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Adaptive regularization for image reconstruction
from subsampled data

Michael Hintermüller, Andreas Langer, Carlos N. Rautenberg, Tao Wu

Abstract

Choices of regularization parameters are central to variational methods for image restoration.
In this paper, a spatially adaptive (or distributed) regularization scheme is developed based on
localized residuals, which properly balances the regularization weight between regions containing
image details and homogeneous regions. Surrogate iterative methods are employed to handle
given subsampled data in transformed domains, such as Fourier or wavelet data. In this respect,
this work extends the spatially variant regularization technique previously established in [15],
which depends on the fact that the given data are degraded images only. Numerical experiments
for the reconstruction from partial Fourier data and for wavelet inpainting prove the efficiency of
the newly proposed approach.

1 Introduction

Image restoration is one of the fundamental tasks in image processing. The quality of the obtained
reconstructions depends on several input factors: the quality of the given data, the choice of the regu-
larization term or prior, the proper balance of data fidelity versus filtering, and perhaps several more.
The goal of the present paper is to reconstruct an image, defined over the two-dimensional Lipschitz
(image) domain Ω, from contaminated data f , defined over the data domain Λ. Given the original
image û : Ω→ R, the data formation model is assumed to be

f = Kû+ η, (1)

where Kû represents possibly subsampled data which results from a linear sampling strategy and η
is related to white Gaussian noise (with zero mean). A more precise description of the data formation
model is postponed until section 2.

A popular approach to image restoration rests on variational methods, i.e., the characterization of the
reconstructed image u as the solution of a minimization problem of the type

min
u

Φ(u; f) + αR(u), (2)

where Φ(·; f) represents a data fidelity term, R(·) an appropriate filter or prior, and α > 0 a reg-
ularization parameter which balances data fidelity and filtering. The choice of Φ is typically dictated
by the type of noise contamination. As long as Gaussian noise is concerned, following the maximum
likelihood we choose

Φ(u; f) =
1

2
‖Ku− f‖2

L2(Λ).

On the other hand,R encodes prior information on the underlying image. For the sake of edge preser-
vation, we choose

R(u) = |Du|(Ω), (3)
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i.e., the total variation of a function u (see equation (5) below for its definition). Then the resulting
model (2) becomes the well-known Rudin-Osher-Fatemi (ROF) model [31] which has been studied
intensively in the literature; see, e.g., [6, 7, 8, 14, 21, 24, 29, 33, 34] as well as the monograph [38]
and many references therein.

It is well known that the proper choice of α is delicate. A general guideline is the following one: Large
α favorably removes noise in homogeneous image regions, but it also compromises image details in
other regions; Small α, on the other hand, might be advantageous in regions with image details, but it
adversely retains noise in homogeneous image regions. For an automated choice of α in (2) several
methods have been devised; see for example [10, 18, 20, 32, 40] and the references therein, and
see [22, 25] for the spatially distributed α methods. We note that instead of considering (2) one may
equivalently study λΦ(u; f) + R(u) with λ = 1/α. Based on this view and considering a piecewise
constant function λ over the image domain, where the partitioning of the image into pieces is due
to a pre-segmentation, in [2] a scalar λi, i = 1, . . . #pieces, for each segment is computed by an
augmented-Lagrangian-type algorithm. While still operating in a deterministic regime, [2] interestingly
uses a distributed (more precisely a piecewise constant) parameter function λ.

Later it was noticed that stable choices of λ (or respectively α) have to incorporate statistical properties
of the noise. In this vein, in [1, 15] automated update rules for λ based on statistics of local constraints
were proposed. For statistical multiscale methods we refer to [16, 17, 26]. A different approach has
been proposed in [35] for image denoising only, where non-local means [4] has been used to create
a non-local data fidelity term. While the methods in [1, 15, 23] are highly competitive in practice,
the adjustment of λ requests the output of K to be a deteriorated image which is again defined
over Ω. This, however, limits the applicability of these approaches in situations where K involves
transformation of an image into a different type of data output space. Particular examples of such
transformations include wavelet or Fourier transforms. It is therefore the goal of this paper to study
the approach of [15] in the context of reconstructing from such non-image data, possibly coupled with
subsampling for the sake of fast data acquisition.

Here we also mention other spatially weighted total variation methods from the existing literatures.
Very often these methods, different from [15, 23] (and also the present paper), weight the total variation
locally by certain edge indicators. In [9, 42, 43] the difference of the image curvature was used as an
edge indicator, while alternatively the (modified) difference of eigenvalues of the image Hessian was
considered by [41, 30]. Recently, the authors in [27, 28] used similar edge indicators to weight the total
variation anisotropically under the framework of quasi-variational inequalities.

The rest of the paper is organized as follows. Section 2 describes in detail the problem settings and
the notations. Our adaptive regularization approach is presented in section 3. Section 4 concludes the
paper with numerical experiments on reconstruction of partial Fourier data and wavelet inpainting.

2 Problem Settings and Notations

In the data formation model (1), we shall consider the continuous linear operator K as a composition
of two linear operators, i.e., K = S ◦ T . More precisely, T : L2(Ω)→ L2(Λ) is a linear orthogonal
transformation which preserves the inner product, i.e., 〈u, v〉L2(Ω) = 〈Tu, Tv〉L2(Λ) for any u, v ∈
L2(Ω). Typical examples of T include Fourier and orthogonal wavelet transforms. Further, we denote
the subsampling domain by Λ̃, which is assumed to be a (measurable) subset of Λ of finite positive
measure, i.e., 0 < |Λ̃| < ∞. Define 1Λ̃ as the characteristic function on Λ̃, i.e., 1Λ̃ equals 1 on
Λ̃ and 0 elsewhere. Then the so-called subsampling operator S : L2(Λ) → L2(Λ) is defined by
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Adaptive regularization for image reconstruction from subsampled data 3

(Sf)(y) = 1Λ̃(y)f(y) almost everywhere (a.e.) on Λ. It is worth mentioning that S is an orthogonal
projection which satisfies idempotency, i.e., S2 = S, and self-adjointness, i.e., S∗ = S, and that the
range of S, denoted by RanS, is a closed subspace of L2(Λ). In this setting, we consider the noise
η as an arbitrary oscillatory function in RanS with∫

Λ̃

η dy = 0, and

∫
Λ̃

|η|2dy = σ2|Λ̃|, (4)

for some σ > 0. As a direct consequence, the data f according to (1) also lies in RanS.

For u ∈ L1(Ω), the total variation term |Du|(Ω) in (3) is defined as follows:

|Du|(Ω) := sup
{∫

Ω

u div ~p dx : ~p ∈ C1
0(Ω;R2), ‖~p‖L∞(Ω) ≤ 1

}
. (5)

Here, C1
0(Ω;R2) denotes the set of all R2-valued continuously differentiable functions on Ω with

compact support.

3 Adaptive Regularization Approach

The focus of this paper is to reconstruct a high-quality image from subsampled data in a non-image
data domain using an adaptive regularization approach. The present section is structured as follows.
In section 3.1, we introduce the surrogate iteration method for solving the ROF-model [31]. Then in
section 3.2 we incorporate spatially adaptive regularization into the surrogate iteration. We further
accelerate the spatial adaptive algorithm by hierarchical decomposition.

3.1 ROF-Model and Surrogate Iteration

Our variational paradigm is chosen to follow Rudin, Osher and Fatemi [31], which allows to preserve
edges in images. Further, due to the properties of the noise term η in (4), the ROF-model restores the
image by solving the following constrained optimization problem:

minimize (min) |Du|(Ω) over u

subject to (s.t.)

∫
Λ̃

Kudy =

∫
Λ̃

f dy,∫
Λ̃

|Ku− f |2dy = σ2|Λ̃|.

(6)

Usually (6) is addressed via the following unconstrained optimization problem:

min
u
|Du|(Ω) +

λ

2

∫
Λ̃

|Ku− f |2 dy (7)

for a given constant λ > 0. Note that, sinceKu−f ∈ RanS, the objective in (7) remains unchanged
if the integration in the second term of the objective is performed over Λ rather than Λ̃. Assuming that
K does not annihilate constant functions, one can show that there exists a constant λ ≥ 0 such that
the constrained problem (6) is equivalent to the unconstrained problem (7); see [7].
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For our purposes we modify the objective in (7) in order to handle the presence of the operator K .
Hence, instead of tackling (7) directly we introduce a so-called surrogate functional S [12]. In this vein,
for given a ∈ L2(Ω), S is defined as

S(u, a) := |Du|(Ω) +
λ

2

(
‖Ku− f‖2

L2(Λ) + δ‖u− a‖2
L2(Ω) − ‖K(u− a)‖2

L2(Λ)

)
= |Du|(Ω) +

λδ

2
‖u− fK(a)‖2

L2(Ω) + φ(a,K, f, λ),

(8)

with

fK(a) := a− 1

δ
K∗(Ka− f) ∈ L2(Ω),

where we assume δ > 1. Since ‖S∗‖ = ‖S‖ ≤ 1 and ‖T ∗‖ = ‖T‖ = 1, we have ‖K‖ ≤ 1 < δ.
We note that here and below ‖ · ‖ denotes the operator norm ‖ · ‖L(L2(Ω)). We also emphasize that φ
is a function independent of u. It is readily observed that minimization of S(u, a) over u is no longer
affected by the action ofK . Rather, minimizing S(u, a) for fixed a resembles a typical image denoising
problem. In order to approach a solution of (7), we consider the following iteration.

Surrogate Iteration: Choose u(0) ∈ L2(Ω). Then compute for k = 0, 1, 2, ...

u(k+1) := arg min
u
|Du|(Ω) +

δ

2

∫
Ω

λ|u− f (k)
K |

2dx. (9)

with f (k)
K := fK(u(k)).

It can be shown that the iteration (9) generates a sequence (u(k))k∈N which converges to a minimizer
of (7); see [12, 13]. Moreover, the minimization problem in (9) is strictly convex and can be efficiently
solved by standard algorithms such as the primal-dual first-order algorithm [6], the split Bregman
method [19], or the primal-dual semismooth Newton algorithm [24].

3.2 Hierarchical Spatially Adaptive Algorithm

The problem in (9) is related to the globally constrained minimization problem

min
u
|Du|(Ω) s.t.

∫
Ω

|u− f (k)
K |

2dx ≤ A, (10)

where A > 0 is a constant depending on σ and K ; see [7]. In order to enhance image details
while preserving homogeneous regions, we localize the constraint in (10), which leads to the modified
variational model:

min
u
|Du|(Ω) s.t. S(u) ≤ A a.e. in Ω. (11)

Here the local variance term S(u)(·) :=
∫

Ω
w(·, x)|u − fK(u)|2(x)dx is defined for some given

localization filter w. Thus the constraint in (11) with u = u(k+1) reads

S(u(k+1))(·) =

∫
Ω

w(·, x)
∣∣u(k+1) − u(k) +

1

δ
K∗(Ku(k) − f)

∣∣2(x)dx ≤ A. (12)

Given the convergence result, as k → ∞, for scalar λ alluded to in connection with (9), one expects
the term u(k+1) − u(k) to vanish. This indicates that

∫
Ω
w(·, x)|1

δ
K∗(Ku(k) − f)|2(x)dx ≤ A is
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Adaptive regularization for image reconstruction from subsampled data 5

expected in the limit. This consideration leads to the following pointwisely constrained optimization
problem:

min
u
|Du|(Ω) s.t.

∫
Ω

w(·, x)
∣∣∣1
δ
K∗(Ku− f)

∣∣∣2(x)dx ≤ A a.e. in Ω. (13)

Next we discuss the choice of A. In view of the (global) estimate for the backprojected residual
K∗(Kû− f), i.e.,

‖K∗(Kû− f)‖2
L2(Ω) ≤ ‖K∗‖2‖Kû− f‖2

L2(Λ) ≤ σ2|Λ̃|,

we thus choose

A :=
σ2|Λ̃|
δ2

.

In deriving the above inequalities, we have used the facts that ‖K∗‖ = ‖K‖ ≤ 1 and ‖Kû −
f‖2

L2(Λ) = σ2|Λ̃|.
In a discrete setting, we now describe a strategy, based on a statistical local variance estimator, to
adapt the spatially variant regularization parameter λ. For this purpose, consider a discrete image u
defined over the discrete 2D index set Ωh (of cardinality |Ωh|), whose nodes lie on a regular grid of
uniform mesh size h :=

√
1/|Ωh|. The total variation of a discrete image u is denoted by |Du|(Ωh);

see (15) below for a precise definition. We also define the residual image associated with fK(·) by

r(u) := fK(u)− u.

Concerning the filter w associated with S in (11), we exemplarily choose the mean filter pertinent to
a square window centered at x. For this reason and in our discrete setting, we define the averaging
window

Ωω
i,j :=

{
(i+ hs, j + ht) : s, t ∈

[
−ω − 1

2
,
ω − 1

2

]
∩ Z
}
,

where ω > 1 is an odd integer representing the window size, and then compute the estimated local
variance at (i, j) ∈ Ωh by

Sω(u)i,j :=
1

ω2

∑
(̃i,j̃)∈Ωω

i,j

∣∣r(u)ĩ,j̃
∣∣2 .

Given the reconstruction un associated with λn, we use Sω(un) to check whether λn should be
updated or it already yields a successful reconstruction un. In particular, motivated by [15], we intend
to increase λn at the pixels where the corresponding local variance violates the upper estimate A.
More specifically, we utilize the following update rule:

(λn+1)i,j =
ζn
ω2

∑
(̃i,j̃)∈Ωω

i,j

min

{
λ̄,

(
(λn)ĩ,j̃ + ρn‖λn‖`∞

(√
S̃ω(un)ĩ,j̃/A− 1

))}
. (14)

Here

S̃ω(u)i,j :=

{
Sω(u)i,j, if Sω(u)i,j > A,

A, otherwise,

λ̄ > 0 is a prescribed upper bound, and ‖λn‖`∞ is a scaling factor suggested in [15]. Two step-size
parameters, ζn > 1 and ρn > 0, will allow a backtracking procedure should λn+1 be overshot by (14),
on which we refer to the HSA algorithm below for a more detailed account.

We are now ready to present our (basic) spatially adaptive (SA) image reconstruction algorithm.
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SA Algorithm: Initialize u0 ∈ RΩh , λ1 ∈ RΩh
+ , n := 1. Iterate as follows until a stopping

criterion is satisfied:

1) Set u(0)
n := un−1. For each k = 0, 1, 2, ..., compute u(k+1)

n according to

u(k+1)
n := arg min

u
|Du|(Ωh) +

δh2

2

∑
(i,j)∈Ωh

(λn)i,j
∣∣(u− f (k)

n )i,j
∣∣2 ,

with f (k)
n := u

(k)
n − 1

δ
K∗(Ku

(k)
n − f). Let un be the outcome of this iteration.

2) Update λn+1 according to (14). Set n := n+ 1.

While the SA algorithm functions well in its own right, following [15] we further accelerate this algorithm
by employing a hierarchical decomposition of the image into scales. This idea, introduced by Tadmor,
Nezzar and Vese in [36, 37], utilizes concepts from interpolation theory to represent a noisy image as
the sum of “atoms” u(l), where every u(l) extracts features at a scale finer than the one of the previous
u(l−1). This method acts like an iterative regularization scheme, i.e., up to some iteration number l̄ the
method yields improvement on reconstruction results with a deterioration (due to noise influence and
ill-conditioning) beyond l̄.

Here we illustrate the basic workflow of hierarchical decomposition in a denoising problem (i.e., where
K equals the identity). Given the exponential scales {ζ lλ0 : l = 0, 1, 2, ...} with λ0 ∈ RΩh

+ and
ζ > 1, the hierarchical decomposition operates as follows:

1 Initialize u0 ∈ RΩh by

u0 := arg min
u
|Du|(Ωh) +

h2

2

∑
(i,j)∈Ωh

(λ0)i,j |(u− f)i,j|2 .

2 For l = 0, 1, ..., set λl+1 := ζλl and vl := f − ul. Then compute

dl := arg min
u
|Du|(Ωh) +

h2

2

∑
(i,j)∈Ωh

(λl+1)i,j |(u− vl)i,j|2 ,

and update ul+1 := ul + dl.

Now we incorporate such a hierarchical decomposition into the SA algorithm, which we shall refer to as
the hierarchical spatially adaptive (HSA) algorithm. We note that all minimization (sub)problems in the
HSA algorithm are solved by the primal-dual Newton method in [24]. There, the original ROF-model
is approximated by a variational problem posed in H1

0 (Ω) via adding an additional regularization term
µ
2
‖∇u‖2

L2(Ω), with 0 < µ� 1/(ess supλ), to the objective and assuming, without loss of generality,
homogeneous Dirichlet boundary conditions. In this case, the (discrete) total variation is given by

|Du|(Ωh) = h
∑

(i,j)∈Ωh

(
|ui+1,j − ui,j|+ |ui,j+1 − ui,j|

)
, (15)

with ui,j = 0 whenever (i, j) /∈ Ωh. We refer to [24] for a detailed account of this algorithm.

We also remark that the initial λ1 ∈ RΩh
+ should be sufficiently small such that the resulting normalized

data-fitting error θ1 is much larger than 1. Then the HSA iterations are responsible for (monotonically)
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Adaptive regularization for image reconstruction from subsampled data 7

lifting up λn in a spatially adaptive fashion as described earlier in this paper. Such a lifting is performed
until the data-fitting error ‖Kun − f‖2

`2/|Λ̃h| approaches the underlying noise level σ2. If the data-
fitting error drops too far below σ2, then the algorithm may suffer from overfitting the noisy data. In
this scenario, we backtrack on λn through potential reduction of ζn and ρn; see step 3 of the HSA
algorithm.

HSA Algorithm: Input parameters δ > 1, ω ∈ 2N + 1. Initialize u0 ∈ RΩh , λ1 ∈ RΩh
+

(sufficiently small), ζ0 > 1, ρ0 > 0.

1) Set u(0)
0 := u0. For each k = 0, 1, 2, ..., κ0, compute u(k+1)

0 by

u
(k+1)
0 := arg min

u
|Du|(Ωh) +

δh2

2

∑
(i,j)∈Ωh

(λ1)i,j

∣∣∣(u− f (k)
0 )i,j

∣∣∣2 ,
with f (k)

0 := u
(k)
0 − 1

δ
K∗(Ku

(k)
0 − f). Let u1 be the outcome of this iteration, and

set n := 1.

2) Set vn := f −Kun−1 and d(0)
n := 0. For each k = 0, 1, 2, ..., κn, compute d(k+1)

n

by

d(k+1)
n := arg min

u
|Du|(Ωh) +

δh2

2

∑
(i,j)∈Ω

(λn)i,j
∣∣(u− f (k)

n )i,j
∣∣2 ,

with f (k)
n := d

(k)
n − 1

δ
K∗(Kd

(k)
n − vn). Let dn be the outcome of this iteration, and

update un := un−1 + dn.

3) Evaluate the (normalized) data-fitting error

θn :=
‖Kun − f‖2

`2

σ2|Λ̃h|
.

If θn > 1, then set ñ := n, ζn := ζn−1, ρn := ρn−1, and continue with step 4;
If 0.8 ≤ θn ≤ 1, then return un, λn and stop;
If θn < 0.8, then set un := uñ, λn := λñ, ζn :=

√
ζn−1, ρn := ρn−1/2, and

continue with step 4.

4) Update λn+1 according to formula (14). Set n := n+ 1 and return to step 2.

4 Numerical Experiments

In this section, we present numerical results of the newly proposed HSA algorithm for two applications,
namely reconstruction from partial Fourier data and wavelet inpainting. All experiments reported here
were performed under Matlab. The image intensity is scaled to the interval [0, 1] in advance of our
computation. For the HSA algorithm, we always choose the following parameters: δ = 1.2, ω = 11,
ζ0 = 2, ρ0 = 1, λ̄ = 106, u0 = K∗f . In the primal-dual Newton algorithm [24], we choose the H1-
regularization parameter µ = 10−4, the Huber smoothing parameter γ = 10−3, and terminate the
overall Newton iterations as soon as the initial residual norm is reduced by a factor of 10−4. Besides,
the maximum iteration numbers {κn} for the surrogate iterations are adaptively chosen such that
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‖d(κn)
n − d(κn−1)

n ‖`2 ≤ 10−6
√
|Ωh|.

The images restored by HSA are compared, both visually and quantitatively, with the ones restored by
the variational model in (7) with scalar-valued λ. For quantitative comparisons among restorations, we
evaluate their peak signal-to-noise ratios (PSNR) [3] and also the structural similarity measures (SSIM)
[39]; see Table 1. To optimize our choice for each scalar-valued λ, we adopt a bisection procedure, up
to a relative error of 0.02, to maximize the following weighted sum of the PSNR- and SSIM-values of
the resulting scalar-λ restoration

PSNR(λ)

max{PSNR(λ̃) : λ̃ ∈ I}
+

SSIM(λ)

max{SSIM(λ̃) : λ̃ ∈ I}

over the interval I = [102, 105]. The maximal PSNR and SSIM in the above formula are pre-computed
up to a relative error of 0.001.

Figure 1: Test images (from left to right): “Cameraman", “Knee", and “Barbara".

4.1 Reconstruction of Partial Fourier Data

In magnetic resonance imaging, one aims to reconstruct an image which is only sampled by partial
Fourier data and additionally distorted by additive white Gaussian noise of zero mean and standard
deviation σ. Here the data-formation operator is given by K = S ◦ T , where T is a 2D (discrete)
Fourier transform and S represents a downsampling of Fourier data. In particular, we consider S
which picks Fourier data along radial lines centered at zero frequency.

Our experiments are performed for the test images “Cameraman” and “Knee” with σ ∈ {0.05, 0.1}
and #radials ∈ {75, 90, 105} respectively. In these experiments, we have always initialized HSA with
λ1 = 100. The resulting restorations via the total-variation method with scalar-valued λ and via our
HSA method are both displayed in Figures 2 and 3. We also show the ultimate spatially adapted λ
from HSA in each test run, where the light regions in the λ-plot correspond to high values of λ and
vice versa. It is observed that the values of λ in regions containing detailed features (e.g. the camera
and the tripod in “Cameraman") typically outweigh its values in more homogeneous regions (e.g. the
background sky in “Cameraman"). As a consequence, this favorably yields a sharper background-
versus-detail contrast in the restored images via HSA. According to the quantitative comparisons
reported in Table 1, HSA almost always outperforms scale-valued λ in terms of PSNR and SSIM.
As a side remark, it is also observed that the spatially adapted λ via HSA is able to capture more
features of the underlying image at a lower noise level.

To test the robustness of HSA, we perturb our choices of the window size ω and the initial choice of
λ in our experiments. In Figure 4, we report the resulting PSNRs and SSIMs of such sensitivity tests
on the particular Fourier-Cameraman example with σ = 0.05 and #radials = 90. It is observed that
HSA behaves relatively stable with different choices of ω. On the other hand, one should be cautioned
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Adaptive regularization for image reconstruction from subsampled data 9

that the results of HSA deteriorate as the initial λ is chosen too large. Nevertheless, among all initial
λ’s smaller than a certain threshold (in this case 200), smaller choices do not always claim advantages
over larger ones.

4.2 Wavelet Inpainting

Wavelet inpainting is about restoring missing wavelet coefficients due to lossy compression or error-
prone data transmission; see, e.g., [5, 44]. Here we consider the scenario where a test image is com-
pressed by storing the largest Daubechies-4 wavelet coefficients [11] in magnitude only up to a small
sampling rate (s.r.), namely s.r. ∈ {2.5%, 5%, 10%}. The compressed wavelet coefficients are further
contaminated by additive white Gaussian noise of mean zero and standard deviation σ ∈ {0.05, 0.1}.
For wavelet inpainting, we have initialized HSA with λ1 = 10. The experiments are performed for the
test images “Cameraman” and “Barbara", and the corresponding results, both restored images and
the adapted λ’s, are shown in Figures 5 and 6.

In the wavelet-Cameraman example, the results via scalar-valued λ’s and HSA are almost identical
to human eyes. Even though, HSA always outperforms the scale-valued λ in terms of PSNR, while
the SSIM-comparison is somewhat even; see Table 1. Interestingly, the adapted λ’s in this example
exhibit patterns analogous to the ones in the Fourier-Cameraman example.

Our HSA method gains more advantages when it is applied to the “Barbara” image with a stronger
cartoon-texture contrast than “Cameraman". In Figure 6, it is witnessed that the restored images via
scalar-valued λ’s suffer from undesirable staircase effects. In comparison, spatially adapted λ’s yield
significant improvements on the restorations, even in the cases where the pattern of λ is less transpar-
ent due to lack of data or strong noise. In Table 1, the PSNR- and SSIM-comparisons also dominantly
favor the HSA method.

Fourier
Cameraman Knee

scalar-valued λ HSA scalar-valued λ HSA
σ #rad’l PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

0.05 75 26.7895 0.8051 26.9559 0.8124 30.4347 0.8247 30.5399 0.8290
0.05 90 27.5399 0.8215 27.5020 0.8262 30.8355 0.8337 30.9442 0.8389
0.05 105 28.1553 0.8307 28.1667 0.8346 31.1155 0.8402 31.3328 0.8478
0.1 75 24.9336 0.7576 25.1809 0.7639 28.2375 0.7570 28.4896 0.7639
0.1 90 25.2738 0.7666 25.7072 0.7775 28.4811 0.7627 28.7140 0.7721
0.1 105 25.6780 0.7740 26.2317 0.7843 28.5856 0.7662 28.8373 0.7745

Wavelet
Cameraman Barbara

scalar-valued λ HSA scalar-valued λ HSA
σ s.r. PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

0.05 2.5% 24.0319 0.7388 24.5702 0.7436 22.9489 0.6174 24.4184 0.6777
0.05 5% 26.5279 0.7969 27.1539 0.7964 24.6622 0.6922 26.1698 0.7438
0.05 10% 28.6248 0.8374 29.5812 0.8351 26.5317 0.7645 27.8187 0.8083
0.1 2.5% 23.7416 0.7301 24.1510 0.7326 22.7299 0.6067 24.0291 0.6605
0.1 5% 25.7625 0.7786 26.5195 0.7791 24.1307 0.6733 25.2635 0.7095
0.1 10% 27.3033 0.8136 27.5671 0.7937 25.4469 0.7410 26.3245 0.7591

Table 1: Comparisons with respect to PSNR and SSIM.
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σ = 0.05
75 radials 90 radials 105 radials

Restorations via optimal scalar-valued λ’s

Restorations via HSA

Spatially variant λ’s via HSA

σ = 0.1
75 radials 90 radials 105 radials

Restorations via optimal scalar-valued λ’s

Restorations via HSA

Spatially variant λ’s via HSA

Figure 2: Reconstruction of partial Fourier data on “Cameraman".
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σ = 0.05
75 radials 90 radials 105 radials

Restorations via optimal scalar-valued λ’s

Restorations via HSA

Spatially variant λ’s via HSA

σ = 0.1
75 radials 90 radials 105 radials

Restorations via optimal scalar-valued λ’s

Restorations via HSA

Spatially variant λ’s via HSA

Figure 3: Reconstruction of partial Fourier data on “Knee".
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Figure 4: Sensitivity test: image = “Cameraman", σ = 0.05, #radials = 90.

5 Conclusion

In this work, it has been shown that spatially adapted data fidelity weights help to improve the quality
of restored images. The automated adjustment of the local weights is developed based on the local-
ized image residuals. Such a parameter adjustment scheme can be further accelerated by employing
hierarchical decompositions, which aim at decomposing an image into so-called atoms at different
scales. The framework of the paper is suitable for subsampled data in non-image domain, in particular
incomplete coefficients from orthogonal Fourier- and wavelet transforms as illustrated in the numerical
experiments.
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σ = 0.05
2.5% coeff. 5% coeff. 10% coeff.

Restorations via optimal scalar-valued λ’s

Restorations via HSA

Spatially variant λ’s via HSA

σ = 0.1
2.5% coeff. 5% coeff. 10% coeff.

Restorations via optimal scalar-valued λ’s

Restorations via HSA

Spatially variant λ’s via HSA

Figure 5: Wavelet inpainting on “Cameraman".
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σ = 0.05
2.5% coeff. 5% coeff. 10% coeff.

Restorations via optimal scalar-valued λ’s

Restorations via HSA

Spatially variant λ’s via HSA

σ = 0.1
2.5% coeff. 5% coeff. 10% coeff.

Restorations via optimal scalar-valued λ’s

Restorations via HSA

Spatially variant λ’s via HSA

Figure 6: Wavelet inpainting on “Barbara".
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