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Localized instabilities and spinodal decomposition
in driven systems in the presence of elasticity

Esteban Meca, Andreas Münch, Barbara Wagner

Abstract

We study numerically and analytically the instabilities associated with phase separation in a
solid layer on which an external material flux is imposed. The first instability is localized within a
boundary layer at the exposed free surface by a process akin to spinodal decomposition. In the
limiting static case, when there is no material flux, the coherent spinodal decomposition is recov-
ered. In the present problem stability analysis of the time-dependent and non-uniform base states
as well as numerical simulations of the full governing equations are used to establish the depen-
dence of the wavelength and onset of the instability on parameter settings and its transient nature
as the patterns eventually coarsen into a flat moving front. The second instability is related to the
Mullins-Sekerka instability in the presence of elasticity and arises at the moving front between the
two phases when the flux is reversed. Stability analyses of the full model and the corresponding
sharp-interface model are carried out and compared. Our results demonstrate how interface and
bulk instabilities can be analysed within the same framework which allows to identify and distin-
guish each of them clearly. The relevance for a detailed understanding of both instabilities and
their interconnections in a realistic setting are demonstrated for a system of equations modelling
the lithiation/delithiation processes within the context of Lithium ion batteries.

1 Introduction

Localized instabilities in phase transformations in non-equilibrium systems have been investigated
for a long time. Possibly the most well-known example is the Mullins-Sekerka interfacial instability
of solidifying systems [1, 2], which has also been studied in the presence of elasticity for coherent
interfaces [3, 4]. Similar interaction of a diffusional instability with elasticity have also been intensely
studied and are well-known as the Asaro-Tiller-Grinfeld instability [5–7] resulting from the competition
of surface diffusion and stress relaxation.

Spinodal decomposition in the bulk is another common phenomenon that can be understood as an
instability in phase-separating systems. The celebrated theory of Cahn and Hilliard [8, 9] gave a foun-
dation for the understanding of this phenomenon as a bulk instability. Through spinodal decomposition
a system phase-separates, e.g. in a binary system regions with a higher concentration of solute are
instantaneously created. While it is well known that the Cahn-Hilliard approach has limitations [10], the
approach remains very useful for early stages of spinodal decomposition, allowing the incorporation of
additional effects, that may facilitate or suppress the instability. Most common in material science are
effects of elasticity, anisotropy [9, 11], or surface induced spinodal decomposition [12, 13]. In addition,
the coupling of spinodal decomposition with elasticity in thin films has also received much attention
in connection with defects [14–16] and also with surface instabilities, in particular the Asaro-Tiller-
Grinfeld instability [17].

Recently, the study of the interaction of spinodal decomposition and elasticity has intensified due to
newly discovered localization effects. Phase-field and KMC simulations of thin films have shown that
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the instability tends to be localized first near the free surface of the film [18–21], rediscovering a result
by Ipatova et al. [14], who showed that due to elastic effects spinodal decomposition localizes exponen-
tially close to the surface. Moreover, this exponentially-localized surface mode can become unstable
even when the bulk is stable [22]. The concentrations at which this mode is unstable lay between the
classical (chemical) spinodal and the spinodal modified by elastic effects (coherent spinodal). This
type of localized instabilities seem to underly a number of fundamental processes such as the stability
of grain boundaries in phase-separating systems that is currently receiving much attention [23, 24],
where an understanding of localized instabilities in the presence of coherency strain is of capital im-
portance. The motivation of the present study concerns an instability during the lithiation/delithiation
process of phase-changing electrodes used for example in Lithium-ion batteries [25].

It has long been known that electrode materials such as LiFePO4 undergo phase separation when
lithiated or delithiated, and this has been studied using extensions of the Cahn-Hilliard model [26, 27].
Some promising high capacity electrode materials such as amorphous silicon (a-Si), is known to also
undergo two-phase lithiation [28]. However doubts remain regarding the mechanical properties, which
have been tested for instance in the experiments of Sethuraman et al. [29]. Recently, it has been
conjectured that phase separation should be taken into account to explain the observed mechanical
properties [25], and a simplified model for the experimental setup in [29] was developed. The model
describes a thin layer of a-Si that has been grown on a crystalline substrate and is lithiated from the
free surface. The increasing concentration of lithium in the layer causes the volume of the layer to
increase, and when the concentration is high enough the system undergoes phase separation and
a highly lithiated phase is created near the free surface, showing a periodic structure for some val-
ues of the system parameters. As the pattern moves into the amorphous layer under continued flux
it coarsens into a flat front that moves into the layer. If the flux is reversed this front undergoes an
interfacial instability. Since these instabilities emerge within non-uniform driven systems it is neces-
sary to investigate the connection of localization of instabilities near the free surface with interfacial
instabilities using a unified framework.

In order to study this instability we use a viscous Cahn-Hilliard model [30] to model phase separation,
and couple the dynamics of the concentration with elasticity using what is usually referred to as the
Larché-Cahn prescription [31–33]. We also use the sharp-interface limit of this model [34], which is
valid once phase separation has taken place. Comparing the results of the phase-field model with the
sharp-interface model allows us to on the one hand validate the stability calculation and on the other
hand show how the localization of the instability occurs in the phase-field model.

We solve numerically the model in two dimensions and study the development of an instability related
with spinodal decomposition, but in the presence of a driving flux that further confines it to the free sur-
face. We study the instability by computing the eigenvalues and eigenvectors of the linearized sytem
for a laterally unbounded layer, in the "frozen-timeör adiabatic approximation [35, 36]. Additionally we
study the stability of a receding front using the same technique and relate it with the stability of the
front as described by the sharp-interface model.

In Section 2 we give a summary description of the model used, and in Section 3 we study the linearized
model. In Section 4 we give a brief description of the numerics, and in Sections 5 and 6 we present
the numerical results of the direct simulation and the different stability calculations and discuss them.
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Localized instabilities 3

2 The Model

In this section we introduce the model used. This is a model for the lithiation of a layer of amorphous
silicon that has been described elsewhere[25], and hence it is not our goal to describe in detail the
derivation of the model.

z
x

y

Substrate (c-Si)

Electrolyte

a-LixSi

a-Si

Figure 1: Scheme of the amorphous silicon layer.

In our description, we have c, a dimensionless concentration of solute (the local molar fraction of
lithium) inside of a layer of amorphous silicon (see Fig. 1). We assume that the deformations are
small, and hence we can use linear elasticity. The strain tensor εij is defined as

εij =
1

2
(∂jui + ∂iuj) , (2.1)

in terms of the deformation u, with the indices 1 ≤ i, j ≤ 3. We will use nevertheless the plane strain
approximation, and hence uz = 0 and all derivatives with respect to z cancel. The elastic energy is
defined as

W =
1

2
Cijkl

(
εij − ε0ij

) (
εkl − ε0kl

)
, (2.2)

where the summation is implied, and Cijkl is the fourth order elasticity tensor. Since the material of
interest is amorphous we will assume it to be fully isotropic. The stress-free strain or eigenstrain is
defined as ε0ij = αh(c)δij , where the constant α is the maximum stress-free strain and h(c) is an
interpolating monotone function such that h(0) = 0 and h(1) = 1. The stress is defined as follows:

σij =
∂W

∂εij
= Cijkl

(
εkl − ε0kl

)
=

E(c)

1 + ν

[
εij − ε0ij +

ν

1− 2ν
(εkk − ε0kk)δij

]
, (2.3)

whereE(c) is Young’s modulus (which depends on the concentration) and ν is Poisson’s ratio. For the
problem at hand, we assume that Young’s modulus depends on the concentration, with the extreme
values being for pure amorphous silicon E(0) = ESi and for fully lithiated a-Si E(1) = ELixSi.
The value of ν is not expected to show a strong dependence with respect to the concentration, in
accordance with Shenoy et al. [37].

The total free energy of the layer reads:

F =

∫
Ω

(
1

2
γε |∇c|2 +

γ

ε
f(c) +W (εij, c)

)
dxdy, (2.4)

where the homogeneous free energy density f(c) = c2(1−c)2/4 andW (εij, c) is the elastic energy
density as defined in Eq. (2.2). The constant γ carries the dimensions of energy over length and the
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parameter ε is proportional to the interface thickness. The chemical potential reads

µ =
δF
δc

= −γε∇2c+
γ

ε
f ′(c) + ∂cW (εij, c), (2.5)

and we use the following equation for the dynamics of the concentration:

∂tc = M∇2 (µ+ χε∂tc) , (2.6)

where M is a constant mobility and χ is the viscosity parameter. Eq. 2.6 would have the familiar form of
the Cahn-Hilliard equation but for the last term, the viscous term [30]. While this term is not commonly
used in Cahn-Hilliard-like models, it is important as it captures part of the non-equilibrium kinetics
of the interface. Gurtin [38] showed that such a term appears naturally when introducing ∂tc in the
list of constitutive variables, and it has been shown to guarantee a positive entropy production at the
interface in the sharp-interface limit[39]. The chosen scaling from that term with ε follows similarly from
the sharp-interface limit of this model (see [34]). Eqs. 2.6, 2.5 together with the mechanical equilibrium
condition

∂jσij = 0, (2.7)

are the equations that define the dynamics of our system.

In order to nondimensionalize the system, we introduce a lengthscale H0 that corresponds to the
height of the layer in the absence of lithium. The resulting system has the following form (see [25] for
the details of the scalings):

∂tc = ∇2 (µ+ εβ ∂tc) , (2.8a)

µ = −ε∇2c+
1

ε
f ′(c) + ξ ∂cW (εij, c) , (2.8b)

∂jσij = 0, (2.8c)

σij = 2G
(
εij − ε0ij

)
+

2ν

1− 2ν
G
(
εkk − ε0kk

)
δij, (2.8d)

where the constitutive laws for the nondimensional shear modulus G = E(c)/ESi and stress-free
strain ε0ij are specified as

G = 1 + g(c)

(
ELixSi

ESi

− 1

)
, ε0ij = h(c)δij,

and the derivative of the nondimensional elastic energy takes the form

∂cW (εij, c) =
(1− ν)G′

1− 2ν

(
∂1u

2
1 + ∂2u

2
2

)
+

1

2
G′ (∂1u2 + ∂2u1)2

+
2νG′

1− 2ν
∂1u1∂2u2 −

2(1 + ν)

1− 2ν
(h(c)G)′∇ · u

+
3(1 + ν)

1− 2ν

(
h(c)2G

)′
. (2.8e)

Here, h(c) and g(c) are interpolating functions such that g(0) = h(0) = 0 and g(1) = h(1) = 1. For
the boundaries in contact with the substrate, we will take a no-flux/no-deformation boundary condition:

u = 0, n · ∇c = 0, n · ∇µ = 0, (2.8f)
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wheren is the normal vector to the surface. In the case of the boundaries in contact with the electrolyte,
we take a no-traction boundary condition and, following [40], assume a consistent no-flux condition for
c (also known as variational boundary condition), together with a constant flux boundary condition

σ · n = 0, n · ∇c = 0, n · ∇µ = K(µ) = F. (2.8g)

The function K(µ), which in our case is simply equal to the constant F , is in general a nonlinear
function of the chemical potential, and relates the absorption into the layer with the outer electrical
potential. While the phenomenological Butler-Volmer relation is commonly used (see e.g. [41]) but
there exist more rigorous aproaches [27]. In our case, the constant F corresponds to a galvanostatic
lithiation regime.

The problem depends on the following non-dimensional groups:

β =
χM

H0

, F =
FrH

2
0

Mγ
, ξ =

H0ESiα
2

2(1 + ν)γ
, (2.9)

where Fr is the dimensional flux. The previous parameters, together with the elastic ratio ELixSi/ESi,
Poisson’s ratio ν and ε are the complete set of non-dimensional parameters. Note that ξ is the ratio of
elastic to interfacial energies.

For the numerical simulations we have used ELixSi/ESi = 0.44 and ν = 0.25, in accordance with
the calculations form Shenoy et al. [37].

3 Stability Analysis

In this section, we consider the case of a laterally unbounded layer that is delimited by y = 0 and
y = 1. We derive the system of equations that a linear perturbation about a basis solution given
by a one-dimensional displacement and concentration profile fulfils. Specifically, we assume a basis
solution of the form

ux(x, y, t) = 0, uy(x, y, t) = uy,0(y, t), c(x, y, t) = cy,0(y, t). (3.1)

If we perturb this solution slightly we obtain:

ux(x, y, t) = δ ux,1(y, t)eikx, (3.2a)

uy(x, y, t) = uy,0(y, t) + δ uy,1(y, t)eikx, (3.2b)

c(x, y, t) = c0(y, t) + δ c1(y, t)eikx, (3.2c)

where δ is a formal expansion parameter.

We introduce this ansatz into Eqs. (2.8) and obtain for the O(δ) terms of the stress:

σxx,1 =
2G(c0)

1− 2ν

[
ik(1− ν)ux,1 + νu′y,1 − (1 + ν)h′(c0)c1

]
− 2G′(c0)

1 + ν

1− ν
h(c0)c1, (3.3a)

σyy,1 =
2G(c0)

1− 2ν

[
(1− ν)u′y,1 + ikνux,1 − (1 + ν)h′(c0)c1

]
, (3.3b)

σxy,1 = G(c0)
(
ikuy,1 + u′x,1

)
, (3.3c)

where the prime symbol denotes derivative either with respect to the argument (as in G or h) or
derivative with respect to y, in c1, ux,1 and uy,1.
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The stress balance equations (2.8c) read

ikσxx,1 +G′(c0)∂yc0

(
ikuy,1 + u′x,1

)
+G(c0)

(
iku′y,1 + u′′x,1

)
= 0, (3.4a)

ikσxy,1 +
2G′(c0)

1− 2ν
∂yc0

[
(1− ν)u′y,1 + ikνux,1 − (1 + ν)h′(c0)c1

]
+ (3.4b)

2G(c0)

1− 2ν

[
(1− ν)u′′y,1 + ikνu′x,1 − (1 + ν)∂yc0h

′′(c0)c1 − (1 + ν)h′(c0)c′1
]

= 0.

And the concentration balance equation (2.8a) has the following form

∂tc1 = D (µ1 + εβ ∂tc1) (3.5a)

µ1 = −εDc1 +
1

ε
f ′′(c0)c1 + 2ξ

1 + ν

1− ν

[
(Gh2)′′c1 +

1 + ν

1− 2ν
Gh′2c1 (3.5b)

−Gh′ 1− ν
1− 2ν

(ikux,1 + u′y,1)− ikG′hux,1
]

where D := ∂2
y − k2.

The boundary conditions at y = 0 are

∂yc1 = 0, ∂yµ1 = 0, u1 = 0. (3.6)

and at y = 1
∂yc1 = 0, ∂yµ1 = 0, σ1 · n = 0. (3.7)

The last condition on stress can be replaced by the following conditions in terms of the displacements

u′y,1 = −ik ν

1− ν
ux,1 +

1 + ν

1− ν
h′(c0)c1, (3.8a)

u′x,1 = −ikuy,1. (3.8b)

Eqs. (3.4), (3.5) with boundary condtions (3.6), (3.7) and (3.8) can be turned into a real system of
equations with the change iux → ũx. We adopt this convention in the following.

In order to study the stability we adopt the "frozen timeäpproximation [36], also called sometimes
adiabatic approximation [35]. In this approximation, the time dependence of the coefficients of the
equation is not considered, and only the time dependence of the perturbation is taken into account
to solve the equation. In our case, this means that the time dependence that enters in Eqs. (3.4) and
(3.5) through c0 is ignored.

The solution of Eqs.. (3.4) and (3.5) can then be written as a generalized eigenvalue problem, where
the eigenvalues correspond to the growth rate of the perturbation. This generalized eigenvalue prob-
lem can then be solved numerically.

4 Numerics

The equations (2.8) have been solved in one and two dimensions using an non-linear adaptive multi-
grid algorithm for the spatial part [42] and a Crank-Nicolson time stepping scheme. This algorithm is
implemented in the solver BSAM.
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In order to solve the linearized system for the perturbations given by Eqs.. (3.4) and (3.5) the equa-
tions are discretized using a pseudospectral method, Chebyshev collocation. The resulting system
can be casted as a generalized eigenvalue problem, with the eigenvalues being the growth rate of
the perturbations. The system is then solved by Arnoldi’s method using ARPACK routines as imple-
mented in Matlab. The output of the BSAM solver is fed into the pseudospectral method by means of
a resampling and interpolation, and the resolution is increased to ensure convergence and avoid the
problems inherent to the resampling. We use four levels of refinement on the adaptive multigrid, which
corresponds to ∆x = 1.95× 10−3 at its smallest, and use a number of Chebyshev collocation points
that is enough to resolve this.

Regarding the specific choice of the auxiliary interpolating functions, we choose g(c) = c, implying
a linear decrease of Young’s modulus with c and h(c) = c, which follows from Vegard’s law for the
eigenstrain. The non-dimensional parameters β and ξ are varied across several orders of magnitude
to observe their effect, since they are not know experimentally for the model system proposed. The
value of the flux parameter k is in principle adjustable experimentally, and we have picked it to be
k = 4.0. Finally the interface width is selected to be ε = 0.005 except where indicated. See also [25]
for a comprehensive exploration of the effect of the different parameters in this system.

5 Results

5.1 Two-dimensional simulations

We have studied the behaviour of a layer with a rectangular cross-section. This study can be performed
in two dimensions through the plane-strain approximation. The layer has a ratio of height to width of
1/4, is clamped on the substrate below it and has a no-flux on all sides except the upper one, on
which the flux is applied (see Fig. 1).

The initial condition corresponds to a completely depleted undeformed layer, on which a constant
flux is applied. For the system at hand, this corresponds to a galvanostatic lithiation of the electrode.
The initially rectangular domain deforms then on the top side, since it is where most of the lithium is
accumulated. This accumulation eventually leads to phase separation on the upper part of the layer,
see Fig. 2.

Phase separation occurs in different ways depending on the values of the parameters. For a small
value of the kinetic parameter β = 0.05, the instability begins with a small pearl of the lithiated phase
formed near the corners of the layer, which spreads then towards the center of the upper side following
a periodic pattern. The instability begins in a corner due to our particular geometric choice, since it
is there where the stress is the smallest and hence phase separation in incentivated by its smaller
energy cost.

For the higher value of β = 0.5, we see in Fig. 2 that this periodic behaviour is notoriously absent,
and the onset of the instability is slightly delayed. This delay due to kinetic effects is to be expected
on general grounds (see [43] and also [25] for the application to this system), and the reason for the
instability to lose its periodicity is discussed below in connection with the stability analysis.

Increasing the value of ξ similarly delays the onset of the instability. Again, this is to be expected since
increasing ξ lowers the position of the coherent spinodal. Higher values of ξ bring nevertheless a
curious interplay of effects (see Fig. 3)

For a small value of the kinetic parameter β = 0.005 and ξ = 0.1 the instability develops but

DOI 10.20347/WIAS.PREPRINT.2387 Berlin 2017
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Figure 2: Onset of the instability for ξ = 0.1. For β = 0.05 the periodic structure near the corners
is clearly visible, as it is its evolution from the corner spot (times, from top to bottom t = 0.0378,
t = 0.0380). For β = 0.5 this periodicity is no longer present, and instead phase separation occurs
smoothly, starting likewise from the corners (times, from top to bottom t = 0.0388,t = 0.0390)

Figure 3: Effect of a higher value of ξ at the onset of the instability. The instability develops with a
mostly well-defined periodicity for ξ = 0.1 and β = 0.005, but it is very short lived as the initial
lithiated "pearls"coarsen almost immediately (times, from top to bottom t = 0.0378, t = 0.0380,
t = 0.0383). For ξ = 1.0 and β = 0.5 the instability develops in a much slower fashion and
gives rise to lithiated pearls of a greater size that persist in time (times, top to bottom t = 0.0393,
t = 0.0413, t = 0.0423).
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coarsens almost instantly. For larger values of ξ this is not the case. Even in the β = 0.5 case that
did not show any signs of instability we observe for ξ = 1.0 a periodic instability with a smaller spatial
frequency. A large value of ξ delays phase transition and hence, when it occurs, a large volume of
lithiated silicon is generated near the corners. At the interface larger values of the stress are present,
and hence the associated elastic energy discourages the phase transition near the interface, and
hence the wavelength of the instability must be larger. At the same time, the size of the initial grain is
much larger for the ξ = 1.0 case than for the ξ = 0.1 case, thus we anticipate the importance of the
nonlinear effects to explain this effect.

5.2 Linear stability analysis of the Localized modes

In this section we study the stability of the laterally unbounded system. The solution of the one-
dimensional problem is introduced into the system formed by Eqs. (3.4) and (3.5), and we solve the
associated eigenvalue problem as a function of time.

The dispersion relation is obtained by computing the largest eigenvalue as a function of the wavenum-
ber k. The results show that the dispersion relation is zero at k = 0 in the vicinity of the onset and, as
opposed to spinodal decomposition, the instability starts at a finite value of k. While this behaviour is
not evident for ξ = 0.1 (see Fig. 4a), it can clearly be observed for ξ = 1.0 (Fig. 4c), thus showing that
this is an effect that clearly stems from the coupling with elasticity. The value of k at which the growth
rate is at a maximum (kmax) increases steadily as the system becomes more unstable (see Fig. 4),
in a behaviour similar to that found for the dispersion relation associated with spinodal decomposition
(see e.g. Ref. [10]).

In addition to the dispersion relation we have also computed the most unstable eigenvectors for ξ =
0.1 and ξ = 1.0 at the onset (see Fig. 4). Results show a ver strong confinement near the surface,
with a width of the layer mostly independent of ξ. We see nevertheless that the second most-unstable
eigenvector, which is not localized, is different for ξ = 0.1 (Fig. 4b) and ξ = 1.0 (Fig. 4d), where it
strongly undershoots.

The previous localized instability can be compared with that from Tang et al. [22]. For a constant
concentration basis state, we obtain a good agreement with their results for a large enough size of
the system, despite the differences in the treatment of elasticity. Nevertheless, note that the similarity
between the leading eigenvector in Figs. 4b and 4d shows that the confinement of the eigenvectors is
an effect mostly related with the imposed flux, whereas the confinement in Ref. [22] is a consequence
of elasticity. For a small enough value of the flux F we would recover an almost-flat concentration
profile and then the scenario discussed in Ref. [22] would be the relevant one.

In Fig. 5 the evolution of the instability is visualized by computing the maximum value of the growth
rate (λmax) as a function of time. The instability develops very quickly, reaching large values of kmax
and λmax, only to decay even at a faster pace. After decaying, the instability settles for a short time
into a long-wave mode with a very small growth rate, which is unlikely to be observed.

The comparison of the results on Figs. 4 and 5 for β = 0.005, ξ = 0.1 with those shown on
Fig. 3 show that the peak of the instability corresponds indeed to the instability found in the two-
dimensional simulations. The instability peaks at t ≈ 0.038 with a value of kmax ≈ 55, which results
in a wavelength of about 0.11 units of length, which close to the one observed near the central areas
in Fig. 3.

We have additionally computed the values of λmax and kmax for different values of ξ and β. The
results are summarized in Fig. 6.
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Figure 4: Instability for β = 0.005 and ξ = 0.1 (a-b) and ξ = 1.0 (c-d). (a) Growth rate as a function
of wavenumber for the times t1 = 0.0367, t2 = 0.0367125, and t3 = 0.036725. (b) Most unstable
eigenvectors at the onset, t = 0.0367125 and k = 3.9. The solid and the dashed lines correspond
respectively to the most unstable and the second most unstable eigenvectors. (c) Growth rate as a
function of wavenumber for the times t1 = 0.0391, t2 = 0.0391125, and t3 = 0.039125. (d) Most
unstable eigenvectors at the onset, t = 0.0391125 and k = 9.55. The solid and the dashed lines
correspond again to the most unstable and the second most unstable eigenvectors.
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Figure 5: Development of the instability for β = 0.005 and ξ = 0.1. Evolution of λmax and kmax with
time.
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Figure 6: Dependence of λmax (a-c) and kmax (d-f) on ξ and β, for β = 0.005 (a,d), β = 0.05 (b,e),
and β = 0.5 (c,f).

The first thing to be noticed is that λmax is significantly different from zero only in a narrow band, the
smaller the value of β the narrower the band, see Figs. 6(a-c). This can also be seen in Fig. 5, where
λmax is different from zero only in a narrow peak. Additionally, this band has a clear slope. This slope
is of course related with coherency, higher values of ξ imply a higher importance of the elastic energy,
which is more important near the interface. These coherency strains delay phase separation, since
the concentration needs to increase in order for the chemical energy to overcome the strain energy.
Larger values of the flux parameter F would bring phase separation to earlier times and also change
this slope, since the necessary buildup of concentration would take less time. Note also that the peak
value of λmax increases with ξ, albeit slightly. Similarly, the width of the time interval where λmax is
significantly larger than zero increases with ξ, which can be more clearly appreciated in the plots of
kmax, Figs. 6(d-f).

The effect of β is also clearly shown on Fig. 6. Increasing β decreases the peak value of λmax for all
values of ξ, and at the same time widens the peak of the instability. Nevertheless, one effect does not
compensate for the other, since the integral of λmax in the instability region is much smaller for the
β = 0.5 case than for the other two. The integral corresponds to an upper bound for the logarithm
of the amplification of any perturbation, and hence we can conclude that the β = 0.5 case is more
stable in any case in the linear regime.

The increase of β also delays the instability, as it had been anticipated before. The positions of the
peak in the ξ = 0.1 case are tpeak = 0.0380, tpeak = 0.0381, and tpeak = 0.0390, for the cases
with β = 0.005, β = 0.05, and β = 0.5, respectively.

The most unstable mode kmax follows a similar dependence with time as λmax, as expected from
Fig. 5. It shows a weak dependence on ξ along the peak, similarly to λmax, and it raises much faster
from the onset than λmax, which explains the thicker band represented in Fig. 6.
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5.3 Instability of the receding front

In this section we consider a fully phase separated layer, on which a negative flux (F < 0) drives
the interface between the lithiated and nonlithiated phases towards the absorption boundary. This
receding interface in the case without elasticity is known to be unstable, in accordance with the well-
known correspondence with the Hele-Shaw problem in the sharp-interface limit [44].

In our case, the stability in the system corresponding to the sharp-interface limit has also been studied
for the β = 0 case [3, 4]. In a previous article [34] the authors have derived the sharp interface limit for
the complete model, the main results are described in Appendix A. We obtain the following dispersion
relation for perturbations of the sharp interface:

λ = −k
F + 2Ik2 + Zk

1 + 2Iβk
, (5.1)

see Appendix A for the definitions of Z and I and the details of the derivation, which is novel for the
β > 0 case. Inspection of Eq. (5.1) reveals that the F < 0 case will in general be unstable.

We can compare the dispersion relation obtained obtained with exactly the same procedure outlined
in the previous sections with Eq. (5.1). This comparison, which should be accurate for a large enough
system, fulfils a double purpose. On the one hand, it allows us to validate our results, since the two
dispersion relations are derived in two exceedingly different ways. On the other hand, it allows us to
test the convergence of the system with the value of ε.

In order to generate a receding interface we let evolve the system starting with completely depleted
layer, and reverse the sign of F at t = 0.2, when the front is approximately in the middle of the
layer. Then the dispersion relation and the eigenvalues are computed at t = 0.225, at which point the
transient corresponding to the sign reversal has decayed sufficiently. The layer is thicker than in the
previous case, with a thickness of 2, to facilitate the comparison with the unbounded case. The reversal
of F can be accomplished for the system at hand by stopping the driving current and connecting the
electrode to a load.

The comparison (Fig. 7) shows that the two methods give indeed very similar results, with a clear
improvement as ε is decreased. This good agreement is surprising, given that Eq. (5.1) is derived
for an unbounded system in the steady state, whereas the phase-field simulations are for a bounded
system (albeit with a size that is the double of the previous section) that is in a transient state. This
makes this good agreement even more remarkable. Nevertheless, the results show that the results
are not so good for smaller k, what we assume is an effect of the boundary conditions, and similarly
ε dependence is larger for large k, which again is to be expected since these modes correspond to
smaller wavelengths.

The eigenvectors corresponding to the most unstable eigenvalues at t = 0.225 have also been com-
puted for kmax = 1.94, (Fig. 8). Results show that the eigenvector from the most unstable eigenvalue
is zero almost everywhere, except in the vicinity of the interface. On the one hand, this is to be ex-
pected, since the instability, which is akin to the Mullins-Sekerka instabiilty, is localized a the interface.
On the other hand, this result is surprising, since we are treating the instabilities as a bulk phenomenon
and we have obtained this localization in a natural way. In Fig. 8 the eigenvector corresponding to the
second largest eigenvalue, which is negative, is also on display. This eigenvector is not completely
localized, but rather extends into the depleted part of the layer. This scenario is again very similar to
the one shown in Fig 4, where only the eigenvector of the positive eigenvalue is localized.

Finally, note that this long wave instability would develop very slowly when compared with the instability
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Figure 8: Instability for β = 0.05 and ξ = 0.1. Most unstable eigenvectors at t = 0.225 and
k = 1.94. The solid and the dashed lines correspond respectively to the most unstable and the
second most unstable eigenvectors.
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related with phase separation described in the previous section. The inverse of λmax = 3.12 can be
used as a proxy for the time for the development of the instability, which gives a time t = 0.32, which
is larger than all the times that have been considered in this work.

6 Conclusion

In the present article we have used an unified approach to the study of the different instabilities that are
present in the system of study. Through our study we have described a transient localized instability
related with spinodal decomposition and found an unexpected connection with a Mullins-Sekerka-like
instability that occurs in the phase separated case when the interface recedes. The present unified
approach allows thus for the systematic and simultaneous study of instabilities that are typically not
connected, allowing the mutual validation of the different techniques used to study them.

This article also incorporates the study of the role of kinetics on the transient instability, as well as
on the receding front instability. While there are previous works that have derived equations similar to
Eq. (5.1), such as [3] and [4] this is to our knowledge the only derivation that incorporates the role of
kinetics, thus we give a detailed account of the derivation in the appendix.

We have found the conditions under which the patterns formed in Figs. 2 and 3 develop, and have
characterized the instability as a transient one. Nevertheless, our approach based in the linear regime
has limitations, as exemplified by the case β = 0.5, ξ = 1.0, that according to our analysis should be
less unstable, but give in fact a pattern that lasts longer in time, as shown in Fig. 3.

Since this localized instability is transient, the linearised problem has coefficients that are time depen-
dent and non-uniform in space and hence the variables cannot be separated. A common approach
[35, 45–52] used also in this paper is to “freeze” time (only) in the coefficients and then proceed with
a traditional separation of variables ansatz. This yields exponential evolution in time at a rate that is
determined by the solution of a spatial eigenvalue problem. The question is to determine when this
method is accurate. Moreover, the obtained rate depends on the time at which the coefficients are
frozen and hence may lead to different results at different times. In particular, a system may change
from stable to unstable or vice-versa as the coefficients are taken for progressively later times, and as
is the case here, may be unstable only for a limited period of time.

To incorporate the effect of the slowly changing coefficients, a multiple scales ansatz can be used, see
for example [53, 54] and references in particular in [53]. This analysis reveals two key conclusions:
First, that the log of the amplification of each mode is given by the integral of the eigenvalue in time;
and secondly, that this approximation is the leading order contribution if the eigenvalue multiplied with
the time scale over which the coefficients change is large. In Fig. 5, the peak of the eigenvalue times
the time over which it changes is indeed large, so the the condition is satisfied. Then, the amplification
can be estimated by integrating the eigenvalue obtained from the frozen mode analysis, and then
exponentiating the result. Since the top eigenvalue changes sign, we obtain a largest amplification
after which the instability subsided. In [54] it was shown how the dominant mode can be obtained
by finding, at each time, the wave number with the largest amplification. This is not the value kmax

that is obtained in this paper, but the latter may be enough to indicate basic trends. A more detailed
investigation that determines the different time scales analytically and their impact on the amplification
of perturbations will be left to future work.

Finally, the scenario studied here in detail is relevant for applications where the flux F is high enough,
in the limit of small F we obtain the scenario described in Ref. [22]. One can thus reach that scenario
from the one described here through the continuous dependence on F . We note, that the fact that
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the system is driven changes its behaviour dramatically, from the nature of the localization of the
concentration to the finite k of the first instability, as opposed to a purely long-wavelength, spinodal-
decomposition-like instability. The characterization of this transition from a concentration-dominated
to an elastic-dominated instability is currently receiving our attention and can also be studied with the
same model, but it is out of the scope of the present work.
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A Instability of the Sharp Interface Model

In this appendix we detail the instability of the sharp interface limit of Eqs. (2.8) as computed by Meca
et al. [34]. The equations for the chemical potential and the stress read as follows:

∇2µ0 = 0, (A.1a)

∇ · σ0 = 0, (A.1b)

together with the constitutive relation for stress:

σij,0 = 2G±
(
εij,0 − ε0,±ij

)
+

2ν

1− 2ν
G±
(
εkk,0 − ε0,±kk

)
δij, (A.1c)

where G± = G(c±0 ) and ε0,±ij = h(c±0 ) are constants. The ± superindex represents the values at
the interface for both regions, the lithiated (Ω+) and the amorphous silicon phase (Ω−). These values
have to be understood as liimits. The specific values of G± and h(c±0 ) are

G± =

 1 r ∈ Ω−

ELixSi

ESi

r ∈ Ω+ , ε0,±ij =

{
h(c−)δij = 0 r ∈ Ω−

h(c+)δij = δij r ∈ Ω+ . (A.1d)

Relation (A.1c) can be inverted to yied

εij,0 = ε0,±ij +
1

2G±
σij,0 −

1

2G±
ν

1 + ν
δijσkk (A.1e)

for the strain tensor. This relation is explicitly used below.

Similarly, from the plane strain approximation the value of σzz,0 can be computed as follows:

σzz,0 = −2(1 + ν)G±ε0,±zz + ν (σxx,0 + σyy,0) . (A.1f)
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The boundary conditions at the free boundary for the elasticity equation correspond to continuity for
the elastic field and for the tractions across the interface:

u+
0 = u−0 , (A.1g)

n · σ+
0 = n · σ−0 . (A.1h)

For the chemical potential equation we have at the interface away from the absorption boundary:

µ±0 (c+
0 − c−0 ) =− (β vn +K) I +

ξ

2

[
σ+
ij,0

(
ε+ij,0 − δijh(c+

0 )
)
− σ−ij,0

(
ε−ij,0 − δijh(c−0 )

)]
− ξ σ+

ij,0

(
ε+ij,0 − ε−ij,0

)
, (A.1i)

(
c+

0 − c−0
)
vn =−

(
∂rµ

+
0 − ∂rµ−0

)
, (A.1j)

where I =
∫ 1

0

√
2f(φ) dφ. The conditions at the substrate are

∂yµ0|y=0 = 0, (A.1k)

u|y=0 = 0, (A.1l)

and at the absorption boundary we have:

∂yµ0|y=1 = F, (A.1m)

σiy,0|y=1 = 0, i = x, y. (A.1n)

At the triple junctions the angle is α = π/2.

This systems admits a one-dimensional travelling-wave solution, with the interface located at yI =
−Ft. All of the components of the strain tensor are zero except for εyy,0, which reads

εyy,0 =

{
0 y < yI
1 + ν

1− ν
y > yI

, (A.2)

which implies that ux,0 = uz,0 = 0 and therefore

uy,0 =

{
0 y < yI
1 + ν

1− ν
(y + Ft) y > yI

. (A.3)

Similarly, the value of all components of stress is zero except for σxx,0 and σzz,0, they are both equal
to

σxx,0 =

 0 y < yI

−2
ELixSi

ESi

1 + ν

1− ν
y > yI

. (A.4)

Finally, we have for the chemical potential

µy,0 =


IFβ + ξ

ELixSi

ESi

1 + ν

1− ν
y < yI

F (y + Ft) + IFβ + ξ
ELixSi

ESi

1 + ν

1− ν
y > yI

, (A.5)

which is obviously continuous. Notice that in all the previous cases a temporal translation is enough to
give the appropriate initial conditions, and that this travelling wave fulfils all of the boundary conditions
at the interface and on the outer boundaries.
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A.1 Stability of the one-dimensional solution

The previously described solution can be perturbed in order to asses its stability. We will use an Airy
stress function in order to treat in a unified way the displacement vector and the strain and stress
tensors.

σxx = ∂2
yφ, σyy = ∂2

xφ, σxy = −∂2
xyφ. (A.6)

It can be proved that φ satisfies the biharmonic equation

∇2∇2φ = 0, (A.7)

as long as the elastic constants do not vary and there is a constant or linearly varying eigenstrain.
Fields φ and µ are perturbed as follows:

φ = φ0 + εφ1, (A.8a)

µ = µ0 + εµ1, (A.8b)

where ε is a formal expansion parameter. We take φ1 and µ1 as periodic in the x direction, and
assume an exponential dependence on time:

φ1 = eλteikxΦ(y), (A.9a)

µ1 = eλteikxM(y). (A.9b)

Substituting (A.8) and (A.9) into Eqs. (A.1a) and (A.7) linear ODEs are obtained that give the following
general solution:

Φ(y) = (A±1 + A±3 y)e−ky + (A±2 + A±4 y)eky, (A.10a)

M(y) = B±1 e
−ky +B±2 e

ky, (A.10b)

where A±i and B±i are constants, and the ± superindices denote both sides of the interface. The
position of the interface is similarly perturbed:

Υ(x) = yI(t) + εΥ1e
λteikx, (A.11)

where Υ1 is a constant. From the previous equation we obtain the form of the normal vector:

n =
1√

(∂xΥ)2 + 1

(
−∂xΥ

1

)
=

(
0
1

)
+ ε

(
ikΥ1e

λteikx

0

)
+O

(
ε2
)
. (A.12)

The perturbations (A.9) and (A.11) contain a total of 13 constants. They can be found from the bound-
ary conditions (A.1g), (A.1h), (A.1i), (A.1j), (A.1k), (A.1l), (A.1m), and (A.1n), which also sum 13 con-
ditions.

The introduction of the perturbations in the equations will lead to a homogeneous system of 13 equa-
tions. They would give rise to a homogeneous system, and requiring that there exists a solution other
than the trivial results in a dispersion relation that gives the growth rate σ as a function of the wavenum-
ber k.
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A.1.1 Solution of the Unbounded Case

In this case we can use a travelling wave ansatz for the perturbation, by changing y → ỹ + yI , such
that y = yI implies ỹ = 0 (we drop the tilde signs from now on). The equations are invariant under
this transformation, and the equations are considerably simplified. The solutions are the same, but
imposing that the perturbations are finite at infinity gives directly:

A−1 = A−3 = A+
2 = A+

4 = B−1 = B+
2 = 0, (A.13)

which simplifies the equations considerably. From the conservation condition (A.1j) we obtain

−F + ελΥ1e
λteikx = −F − εk

(
−B+

1 −B−2
)
eλteikx, (A.14)

and hence
λΥ1 = k

(
B+

1 +B−2
)
. (A.15)

In order to write the form of the local equilibrium condition (A.1i), we need the explicit form of the stress
and strain tensors. For r ∈ Ω+ we have that

σxx = −2
ELixSi

ESi

1 + ν

1− ν
+ ε

[
k2A+

1 +
(
k2y − 2k

)
A+

3

]
eλteikxe−ky (A.16a)

σyy = −εk2
(
A+

1 + A+
3 y
)
eλteikxe−ky (A.16b)

σxy = −εik
(
A+

3 − kA+
1 − kA+

3 y
)
eλteikxe−ky (A.16c)

The value of σzz can be computed from the previous equations by using Eq. (A.1f), which results in

σzz = −2
1 + ν

1− ν
ELixSi

ESi

− 2νkεA+
3 e

λteikxe−ky. (A.17)

Therefore,

σkk = −4
1 + ν

1− ν
ELixSi

ESi

− 2(1 + ν)kεA+
3 e

λteikxe−ky. (A.18)

By using the previous result and Eq. (A.1e), the non-zero components of the strain tensor can be
computed

εxx =
1

2G+
ε
[
k2A+

1 +
(
k2y − 2(1− ν)k

)
A+

3

]
eλteikxe−ky (A.19a)

εyy =
1 + ν

1− ν
− 1

2G+
ε
[
k2A+

1 + (k2y − 2νk)A+
3

]
eλteikxe−ky, (A.19b)

εxy = − 1

2G+
εik
(
A+

3 − kA+
1 − kA+

3 y
)
eλteikxe−ky. (A.19c)

The displacement functions can be obtained by integration (by using the definition of the shear stress
as a compatibility condition),

ux =

∫
εxxdx+ Ay + x0, (A.20a)

uy =

∫
εyydy − Ax+ y0, (A.20b)
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i.e. the displacements associated with strain plus an infinitesimal rotation of angle A and a translation
(x0, y0), two strainless transformations. Since both of these additions imply a displacement at infinity
we can safely ignore them. The final result is then

ux = −i 1

2G+
ε
[
kA+

1 + (ky − 2(1− ν))A+
3

]
eλteikxe−ky, (A.21a)

uy =
1 + ν

1− ν
y +

1

2G+
ε
[
kA+

1 + (ky + 1− 2ν)A+
3

]
eλteikxe−ky. (A.21b)

Of course the displacements are real and we will only retain the real part in the end.

For r ∈ Ω− we have that

σxx = ε
[
k2A−2 +

(
k2y + 2k

)
A−4
]
eλteikxeky (A.22a)

σyy = −εk2
(
A−2 + A−4 y

)
eλteikxeky (A.22b)

σxy = −εik
(
A−4 + kA−2 + kA−4 y

)
eλteikxeky (A.22c)

The value of σzz and σkk can likewise be found:

σzz = 2νkεA−4 e
λteikxe−ky, (A.23)

σkk = 2(1 + ν)kεA−4 e
λteikxe−ky. (A.24)

Also the non-zero strain elements:

εxx =
1

2G−
ε
[
k2A−2 +

(
k2y + 2(1− ν)k

)
A−4
]
eλteikxeky, (A.25a)

εyy = − 1

2G−
ε
[
k2A−2 + (k2y + 2kν)A−4

]
eλteikxeky, (A.25b)

εxy = − 1

2G−
εik
(
A−4 + kA−2 + kA−4 y

)
eλteikxeky. (A.25c)

Proceeding in the same way as before, we obtain the displacements

ux = −i 1

2G−
ε
[
kA−2 + (ky + 2(1− ν))A−4

]
eλteikxeky, (A.26a)

uy = − 1

2G−
ε
[
kA−2 + (ky − 1 + 2ν)A−4

]
eλteikxeky. (A.26b)

We can introduce the previous expressions for the displacement and the stress in Eqs. (A.1g) and
(A.1h), and substitute y = εΥ1e

λteikx. Retaining terms at O(ε) we obtain

kA+
1 − 2(1− ν)A+

3 −
ELixSi

ESi

[
kA−2 + 2(1− ν)A−4

]
= 0 (A.27a)

2
ELixSi

ESi

1 + ν

1− ν
Υ1 + kA+

1 + (1− 2ν)A+
3 +

ELixSi

ESi

[
kA−2 − (1− 2ν)A−4

]
= 0 (A.27b)

−2
ELixSi

ESi

1 + ν

1− ν
Υ1 − A+

3 + kA+
1 + A−4 + kA−2 = 0 (A.27c)

A+
1 − A−2 = 0 (A.27d)
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We obtain two additional conditions from Eq. (A.1i)

FΥ1 +B+
1 = −

(
k2 + λβ

)
IΥ1 (A.28a)

+ ξ
1 + ν

1− ν

{
k2A+

1 −
ELixSi

ESi

[
k2A−2 + 2(1− ν)kA−4

]}
,

B−2 = −
(
k2 + λβ

)
IΥ1 (A.28b)

+ ξ
1 + ν

1− ν

{
k2A+

1 −
ELixSi

ESi

[
k2A−2 + 2(1− ν)kA−4

]}
.

Eqs. (A.15), (A.27) and (A.28) constitute then the expected homogeneous system of 7 equations with
seven unknowns, A+

1 , A−2 , A+
3 , A−4 , B+

1 , B−2 and Υ1. Imposing that the determinant is zero to obtain
other solutions than the trivial leads to the following expression for the growth rate λ:

λ = −k
F + 2Ik2 + Zk

1 + 2Iβk
, (A.29)

where Z is a constant:

Z = 8ξ

ELixSi

ESi

(
1 +

ELixSi

ESi

)
(1 + ν)2(

3− 4ν +
ELixSi

ESi

)
(1− ν)

, (A.30)

which contains all the elastic constants. Clearly, we recover the expected Mullins-Sekerka dispersion
relation (augmented with the kinetic term) in the limit ξ → 0, and the constant Z > 0, and hence it
will have an stabilizing effect.
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