard

setting. Using this, we have the following lemma.

Lemma 2.3. Let Ψ be a controlled standard setting as in (2.2). Then Ψ = ((νk)
kmax
k=1 , (µm)

∞
m=0) is an

admissible trajectory setting.

Proof. Part (5) of Definition 2.1 claims that for all δ ∈ B and λ > 0 we have
∑kmax

k=1 π0ν
δ,λ
k = µδ,λ. By

parts (3) and (4) of Definition 2.1, we have limδ↓0 limλ→∞ νδ,λk = νk in the weak topology of M(W k), for

any fixed k ∈ [kmax]. Similarly, by parts (7) and (8) of Definition 2.1, we have limδ↓0 limλ→∞ µδ,λ =

µ in the weak topology of M(W ). Moreover, since taking marginals is a continuous operation, also

limδ↓0 limλ→∞ π0ν
δ,λ
k = π0νk for all k in the weak topology of M(W ). Thus, we have (i) in (1.12) for

(νk)
kmax
k=1 . In order to see that (ii) holds for (µm)

∞
m=0, one can use part (9) of Definition 2.1, together with

(2.4) and dominated convergence. Finally, by part (10) of Definition 2.1, (2.4) in Definition 2.2 and dominated

convergence, we see that for any controlled setting Ψ, we also have

∞∑

m=0

mµm = lim
δ↓0

∞∑

m=0

mµδ
m = lim

δ↓0
lim
λ→∞

∞∑

m=0

mµδ,λ
m = lim

δ↓0
lim
λ→∞

kmax∑

k=1

k−1∑

l=1

πlν
δ,λ
k =

kmax∑

k=1

k−1∑

l=1

πlνk (2.5)

in the weak topology of M(W ). This implies (iii) in (1.12) for Ψ. Hence, Ψ is an admissible trajectory

setting.

2.2 The distribution of the empirical measures

In this section, we describe the combinatorics of the system. For a standard setting Ψ as in Definition 2.1,

let us introduce the configuration set

Jδ,λ(Ψ) =
{
s ∈ Skmax(X

λ)
∣∣∣ Rδ

λ,k(s) = νδ,λk ∀k, P δ
λ,m(s) = µδ,λ

m ∀m
}

(2.6)

for fixed δ ∈ B and λ > 0. In words, Jδ,λ(Ψ) is the set of families of trajectories such that the δ-coarsenings

of the empirical measures of the trajectories and the hop numbers are given by the respective measures in

the setting Ψ. Note that Jδ,λ(Ψ) depends only on the δ-λ depending measures in the collection Ψ.
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A Gibbsian model for message routing 17

In case µδ,λ(W ) > 0, we will refer to the entity si0, i = 1, . . . , λµδ,λ(Wδ) as the ith user or ith transmitter,

the entity si, i = 1, . . . , λµδ,λ(Wδ) as the trajectory of the ith user, si−1 as the length (number of hops) of

si, sil as the l-th relay of si (for l = 1, . . . , si−1 − 1), finally mi(s) as the number of incoming messages at

the relay si0.

The combinatorics of computing #Jδ,λ(Ψ) is given as follows.

Lemma 2.4 (Cardinality of Jδ,λ(Ψ)). For any δ, λ > 0, and for any standard setting Ψ,

#Jδ,λ(Ψ) = N1
δ,λ(ν)×N2

δ,λ(ν)×N3
δ,λ(ν), (2.7)

where

N1
δ,λ(Ψ) =

δ−d∏

i=1

(
λµδ,λ(W δ

i )

((λνδ,λk (W δ
i ×W δ

i1
× . . .×W δ

ik−1
))δ

−d

i1,...,ik−1=1)
kmax
k=1

)
, (2.8)

N2
δ,λ(Ψ) =

δ−d∏

i=1

(
λµδ,λ(W δ

i )

(λµδ,λ
m (W δ

i ))m∈N0

)
, (2.9)

N3
δ,λ(Ψ) =

δ−d∏

i=1

(
λ
∑kmax

k=1

∑k−1
l=1 πlνk(W

δ
i )
)
!

∏∞
m=0m!λµm(W δ

i )
=

δ−d∏

i=1

(
λ
∑∞

m=0mµm(W
δ
i )
)
!

∏∞
m=0m!λµm(W δ

i )
. (2.10)

Proof. We proceed in three steps by counting first the trajectories, registering only the partition setsW δ
i that

they travel through, second, for each m ∈ N0, the sets of relays in each partition set that receive precisely

m ingoing hops and finally the choices of the relays for each hop in each partition set. Since every choice in

the three steps can be freely combined with the other ones, the product of the three cardinalities is equal to

the number of all trajectory configurations with the requested coarsened empirical measures.

(A) Number of the transmitters of trajectories passing through given sequences of δ-subcubes. For each

configuration s ∈ Jδ,λ(Ψ) defined in (2.6), in each δ-subcube W δ
i , i = 1, . . . , δ−d, there are

λµδ,λ(W δ
i ) users. Out of them exactly λνδ,λk (W δ

i × W δ
i1
× . . .W δ

ik−1
) take exactly k hops, having

their first relay in W δ
i1

, their second in W δ
i2

etc. and their (k − 1)st relay in W δ
ik−1

, for any k ∈ [kmax]

and i1, . . . , ik−1 = 1, . . . , δ−d. Such choices in different sub-cubes W δ
i corresponding to the trans-

mitters are independent. Thus, the total number of such choices equals the number N1
δ,λ(Ψ) defined in

(2.8). Note that for i = 1, . . . , δ−d,

kmax∑

k=1

δ−d∑

i1,...,ik−1=1

νδ,λk (W δ
i ×W δ

i1
× . . .×W δ

ik−1
) =

kmax∑

k=1

π0ν
δ,λ
k (W δ

i ) = µδ,λ(W δ
i ),

where we used part (5) of Definition 2.1; hence the multinomial expressions in (2.8) are well-defined.

(B) Number of incoming messages. In this step, for any δ-subcube W δ
i , we count all the possible ways to

distribute the incoming messages among the relays (= users) Xj ∈ W δ
i , under the two constraints

that in W δ
i there are λµδ,λ(W δ

i ) potential relays, and for any m ∈ N0, exactly λµδ,λ
m (W δ

i ) receive

precisely m incoming messages. Such choices are clearly independent of each other for different δ-

subcubes. Hence, the total number of such choices equals the number N2
δ,λ(Ψ) defined in (2.9). Again,

the constraint (9) from Definition 2.1 implies that the multinomial expression (2.9) is well-defined. Clearly,

all choices in this part are independent of the choices in part (A).
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W. König, A. Tóbiás 18

(C) Number of assignments of the hops to the relays. Assume that we have chosen one possible choice in

part (A) and one possible choice in part (B). We now derive the number of possible ways of distributing,

for any i, all the incoming hops in W δ
i among the users in W δ

i . Let us call this number Mi, then we

know from part (A) that Mi = λ
∑kmax

k=1

∑k−1
l=1 πlνk(W

δ
i ), since each such hop is the l-th of some of

the trajectories for some l. The cardinality of the set of relays in W δ
i is equal to λ

∑∞
m=0 µm(W

δ
i ), and

in part (B) we decomposed it into sets, indexed by m, in which each relay receives precisely m ingoing

hops. Let us call such a relay an m-relay. Think of each such relay as being replaced by precisely m

copies (in particular those with m = 0 are discarded), then we have λ
∑∞

m=0mµm(W
δ
i ) virtual relays

in W δ
i . ( Note that this is equal to Mi by one of our constraints.) Now, if all these m copies of the

m-relays were distinguishable, then the number of ways to distribute the Mi ingoing hops to the relays

would be simply equal to Mi!. However, since these m copies are identical, we overcount by a factor of

m! for any m-relay. This means that the number of hops into W δ
i is equal to Mi!/

∏∞
m=0(m!)λµm(W δ

i ).

Since all these cardinalities can freely be combined with each other, we have deduced that the number

of possible choices is equal to the number N3
δ,λ(Ψ) defined in (2.10).

We also see that all the choices in the three parts are independent of each other, i.e., can be freely

combined with each other and yield different combinations. Hence, we arrived at the assertion.

3 The limiting free energy: proofs of Theorems 1.2 and 1.4

In this section, we prove Theorem 1.2, that is, we derive the variational formula in (1.17) for the high-density

(i.e., λ → ∞) exponential rate of the partition function. Our first step is to derive the large-λ exponential

rate of the combinatorial formulas for the empirical measures of Lemma 2.4 in Section 3.1. Furthermore, in

Section 3.2 we formulate and prove how the interference term and the congestion term behave in the limits

λ → ∞, followed by δ ↓ 0. In Section 3.3, given an admissible trajectory setting, we construct a standard

setting containing it. Using all these, in Section 3.4 we prove Theorem 1.2.

For the rest of this section, we fix the set Ω1 ⊂ Ω of full P-measure on which we do our quenched

investigations:

Ω1 =
{
ω ∈ Ω: Xi(ω) ∈ WB ∀i ∈ N,

lim
λ→∞

#{i ∈ Iλ(ω) : Xi(ω) ∈ W δ
j }

λ
= µ(W δ

j ), ∀j = 1, . . . , δ−d, ∀δ ∈ B

}
.

(3.1)

That P(Ω1) = 1 holds follows immediately from the Restriction Theorem [K93, Section 2.2] combined with

the Poisson Law of Large Numbers [K93, Section 4.2] and the fact that µ is absolutely continuous.

3.1 The asymptotics of the combinatorics

Let us fix a controlled standard setting Ψ as in (2.2). Fix any ω ∈ Ω1, and let the quantities Iλ and Xλ refer

to this ω. Denote

N0
δ,λ(Ψ) =

δ−d∏

i=1

kmax∏

k=1

k−1∏

l=1

N(λ)λπlν
δ,λ
k

(W δ
i ). (3.2)
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Recall the notation HV (· | ·) from (1.27) and cm = exp(−1/(eµ(W ))(eµ(W ))−m/m! from (1.16). Note

that the rate function I defined in (1.16) has also the representation

I(Ψ) =
kmax∑

k=1

HW k(νk | µ⊗k)−HW

( ∞∑

m=0

mµm

∣∣∣µ
)
+

∞∑

m=0

HW (µm | µcm) + µ(W )− 1− 1

e
, (3.3)

which we are going to use here. We now identify the large-λ exponential rate of the cardinality of Jδ,λ(Ψ)

both on the scale λ log λ and λ:

Proposition 3.1 (Exponential rates of counting terms). Let Ψ be a controlled standard setting. Let us write

Ψ = ((νk)
kmax
k=1 , (µm)

∞
m=0). We have

lim
δ↓0

lim
λ→∞

1

λ
log

#Jδ,λ(Ψ)

N0
δ,λ(Ψ)

= −I(Ψ),

as an equality in [0,∞]. Moreover if I(Ψ) <∞, then

lim
δ↓0

lim
λ→∞

1

λ log λ
log#Jδ,λ(Ψ) =

kmax∑

k=1

(k − 1)νk(W
k) =

∞∑

m=0

mµm(W ) <∞,

almost surely.

Proof. Recall that Ψ is an admissible trajectory setting, according to Lemma 2.3. In particular, I(Ψ) ∈
(−∞,∞] is well-defined.

We use Stirling’s formula λ! = (λ/e)λeo(λ) in the limit λ→ ∞, which leads to

lim
λ→∞

1

λ
log

(
a(λ)

a(λ)

1 , . . . , a(λ)
n

)
= −

n∑

i=1

ai log
ai
a
, (3.4)

for any integers a(λ)

1 , . . . , a(λ)
n that sum up to a(λ) and satisfy 1

λ
a(λ)

i
λ→∞→ ai for i = 1, . . . , n with positive

numbers a1, . . . , an satisfying
∑n

i=1 ai = a.

From (2.8) we obtain that

I1δ (Ψ) = − lim
λ→∞

1

λ
logN1

δ,λ(ν)

=
δ−d∑

i=1

kmax∑

k=1

δ−d∑

i1,...,ik−1=1

νδk(W
δ
i ×W δ

i1
× . . .×W δ

ik−1
) log

νδk(W
δ
i ×W δ

i1
× . . .×W δ

ik−1
)

µδ(W δ
i )

,

where we also used that all the measures νδ,λk and µδ,λ converge as λ→ ∞ to νδk and µδ, respectively.

Now we add the term
∏k−1

l=1 µ
δ(W δ

il
) both in the numerator and the denominator under the logarithm and

separate these two terms. In the former, we write its logarithm as
∑k−1

l=1 log µδ(W δ
il
), interchange this sum

on l with all the other sums on the i0, . . . , ik−1 and write the sums over i0, . . . , il−1, il+1, . . . , ik−1 in terms

of the l-th marginal measure of νδk . This gives

I1δ (Ψ) =
δ−d∑

i=1

kmax∑

k=1

δ−d∑

i1,...,ik−1=1

νδk(W
δ
i ×W δ

i1
× . . .×W δ

ik−1
) log

νδk(W
δ
i ×W δ

i1
× . . .×W δ

ik−1
)

µδ(W δ
i )
∏k−1

l=1 µ
δ(W δ

il
)

+
δ−d∑

i=1

kmax∑

k=1

k−1∑

l=1

πlν
δ
k(W

δ
i ) log µ

δ(W δ
i ). (3.5)
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In the same way as for Iδ1 , we obtain

I2δ (Ψ) = − lim
λ→∞

1

λ
logN2

δ,λ(Ψ) =
δ−d∑

i=1

∞∑

m=0

µδ
m(W

δ
i ) log

µδ
m(W

δ
i )

µδ(W δ
i )
. (3.6)

Using (3.1), on Ω1 we have that the asymptotic behaviour of (3.2) is the following

N0
δ,λ(Ψ) = N(λ)λ

∑δ−d

i=1

∑kmax
k=1

∑k−1
l=1 πlν

δ,λ
k

(W δ
i ) = (λµ(W ))λ(1+o(1))

∑δ−d

i=1

∑kmax
k=1

∑k−1
l=1 πlν

δ,λ
k

(W δ
i ).

On the other hand, also by Stirling’s formula, we can identify the large-λ rate of the quotient of the counting

terms in (2.10) and (3.2) as follows:

I3,0δ (Ψ) = − lim
λ→∞

1

λ
log

N3
δ,λ(Ψ)

N0
δ,λ(Ψ)

= − lim
λ→∞

1

λ
log

δ−d∏

i=1

(
1

eµ(W )

∑kmax

k=1

∑k−1
l=1 πlν

δ,λ
k (W δ

i )
)λ∑kmax

k′=1

∑k′−1
l′=1

πl′ν
δ,λ

k′
(W δ

i )

∏∞
m=0m!λµm(W δ

i )

= −
δ−d∑

i=1

kmax∑

k′=1

k′−1∑

l′=1

πl′ν
δ
k′(W

δ
i )

(
log

kmax∑

k=1

k−1∑

l=1

πlν
δ
k(W

δ
i )− (1 + log µ(W ))

)

+
δ−d∑

i=1

∞∑

m=0

µδ
m(W

δ
i ) log(m!),

(3.7)

where for the last term we used the fact that Ψ is controlled (see also Lemma 2.3), together with dominated

convergence. We can summarize the sum of the terms in (3.5), (3.6) and (3.7) as

− lim
λ→∞

1

λ
log

#Jδ,λ(Ψ)

N0
δ,λ(Ψ)

= I1δ (Ψ) + I2δ (Ψ) + I3,0δ (Ψ)

=
kmax∑

k=1

δ−d∑

i0,...,ik−1=1

νδk(W
δ
i0
× . . .×W δ

ik−1
) log

νδk(W
δ
i0
× . . .×W δ

ik−1
)

∏k−1
l=0 µ

δ(W δ
il
)

+
δ−d∑

i=1

∞∑

m=0

µδ
m(W

δ
i ) log

µδ
m(W

δ
i )

µδ(W δ
i )

−
δ−d∑

i=1

(
kmax∑

k=1

k−1∑

l=1

πlν
δ
k(W

δ
i )

)
log

∑kmax

k=1

∑k−1
l=1 πlν

δ
k(W

δ
i )

µδ(W δ
i )

+
∞∑

m=0

µδ
m(Wδ)[m(1 + log µ(W )) + log(m!)].

(3.8)

where in the first line on the right-hand side we changed the summing index i into i0. Since we have

∞∑

m=0

µδ
m(Wδ) =

∞∑

m=0

µm(W ) = µ(W ),
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and thus

δ−d∑

i=1

∞∑

m=0

µδ
m(W

δ
i ) log

µδ
m(W

δ
i )

µδ(W δ
i )

+(m(1+log µ(W ))+log(m!)) =
∞∑

m=0

HWδ

(
µδ
m | µδcm

)
+µ(W )−1−1

e
,

we obviously arrived at the discrete version of the entropy terms in (3.3).

Now we argue that taking the limit as δ ↓ 0 through δ ∈ B, yields the desired entropy terms in (3.3). Let us

begin with the first line on the right-hand side of (3.8). For δ ∈ B, let us define (ν ′δk )
kmax
k=1 with ν ′δk ∈ M(W k)

as follows,

ν ′δk = µ⊗ k

δ−d∑

i0,...,ik−1=1

1W δ
i0
×...×W δ

ik−1

νδk(W
δ
i0
× . . .×W δ

ik−1
)

µ⊗ k(W δ
i0
× . . .×W δ

ik−1
)
,

so that for all k,

HW k(ν ′δk | µ⊗ k) =
δ−d∑

i0,...,ik−1=1

νδk(W
δ
i0
× . . .×W δ

ik−1
) log

νδk(W
δ
i0
× . . .×W δ

ik−1
)

∏k−1
l=0 µ

δ(W δ
il
)

.

Now, ν ′δk also converges to νk in the weak topology of M(W k), for all k. Therefore, by lower semicontinuity

of the relative entropy (cf. [DZ98, Lemma 6.2.12 and Theorem D.12])

lim inf
δ↓0

kmax∑

k=1

δ−d∑

i0,...,ik−1=1

νδk(W
δ
i0
×. . .×W δ

ik−1
) log

νδk(W
δ
i0
× . . .×W δ

ik−1
)

∏k−1
l=0 µ

δ(W δ
il
)

≥
kmax∑

k=1

HW k(νk | µ⊗k). (3.9)

On the other hand, by part (6) of Definition 2.1, for any δ′, δ ∈ B, δ′ < δ, we have

νδk(W
δ
i ) = νδ

′

k (W
δ
i ) =

∑

j∈{1,...,δ−d}: W δ′
j ⊆W δ

i

νδ
′

k (W
δ′

j ), ∀i = 1, . . . , δ−d.

Therefore by Jensen’s inequality, the complementary bound for lim supδ↓0 follows, such that the limit exists

with ‘=’ instead of ‘≥’. Similarly, we have the convergence of all the other terms on the right-hand side of

(3.8) to their continuous counterparts. Indeed, using that by Lemma 2.3, Ψ satisfies (1.12)(iii), we conclude

that

lim
δ↓0

δ−d∑

i=1

(
kmax∑

k=1

k−1∑

l=1

πlν
δ
k(W

δ
i )

)
log

∑kmax

k=1

∑k−1
l=1 πlν

δ
k(W

δ
i )

µδ(W δ
i )

= HW

( ∞∑

m=0

mµm | µ
)
.

Finally, we have

lim
δ↓0

∞∑

m=0

HWδ

(
µδ
m | µδcm

)
+ µ(W )− 1− 1

e
=

∞∑

m=0

H
(
µm | µcm

)
+ µ(W )− 1− 1

e
. (3.10)

The first part of Proposition 3.1 follows.

Moreover, if I(Ψ) <∞, then we have by continuity

lim
δ↓0

lim
λ→∞

1

λ log λ
log#Jδ,λ(ν) = lim

δ↓0
lim
λ→∞

1

λ log λ
logN0

δ.λ(ν)

= lim
δ↓0

lim
λ→∞

kmax∑

k=1

k−1∑

l=1

δ−d∑

i=1

πlν
δ,λ
k (W δ

i ) =
kmax∑

k=1

k−1∑

l=1

πlνk(W ) =
kmax∑

k=1

(k − 1)νk(W
k) ∈ [0,∞),
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where in the last equality we used that by Fubini’s theorem, π0νk(W ) = νk(W
k) for all k. Hence, the

second part of Proposition 3.1 follows.

3.2 Approximations for the interference and the congestion terms

The limiting relations between the congestion terms in (1.9) and (1.15), and between the SIR terms in (1.7)

and (1.14) are given as follows.

Proposition 3.2. Let Ψ be a controlled standard setting. Let us write Ψ = ((νk)
kmax
k=1 , (µm)

∞
m=0) for the

admissible trajectory setting contained in Ψ. Then

lim
δ↓0

lim
λ→∞

sup
s∈Jδ,λ(Ψ)

∣∣∣1
λ
M(s)−M(Ψ)

∣∣∣ = 0, (3.11)

and

lim
δ↓0

lim
λ→∞

sup
s∈Jδ,λ(Ψ)

∣∣∣1
λ
S(s)− S(Ψ)

∣∣∣ = 0. (3.12)

Proof. First, we consider the congestion term. Consider some s ∈ Jδ,λ(Ψ) for λ > 0 and δ ∈ B. Addition-

ally assume that sil ∈ WB for all i ∈ Iλ and l = 0, . . . , k (which is always the case for s = (Si)i∈Iλ on

Ω1).

Then P δ
λ(s) = µδ,λ and P δ

λ,m(s) = µδ,λ
m for all m ∈ N0, see the definition (2.6) of Jδ,λ(Ψ) and (2.2).

Recall that mi(s) is the number of ingoing messages at relay Xi for the trajectory configuration s. Hence

we have

M(s) =
∑

i∈Iλ

mi(s)(mi(s)− 1) =
∞∑

m=0

m(m− 1)#{i ∈ Iλ : mi(s) = m} =
∞∑

m=0

m(m− 1)Pλ,m(W )

=
∞∑

m=0

m(m− 1)P δ
λ,m(Wδ) = λ

∞∑

m=0

m(m− 1)µδ,λ
m (Wδ),

for all such s. Now, (2.4) in Definition 2.2, together with the fact that the total mass of µδ
m equals the one of

µm for any m, implies the assertion in (3.11).

We continue with the SIR term. We start with defining discretized versions of SIR-related quantities. Let

δ ∈ B and µ0 ∈ M(Wδ) be arbitrary. Then one can define a δ-discretized analogue of the definition (1.6)

of SIR with a discrete interference term taken with respect to some measure µ0 as follows

SIRδ(ξ, η, µ0) =
ℓ(|ξ − η|)∫

Wδ
ℓ(|ζ − η|)µ0(dζ)

=
ℓ(|ξ − η|)

∑δ−d

i=1 µ0(W δ
i )ℓ(|C(W δ

i )− η|)
, ξ, η ∈ Wδ,

where we recall that C(W δ
i ) denotes the centre of the δ-subcube W δ

i . Furthermore, we define a δ-

discretized version of the function fk(µ, x0, . . . , xk−1) = fk(x0, . . . , xk−1) defined in (1.14) by

f δ
k (µ0, ξ0, . . . , ξk−1) =

k∑

l=1

SIRδ(ξl−1, ξl, µ
δ
0)

−1, µ0 ∈ M(W ), ξ0, . . . , ξk−1 ∈ Wδ,

where we used the convention that all ik-indexed sites are equal to the origin o, i.e., C(W δ
ik
) = o = ξk.
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Towards the proof of Proposition 3.2, let us fix an arbitrary controlled standard setting Ψ. Our goal is to

prove that (3.12) holds for this Ψ. Note that for an admissible trajectory setting Ψ = ((νk)
kmax
k=1 , (µm)

∞
m=0),

S(Ψ) depends only on (νk)
kmax
k=1 ; observe that all SIR-related quantities in this paper depend only on the

trajectories, but not on the numbers of incoming messages at the users.

Now for δ ∈ B and λ > 0, we define the following discretized analogue of S(·), which corresponds to

the case P δ
λ(·) = µδ,λ, and Rδ

λ,k(·) = νδ,λk , ∀k ∈ [kmax], i.e., to configurations with empirical measure of

users corresponding to µδ,λ and empirical measure of trajectories with exactly k hops corresponding to νδ,λk

for all k ∈ [kmax]:

Sδ,λ(Ψ) =
kmax∑

k=1

∫

W k

νδ,λk (dξ0, . . . , dξk−1)f
δ
k (ν

δ,λ
k , ξ0, . . . , ξk−1). (3.13)

One easily sees that if s ∈ Skmax(X
λ) is such that sil ∈ WB for all i ∈ Iλ and l = 0, . . . , k, and it holds

that s ∈ Jδ,λ(Ψ), in particular P δ
λ(s) = µδ,λ and Rδ

λ,k(s) = νδ,λk for all k ∈ [kmax], then we have

Sδ,λ(Ψ) =
1

λ

kmax∑

k=1

k∑

l=1

∑

i∈Iλ: si−1=k

1
λ

∑
m∈Iλ ℓ(|(sm0 )δ − (sil)

δ|)
ℓ(|(sil−1)

δ − (sil)
δ|) =

1

λ

∑

i∈Iλ

si−1∑

l=1

SIRδ((s
i
l−1)

δ, (sil)
δ, P δ

λ(s))
−1.

(3.14)

where we recall the notation xδ = ̺δ(x) for x ∈ WB.

Now, since (3.14) is true for all s ∈ Jδ,λ(Ψ), further ℓ is continuous and bounded from below, moreover

νδ,λk converges weakly to νk as first λ→ ∞ and then δ ↓ 0 (what one easily sees using parts (7) and (8) of

Definition 2.1), we conclude that the following holds.

Lemma 3.3. Let Ψ be a controlled standard setting. Then,

lim
δ↓0

lim
λ→∞

sup
s∈Jδ,λ(Ψ)

∣∣Sδ,λ(Ψ)− 1

λ
S(s)

∣∣ = 0.

Having Lemma 3.3, the proof of Proposition 3.2 reduces to proving that limδ↓0 limλ→∞ Sδ,λ(Ψ) = S(Ψ)

for Ψ satisfying the assumptions of the Proposition. Now, for fixed δ ∈ B and k ∈ [kmax], by the continuity

of Wδ → R, ξ 7→
∫
Wδ
ξ(dy)ℓ(|y − x|) and part (3) of Definition 2.1, we have

lim
λ→∞

f δ(µδ,λ, ξ0, . . . , ξk−1) = f δ(µδ, ξ0, . . . , ξk−1),

uniformly in ξ0, . . . , ξk−1 ∈ W . We thus conclude that

kmax∑

k=1

∫

W k
δ

νδ,λk (dξ0, . . . , dξk−1)f
δ(µδ,λ, ξ0, . . . , ξk−1) →

λ→∞

kmax∑

k=1

∫

W k
δ

νδk(dξ0, . . . , dξk−1)f
δ(µδ, ξ0, . . . , ξk−1).

(3.15)

Using this assumption and also part (8) of Definition (2.1) together with the boundedness and continuity

properties of ℓ, it follows that we have

lim
δ↓0

lim
λ→∞

kmax∑

k=1

νδ,λk (dξ0, . . . , dξk−1)f
δ
k (µ

δ, ξ0, . . . , ξk−1) =
kmax∑

k=1

∫

W k

νk(dx0, . . . , dxk−1)fk(dx0, . . . , dxk−1).

(3.16)

Thus, the proof of Proposition 3.2 is finished.
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3.3 Existence of standard settings

Recall that we equip A defined in (1.24) with the product topology of the weak topologies of the factors

M(W k) and that this is the topology of coordinatewise weak convergence. For k ∈ N, let dk(·, ·) be a

metric on M(W k) that generates the weak topology on this space. Then,

d0(Ψ
1,Ψ2) =

kmax∑

k=1

dk(ν
1
k , ν

2
k) +

∞∑

m=0

2−md1(µ
1
m, µ

2
m), Ψ1,Ψ2 ∈ A (3.17)

is a metric on A that generates the product topology. For ̺ > 0 and Ψ ∈ A, let us write B̺(Ψ) = {Ψ′ ∈
A : d0(Ψ

′,Ψ) < ̺} for the open ̺-ball around Ψ. It turns out to be convenient to choose dk to be the

Lipschitz-bounded metric [DZ98, Section D.2] on M(W k), that is,

dk(ν
1
k , ν

2
k) = sup{|〈f, ν1k〉 − 〈f, ν2k〉| : f ∈ Lip1(W

k)}

for all k, where Lip1(W
k) is the set of Lipschitz continuous functions taking W k to R with Lipschitz param-

eter less than or equal to 1 and with uniform bound 1.

We have the following.

Proposition 3.4. On Ω1, for any admissible trajectory setting (see Definition 1.1), Ψ = ((νk)k, (µm)m),

there exists a standard setting Ψ containing it. If
∑

mm(m − 1)µm(W ) < ∞, then Ψ can be chosen to

be a controlled standard setting.

Proof. We fix an admissible trajectory setting Ψ and construct Ψ as follows. As is required in Definition

2.1, the measures µδ, νδk for k ∈ [kmax] and µδ
m for m ∈ N0 are the δ-coarsenings of the measures µ,

νk and µm, respectively, and µδ,λ = Lδ
λ. Now for δ ∈ B and λ > 0, pick some measures νδ,λk and µδ,λ

m

with values in 1
λ
N0 such that the requirements (5)

∑kmax

k=1 π0ν
δ,λ
k = µδ,λ, (9)

∑∞
m=0 µ

δ,λ
m = µδ,λ and (10)∑∞

m=0mµ
δ,λ
m =

∑kmax

k=1

∑k−1
l=1 πlν

δ,λ
k of Definition 2.1 are met, such that νδ,λk =⇒ νδk and µδ,λ

m =⇒ µδ
m as

λ → ∞ and such that the collection Ψ of all these measures is a standard setting containing Ψ, which is

controlled if
∑

mm(m− 1)µm(W ) <∞.

We claim that this can be done by taking suitable up- and downroundings of the numbers

ν ′δ,λk (W δ
s0
× . . .×W δ

sk−1
) = νδk(W

δ
s0
× . . .×W δ

sk−1
)
Lδ
λ(W

δ
s0
)

µδ(W δ
s0
)
1{µδ(W δ

s0
) > 0}, k ∈ [kmax], (3.18)

for all s0, . . . , sk−1 = 1, . . . , δ−d, and dividing by λ, analogously for the µm’s. Now, using the d-metric

defined in (3.17), we prove that the convergences required in Definition 2.1 hold for such Ψ.

First, we prove the convergence of the δ-coarsenings Ψδ = ((νδk)k, (µ
δ
m)m) to Ψ in the d0-metric. We

claim that for any ̺ > 0, there exists δ0 ∈ B such that Ψδ ∈ B̺(Ψ) for all B ∋ δ ≤ δ0. Indeed, for

k ∈ [kmax], νk ∈ M(W k) and δ ∈ B we see that the distance between νk and its δ-coarsening is of order

δ:

dk(νk, ν
δ
k) = sup

f∈Lip1(W
k)

δ−d∑

j0,...,jk−1=1

∫

W δ
j0
×...×W δ

jk−1

|f(x)− f(C(W δ
j0
× . . .×W δ

jk−1
))| νk(dx)

≤
δ−d∑

j0,...,jk−1=1

∫

W δ
j0
×...×W δ

jk−1

|x− C(W δ
j0
× . . .×W δ

jk−1
)| νk(dx) ≤ νk(W

k)

√
dkδ

2
,
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where we wrote x = (x0, . . . , xk−1); and analogously for µm. Thus, we have

d0(Ψ,Ψ
δ) ≤ δ

√
d

2

[ kmax∑

k=1

νk(W
k)
√
k +

∞∑

m=0

µm(W )2−m
]
.

Since
∑∞

m=0 µm(W ) < ∞ by (ii) in (1.12), there exists a constant C , only depending on Ψ, such that

Ψδ ∈ B̺(Ψ) for any δ ≤ C̺.

Second, we ignore the up- or downroundings in the construction of Ψ and prove the following. For δ ∈ B

and λ > 0, let Ψ′δ,λ be the collection of the measures introduced in (3.18). We claim that on Ω1, we have

lim sup
λ→∞

d0(Ψ
δ,Ψ′δ,λ) = 0.

Indeed, for any k ∈ [kmax] and s0, . . . , sk−1 = 1, . . . , δ−d, dk(ν
δ
k, ν

′δ,λ
k ) is bounded from above by

sup
f∈Lip1(W

k)

δ−d∑

s0,...,sk−1=1

νδk(W
δ
s0
× . . .×W δ

sk−1
)
∣∣∣
Lδ
λ(W

δ
s0
)

µδ(W δ
s0
)
− 1
∣∣∣‖f‖∞ ≤ νδk(W

k
δ )

δ−d

max
s0=1

∣∣∣
Lδ
λ(W

δ
s0
)

µδ(W δ
s0
)
− 1
∣∣∣.

(3.19)

Thus,

d0(Ψ
δ,Ψ′δ,λ) ≤

( kmax∑

k=1

νδk(W
k
δ ) +

∞∑

m=0

2−mµδ
m(Wδ)

)
δ−d

max
s0=1

∣∣∣
Lδ
λ(W

δ
s0
)

µδ(W δ
s0
)
− 1
∣∣∣,

which tends to 0 on Ω1 as λ→ ∞, according to (3.1).

Now, if we add the suitable up- and downroundings, we only change distances in the d-metric by an error

term of order 1/λ, which vanishes as λ→ ∞. This implies that Ψ is a standard setting. It also follows easily

that if
∑

mm(m− 1)µm(W ) <∞, then Ψ is controlled.

3.4 Proof of Theorem 1.2

Abbreviate

Y(r) =
(∏

i∈Iλ

N(λ)−(ri−1−1)
)
exp

{
− γS(r)− βM(r)

}
, λ > 0, r ∈ Skmax(X

λ),

and note that the partition function is given as

Zγ,β
λ (Xλ) =

∑

r∈Skmax (X
λ)

Y(r). (3.20)

Then Theorem 1.2 says that its large-λ negative exponential rate is given as the infimum of I(Ψ)+γS(Ψ)+

βM(Ψ), taken over all admissible trajectory settings Ψ. Throughout the proof, we assume that the configu-

ration Xλ = Xλ(ω) comes from some ω ∈ Ω1 defined in (3.1).

Having proved Propositions 3.1, 3.2 and 3.4, our strategy to prove Theorem 1.2 is the following. First,

Proposition 3.4 gives a standard way how to construct from an admissible trajectory setting Ψ a standard
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setting Ψ that contains Ψ. Then the lower bound for the partition function is easily given in terms of the

objects that are contained in any such Ψ and using the logarithmic asymptotics for their combinatorics from

Propositions 3.1 and 3.2 and finally taking the infimum over all such Ψ, respectively Ψ. The upper bound

needs more care, since the entire sum over r has to be handled. First of all, we show that the sum can be

restricted for all λ > 0, modulo some error term that is negligible on the exponential scale, to the sum of

those configurations whose congestion exponent is at most Cλ for some appropriate large constant C > 0.

This sum can be decomposed, for any δ ∈ B, to sums on configurations coming from a particular choice of

empirical measures on the δ-partitions of W . The number of these empirical measures and the sum on the

partitions is negligible in the limit λ → ∞, and the asymptotics of the sums on r in these partitions can be

evaluated with the help of our spatial discretization procedure, using arguments of the proofs of Propositions

3.1 and 3.2 in the limit λ→ ∞, followed by δ ↓ 0. Using these, we arrive at the said formula.

Let us give the details. We start with the proof of the lower bound. For any admissible trajectory setting Ψ,

we pick Ψ as in Proposition 3.4 and recall the configuration class Jδ,λ(Ψ) from (2.6). Then, for any λ > 0

and δ ∈ B,

Zγ,β
λ (Xλ) ≥

∑

r∈Jδ,λ(Ψ)

Y(r) ≥ #Jδ,λ(Ψ)

supr∈Jδ,λ(Ψ)

∏
i∈Iλ N(λ)−(ri−1−1)

exp
{
− sup

r∈Jδ,λ(Ψ)

(
γS(r)+βM(r)

)}
.

(3.21)

Hence,

lim inf
λ→∞

1

λ
logZγ,β

λ (Xλ) ≥ lim inf
δ↓0

lim inf
λ→∞

1

λ
log

#Jδ,λ(Ψ)

supr∈Jδ,λ(Ψ)

∏
i∈Iλ N(λ)−(ri−1−1)

− γ lim sup
δ↓0

lim sup
λ→∞

sup
r∈Jδ,λ(Ψ)

1

λ
S(r)− β lim sup

δ↓0
lim sup
λ→∞

sup
r∈Jδ,λ(Ψ)

1

λ
M(r)

= −I(Ψ)− γS(Ψ)− βM(Ψ).
(3.22)

In the last step we also used Propositions 3.1 and 3.2 together with the fact that Ψ is controlled. Now take

the supremum over all such Ψ on the r.h.s. of (3.22) to conclude that the lower bound in (1.17) holds.

The upper bound of Theorem 1.2 requires some additional work. We start from (3.20). For C > 0 we

have

Zγ,β
λ (Xλ) =

∑

r∈Skmax (X
λ) : M(r)≤λC

Y(r) +
∑

r∈Skmax (X
λ) : M(r)>λC

Y(r). (3.23)

Since the total mass of our a priori measure has a bounded large-λ exponential rate (see Section 1.2.2), we

see that

lim sup
C→∞

lim sup
λ→∞

1

λ
log

∑

r∈Skmax (X
λ) : M(r)>λC

Y(r) = −∞.

Thus, for C sufficiently large, the exponential rate of Zγ,β
λ (Xλ) is equal to the one of the first term on the

right-hand side of (3.23). We additionally require C so large that

inf
Ψ adm. traj. setting, M(Ψ)≤C

(I(Ψ) + γS(Ψ) + βM(Ψ)) = inf
Ψ adm. traj. setting

(I(Ψ) + γS(Ψ) + βM(Ψ)). (3.24)

Let us write Skmax,C(X
λ) = {r ∈ Skmax(X

λ) : M(r) ≤ λC} and Zγ,β,C
λ (Xλ) =

∑
r∈Skmax,C(Xλ) Y(r).

The upper bound of Theorem 1.2 follows as soon as we show that

lim sup
λ→∞

1

λ
logZγ,β,C

λ (Xλ) ≤ − inf
Ψ admissible trajectory setting, M(Ψ)≤C

(I(Ψ) + γS(Ψ) + βM(Ψ)). (3.25)
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For fixed λ > 0 and δ ∈ B, let us say that a collection of measures Ψδ,λ = ((νδ,λk )kmax
k=1 , (µ

δ,λ
m )∞m=0)

lies in G(δ, λ) = G(δ, λ)(Xλ) if all these measures take values in 1
λ
N0 only and satisfy the con-

straints
∑kmax

k=1 π0ν
δ,λ
k = Lδ

λ,
∑∞

m=0 µ
δ,λ
m = Lδ

λ and
∑kmax

k=1

∑k−1
l=1 πlν

δ,λ
k =

∑∞
m=0mµ

δ,λ
m . We will

write Jδ,λ(Ψδ,λ) for the set Jδ,λ(Ψ) defined in (2.6). Then the union of Jδ,λ(Ψδ,λ) over all Ψδ,λ with∑∞
m=0m(m− 1)µδ,λ

m (Wδ) ≤ C is equal to

{
(Rδ

λ,k(r))k∈[kmax], (P
δ
λ,m(r))m∈N0) : r ∈ Skmax,C(X

λ)
}
,

since these three equations characterize the tuple of the measures (Rδ
λ,k(S))

kmax
k=1 and (P δ

λ,m(S))
∞
m=0 if

(Si)i∈Iλ ∈ Skmax,C(X
λ).

Using this, we can estimate, for any δ ∈ B,

Zγ,β,C
λ (Xλ) =

∑

Ψδ,λ∈G(δ,λ) : M(Ψδ,λ)≤C

∑

r∈Jδ,λ(Ψδ,λ)

Y(r) ≤ #G(δ, λ) sup
Ψδ,λ∈G(δ,λ) : M(Ψδ,λ)≤C

∑

r∈Jδ,λ(Ψδ,λ)

Y(r).

(3.26)

Hence,

lim sup
λ→∞

1

λ
logZγ,β,C

λ (Xλ)

≤ lim sup
δ↓0

lim sup
λ→∞

1

λ
log#G(δ, λ)

+ lim sup
δ↓0

lim sup
λ→∞

1

λ
log sup

Ψδ,λ∈G(δ,λ) : M(Ψδ,λ)≤C

[ #Jδ,λ(Ψδ,λ)

infr∈Jδ,λ(Ψδ,λ)

∏
i∈Iλ N(λ)−(ri−1−1)

− γ lim inf
δ↓0

lim inf
λ→∞

inf
r∈Jδ,λ(Ψδ,λ)

1

λ
S(r)− β lim inf

δ↓0
lim inf
λ→∞

inf
r∈Jδ,λ(Ψδ,λ)

1

λ
M(r)

]
.

(3.27)

According to Lemma 3.5 below, the first term on the right-hand side is equal to zero. Now pick a sequence

(δn)n and for each n a sequence (λn,j)j along which the superior limits as n → ∞, respectively j → ∞,

are realized. Now pick, for any n and j, a maximizer Ψ̃δn,λn,j . Pick λ0 so large that N(λ) ≤ 2µ(W )λ for all

λ ≥ λ0. Hence,

⋃

λ>λ0,δ∈B

G(δ, λ) ⊆
( kmax∏

k=1

M≤2µ(W )(W
k)
)
×M≤2µ(W )(W )N0 , (3.28)

where we wrote M≤α(V ) for the set of measures on a space V with total mass ≤ α. (We recall from

Section 2.1 that we conceive all measures on W k
δ as measures on W k.) Note that M≤2µ(W )(W

k) is

compact in the weak topology of M(W k) for any k, according to Prohorov’s theorem.

Without loss of generality (using two diagonal sequence arguments), we can assume that for all n ∈ N,

Ψ̃δn,λn,j converges coordinatewise weakly to a collection of measures Ψ̃δn = ((ν̃δnk )kmax
k=1 , (µ̃

δn
m )∞m=0) as

j → ∞, and Ψ̃δn converges coordinatewise weakly to a collection of measures Ψ̃ as n → ∞. Then, it is

clear that Ψ̃ satisfies (i) from (1.12), and also that

lim
n→∞

lim
j→∞

kmax∑

k=1

k−1∑

l=1

πlν̃
δn,λn,j

k =
kmax∑

k=1

k−1∑

l=1

πlν̃k.
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In order to see that (iii) holds for Ψ̃, it remains to show that limn→∞ limj→∞

∑∞
m=0mµ̃

δn,λn,j
m =∑∞

m=0mµ̃m. For N ∈ N and for any continuous function f : W → R, we estimate

∣∣∣∣∣

〈
∞∑

m=0

m(µ̃δn,λn,j
m − µ̃m), f

〉∣∣∣∣∣ ≤
N∑

m=0

m
∣∣〈µ̃δn,λn,j

m − µ̃m, f〉
∣∣+

∞∑

m=N+1

‖f‖∞m
∣∣µ̃δn,λn,j

m (W )− µ̃m(W )
∣∣ ,

where we write 〈ν, f〉 for the integral of the function f against the measure ν. The first term on the r.h.s.

clearly tends to 0 as j → ∞, followed by n → ∞, for any fixed N . The second term can further be

estimated from above as follows

‖f‖∞
∑

m>N

m(m− 1)

N − 1
(µ̃δn,λn,j

m (W ) + µ̃m(W )) ≤ 2‖f‖∞
N

C.

This clearly tends to 0 as N → ∞. One can analogously show that
∑∞

m=0 µ̃
δn,λn,j
m tends to

∑∞
m=0 µ̃m

as j → ∞ followed by n → ∞, and hence condition (ii) from (1.12) holds. Also we have
∑∞

m=0m(m −
1)µ̃m(W ) ≤ C . Altogether, Ψ̃ is an admissible trajectory setting.

Now, using the arguments of the proofs of Propositions 3.1 and 3.2 (which also involve the coarsened

limits Ψ̃δn for fixed n ∈ N) for the subsequential limits j → ∞ followed by n→ ∞, we conclude that

lim
n→∞

lim
j→∞

#Jδn,λn,j(Ψ̃δn,λn,j)

infr∈Jδn,λn,j (Ψ̃δn,λn,j )

∏
i∈Iλn,j N(λn,j)

−(ri−1−1)
= I(Ψ̃)

and

lim
n→∞

lim
j→∞

inf
r∈Jδn,λn,j (Ψ̃δn,λn,j )

1

λn,j
S(r) = S(Ψ̃).

Furthermore, Fatou’s lemma implies that

−β lim inf
n→∞

lim inf
j→∞

inf
r∈Jδn,λn,j (Ψ̃δn,λn,j )

1

λn,j
M(r) ≤ −βM(Ψ̃). (3.29)

Thus, we conclude that (3.25) (and therefore the upper bound in Theorem 1.2) holds, as soon as Lemma

3.5 is formulated and verified. This we do now.

Lemma 3.5. For any δ ∈ B, almost surely,

lim sup
λ→∞

1

λ
log#G(δ, λ) = 0.

Proof. For λ > 0, let G1(δ, λ) denote the set of (νδ,λk )kmax
k=1 satisfying part (5) from Definition 2.1. It is easily

seen that its cardinality increases only polynomially in λ. Now, given (νδ,λk )kmax
k=1 ∈ G1(δ, λ), we will give an

upper bound for the number of (µδ,λ
m )∞m=0) such that the pair of these tuples is inG(δ, λ). This is much more

demanding, since there is a priori no upper bound for m. We will provide a λ-dependent one.

For any λ > 0, Ψδ,λ ∈ G(δ, λ) and j = 1, . . . , δ−d we have that

∞∑

m=0

mµδ,λ
m (W δ

j ) =
kmax∑

k=1

k−1∑

l=1

πlν
δ,λ
k (W δ

j ) ≤ (kmax − 1)N(λ),
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in particular µδ,λ
m (W δ

j ) = 0 for m > (kmax − 1)N(λ). We also have that the numbers µδ,λ
0 (W δ

j ),

. . . , µδ,λ
(kmax−1)N(λ)(W

δ
j ), are 1

λ
times nonnegative integers.

Let ε > 0 be fixed. We claim that for all sufficiently large λ > 0, there are not more than εN(λ) ∼
ελµ(W ) nonzero ones out of these quantities. Indeed, if there were at least ⌈εN(λ)⌉ nonzero ones, de-

noted µδ,λ
m0

(W δ
j ), . . . , µ

δ,λ
m⌈εN(λ)⌉−1

(W δ
j ) with 0 ≤ m0 < m1 < . . . < m⌈εN(λ)⌉−1 ≤ (kmax − 1)N(λ),

then we could estimate

(kmax − 1)N(λ) ≥
(kmax−1)N(λ)∑

m=0

λmµδ,λ
m (W δ

j ) ≥
⌈εN(λ)⌉−1∑

i=0

λmiµ
δ,λ
mi
(W δ

j )1l
{
µδ,λ
mi
(W δ

j ) > 0
}

=

⌈εN(λ)⌉−1∑

i=0

λmiµ
δ,λ
mi
(W δ

j )1l
{
µδ,λ
mi
(W δ

j ) ≥
1

λ

}
≥

⌈εN(λ)⌉−1∑

i=0

mi ≥
⌈εN(λ)⌉−1∑

m=0

m ∼ 1

2
(εN(λ))(εN(λ)− 1),

which is a contradiction for all λ > 0 sufficiently large.

Now, #G(δ, λ) can be estimated as follows. Let us first fix (νδ,λk )kmax
k=1 ∈ G1(δ, λ),

i.e., satisfying part (5) from Definition 2.1, and let us count the number of (µδ,λ
m )

(kmax−1)N(λ)
m=0

such that ((νδ,λk )kmax
k=1 , (µ

δ,λ
m )

(kmax−1)N(λ)
m=0 )) lies in G(δ, λ). Out of the kmaxδ

−dN(λ) quantities

µδ,λ
0 (W δ

j ), . . . , µ
δ,λ
(kmax−1)N(λ)(W

δ
j ), j = 1, . . . , δ−d, at most ⌈εN(λ)⌉δ−d are nonzero. The number of

ways to choose them equals
(
kmaxN(λ)δ−d

⌈εN(λ)⌉δ−d

)
. Having chosen ⌈εN(λ)⌉δ−d potentially nonzero ones so that

the remaining kmaxδ
−dN(λ) − ⌈εN(λ)⌉δ−d ones are equal to zero, according to part (9) of Definition 2.1

we note that the potentially nonzero ones sum up to N(λ), and each one has a value in 1
λ
N0. For this, there

are at most
(
N(λ)+⌈εN(λ)⌉δ−d−1

⌈εN(λ)⌉δ−d−1

)
combinations, for any choice of the set of the potentially nonzero ones.

Therefore, using Stirling’s formula as in (3.4), for any sufficiently large λ, we have the following estimate

#G(δ, λ) ≤ #G1(δ, λ)

(
kmaxN(λ)δ−d

⌈εN(λ)⌉δ−d

)(
N(λ) + ⌈εN(λ)⌉δ−d − 1

⌈εN(λ)⌉δ−d − 1

)

= eo(λ) exp
(
− λµ(W )

(
(kmax − ε)δ−d log

(kmax − ε)δ−d

kmaxδ−d
+ εδ−d log

εδ−d

kmaxδ−d

))

× exp
(
− λµ(W )

(
εδ−d log

εδ−d

1 + εδ−d
+ log

1

1 + εδ−d

))
.

Making ε ↓ 0, we conclude that lim supλ→∞
1
λ
log#G(δ, λ) = 0.

3.5 The large deviation principle: proof of Theorem 1.4(i)

In this section, we prove Theorem 1.4(i). The combinatorial essence of this theorem has already been proven

in Proposition 3.1, including the relations with δ-coarsenings. What remains to be done is to relate this to the

coordinatewise weak convergence on A. We will be able to use some of the arguments of Section 3.4.

The lower semicontinuity of I + µ(W ) log kmax was already discussed in Section 1.3, the nonnegativity

in Section 1.5. These together mean that I + µ(W ) log kmax is a rate function.

We proceed with the proof of the lower bound. Let G ⊆ A be open. If infG I = ∞, then there is nothing

to show, therefore let us assume that there exists Ψ ∈ G with I(Ψ) < ∞. According to Proposition 3.4,

there is a standard setting Ψ containing Ψ. Since G is open, there exists ̺ > 0 such that B̺(Ψ) ⊆ G. Let
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us choose δ0 ∈ B and, for any B ∋ δ ≤ δ0, some λ0 = λ0(δ) > 0 such that Ψδ,Ψδ,λ ∈ B̺(Ψ) for any

λ > λ0. Now we can estimate, for these δ and λ,

P0,0
λ,Xλ(Ψλ(S) ∈ G) ≥ P0,0

λ,Xλ(Ψλ(S) ∈ B̺(Ψ)) ≥ P0,0
λ,Xλ

(
(Ψλ(S))

δ = Ψδ,λ
)

=
1

Z0,0
λ (Xλ)

∑

r∈Jδ,λ(Ψδ,λ)

1
∏

i∈Iλ N(λ)r
i
−1−1

≥ #Jδ,λ(Ψδ,λ)

k
N(λ)
max supr∈Jδ,λ(Ψδ,λ)

∏
i∈Iλ N(λ)r

i
−1−1

.

Now, using Proposition 3.1 and the fact that N(λ)/λ→ µ(W ), we obtain

lim inf
λ→∞

1

λ
log P0,0

λ,Xλ(Ψλ(S) ∈ G) ≥ −µ(W ) log kmax − I(Ψ).

Note that Ψ is not necessarily controlled because M(Ψ) < ∞ is not guaranteed. However, since for all

δ ∈ B, s = 1, . . . , δ−d, λ > 0, µδ,λ
m (W δ

s )/µ
δ
m(W

δ
s ) does not depend on m, we easily see that Proposition

3.1 holds for this Ψ as well. Now, take the supremum over Ψ ∈ G ∩ {I < ∞} to conclude that the lower

bound holds.

We continue with the upper bound. Let F ⊆ A be closed. Let us choose an increasing sequence (λn)n∈N
of positive numbers along which the limit superior in (1.25) is realized. For λ > 0, let us put

O(λ) =
{
Ψ ∈ A : P0,0

λ,Xλ(Ψλ(S) = Ψ) > 0
}
.

If for all but finitely many n ∈ N we have F ∩O(λn) = ∅, then

lim sup
λ→∞

1

λ
log P0,0

λ,Xλ(Ψλ(S) ∈ F ) = −∞. (3.30)

Therefore, without loss of generality, we can assume that O(λn)∩F is non-empty for all n ∈ N. For δ ∈ B

and A ⊂ A, let us write Aδ = {Ψδ : Ψ ∈ A}, where Ψδ is the coordinatewise δ-coarsened version of Ψ.

Then we have

P0,0
λn,Xλn

(
Ψλn

(S) ∈ F ) = P0,0
λn,Xλn

(
Ψλn

(S) ∈ F ∩O(λn)
)
= P0,0

λn,Xλn

(
(Ψλn

(S))δ ∈ (F ∩O(λn))δ)

≤ #(F ∩O(λn))δ sup
Ψ∈F∩O(λn)

#Jδ,λn(Ψδ)

k
N(λn)
max infr∈Jδ,λn (Ψδ)

∏
i∈Iλn N(λn)

ri−1−1
.

(3.31)

It is clear that (F ∩ O(λn))
δ ⊆ G(δ, λn) = (O(λn))

δ for all n ∈ N and δ ∈ B, where G(δ, λn) was

defined in Section 3.4. Hence, by Lemma 3.5,

lim sup
δ↓0

lim sup
n→∞

1

λn
log#(F ∩O(λn))δ = 0.

It remains to show that

lim sup
δ↓0

lim sup
n→∞

1

λn
log
[

sup
Ψ∈F∩O(λn)

#Jδ,λn(Ψδ)

infr∈Jδ,λn (Ψδ)

∏
i∈Iλn N(λn)

ri−1−1

]
≤ − inf

Ψ∈F
I(Ψ). (3.32)

One can do this analogously to the proof of the upper bound of Theorem 1.2 starting from (3.27). Indeed,

using Prohorov’s theorem together with a diagonal sequence argument, we find Ψ∗ ∈ A that the maximizer

in (3.31) converges to along a subsequence of δ’s and λn’s. The limit lies in F because F is closed. Using

the lower semicontinuity of I together with Fatou’s lemma, we conclude that the left-hand side of (3.32) is

not larger than −I(Ψ∗), which itself is not larger than − infF I . This finishes the proof of the upper bound

in Theorem 1.4 (i).
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4 Analysis of the minimizers

This section is devoted to the proof of Proposition 1.3. In particular, in Section 4.1, we show that the infimum

in (1.17) is attained and, for any minimizer Ψ = ((νk)
kmax
k=1 , (µm)

∞
m=0), for any k ∈ [kmax], µ

⊗ k is absolutely

continuous with respect to νk and µ is absolutely continuous with respect to each µm. This is a prerequisite

for perturbing the minimizer in many admissible directions. In Section 4.2 we finish the proof of Proposi-

tion 1.3 by deriving the Euler–Lagrange equations. For the remainder of this section, we fix all parameters

W,µ, γ, β and kmax. Moreover, we use the following representation of I from (1.16).

I(Ψ) =
kmax∑

k=1

HW k(µ⊗M⊗(k−1)) +
∞∑

m=0

HW (µm | µ)− µm(W ) log
(eµ(W ))−m

m!
.

4.1 Existence and positivity of the minimizers

We start with the following lemma, which follows almost immediately from the arguments of the proof of the

upper bound of Theorem 1.2 in Section 3.4.

Lemma 4.1. The set of minimizers for the variational formula in (1.17) is non-empty, compact and convex.

Proof. Recall that the three functionals I, S, M are lower semicontinuous and convex. Furthermore, it is clear

that we can restrict the infimum in (1.17) to those Ψ that satisfy also M(Ψ) ≤ C for any sufficiently large C .

But, as we have seen in Section 3.4, this set of Ψ’s is compact. From this, all our assertions easily follow.

Now we prove that, for each minimizer Ψ, µ⊗ k is absolutely continuous with respect to νk and µ is

absolutely continuous with respect to each µm. (Note that the opposite absolute continuities are true by

finiteness of the entropies.) We need to show this only for kmax > 1, as we explained after Proposition 1.3.

Lemma 4.2. If kmax > 1 and Ψ = ((νk)
kmax
k=1 , (µm)

∞
m=0) is a minimizer of (1.17), then µ⊗ k ≪ νk for any

k ∈ [kmax], and µ≪ µm for any m ∈ N0.

Proof. The essence of the proof is the following. The congestion term M(·) and the SIR term S(·) are linear

in each µm respectively νk, as well as the third term in I(·) in (1.16) in each µm. On the other hand, the

function x 7→ x log x has the slope −∞ at x ↓ 0. We show the following assertions about the minimizer

Ψ step by step as follows. Recall that M =
∑

m∈N0
mµm =

∑
k∈[kmax]

∑k−1
l=1 πlνk. We write ≥ and >,

respectively, between measures inM(W k) if their difference lies inM(W k), respectively in M(W k)\{0}.

Fix a measurable set A ⊂ W such that µ(A) > 0. Then we have:

1 M(A) > 0.

2 for any m1 < m0 < m2 such that µm1(A) > 0 and µm2(A) > 0, also µm0(A) > 0.

3 µ0(A) > 0.

4 µm(A) > 0 for any m ≥ kmax.

5 νk(A
k) > 0 for any k ∈ [kmax].
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Indeed, these steps are verified respectively as follows. In each of the steps, for ε ∈ (0, 1), we construct

an admissible trajectory setting Ψε = ((νεk)
kmax
k=1 , (µ

ε
m)

∞
m=0) such that I(Ψε) + γS(Ψε) + βM(Ψε) <

I(Ψ) + γS(Ψ) + βM(Ψ) for sufficiently small ε > 0, and therefore Ψ is not a minimizer of (1.17).

1 If M(A) = 0, then in particular µ0(A) = ν1(A) = µ(A) and µm(A) = 0 for all m > 0. Also,

π1ν2(A) = ν2(W × A) = 0, according to the definition of M .

Let us define Ψε as follows: νε2 = (1 − ε)ν2 + ε(µ⊗ 2)/µ(W ), νεk = (1 − ε)νk for k 6= 2, µε
1 =

(1− ε)µ1 + εµ and µε
m = (1− ε)µm for m 6= 1. Then we compute and estimate the three terms of

the entropy I(Ψ) as follows.

kmax∑

k=1

HW k

(
νεk | µ⊗(M ε)⊗(k−1)

)

≤
kmax∑

k=1

HW×(W\A)k−1((1− ε)νk | µ⊗(M ε)⊗(k−1)) +HW×A

( εµ⊗ 2

µ(W )
| εµ⊗ 2

)
+O(ε)

≤
kmax∑

k=1

HW k(µ⊗M⊗(k−1)) +O(ε),

furthermore

∞∑

m=0

HW (µε
m | µ)− µε

m(W ) log
(eµ(W ))−m

m!

≤ HW ((1− ε)µm | µ)− µm(W ) log
(eµ(W ))−m

m!
+ µ(A)ε log ε+O(ε).

(4.1)

For the second term we used the convexity of the relative entropy in the form

HW ((1− ε)ν1 + εµ | µ) ≤ (1− ε)HW (ν1 | µ) ≤ HW (ν1 | µ) +O(ε). (4.2)

This in turn follows from [HJKP15, Lemmas 3.10, 3.11], which implies that, for any k ∈ N, ξ, η ∈
M(W k) with η 6= 0 and ξ ≪ η,

∣∣∣HW k(ξ | η)−HW k((1− ε)ξ | η)
∣∣∣ ≍
ε↓0

ε.

It follows that, as ε ↓ 0,

I(Ψε) + γS(Ψε) + βM(Ψε)−
[
I(Ψ) + γS(Ψ) + βM(Ψ)

]
≤ O(ε) + µ(A)ε log ε, (4.3)

which is negative for all sufficiently small ε > 0. Thus, Ψ is not a minimizer.

2 If M(A) > 0 but µm1(A) > 0, µm2(A) > 0 and µm0(A) = 0 for some m1 < m0 < m2, then let

νεk = νk for all k ∈ [kmax] and let µε
m0

= (1− ε)µm0 + ε(α1µm1 +α2µm2), µ
ε
m1

= (1−α1ε)µm1 ,

µε
m2

= (1 − εα2)µm2 , where α1, α2 ∈ (0, 1) are such that α1 + α2 = 1 and m1α1 + m2α2 =

m0. Then, Ψε is an admissible trajectory setting with M ε = M . It follows similarly to the previous

DOI 10.20347/WIAS.PREPRINT.2392 Berlin 2017



A Gibbsian model for message routing 33

computation that I(Ψε) + γS(Ψε) + βM(Ψε) < I(Ψ) + γS(Ψ) + βM(Ψ) for all sufficiently small

ε > 0. However, instead of (4.1), we have

∞∑

m=0

HW (µε
m | µ)− µε

m(W ) log
(eµ(W ))−m

m!

≤
∞∑

m=0

HW (µm | µ)− µm(W ) log
(eµ(W ))−m

m!
+ (α1µm1(A) + α2µm2(A))ε log ε+O(ε),

as ε ↓ 0.

3 If M(A) > 0 but µ0(A) = 0, let νεk = (1 − ε)νk for all 1 < k ≤ kmax, µε
m = (1 − ε)µm for all

m > 0, µε
0 = εµ+ (1− ε)µ0 and νε1 = (1− ε)ν1 + εµ. It is again sufficient to consider the entropy

terms in I. The summands on k > 1 can be estimated as follows.

kmax∑

k=2

HW k(νεk | µ⊗(M ε)(k−1)) =
kmax∑

k=2

HW k((1− ε)νk | (1− ε)k−1µ⊗Mk−1)

≤
kmax∑

k=2

HW k(νk | µ⊗M (k−1)) +O(ε).

The summand for k = 1 can be estimated with the help of (4.2) For the summand for m = 0, we

have

HW (µε
0 | µ) = HW\A((1− ε)µ0 + εµ | µ) + µ(A)ε log ε

≤ HW\A((1− ε)µ0 | µ) + µ(A)ε log ε+O(ε) = HW (µ0 | µ) + µ(A)ε log ε+O(ε).

while the remaining sum is handled as follows.

∞∑

m=1

HW (µε
m | µ)− µε

m(W ) log
(eµ(W ))−m

m!

=
∞∑

m=1

HW ((1− ε)µm | µ)− µm(W ) log
(eµ(W ))−m

m!
+O(ε).

Thus, (4.3) holds also here, which implies the claim.

4 If M(A) > 0 but µm0(A) = 0 for some m0 ≥ kmax, let µε
m0

= (1 − ε)µm0 + εM/m0, µε
m =

(1− ε)µm for m /∈ {0,m0} and, moreover νεk = νk for all k ∈ [kmax].

∞∑

m=1

mµε
m = (1− ε)

∞∑

m=1

mµm +
εm0

m0

kmax∑

k=1

k−1∑

l=1

πlνk =
kmax∑

k=1

k−1∑

l=1

πlνk,

as required.

On the other hand, we have

µ−
∞∑

m=1

µε
m ≥ µ− (1− ε)

∞∑

m=1

µm − ε(kmax − 1)

m0

µ ≥ (1− ε)µ− (1− ε)
∞∑

m=1

µm = (1− ε)µ0.
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Therefore, if we put µε
0 = µ −

∑∞
m=1 µ

ε
m, then µε

0 ≥ (1 − ε)µ0 and Ψε is an admissible trajectory

setting. Now we can proceed analogously to (3) to conclude that I(Ψε) + γS(Ψε) + βM(Ψε) <

I(Ψ) + γS(Ψ) + βM(Ψ) for sufficiently small ε > 0.

The proof of (5) is very similar to the ones of (2), (3) and (4), therefore we leave it to the reader.

4.2 Deriving the Euler–Lagrange equations

In this section, we finish the proof of Proposition 1.3. According to the results of Section 4.1, now we see that

(1.17) exhibits at least one minimizer, and all minimizers have almost everywhere positive Lebesgue density

on the corresponding powers of supp µ. Knowing this, we now carry out the perturbation analysis for the

minimizer(s) of the optimization problem in (1.17) and derive the shape of the minimizers in most explicit

terms.

We use the method of Lagrange multipliers in the framework of a perturbation argument. Let Ψ =

((νk)
kmax
k=1 , (µm)

∞
m=0) minimize (1.17). Fix any collection of signed measures Φ = ((τk)

kmax
k=1 , (σm)

∞
m=0)

such that only finitely many σm’s are different from zero, each τk and each σm has a simple function as a

Lebesgue density and they satisfy the following constraints:

(i)
kmax∑

k=1

π0τk = 0, (ii)
∞∑

m=0

σm = 0, (iii)
∞∑

m=0

mσm =
kmax∑

k=1

k−1∑

l=1

πlτk. (4.4)

Then it follows from Lemma 4.2 that, for any ε ∈ R with sufficiently small |ε|, Ψ + εΦ = ((νk +

ετk)
kmax
k=1 , (µm + εσm)

∞
m=0) is a collection of (non-negative!) measures that satisfies (1.12) and is therefore

admissible in the variational formula in (1.17). That (1.12) is satisfied follows easily from (4.4). Furthermore,

the non-negativity follows from the fact that each τk and each σm is a finite linear combination of measures

of the form 1lA dLeb withA ⊂ W . Since only finitely many such summands are involved, there is a constant

C > 0 such that |τk| ≤ Cνk and |σm| ≤ Cµm for any k ∈ [kmax] and m ∈ N0, and therefore it suffices

to take |ε| < 1/C .

From minimality, we deduce that

0 =
∂

∂ε

∣∣∣
ε=0

(
I(Ψ + εΦ) + γS(Ψ + εΦ) + βM(Ψ + εΦ)

)
. (4.5)

We calculate the latter two terms as

∂

∂ε

∣∣∣
ε=0

(
γS(Ψ + εΦ) + βM(Ψ + εΦ)

)
= γ

∑

k∈[kmax]

〈τk, fk〉+ β
∑

m∈N0

m(m− 1)σm(W ),

where, as before, we used the notation 〈µ, f〉 for the integral of a function f with respect to a measure µ.

Abbreviating M =
∑

k∈[kmax]

∑k−1
l=1 πlνk and Mτ =

∑
k∈[kmax]

∑k−1
l=1 πlτk, we see that

∂

∂ε

∣∣∣
ε=0

I(Ψ + εΦ) =
∑

k∈[kmax]

〈
τk, 1 + log

dνk
dµ⊗k

〉
+
∑

m∈N0

〈
σm, 1 + log

dµm

dµ

〉
− σm(W ) log

(eµ(W ))−m

m!

−
〈
Mτ , 1 + log

dM

dµ

〉
.

(4.6)
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Summarizing, we obtain from (4.5) that

0 =
〈
Φ,
(
(hk)k∈[kmax], (gm)m∈N0

)〉
, (4.7)

where

hk = γfk+2−k+log
dνk

d(µ⊗M⊗(k−1))
and gm = βm(m−1)+1+log

dµm

dµ
−log

(eµ(W ))−m

m!
.

We conceive Φ as an element of the vector space

A =
∏

k∈[kmax]

M±(W
k)×M±(W )N0

where M± is the set of signed measures, and ((hk)k∈[kmax], (gm)m∈N0) as a function on
∏

k∈[kmax]
W k ×

WN0 . The condition in (4.4) means that Φ is perpendicular to any function in

F =
{
((ϕk)k∈[kmax], (ψm)m∈N0) : ϕk : W

k → R, ψm : W → R bounded and measurable for any k,m,

∃Ã, B̃, C̃ : W → R : ϕk(x0, . . . , xk−1) = Ã(x0) +
k−1∑

l=1

C̃(xl),

and ψm(x) = B̃(x)−mC̃(x) for x, x0, . . . , xk−1 ∈ W
}
.

We have shown that, if Φ is perpendicular to any simple function in F , then it is also perpendicular to

((hk)k∈[kmax], (gm)m∈N0). Since F is a closed linear subspace of A, it follows that it contains this element.

That is, there are three functions Ã, B̃, C̃ on W such that, for any k respectively m,

hk(x0, . . . , xk−1) = Ã(x0)+
k−1∑

l=1

C̃(xl) and gm(x) = B̃(x)−mC̃(x), x, x0, . . . , xk−1 ∈ W.

Using an obvious substitution, this is equivalent to the existence of three positive functions A,B,C such

that

νk(dx0, . . . , dxk−1) = µ(dx0)A(x0)
k−1∏

l=1

(
C(xl)M(dxl)

)
e−γfk(x0,...,xk−1), k ∈ [kmax], (4.8)

µm(dx) = µ(dx)B(x)
C(x)m

m!
e−βm(m−1), m ∈ N0. (4.9)

From (i) and (ii) in (1.12), we can identify A and B as

1

A(x0)
=

∑

k∈[kmax]

∫

W k−1

k−1∏

l=1

(
C(xl)M(dxl)

)
e−γfk(x0,...,xk−1), (4.10)

1

B(x)
=

∑

m∈N0

C(x)m

m!
e−βm(m−1). (4.11)

Furthermore, condition (iii) says that

1

C(x)
=

1

C(x)

µ(dx)

M(dx)
ϕ(C(x)) = Γ(C dM,x), x ∈ W, (4.12)
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where ϕ(α) =
∑

m∈N0
mαm

m!
e−βm(m−1)/

∑
m∈N0

αm

m!
e−βm(m−1) for α ∈ [0,∞) and

Γ(dM̃, x) =

∫

W

µ(dx0)

∑
k∈[kmax]

∫
W k−2

∏k−2
l=1 M̃(dxl)Fk(x0, x1, . . . , xk−2, x)

∑
k∈[kmax]

∫
W k−1

∏k−1
l=1 M̃(dxl) e−γfk(x0,...,xk−1)

, (4.13)

where

Fk(x0, x1, . . . , xk−2, x) =
k−1∑

l=1

e−γfk(x0,yl), (4.14)

yl is the vector of length k−1, consisting of x1, . . . , xk−2; augmented by x at the l-th place, and M̃(dx) =

C(x)M(dx). This ends our derivation of the Euler–Lagrange equations for any minimizer Ψ of (1.17).

This description of C and M is rather implicit and involved, therefore we cannot offer any simple criterion

for the uniqueness of the minimizers of (1.17). Also, the question of continuity of the tilting functions A, B

and C is open.

Since I + γS + βM is convex, it follows that any admissible trajectory setting Ψ satisfying (4.8)–(4.14) is

a minimizer of (1.17).
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