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Duality results and regularization schemes for Prandtl–Reuss
perfect plasticity

Michael Hintermüller, Simon Rösel

ABSTRACT. We consider the time-discretized problem of the quasi-static evolution problem in perfect
plasticity posed in a non-reflexive Banach space and we derive an equivalent version in a reflexive
Banach space. A primal-dual stabilization scheme is shown to be consistent with the initial problem. As a
consequence, not only stresses, but also displacement and strains are shown to converge to a solution of
the original problem in a suitable topology. This scheme gives rise to a well-defined Fenchel dual problem
which is a modification of the usual stress problem in perfect plasticity. The dual problem has a simpler
structure and turns out to be well-suited for numerical purposes. For the corresponding subproblems
an efficient algorithmic approach in the infinite-dimensional setting based on the semismooth Newton
method is proposed.

1. INTRODUCTION

The foundation of the mathematical analysis of the time-dependent problem of quasi-static small strain
associative perfect plasticity or Prandtl–Reuss plasticity has its origin in [18, 34], where the latter
reference contains the first existence result for the time-dependent case, which is extended in [39] to
yield criteria varying in time. The fundamental difference to hardening plasticity lies in the possible
presence of strain localization [36, 42]. On the mathematical level, this physical phenomenon entails
that displacements may display discontinuities along surfaces, which necessitates a different functional
analytic setting; cf. [53]. This framework essentially corresponds to the static problem usually referred to
as Hencky plasticity ; see [52, 54]. In the static case, existence results for the primal formulation in the
displacement have been obtained on the basis of relaxation principles, which leads to the nonreflexive
Banach space of functions with bounded deformation. Moreover, Fenchel duality yields the relation to
the dual problem in terms of the mechanical stress [3, 54]. These developments build upon the suitable
generalized pairing of stresses and strains from [35], which is not straightforward since the strain in
perfect plasticity is just a measure.

Surprisingly, it was not until the rather recent work of Dal Maso, DeSimone, and Mora [15] that the
corresponding primal problem of quasi-static perfect plasticity has been examined in a satisfying way.
In this respect, the proper extension of the stress-strain duality from Hencky plasticity to the time-
dependent case is the key to a (primal) problem formulation based on the abstract theory of energetic
formulations for a very general class of rate-independent systems; see [37, 40]. In [15], it is further
shown that a quasi-static evolution can be consistently approximated by a sequence of time-discrete
problems. Moreover, the equivalence to the stress-based weak formulation from [34] is shown. The new
formulation of perfect plasticity from [15] has gained increasing interest during the last decade, giving
rise to several important extensions, for example to pressure-sensitive yield criteria [38], heterogeneous
materials [21, 51], regularity theory [16] or coupled with other physical effects [7, 46]. Under minimal
regularity, a quasi-static evolution in perfect plasticity can be obtained as an appropriate limit of plasticity
problems with vanishing hardening [8].

On the numerical level, the approach from [8] can be coupled with a fully-discrete scheme using
an implicit Euler time-discretization together with a standard Finite Element discretization to obtain
convergence of displacement, stresses and strains, as mesh size, time step and hardening parameter
go to zero. Regularization techniques have also been used earlier to obtain a convergence result for
the discretized stresses for a suitable coupling of discretization and regularization parameter; see [45].
Adaptive methods for the static case are discussed, for instance, in [44], [49] and [12].
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M. Hintermüller, S. Rösel 2

As for algorithmic approaches to the time-discrete problems of perfect plasticity, we mention the standard
return mapping algorithm from [50] and the superlinear convergence of this generalized Newton method
can explained by the semismoothness of the plastic response function [48]. Other approaches comprise
SQP [56] and multigrid techniques [55] and typically depend on the smoothness of the yield surface.
However, there is no convergence result for the discrete solutions under minimal regularity. Due to
the lack of a well-defined infinite-dimensional iteration, the solvers usually display a high degree of
mesh-dependence leading to extensive computational overhead on fine meshes. We refer to [19] for a
survey on the various complications in both theoretical and computational Prandtl–Reuss plasticity.

For these reason it appears to be worthwhile to develop solvers that have a well-defined infinite-
dimensional counterpart. In this regard, the application of an infinite-dimensional augmented Lagrangian
method in the vein of [33] to perfect plasticity has been discussed in [47]. However, this method requires
the solution of a sequence of visco-plastic problems and the convergence depends on the higher
regularity of the strain, which is not the case in perfect plasticity.

The outline of the paper is as follows. In section 3, we recall the system of equations of the Prandtl–
Reuss model of perfect plasticity. Thereupon, the properties of the different weak formulations, their
interrelation and the generalized stress-strain duality are recalled. The time-incremental problem of
quasi-static evolution in perfect plasticity, which involves a convex minimization over the cartesian
product of the space of functions of bounded deformation and the space of Borel measures, is
considered in Section 3. For this problem we derive an equivalent inf-sup formulation that is posed in a
usual separable and reflexive Lebesgue space. The alternative function space setting of the reduced
problem further allows to characterize the classical incremental stress problem as a Fenchel dual
problem, and we obtain necessary and sufficient optimality conditions for the time-discrete problems.
The last section is devoted to a primal-dual regularization scheme that combines the visco-plastic
regularization with a penalty type approach with respect to the mechanical equilibrium condition. We
further prove the consistency of this regularization approach by showing that displacements, stresses
and strains converge to a solution of the initial problem. The Fenchel dual problem of the regularized
problem represents a modification of the usual stress problem in perfect plasticity, which may be
well-suited for numerical purposes. For the corresponding subproblems, we propose a Tikhonov
regularization-based semismooth Newton approach, and we include a convergence result for the
regularized problems. Finally, we discuss some open questions related to suitable discretized versions
of the approach presented in this paper.

2. PRANDTL–REUSS PLASTICITY AND WEAK FORMULATIONS

In this paper we consider the quasi-static evolution of an elastic-perfectly plastic body subject to (s.t.)
a given external loading procedure in the time interval [0, T ], T > 0. The elasto-plastic material is
represented by a bounded domain Ω ⊂ RN , N ∈ {2, 3}, and it is assumed to be fixed on a nonempty
boundary portion Γ0 ⊂ ∂Ω. The material behavior is described by the displacement u, the mechanical
stress σ and the strain tensors e and p describing elastic and plastic strains, respectively.

The time-dependent loading is induced by a volume force f = f(t, x) acting on Ω, and a surface force
g = g(t, x) acting on the complement Γ1 of Γ0 in ∂Ω. We also adopt the small strain assumption, i.e.,
the total strain is expected to be reasonably well approximated by the infinitesimal strain tensor

ε(u) = 1
2
(∇u+∇u>).

Assuming linear elastic behavior, the relation between elastic strain and stress,

e = C−1σ,

is determined by a fourth order elasticity tensor C ∈ R(N×N)2
, which is assumed to be symmetric,

Cijkl = Cklij = Cjikl
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Duality results and regularization schemes for Prandtl–Reuss perfect plasticity 3

and positive definite,

∃κC > 0 : Cσ : σ ≥ κC|σ|2F , ∀σ ∈ MN×N .

Under a uniform positive definiteness assumption on C, the extension to heterogeneous elasticity is
immediate. Here, we denote by MN×N the space of symmetric N × N -matrices endowed with the
Frobenius norm defined by

|σ|F = (
N∑

i,j=1

σ2
ij)

1/2, σ ∈ MN×N .

The subspace of symmetric matrices with vanishing trace is indicated by

MN×N
0 := {σ ∈ MN×N : tr(σ) :=

N∑
i=1

σii = 0}.

Together with an initial condition, the quasi-static evolution of an elastic-perfectly plastic material is
described by the following set of conditions.

2.1. Pressure-insensitive Prandtl–Reuss plasticity. Given f : [0, T ]×Ω→ RN and g : [0, T ]×
Γ1 → RN with f(0, x) = 0 in Ω and g(0, x) = 0 on Γ1, find

[u, p, σ] : [0, T ]× Ω→ RN × MN×N
0 × MN×N ,

with

(2.1) [u, p, σ](0, x) = 0 in Ω

such that

u(t, x) = 0 on Γ0,(2.2)

σν(t, x) = g(t, x) on Γ1,(2.3)

−Div σ(t, x) = f(t, x) in Ω,(2.4)

ε(u)(t, x) = C−1σ(t, x) + p(t, x) in Ω,(2.5)

dev σ(t, x) ∈ K0 in Ω(2.6)

i∗K0
(ṗ(t, x)) = p(t, x) : dev σ(t, x) in Ω,(2.7)

for all t ∈ [0, T ].

Here, ν is the unit outer normal to ∂Ω. The set of admissible stresses K0 ⊂ MN×N
0 is assumed to be a

nonempty, compact and convex neighborhood of the origin in MN×N
0 . Its support support function is

defined as the convex conjugate i∗K0
of the indicator function

iK0 : MN×N
0 → R ∪ {+∞},

of K0 ⊂ MN×N
0 .

The conditions (2.1)-(2.7) are interpreted as follows. Equation (2.4) represents the usual mechanical
equilibrium condition neglecting inertial effects. The additive split of the total strain into an elastic part
e = C−1σ and an inelastic part p is given in (2.5). Under the assumption that the yield criterion is
pressure-insensitive, the set of admissible stresses is given by the constraint (2.6) on the deviatoric
part of the stress,

dev σ := σ − tr(σ)
N
IN .

The last condition (2.7) is equivalent to the associative flow law

(2.8) ṗ(t, x) ∈ NK0(dev σ(t, x)),

where NK0(dev σ(t, x)) denotes the normal cone to K0 at dev σ(t, x). At this point we emphasize
that we do not assume the yield surface ∂K0 to be smooth. The system is supplemented by an initial
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M. Hintermüller, S. Rösel 4

condition (2.1) and by the mixed boundary conditions (2.2)-(2.3). We proceed by discussing weak
formulations of (2.1)-(2.7).

2.2. Functional analytic setting of weak formulations. On the mathematical level, a fundamental
difference to elasto-plastic problems with hardening [25] is that optimal displacements a priori cannot
be expected to lie in the Sobolev space

V := H1
0,Γ0

(Ω)N := {u ∈ H1(Ω)N : u|Γ0 = 0}.

This is a consequence of the fact that, in the absence of hardening, the material may form shear bands.
From the mathematical point of view, this is reflected by the observation that displacements may exhibit
discontinuities on (N − 1)-dimensional submanifolds, which rules out the usual Sobolev setting. The
appropriate relaxation, which goes back to [53], requires that the displacement is sought in the space
of functions with bounded deformation, which is defined as

BD(Ω) = {u ∈ L1(Ω)N : ε(u) ∈M(Ω; MN×N)}.

Here, for any Borel setB ⊂ RN ,M(B; Rd) denotes the space of Rd-valued Borel measures (that is an
Rd-valued σ-additive measure). The space M(B; Rd) is equipped with the total variation norm and the
Riesz-Alexandrov Theorem provides an isometric isomorphism between M(B; Rd) and [C0(B; Rd)]∗,
the topological dual of the space of continuous functions vanishing at the boundary of B; see, e.g., [2,
Prop. 1.47]. Using this identification, we consider ε(u) for u ∈ BD(Ω) as an MN×N -valued distribution
that is also continuous on C∞c (Ω; MN×N) equipped with the supremum norm. As a result, the total
variation norm on M(B; MN×N) is given by

‖µ‖M(B;MN×N ) = sup{〈µ, ϕ〉 : ϕ ∈ C0(B; MN×N), |ϕ(x)|F ≤ 1 ∀x ∈ B}.

The norm on the space M(B; MN×N
0 ) is defined analogously. The space BD(Ω) is equipped with

the standard norm

‖u‖BD(Ω) = ‖u‖L1(Ω;RN ) + ‖ε(u)‖M(Ω;MN×N ).

We recall that

(2.9) BD(Ω) ↪→ LN/(N−1)(Ω; RN),

i.e., BD(Ω) embeds continuously into LN/(N−1)(Ω; RN). Under the condition that ∂Ω is sufficiently
smooth, functions in BD(Ω) admit an integrable trace on the boundary, i.e., u ∈ L1(∂Ω), and the
following Green’s formula for functions u ∈ BD(Ω) and ϕ ∈ C1(Ω) is available;ˆ

Ω

ϕ εij(u) = −1
2

ˆ
Ω

ui∂jϕ+ uj∂iϕ dx+

ˆ
∂Ω

[u� ν]ij ϕ dHN−1).(2.10)

Here, the symmetrized outer product of two vectors a and b of the same length is denoted by

a� b = 1
2
(ab> + ba>).

Moreover, BD(Ω) can be characterized as the dual space of a separable normed space. This give rise
to a weak*-topology on BD(Ω) for which bounded subsets are sequentially compact. For a sequence
(uk) ⊂ BD(Ω) it is known that (uk) converges weakly* to u in BD(Ω) if and only if

(2.11) uk → u in L1(Ω), ε(uk)
∗
⇀ ε(u) in M(Ω).

For these results and further details on the space BD(Ω) we refer to [54, 52]. As a consequence
of the low regularity of the displacement, the plastic strains are only Borel measures. Furthermore,
the appropriate relaxation of the Dirichlet boundary condition (2.2) entails that the plastic strains may
also be supported on Γ0; cf. [54, 15]. Consequently, the proper function space for the plastic strain in
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Duality results and regularization schemes for Prandtl–Reuss perfect plasticity 5

the weak formulation of (2.1)-(2.7) is given by M(Ω ∪ Γ0; MN×N
0 ), the space of MN×N

0 -valued Borel
measures on Ω ∪ Γ0 , and the set of admissible states Wad is defined as

Wad := {(u, e, p) ∈ BD(Ω)×Q×M(Ω ∪ Γ0; MN×N
0 ) :

ε(u) = pbΩ + e, pbΓ0 = −(u� ν)Hn−1},(2.12)

where pbΩ and pbΓ0 designate the restriction of the measure p to Ω and Γ0, respectively.

In order to describe the set of admissible stresses and to properly define the stress-strain duality for
perfect plasticity, we further define the following stress-related spaces,

Q := L2(Ω; MN×N), H(Div; Ω) := {σ ∈ Q : Div σ ∈ L2(Ω; RN)},
Σ(Div; Ω) := {σ ∈ Q : Div σ ∈ LN(Ω; RN)},

together with their standard norms

||q||Q :=

(ˆ
Ω

|q|2F dx
)1/2

, ||σ||H(Div;Ω) := ||σ||Q + ||Div σ||L2(Ω,RN ),

||σ||Σ(Div;Ω) := ||σ||Q + ||Div σ||LN (Ω,RN ).

For the sake of accuracy, we distinguish between the usual (distributional) divergence operator div and
its vector-valued version Div. We also recall that the (normal) trace of any element σ ∈ H(Div; Ω)
on the boundary ∂Ω is defined by the trace operator

τν : H(Div; Ω)→ H−1/2(∂Ω)N , σ 7→ σν = τν(σ),

with values in H−1/2(∂Ω)N , where H−1/2(∂Ω) is the dual space of the trace space H1/2(∂Ω). The
trace mapping is defined by extension in the usual way. In the same vein, one may also define a trace
on a (sufficiently regular) subset of Γ1 ⊂ ∂Ω; the appropriate trace operator is given by

τΓ1
ν : H(Div; Ω)→ H

−1/2
00 (Γ1)N , σ 7→ σν|Γ1 = τΓ1

ν (σ).

Here, the image space involves the dual space H−1/2
00 (Γ1) := H

1/2
00 (Γ1)∗ of the trace space

H
1/2
00 (Γ1) := {v ∈ L2(Γ1) : ∃ ṽ ∈ H1(Ω), ṽ|Γ0 = 0, ṽ|Γ1 = v}.

For details on trace spaces we refer to [6, 43]. Given a fixed subspaceX(Ω) ⊂ Q, the set of admissible
stresses in X(Ω) is denoted by

Sad(X(Ω)) := {σ ∈ X(Ω) : dev σ(x) ∈ K0 a.e. in Ω},
and if X(Ω) = Q we write Sad := Sad(Q).

2.3. Johnson’s weak formulation. Following the seminal work of Johnson [34], a suitable weak
formulation of Prandtl–Reuss plasticity is given by the following time-dependent variational inequality
problem in the velocity and the stress.

Problem 2.1 (Johnson’s weak formulation). Let f ∈ C([0, T ];LN(Ω)N), and g ∈ C([0, T ];L∞(Γ1)N)
with f(0) = 0, g(0) = 0. Find

[u̇, σ] : [0, T ]→ BD(Ω)×Q with σ(0) = 0

such that σ ∈ Sad(Σ(Div; Ω)) and

(σ, ε(ũ)) = 〈l(t), ũ〉, ∀ ũ ∈ V,(2.13)

〈u̇,Div σ̃ −Div σ〉+ (C−1σ̇, σ̃ − σ) ≥ 0(2.14)

∀ σ̃ ∈ Sad(Σ(Div; Ω)), σ̃ν = g(t) on Γ1,

for a.e. t ∈ (0, T ).
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Here, the functional l(t) ∈ BD(Ω)∗ is defined by

l(t) :=

ˆ
Ω

f(t)u dx+

ˆ
Γ1

g(t)u dHN−1.

Combining a discretization in time with a regularization of the constraint σ ∈ Sad, existence of a solution
to this problem is shown in [34, 53] under a non-degenerateness assumption on the loading procedure;
cf. Assumption 2.4. It is further obvious that for any solution [u̇, σ] of Problem 2.1, the optimal stress σ
also solves the following problem.

Problem 2.2 (Johnson’s stress problem). Let f ∈ C([0, T ];LN(Ω)N), and
g ∈ C([0, T ];L∞(Γ1)N) with f(0) = 0, g(0) = 0. Find

σ : (0, T )→ Q with σ(0) = 0

such that σ ∈ Sad(Σ(Div; Ω)) and

(σ, ε(ũ)) = 〈l(t), ũ〉 ∀ ũ ∈ V,
(C−1σ̇, σ̃ − σ) ≥ 0 ∀ σ̃ ∈ Sad(Σ(Div; Ω)), σ̃ν = g(t) on Γ1,−Div σ̃ = f(t),

for a.e. t ∈ (0, T ).

In particular, any solution σ : [0, T ] → Q pertaining to Problem 2.1 is uniquely determined by the
initial condition.

2.4. Quasi-static evolution. The problem of Prandtl–Reuss plasticity may also be studied within the
context of energetic formulations for a general class of rate-independent systems that are defined by
the axioms of energy stability and energy balance [37]. This ultimately leads to a primal problem in
u, p and e, which has been derived and analyzed in [15]. Following the latter reference, we make the
following assumptions:

Ω is a bounded C2-domain;(2.15)

∂Ω = Γ0 ∪ Γ1; Γ0 6= ∅, Γ0,Γ1 ⊂ ∂Ω open ; ∂Γ0 = ∂Γ1 ∈ C2,(2.16)

i.e., the C2-boundary ∂Ω is split into two disjoint relatively open parts Γ0 and Γ1, with a jointC2-regular
interface ∂Γ0 = ∂Γ1 in the sense of [35, p. 20]. These classical geometric conditions may be alleviated
at the cost of some nontrivial modifications [21]. We also assume that the elasticity tensor is invariant
with respect to the orthogonal subspaces MN×N

0 and {cIN : c ∈ R}. Consequently, there exists a
positive definite tensor Cdev ∈ (MN×N

0 )2 and a scalar λ0 > 0 such that

(2.17) Cσ = Cdev dev σ + λ0 trσIN , ∀σ ∈ MN×N .

For p ∈M(Ω ∪ Γ0; MN×N
0 ), one may further define the functional

D(p) :=

ˆ
Ω∪Γ0

i∗K0
(p/|p|) d|p| = i∗K0

(p)(Ω ∪ Γ0),

on the basis of the theory of convex functions of measures; see [54, Chapter II(5.)] for an introduction.
In fact, denoting the Radon-Nikodým derivative p with respect to its variation |p| by p/|p|, we have

p/|p| ∈ L1
|p|(Ω ∪ Γ0; MN×N

0 ),

i.e., p/|p| is Lebesgue integrable on Ω ∪ Γ0 with respect to the measure |p|, such that

D : M(Ω ∪ Γ0; MN×N
0 )→ R

is well-defined, nonnegative and finite. The generalized total variation with respect to D,

D(p; 0, t) := sup{
K∑
n=1

D(p(tn)− p(tn−1)) : K ∈ N, 0 = t0 ≤ t1 ≤ . . . ≤ tK = t},
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Duality results and regularization schemes for Prandtl–Reuss perfect plasticity 7

then accounts for the dissipation in the time interval [0, t], t ≤ T . We further denote the space of
absolutely continuous functions on [0, T ] with values in a Banach space X by AC([0, T ];X). The
space BV ([0, T ];X) consists of all X-valued functions on [0, T ] with bounded variation. We are now
ready to state the notion of quasi-static evolution in perfect plasticity from [15].

Problem 2.3 (Quasi-static evolution). Given

(2.18) f ∈ AC([0, T ];LN(Ω)N), g ∈ AC([0, T ];L∞(Γ1)N)

with f(0) = 0 and g(0) = 0, find

[u, e, p] : [0, T ]→ BD(Ω)×Q×M(Ω ∪ Γ0; MN×N
0 )

with [u, e, p](0) = 0 such that t 7→ [u(t), e(t), p(t)] is a quasi-static evolution, i.e., the following
conditions are fulfilled.

(i) Stability: For every t ∈ [0, T ], it holds that [u(t), e(t), p(t)] ∈ Wad and
1
2
(Ce(t), e(t))− 〈l(t), u(t)〉 ≤ 1

2
(Cẽ, ẽ) +D(p̃− p(t))− 〈l(t), ũ〉

for all [ũ, ẽ, p̃] ∈ Wad.
(ii) Energy equality: It holds that p ∈ BV ([0, T ],M(Ω ∪ Γ0; MN×N

0 )), and for every t ∈ [0, T ]
the equation

1
2
(Ce(t), e(t))− 〈l(t), u(t)〉+D(p; 0, t) = −

ˆ t

0

〈l̇(s), u(s)〉ds

is valid.

Under the above assumptions, the existence of a quasi-static evolution [u, e, p] ∈ AC([0, T ];BD(Ω)×
Q×M(Ω ∪ Γ0; MN×N

0 )) can be shown provided a safe-load condition holds uniformly in time.

Assumption 2.4 (Safe-load condition). There exists σ̂ ∈ AC([0, T ];Q) and ρ > 0 such that

(i) dev σ̂ ∈ AC([0, T ];L∞(Ω; MN×N
0 )),

(ii) for every t ∈ [0, T ] it holds that

Div σ̂(t) = −f(t) in Ω, σ̂(t)ν = g(t) on Γ1,

dev σ̂(t) +Bρ(0) ⊂ K0 a.e. in Ω,

where Bρ(0) := {τ ∈ MN×N
0 : |τ |F ≤ ρ}.

In this case, solutions of Problem 2.3 can be obtained as appropriate limits of a sequence of solutions of
time-incremental problems defined in section 3; see [15, Theorem 4.5]. Under mild assumptions on the
regularity in time, quasi-static evolutions correspond to solutions of the classical weak formulation from
Problem 2.1 [15, Theorem 6.1]. In this sense, Problem 2.1 and Problem 2.3 are essentially equivalent.
The equivalence of the two solution notions as well as the formal equivalence to the system (2.1)-(2.7)
relies on a suitable extension of the meaning of the flow law (2.7) to linearized strains ε(u) that are only
Borel measures, and which reduces to the conventional meaning if ṗ ∈ Q. For that reason a duality
pairing between admissible stresses and strains is defined in [15], which extends earlier approaches
within the context of Hencky plasticity set forth in [35, 54]. Since the stress is in general not continuous
this is by no means a trivial issue, and the particular problem structure has to be exploited. In fact, for
[u, e, p] ∈ Wad and σ ∈ Sad(Σ(Div; Ω)) a suitable pairing is given by

(2.19) [dev σ, p] :=

{
[dev σ, dev ε(u)]− dev σ : dev e, in Ω,

−(σν)T · uHN−1, on Γ0,

where [dev σ, dev ε(u)] ∈M(Ω) denotes the measure defined in [35, Theorem 3.2], and (σν)T :=
σν − (σν)νν is the tangential component of σν. Accounting for [35, Lemma 2.4], it holds (σν)T ∈
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L∞(∂Ω), such that [dev σ, p] is well-defined. Moreover it holds [dev σ, p] ∈M(Ω∪Γ0). The following
integration by parts formula from [15] provides a useful characterization of this generalized duality; it
holds

(2.20) [dev σ : p](Ω ∪ Γ0) = −(σ, e)− 〈Div σ, u〉+ 〈σν, u〉Γ1 ,

where σ ∈ Sad(Σ(Div; Ω)) with σν ∈ L∞(Γ1; RN) and (u, e, p) ∈ Wad. Here, the duality product
on the right hand side of (2.20) designates the pairing of L∞(Γ1; RN) with L1(Γ1; RN). Note that, a

priori, we have σν|Γ1 ∈ H
−1/2
00 (Γ1)N since

σ ∈ Σ(Div; Ω) ⊂ H(Div; Ω).

For quasi-static evolution problems in perfect plasticity, important extensions, for example to pressure-
sensitive yield criteria [38] and heterogeneous plasticity [51, 21], are available. For an overview of
classical approaches via the so-called stress problem we also refer to [19] and the references therein.

3. THE TIME-INCREMENTAL PROBLEM

In this section we formulate the incremental problem of quasi-static evolution of perfect plasticity in
weak form. For this purpose we adopt the Assumption 2.4 as well as (2.15), (2.16) and (2.17).

3.1. Problem statement. We assume that the time interval is partitioned into K subdivisions,

0 = t0 < t1 < . . . < tK = T.

At a fixed time point tn, n = 1, . . . , K , we are given the state of the system

[un−1, en−1, pn−1] ∈ Wad

from the preceding time instance as well as the current applied forces

fn = f(tn) ∈ LN(Ω; RN), gn = g(tn) ∈ L∞(Γ1; RN),

which define the total load

ln(u) :=

ˆ
Ω

fn · u dx+

ˆ
Γ1

gn · u dHN−1, u ∈ BD(Ω).

The time-discretized problem of perfect plasticity at a fixed time instance can be stated as follows [15].

Problem (P).{
inf J(u, e, p) over [u, e, p] ∈ BD(Ω)×Q×M0(Ω ∪ Γ0; MN×N

0 )

s.t. [u, e, p] ∈ Wad,

where Wad is given by (2.12) and the objective functional J is defined by

J(u, e, p) := 1
2
(Ce, e) +D(p− pn−1)− 〈ln, u〉.

Under the safe-load condition (Assumption 2.4), an equivalent characterization of D is given by

(3.1) D(p) = sup{[dev σ : p](Ω ∪ Γ0) : σ ∈ Sad(Σ(Div; Ω)), σν = gn on Γ1},
where the measure [dev σ : p] ∈M(Ω ∪ Γ0) is defined in (2.19); for details see [15, Prop. 2.4].

Provided the applied forces fulfill Assumption 2.4, it can be shown that problem (P) has a solution
[un, en, pn], which is in general only unique in the elastic strain. Below we provide an alternative to
the existence proof from [15, Theorem 3.3]. Furthermore, one may construct iteratively a piecewise
constant time interpolate from the solutions [un, en, pn] of (P) for n = 1, . . . K. For a sequence
of subdivisions with vanishing time step, the resulting sequence of time interpolates converges to a
quasi-static evolution [15, Theorem 4.5]. Since the time step is kept fixed in the remainder of this paper,
we write [ū, ē, p̄] = [un, en, pn] for a solution to (P).
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3.2. Inf-sup problem formulation. From a computational point of view, problem (P) poses a variety of
complexities; the problem is posed in a nonreflexive Banach space, the objective function is nonsmooth
and the constraints are posed in a measure space.

This section is dedicated to a suitable problem reduction, which yields an unconstrained equivalent
reformulation posed in a conventional reflexive Lebesgue space. Based on this reformulation, we
establish a Fenchel duality result that relates the primal formulation (P) to the (classical) incremental
version of the stress problem (Problem 2.2).

Using the constraints in (P), we first eliminate the dependence on p from the optimization problem
defining

(3.2) pbΩ= ε(u)− e, pbΓ0= −u� ν HN−1.

Lemma 3.1. Define Ĵ : BD(Ω)×Q→ R by

(3.3) Ĵ(u, e) := 1
2
(Ce, e) + sup

σ∈Sad(Σ(Div;Ω))
σν=gn on Γ1

{−〈p̂n−1, σ〉 − (σ, e)− 〈Div σ, u〉} − 〈fn, u〉,

where p̂n−1 is understood as an element of Σ(Div; Ω)∗ defined by

(3.4) 〈p̂n−1, σ〉 := −(σ, en−1)− 〈Div σ, un−1〉, σ ∈ Σ(Div; Ω).

Then (P) is equivalent to the problem

(3.5)


inf Ĵ(u, e) over [u, e] ∈ BD(Ω)×Q,
s.t. div u = tr e in Ω,

u · ν = 0 on Γ0,

in the following sense.

(i) If [ū, ē, p̄] is a solution of (P) then [ū, ē] solves (3.5).
(ii) For each solution [ū, ē] to (3.5), it holds that [ū, ē, p(ū, ē)] is a solution to (P), where p(ū, ē) is

defined by (3.2).

Proof. Let [u, e, p] ∈ Wad. As the safe-load condition is assumed to hold, we have

D(p) = sup{[dev σ, p](Ω ∪ Γ0) : σ ∈ Sad(Σ(Div; Ω)), σν = gn on Γ1},
by (3.1). By (2.20) we further obtain for all σ ∈ Sad(Σ(Div; Ω)) with σν = gn on Γ1,

[dev σ, p− pn−1](Ω ∪ Γ0) =− (σ, e)− 〈Div σ, u〉+ 〈gn, u〉Γ1

− 〈p̂n−1, σ〉 − 〈gn, un−1〉,

where p̂n−1 is defined in (3.4). Note that 〈gn, un−1〉 is a constant, and, without loss of generality, we
assume 〈gn, un−1〉 = 0. Hence, we may remove the dependence on p of the objective functional;

(3.6) J(u, e, p) = Ĵ(u, e), ∀ [u, e, p] ∈ Wad.

Now let [ū, ē, p̄] ∈ Wad be a solution of (P) and [u, e] ∈ W̃ad, where

W̃ad := {[u, e] ∈ BD(Ω)×Q : div u = tr e in L2(Ω), u · ν = 0 a.e. on Γ0}.
By taking the trace in the two conditions (2.12) of the definition of Wad, one may observe that p =
p(u, e), cf. (3.2), defines an element p ∈M(Ω ∪ Γ0; MN×N

0 ) such that [u, e, p] ∈ Wad if and only if
[u, e] ∈ W̃ad. Using (3.6), one deduces that

Ĵ(ū, ē) = J(ū, ē, p̄) ≤ J(u, e, p(u, e)) = Ĵ(u, e),

for all [u, e] ∈ W̃ad. This proves assertion (i).
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Let [ū, ē] ∈ W̃ad be a solution of (3.5). Following the above discussion, we find that for any [u, e, p] ∈
Wad it holds that [u, e] ∈ W̃ad. Hence, (3.6) implies that

J(ū, ē, p(ū, ē)) = Ĵ(ū, ē) ≤ Ĵ(u, e) = J(u, e, p),

for all [u, e, p] ∈ Wad, which accomplishes the proof of assertion (ii). �

Since the yield criterion is pressure-insensitive, it can be expected that there is no need to explicitly
take account of the plastic incompressibility constraint tr p = 0. In fact, the following lemma shows that
the constraints in (3.5) are redundant.

Lemma 3.2. Let Ĵ be given by (3.3). The problem

(3.7) inf Ĵ(u, e) over [u, e] ∈ BD(Ω)×Q

is equivalent to (P) in the sense of Lemma 3.1.

Proof. Let [u, e] ∈ BD(Ω)×Q. For arbitrary ϕ ∈ C1(Ω) with ϕ = 0 on Γ1 we define

σϕ := σ̂n + ϕIN ,

for σ̂n := σ̂(tn) where σ̂ is the admissible stress evolution according to (2.4). Thus, it holds that
σϕ ∈ Sad(Σ(Div; Ω)) with σϕν = gn on Γ1 and one may derive the following estimate;

sup
σ∈Sad(Σ(Div;Ω)),
σν=gn on Γ1

{−〈p̂n−1, σ〉 − (σ, e)− 〈Div σ, u〉} − 〈fn, u〉

≥ sup
ϕ∈C1(Ω),ϕ=0 on Γ1

{−〈p̂n−1, σϕ〉 − (σϕ, e)− 〈DivϕIN , u〉}

= −〈p̂n−1, σ̂n〉 − (σ̂n, e) + sup
ϕ∈C1(Ω),
ϕ=0 on Γ1

{
−〈p̂n−1, ϕIN〉 − (ϕ, tr e)− 〈∇ϕ, u〉

}
.

Taking the trace in the Green’s formula (2.10) implies that

(3.8)

ˆ
Ω

u · ∇ϕ dx = −
ˆ

Ω

ϕ d(div u) +

ˆ
∂Ω

uν ϕ dHN−1,

for all ϕ ∈ C1(Ω), such that

(3.9) − 〈p̂n−1, ϕIN〉 = (ϕ, tr en−1) + 〈∇ϕ, un−1〉 = 0.

The latter term vanishes since [un−1, en−1, pn−1] ∈ Wad implies that

div un−1 = tr en−1, un−1 · ν = 0 a.e. on Γ0.

By (3.9) and (3.8), one obtains

sup
σ∈Sad(Σ(Div;Ω)),
σν=gn on Γ1

{−〈p̂n−1, σ〉 − (σ, e)− 〈Div σ, u〉} − 〈fn, u〉

≥ −〈p̂n−1, σ̂n〉 − (σ̂n, e)(3.10)

+ sup
ϕ∈C1(Ω),
ϕ=0 on Γ1

{ˆ
Ω

ϕ (d(div u)− tr e dx)−
ˆ

Γ0

u · ν ϕ dHN−1

}
,

which implies that Ĵ(u, e) = +∞ unless

(3.11) div u− tr e = 0 in Ω.
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The redundancy of the boundary condition can be derived as follows. It can be verified that the density
property

(3.12) {ϕ
∣∣
Γ0

: ϕ ∈ C1(Ω), ϕ = 0 on Γ1}
C0(Γ0)

= C0(Γ0)

is fulfilled; in fact, let w ∈ Cc(Γ0) and choose an extension w̃ ∈ Cc(ω) of w to a nonempty open set
ω ⊂ RN with

ω ∩ Γ1 = ∅, suppw ⊂ ω, w̃|ω∩Γ0 = w.

Let (wn) be a standard sequence of mollifications of w̃ induced by a smooth kernel θ ∈ Cc(RN) with

θ ≥ 0, θ|B1(0)c = 0,

ˆ
RN
θ dx = 1,

i.e.,

wn(x) := (θn ∗ w̃)(x) =

ˆ
RN
w̃(y)θn(x− y) dy, θn(x) := nNθ(nx), ∀x ∈ RN .

As w̃ ∈ Cc(ω), standard properties of mollifications yield that (wn) converges uniformly to w̃ in ω; cf.
[1]. For sufficiently large n, it further holds that suppwn ⊂ ω, and in particular,

(wn|Γ0) ⊂ {ϕ
∣∣
Γ0

: ϕ ∈ C1(Ω), ϕ = 0 on Γ1}.

Taking account of the fact that (wn|Γ0) converges uniformly to w on Γ0, the density property (3.12) is
verified.

Exploiting the density property (3.12), one may infer that it holds thatˆ
Γ0

u · ν ϕ dHN−1 = 0, ∀ϕ ∈ C1(Ω), ϕ|Γ1 = 0,

if and only if

(3.13) ‖u · νHN−1‖M(Γ0) = ‖u · ν‖L1(Γ0) = 0.

Finally, (3.10) together with (3.11) and (3.13) imply that Ĵ(u, e) < +∞ requires that u · ν vanishes
on Γ0. As a conclusion, the constraints in problem (3.5) are redundant and the assertion follows from
Lemma 3.1. �

In comparison to the original problem formulation (P), the elimination of the plastic incompressibility
constraints comes at the loss of the finiteness of the objective function. We now prove the coercivity of
the objective function pertaining to the equivalent problem (3.5) on BD(Ω)×Q.

Lemma 3.3. The reduced objective function

Ĵ : BD(Ω)×Q→ R ∪ {+∞}

from (3.3) is coercive. More precisely, there exist constants c0 ∈ R, c1 > 0, such that

sup
σ∈Sad(Σ(Div;Ω))
σν=gn on Γ1

{−〈p̂n−1, σ〉 − (σ, e)− 〈Div σ, u〉} − 〈fn, u〉

≥ c0 − c1‖e‖Q(3.14)

+ ρmax(‖ε(u)‖M(Ω;MN×N ),−‖ε(u)‖M(Ω;MN×N ) + 1√
2
‖u‖L1(Γ0;RN )),

for all [u, e] ∈ BD(Ω)×Q, where ρ > 0 is the constant from Assumption 2.4.
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Proof. First, we state the elementary result

(3.15) | dev τ |F ≤ |τ |F for all τ ∈ MN×N .

Making use of Assumption 2.4 and (3.15), it holds that

sup
σ∈Sad(Σ(Div;Ω)),
σν=gn on Γ1

{−〈p̂n−1, σ〉 − (σ, e)− 〈Div σ, u〉} − 〈fn, u〉

≥ sup
τ∈C1(Ω,MN×N ),τ=0 on Γ1,

‖τ‖
C(Ω;MN×N )

≤ρ

{−〈p̂n−1, σ̂n + τ〉 − (σ̂n + τ, e)− 〈Div τ, u〉}

≥ c+ sup
τ∈C1(Ω;MN×N ),τ=0 on Γ1,

‖τ‖
C(Ω;MN×N )

≤ρ

{−〈p̂n−1, τ〉 − (σ̂n + τ, e)− 〈Div τ, u〉},

for all e ∈ Q and u ∈ BD(Ω), where c ∈ R denotes a constant which may take different values on
different occasions. Using Green’s formula for BD(Ω)-functions (2.10), one obtains

−〈p̂n−1, τ〉 = (en−1, τ) + 〈un−1,Div τ〉

≥ −c‖en−1‖Q −
ˆ

Ω

τ : ε(un−1) +

ˆ
Γ0

(un−1 � ν) : τ dHN−1

≥ −c‖en−1‖Q − ρ
(
|ε(un−1)|F (Ω) + ‖un−1 � ν‖L1(Γ0;MN×N )

)
and

−(σ̂n + τ, e) ≥ −(‖σ̂n‖Q + ρ|Ω|1/2)‖e‖Q

for all τ ∈ C1(Ω,MN×N) with ‖τ‖C(Ω,MN×N ) ≤ ρ and τ |Γ1 = 0. This implies that

sup
σ∈Sad(Σ(Div;Ω)),
σν=gn on Γ1

{−〈p̂n−1, σ〉 − (σ, e)− 〈Div σ, u〉} − 〈fn, u〉

≥ c0 − c1‖e‖Q + sup
τ∈C1(Ω;MN×N ),τ=0 on Γ1,

‖τ‖
C(Ω;MN×N )

≤ρ

{−〈Div τ, u〉},(3.16)

where

sup
τ∈C1(Ω,MN×N ),τ=0 on Γ1,

‖τ‖
C(Ω;MN×N )

≤ρ

{−〈Div τ, u〉} ≥ sup
τ∈C1

0 (Ω;MN×N ),
‖τ‖

C0(Ω;MN×N )
≤ρ

{−〈Div τ, u〉}

= ρ‖ε(u)‖M(Ω;MN×N ).(3.17)

Furthermore, it is well known that for ∂Ω ∈ C2 each τ ∈ C1(∂Ω) may be extended to a function
Tτ ∈ C1(Ω) given by

Tτ (x) := ϕ(r dist(x, ∂Ω))τ(π(x));

see [22, Lemma 6.38]. Here, π denotes the locally uniquely determined projection of x onto the
boundary ∂Ω, r ∈ R is sufficiently large, and ϕ ∈ C∞(R) denotes a smooth function with

ϕ(t) ∈ [0, 1] ∀ t ∈ R, ϕ(t) = 0 for t ≥ 2, ϕ(t) = 1 for t ≤ 1.
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Again using (2.10), one obtains

sup
τ∈C1(Ω;MN×N ),τ=0 on Γ1,

‖τ‖
C(Ω;MN×N )

≤ρ

{−〈Div τ, u〉}

≥ sup
τ∈C1

0 (Γ0;MN×N ),τ=0 on Γ1

‖τ‖
C0(Γ0;MN×N )

≤ρ

{−〈Div Tτ , u〉}

= sup
τ∈C1

0 (Γ0;MN×N ),
‖τ‖

C0(Γ0;MN×N )
≤ρ

(ˆ
Ω

Tτ : ε(u)−
ˆ

Γ0

(u� ν) : τ dHN−1

)

≥ ρ
(
−‖ε(u)‖M(Ω;MN×N ) + ‖u� ν‖L1(Γ0;MN×N )

)
≥ ρ

(
−‖ε(u)‖M(Ω;MN×N ) + 1√

2
‖u‖L1(Γ0;RN )

)
.

In the latter estimate we use the elementary property

|a� b|F ≥ 1√
2
|a|2|b|2,

and together with (3.16), (3.17), the proof of (3.14) is accomplished. The coercivity of the objective
function Ĵ in BD(Ω)×Q now follows from (3.14), the ellipticity property

(Ce, e)Q ≥ κC‖e‖2
Q,

and the fact that

u 7→ ‖u‖L1(Γ0;RN ) + ‖u‖M(Ω;MN×N )

defines an equivalent norm on BD(Ω); see [54]. �

The significance of the preceding lemma is twofold. To begin with, the objective function Ĵ is also
well-defined as an extended real-valued function on LN/(N−1)(Ω)N×Q; cf. (3.3). The estimates (3.16)
and (3.17) further imply that the implication

(3.18) u ∈ LN/(N−1)(Ω)N \BD(Ω) =⇒ Ĵ(u, e) = +∞,

is valid for all e ∈ Q, i.e., the regularity constraint ε(u) ∈M(Ω) is implicitly fulfilled as a result of the
minimization of the objective function. Consequently, we obtain an equivalent Lebesgue space setting
for problem (P).

Problem (Pred).

inf Ĵ(u, e) over [u, e] ∈ LN/(N−1)(Ω)N ×Q,
where Ĵ : LN/(N−1)(Ω)N ×Q→ R ∪ {+∞} is given by (3.3).

For the implicit regularity constraint we also refer to a similar situation from image restoration problems,
where a suitable Fenchel (pre-)dualization of the problem of total bounded variation regularization relies
on a similar argument [27]. In the context of perfect plasticity however, the argument additionally hinges
on the validity of the safe-load condition.

A second immediate consequence of Lemma 3.3 is that, under the standing assumptions, the existence
of solutions to (P) or, equivalently (Pred), follows from standard arguments. The results of this section,
including the alternative existence proof for (P) to [15, Thereom 3.3], are summarized in the following
theorem.

Theorem 3.4. The incremental problem (P) of quasi-static evolution in perfect plasticity is equivalent to
problem (Pred) in the sense of Lemma 3.1, and (P) has a solution [ū, ē, p̄], which is unique in ē.
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Proof. The equivalence of the problems (P) and (Pred) is a result of Lemma 3.1, Lemma 3.2 and (3.18).
For the existence proof, we use the problem formulation (3.7). As a pointwise limit of affine continuous
functions, the mapping

(3.19) [u, e] 7→ sup
σ∈Sad(Σ(Div;Ω)),
σν=gn on Γ1

{−〈p̂n−1, σ〉 − (σ, e)− 〈Div σ, u〉} − 〈fn, u〉

is sequentially l.s.c. (lower semicontinuous) in LN/(N−1)(Ω)N × Q equipped with the weak×weak
topology. If uk

∗
⇀ u in BD(Ω) then (uk) is bounded in BD(Ω) and fulfills uk → u ∈ L1(Ω)N . By

the continuous embedding (2.9), each subsequence of (uk) has a subsequence converging weakly
in LN/(N−1)(Ω)N to u. Hence, the entire sequence (uk) weakly converges to u in LN/(N−1)(Ω)N .
Consequently, the mapping from (3.19) is also sequentially l.s.c. in BD(Ω) × Q endowed with the
weak∗×weak topology. Together with the coercivity property in BD(Ω)×Q given by Lemma 3.3, the
direct method can be applied to prove the existence of a solution [ū, ē] to (3.7). The existence of a
solution to (P) follows by Lemma 3.2, and the uniqueness of ē is an immediate consequence of the
convexity of Ĵ and the strict convexity of the mapping e 7→ (Ce, e)Q. �

4. THE INCREMENTAL STRESS PROBLEM AS A FENCHEL DUAL PROBLEM

In contrast to the original problem, (Pred) defines an unconstrained convex minimization problem
in a reflexive Banach space. Therefore, this alternative formulation seems more attractive from a
computational point of view. As a nonsmooth convex minimization problem, it is natural to analyze (P)
via (Pred) within Fenchel duality theory, for which we refer to [5, 20]. In fact, for the simpler Hencky
plasticity model, (Lagrangian) duality results linking the stress problem to the strain problem and its
relaxation are known; cf. [54, p.251 ff.]. The goal of this paragraph is to demonstrate that the classical
incremental stress problem of perfect plasticity, i.e., the time-incremental variant of (2.1), can be derived
from the (incremental) primal problem (P) of quasi-static evolution within the theory of Fenchel duality.
The result is based on the alternative functional analytic setting provided by the reduced problem
formulation (Pred).

4.1. Fenchel duality set-up. For further reference, we introduce the set of admissible stresses with a
given normal component g̃ on Γ1;

(4.1) Sad(g̃) := {σ ∈ Sad(Σ(Div; Ω)) : σν = g̃ in [H
−1/2
00 (Γ1)]N},

where g̃ ∈ [H
−1/2
00 (Γ1)]N is fixed. Note that the regularity of the normal component is ensured by the

property Sad(g̃) ⊂ H(div; Ω).

Under Assumption 2.4, Sad(g
n) is nonempty, such that the indicator function

iSad(gn) : Σ(Div; Ω)→ R ∪ {+∞},
iSad(gn)(σ) = 0, if σ ∈ Sad(g

n), iSad(gn)(σ) = +∞, if σ /∈ Sad(g
n),

is proper. We also define the bounded linear operator

(4.2) Λ ∈ L(LN/(N−1)(Ω)N ×Q,Σ(Div; Ω)∗), Λ(u, e) := −Div∗ u− e,

and we set

(4.3) F (u, e) := −〈fn, u〉+ 1
2
(Ce, e), G(σ∗) := sup

σ∈Sad(gn)

〈σ∗, σ〉,

DOI 10.20347/WIAS.PREPRINT.2376 Berlin 2017



Duality results and regularization schemes for Prandtl–Reuss perfect plasticity 15

for [u, e] ∈ LN/(N−1)(Ω)N × Q and σ∗ ∈ Σ(Div; Ω)∗. With these definitions, (Pred) takes the
equivalent compact form

(4.4)

{
min F (u, e) +G(Λ[u, e]− 〈p̂n−1, . 〉)
over [u, e] ∈ LN/(N−1)(Ω)N ×Q.

Following [5, Chapter 4], the Fenchel dual problem of (4.4) is given by

(4.5) − inf F ∗(−Λ∗σ) +G∗(σ) + 〈p̂n−1, σ〉 over σ ∈ Σ(Div; Ω),

where F ∗ and G∗ are the Fenchel conjugates pertaining to F and G, respectively.

4.2. Computation of the Fenchel conjugates. The Fenchel or convex conjugate j∗ : X∗ → R ∪
{+∞} of a convex function j : X → R ∪ {+∞} on a Banach space X is defined as the functional

j∗(w∗) := sup
w∈X
{〈w∗, w〉 − j(w)}.

Observe that G = i∗Sad(gn), and a straightforward computation leads to

F ∗(u∗, e∗) = i{−fn}(u
∗) + 1

2
(C−1e∗, e∗), G∗(σ) = i∗∗Sad(gn)(σ),

for [u∗, e∗] ∈ [LN(Ω)]N ×Q and σ ∈ Σ(Div; Ω). The adjoint of Λ is given by

(4.6) Λ∗σ = [−Div σ,−σ] ∈ [LN(Ω)]N ×Q.
Since Sad(g

n) ⊂ Σ(Div; Ω) is nonempty, convex and closed, it holds that

G∗ = i∗∗Sad(gn) = iSad(gn),

such that (4.5) amounts to the following problem.

Problem (D). 
inf 1

2
(C−1σ, σ) + 〈p̂n−1, σ〉

s.t. −Div σ = fn, σν = gn on Γ1, σ ∈ Sad

over σ ∈ Σ(Div; Ω).

The definition (3.4) of p̂n−1 allows to reformulate (D) as a problem in the larger Hilbert space Q with
the help of the adjoint operator to ε ∈ L(V,Q).

(4.7)


inf 1

2
(C−1σ, σ)− (C−1σn−1, σ)

s.t. ε∗σ = ln in V ∗, σ ∈ Sad,

over σ ∈ Q

We note that problem (D), or (4.7), is exactly the stress problem (Problem 2.2) of perfect plasticity in
incremental form resulting from an implicit Euler time discretization;

σ̇(tn) ≈ σ(tn)−σ(tn−1)
tn−tn−1

.

We summarize the result in the following theorem.

Theorem 4.1. Let the applied forces f and g fulfill Assumption 2.4. A Fenchel dual problem of the
time-incremental problem of quasi-static evolution in perfect plasticity in reduced form (problem (Pred))
is given by (D), which is the stress problem in incremental form. There is no duality gap between primal
and dual problem, i.e., it holds that

(4.8) inf (Pred) = − inf (D).
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Proof. In order to prove (4.8), it suffices that the following constraint qualification is fulfilled;

(4.9) − p̂n−1 ∈ int(domG− Λ domF );

cf. [5, Theorem 1, p.221]. The validity of (4.9) can be seen as follows: From the definition of the adjoint
(4.6), it follows directly that Λ∗ is injective, such that the range of Λ is dense in Σ(Div; Ω)∗. Since
the range of Λ∗ is closed, the surjectivity of Λ follows from the closed range theorem. Together with
domG 6= ∅, domF = LN/(N−1)(Ω)N ×Q and the surjectivity of Λ, one obtains

domG− Λ domF = Σ(Div; Ω)∗,

such that the constraint qualification (4.9) is satisfied. �

We stress that the proof of Theorem 4.1 requires the correct choice of the topologies for the domain
and image space of the operator Λ. In fact, using the reduced formulation (Pred) in the Lebesgue space
setting we avoid explicit incorporation of the space BD(Ω) for the displacement.

4.3. Primal-dual optimality conditions. Under Assumption 2.4, the admissible set of (D) is nonempty
and it follows from standard arguments that (D) has a unique solution σ̄ ∈ Σ(Div; Ω). By virtue of
(4.8), saddle points [ū, ē; σ̄], where [ū, ē] solves (Pred), are characterized by the following primal-dual
optimality conditions (see [20, III, Remark 4.2], for instance);

σ̄ ∈ Sad(g
n), Div σ̄ = −fn, Cē = σ̄,(4.10)

−p̂n−1 −Div∗ ū− ē ∈ NSad(gn)(σ̄).(4.11)

Here, NSad(gn)(σ̄) denotes the normal cone to the set Sad(g
n) ⊂ Σ(Div; Ω) at σ̄. Note that (4.11) is

equivalent to

(4.12) 〈ū− un−1,Div σ̃ −Div σ̄〉+ (ē− en−1, σ̃ − σ̄) ≥ 0, ∀ σ̃ ∈ Sad(g
n);

that is, the optimality system (4.10)-(4.11) represents precisely the time-discretized version of the
stress problem (Problem 2.1). Whereas [15, Theorem 3.6(c)] only derives (4.10) as a necessary
optimality condition for a solution [ū,C−1σ̄, p̄] to the primal problem (P), our result shows that by
additionally incorporating the normal cone condition (4.12), one obtains necessary and sufficient
optimality conditions for the time-discretized primal problem in quasi-static perfect plasticity. A rigorous
Fenchel duality result for the time-discrete primal problem of perfect plasticity and the dual stress
problem has thus been established.

5. A NEW ALGORITHMIC SCHEME

5.1. A modified visco-plastic regularization. In the remainder of this paper we intend to design an
infinite-dimensional algorithm to solve the time-incremental problem of perfect plasticity based on a
new regularization scheme. A classical approach to the problem of perfect plasticity is the visco-plastic
regularization, which is essentially a Moreau-Yosida regularization iµK0

of the indicator function iK0

associated with the constraint dev σ(x) ∈ K0, such that the inclusion in (2.8) is replaced by the smooth
equation

ṗ = iµK0

′(σ), with iµK0
(σ) := µ

2
inf

σ̃∈MN×N :
dev σ̃∈K0

{
|σ̃ − σ|2F

}
.

The basis for the existence proofs in [34, 53] is that perfect plasticity can be characterized as the
limit of visco-plasticity as µ→ +∞. On the level of the weak formulation in terms of the stress (4.7),
this approach essentially corresponds to a Moreau-Yosida regularization of the constraint σ ∈ Sad

in the space Q. In [47, Lemma 3.8], it is shown that the visco-plastic regularization is equivalent
to a problem of plasticity with kinematic hardening, where the hardening modulus depends on the
regularization parameter γ. As discussed in [30], the problem of hardening plasticity requires further
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regularization techniques in order to allow for an efficient infinite-dimensional solver that converges
mesh-independently upon discretization. For these reasons, it appears to be worthwhile to consider an
alternative regularization scheme that differs from a vanishing hardening approach.

In this section we propose a primal modification that combines the usual visco-plastic regularization
of the flow law with a Tikhonov regularization of the objective functional in (Pred) that maintains the
original function space setting. As it turns out, this approach allows to recover a one-to-one relation
between the approximations of the primal variable pair [u, p] and the solution of a suitably modified
version of the incremental stress problem (D) in the original infinite-dimensional setting. In particular,
the approximations of u are not assumed to be elements of the Sobolev space V .

On the level of the primal problem, consider the following family of regularized problems induced by a
sequence of positive parameters µ > 0.

Problem (Pµ). {
inf Ĵµ(u, e)

over [u, e] ∈ LN ′(Ω)N ×Q,
where

Ĵµ(u, e) := 1
µN ′
‖u‖N ′

LN′ (Ω)N
− 〈fn, u〉+ 1

2
(Ce, e)

+ sup
σ∈Σ(Div;Ω),
σν=gn on Γ1

{−〈p̂n−1, σ〉 − (σ, e)− 〈Div σ, u〉 − iµSad
(σ)}.

Here, iµSad
is defined as the Moreau-Yosida regularization of iSad as a mapping defined on Q;

iµSad
(σ) := µ

2
inf
σ̃∈Sad

‖σ − σ̃‖2
Q.

Note that, according to (2.9), it holds BD(Ω) ↪→ LN
′
(Ω)N , where N ′ := N/(N − 1). Existence

and uniqueness of a solution to Problem (Pµ) then follows by standard arguments from convex analysis
as summarized in the following proposition.

Proposition 5.1. Let the safe-load condition (Assumption 2.4) be fulfilled. Then Problem (Pµ) admits a
unique solution [uµ, eµ], which satisfies uµ ∈ BD(Ω), uµν = 0 on Γ0 and div uµ = tr eµ in Ω.

Proof. The function

[u, e] 7→ sup
σ∈Σ(Div;Ω),
σν=gn on Γ1

{−〈p̂n−1, σ〉 − (σ, e)− 〈Div σ, u〉 − iµSad
(σ)}

represents the pointwise supremum of a sequence of affine functions on LN
′
(Ω)N ×Q and as such,

it is convex and weakly l.s.c. in LN
′
(Ω)N ×Q. Under Assumption 2.4 it is also proper. The additional

strictly convex term

(5.1) 1
N ′µ
‖u‖N ′

LN′ (Ω)N

yields the coercivity of Ĵµ on LN
′
(Ω)N ×Q. Existence and uniqueness of a solution now follows from

the direct method. The regularity statement ε(u) ∈M(Ω; MN×N) follows under Assumption 2.4 by

sup
σ∈Σ(Div;Ω),
σν=gn on Γ1

{−〈p̂n−1, σ〉 − (σ, e)− 〈Div σ, u〉 − iµSad
(σ)} − 〈fn, u〉

≥ sup
σ∈Sad(Σ(Div;Ω)),
σν=gn on Γ1

{−〈p̂n−1, σ〉 − (σ, e)− 〈Div σ, u〉} − 〈fn, u〉,(5.2)
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together with the estimate (3.14). Since uµ ∈ BD(Ω), the validity of the plastic incompressibility
conditions uµ · ν = 0 on Γ0 and div uµ = tr eµ can be deduced from (5.2) as in the proof of
Lemma 3.2. �

Unlike the case of the visco-plastic regularization, we do neither dispose of an explicit problem
formulation of (Pµ) in terms of u nor is it possible to prove that the optimal displacement uµ is an
element of the Sobolev space V . Instead, (Pµ) does not impose a higher strain regularity than the initial
problem (P) and therefore it does not fall into the realm of hardening plasticity.

It can also be expected that (Pµ) yields a close approximation of (Pred), at least for large µ. Before
discussing this issue, we proceed by computing an associated Fenchel dual problem that turns out to
be a penalized version of the incremental stress problem.

Problem (Dµ). 
inf J∗µ(σ)

s.t. σν = gn on Γ1

over σ ∈ Σ(Div; Ω).

with

J∗µ(σ) := 1
2
(C−1σ, σ) + 〈p̂n−1, σ〉+ µN−1

N
‖Div σ + fn‖NLN (Ω)N + iµSad

(σ).

Proposition 5.2. Let the safe-load condition (Assumption 2.4) be fulfilled. Then a Fenchel dual problem
to (Pµ) is given by the modified stress problem (Dµ). Moreover, (Dµ) has a unique solution σµ and there
is no duality gap, i.e.,

(5.3) min (Pµ) = −min (Dµ).

Proof. Since
σ 7→ 1

2
(C−1σ, σ) + µN−1

N
‖Div σ + fn‖NLN (Ω)N

defines a strictly convex and coercive functional on Σ(Div; Ω), existence and uniqueness of a solution
σµ to (Dµ) follows from standard arguments.

Using the linear operator Λ from (4.2) we rewrite (Pµ) in compact form as

(5.4) min Fµ(u, e) +Gµ(Λ[u, e]− p̂n−1) over [u, e] ∈ LN ′(Ω)N ×Q,
with

Fµ : LN
′
(Ω)N ×Q→ R ∪ {∞}, Fµ(u, e) := 1

µN ′
‖u‖N ′

LN′ (Ω)N
− 〈fn, u〉+ 1

2
(Ce, e),

Gµ : Σ(Div; Ω)∗ → R ∪ {∞}, Gµ(σ∗) := sup
σ∈Σ(Div;Ω),
σν=gn on Γ1

{〈σ∗, σ〉 − iµSad
(σ)}.

An application of [20, I, Remark 4.1] leads to

F ∗µ(u∗, e∗) = µN−1

N
‖u∗ + fn‖NLN (Ω)N + 1

2
(C−1e∗, e∗),

for all [u∗, e∗] ∈ LN(Ω)N ×Q. Moreover, it holds that Gµ(σ∗) = G̃∗µ(σ∗) for

G̃µ(σ) := iΣgn (Div;Ω)(σ) + iµSad
(σ), σ ∈ Σ(Div; Ω),

where
Σg̃(Div; Ω) := {σ ∈ Σ(Div; Ω) : σν = g̃ on Γ1}, g̃ ∈ H−1/2

00 (Γ1).

Since G̃µ is convex, l.s.c. and proper, one obtains

G∗µ = G̃µ = iΣgn (Div;Ω) + iµSad
.
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The Fenchel dual problem of (Pµ) corresponding to this setting is given by

(5.5) − inf F ∗µ(−Λ∗σ) +G∗µ(σ) + 〈p̂n−1, σ〉,

which is exactly problem (Dµ). Under the safe-load condition, the validity of (4.9) can be verified as in
Theorem 4.1, such that (5.3) holds. �

Hence, adding the strictly convex term (5.1) to the objective function Ĵ in (Pred) results in a penalty
approach to the mechanical equilibrium constraint −Div σ = fn in the space LN(Ω)N . Standard
properties of the Moreau-Yosida regularization further ensure that the objective function J∗µ is convex
and continuously Fréchet differentiable as a functional on Σ(Div; Ω). Since both problems are uniquely
solvable, we retrieve a one-to-one relation between regularized stresses and strains via the primal-dual
optimality conditions for the saddle point [uµ, eµ;σµ] ∈ BD(Ω)×Q×Σ(Div; Ω); see [20, III, Remark
4.2]. In fact, [uµ, eµ;σµ] can be characterized by the existence of λµ ∈ Σ(Div; Ω)∗ such that

Ceµ = σµ in Q, σµν = gn on Γ1(5.6)

|uµ|1/(N−1) ? sign(uµ) = µ(fn + Div σµ) in Ω(5.7)

−p̂n−1 −Div∗ uµ − (C−1 + µ id)σµ + µπSad(σµ)− λµ = 0,(5.8)

λµ ∈ NΣgn (Div;Ω)(σµ),(5.9)

where πSad denotes the projection on Sad in the space Q, and NΣgn (Div;Ω)(σµ) is the normal cone
at σµ to Σgn(Div; Ω) ⊂ Σ(Div; Ω). Here, (5.7) and the application of ’sign’ have to be understood
componentwise, where

|a|p := [|a1|p, . . . , |ad|p], a ? b := [a1b1, . . . , adbd]

denote Hadamard products for vectors a, b ∈ Rd in (5.7).

This shows that the displacement uµ can be easily computed from the solution σµ of (Dµ) using (5.7).
In contrast to the primal problem (Pµ), which is only given in inf-sup-form, the dual problem is again
given explicitly. This facilitates the analysis of the consistency of the regularization with regard to the
limit problems (P) and (D).

Theorem 5.3 (Consistency). Let the safe-load condition (Assumption 2.4) be satisfied. Then the
following assertions hold true.

(i) The sequence of approximate elastic strains (eµ) fulfills

eµ → ē in Q, for µ→∞.

The sequence of approximate displacements (uµ) is bounded in BD(Ω) and for any limit
ū ∈ BD(Ω) of a weakly∗-convergent subsequence of (uµ) ⊂ BD(Ω), it holds that [ū, ē] is
a solution of (Pred).

(ii) The sequence of approximate stresses (σµ) fulfills

σµ → σ̄ in Σ(Div; Ω), for µ→∞.

Proof. Step 1 (dual problem).
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First observe that the sequence of minimizers (σµ), whose existence is guaranteed by Proposition 5.2,
is bounded in Σ(Div; Ω). Indeed, we have

J∗µ(σµ) ≥ 1
2
(C−1σµ, σµ) + 〈p̂n−1, σµ〉+ µN−1

N
‖Div σµ + fn‖NLN (Ω)N(5.10)

≥ κ
C−1

2
‖σµ‖2

Q − c‖σµ‖Q − c‖Div σµ‖LN (Ω)N + µN−1

N
‖Div σµ + fn‖NLN (Ω)N

≥ κ
C−1

2
‖σµ‖2

Q − c‖σµ‖Q − c‖Div σµ + fn‖LN (Ω)N − c‖fn‖LN (Ω)N

+ µN−1

N
‖Div σµ + fn‖NLN (Ω)N ,

where c := ‖pn−1‖Σ(Div;Ω)∗ and κC−1 > 0 is a constant that fulfills

(5.11) (C−1σ, σ) ≥ κC−1‖σ‖2
Q, ∀σ ∈ Q.

On the other hand, it holds that

(5.12) J∗µ(σµ) ≤ J∗µ(σ̄) = 1
2
(C−1σ̄, σ̄) + 〈p̂n−1, σ̄〉, ∀µ > 0.

Together with (5.10), this implies that (σµ) ⊂ Σ(Div; Ω) is bounded.

Under the safe-load condition (Assumption 2.4), the objective function J∗µ of the dual problem (Dµ) is
proper, weakly l.s.c. and pointwise monotonically increasing for all µ > 0. The pointwise limit is given
by

(5.13) lim
µ→∞

(
J∗µ(σ) + iΣgn (Div;Ω)(σ)

)
= 1

2
(C−1σ, σ) + 〈p̂n−1, σ〉,

in the case where σ ∈ Sad(g
n),−Div σ = fn, and

(5.14) lim
µ→∞

(
J∗µ(σ) + iΣgn (Div;Ω)(σ)

)
= +∞,

else. An application of [14, Prop. 5.4] yields that (5.13) and (5.14) also hold as Γ-limits in the space
Σ(Div; Ω) endowed with the weak topology. It follows that each weak limit point of (σµ) in Σ(Div; Ω)
is the solution σ̄ of (D); see [14, Corollary 7.20]. By uniqueness, this also holds for the entire sequence,
i.e., σµ ⇀ σ̄ in Σ(Div; Ω). The strong convergence of (σµ) can be deduced as follows.

0 ≤ lim inf
µ→∞

(µ
N−1

N
‖Div σµ + fn‖NLN (Ω)N + iµSad

(σµ))

≤ lim sup
µ→∞

(µ
N−1

N
‖Div σµ + fn‖NLN (Ω)N + iµSad

(σµ))

≤ lim sup
µ→∞

(
κ
C−1

2
‖σµ − σ̄‖2

Q + µN−1

N
‖Div σµ + fn‖NLN (Ω)N + iµSad

(σµ))

≤ lim sup
µ→∞

(J∗µ(σµ)− 〈p̂n−1, σµ〉+ 1
2
(C−1σ̄, σ̄)− (C−1σµ, σ̄))

≤ lim sup
µ→∞

((C−1σ̄, σ̄) + 〈p̂n−1, σ̄ − σµ〉 − (C−1σµ, σ̄)) = 0,

where we use (5.11),(5.12) and σµ ⇀ σ̄ in Σ(Div; Ω). This entails that (σµ) converges strongly to σ̄
in Σ(Div; Ω) and that

(5.15) J∗µ(σµ)→ 1
2
(C−1σ̄, σ̄) + 〈p̂n−1, σ̄〉.

We immediately infer that eµ = C−1σµ → C−1σ̄ = ē in Q.

Step 2 (primal problem). Owing to the upper bound

c ≥ Ĵµ(un−1, en−1) ≥ Ĵµ(uµ, eµ) ≥ Ĵ(uµ, eµ)

≥ c0 − c1‖eµ‖+ κC‖eµ‖2

+ ρmax(‖ε(uµ)‖M(Ω),−‖ε(uµ)‖M(Ω) + 1√
2
‖uµ‖L1(Γ0;RN )),
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where the lower estimate follows from Lemma 3.3, one obtains the uniform boundedness of (eµ) ⊂ Q
and (uµ) ⊂ BD(Ω). Consequently, one may extract a subsequence also denoted by ([uµ, eµ]), such
that

uµ
∗
⇀ ũ in BD(Ω), eµ ⇀ ẽ in Q.

Using the sequential weak∗×weak lower semicontinuity of Ĵ , (cf. the proof of Theorem 3.4) and (5.3),
one obtains

Ĵ(ũ, ẽ) ≤ lim inf
µ→∞

Ĵ(uµ, eµ) ≤ lim inf
µ→∞

Ĵµ(uµ, eµ)(5.16)

= lim inf
µ→∞

min (Pµ) = − lim sup
µ→∞

min (Dµ),

Using (5.15), one obtains

lim sup
µ→∞

min (Dµ) = lim
µ→∞

min (Dµ) = min(D),

With the help of (4.8), the estimate (5.16) implies that

Ĵ(ũ, ẽ) ≤ −min (D) = min (Pred),

i.e., [ũ, ẽ] solves (Pred). �

5.2. An infinite-dimensional semismooth Newton method. This section aims to provide a theoreti-
cal framework for an efficient infinite-dimensional algorithmic scheme to solve the regularized problems
(Dµ) for a fixed parameter µ � 0 based on the semismooth Newton method [13, 32]. Owing to
Theorem 5.3 it is justified to make the assumption that (Dµ) represents a good approximation of (P).
Using the primal-dual optimality condition (5.7), it is further possible to retrieve [uµ, eµ] by solving (Dµ).
In this section, we make the restrictive assumption that N = 2, which implies that the incremental
stress problem as well as its regularization is posed in the Hilbert space H(Div; Ω).

For simplicity, we henceforth also assume that gn = 0. From a theoretical viewpoint this does not impose
a restriction since Korn’s inequality ensures that there exists an element ξ = ε(û) ∈ H(Div; Ω),
û ∈ V , that fulfills

(5.17) −Div ξ = fn, ξν = gn on Γ1.

In the usual way, one may then use ξ to transform (Dµ) into an equivalent problem with a homogeneous
normal trace condition. For gn = 0, problem (Dµ) reads

(D̃µ)


inf 1

2
(C−1σ, σ) + 〈p̂n−1, σ〉+ µ

2
‖Div σ + fn‖2

L2(Ω)2 + iµSad
(σ)

s.t. σν = 0 on Γ1,

over σ ∈ H(Div; Ω).

5.2.1. The semismooth Newton method. The semismooth Newton method relies on the notion of
Newton differentiability, which can be found in [13, 32].

Definition 5.4 (Newton differentiability). Let X, Y be Banach spaces and U ⊂ X be an open set.
A mapping F : U → Y is called Newton differentiable in U if there exists a family of mappings
GF : U → L(X, Y ) which satisfy

‖F (x+ h)− F (x)−GF (x+ h)h‖Y = o(‖h‖X), ‖h‖X → 0,

for all x ∈ U .

Provided GF (x) is invertible for all x ∈ U , the corresponding generalized Newton method to solve
F (x) = 0 for Newton differentiable F is defined iteratively by

(5.18) x(j+1) = x(j) −GF (x(j))−1F (x(j)), x(0) ∈ U.
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Following [32, Theorem 1.1], the sequence (x(j)) converges locally at a superlinear rate if {GF (x(j))−1 :
k ∈ N} is uniformly bounded. Moreover, the convergence rates are mesh independent upon discretiza-
tion, which means that the convergence quotients remain stable for sufficiently small mesh width. In
practice, the mesh independence of an algorithm ensures that the iteration numbers stay bounded
as the mesh width gets finer. We refer to [26, 31] for detailed mesh independence results for the
semismooth Newton method.

At this point, it should be emphasized that mesh-independent convergence requires the Newton
differentiability of the operator F with respect to the original (infinite-dimensional) setting, which in turn
necessitates a norm gap with respect to domain and image space of F ; cf., for instance, Lemma 5.8
below. In the context of (Dµ) however, the problem lacks the necessary norm gap sinceH(Div; Ω) does
not embed into Lp-spaces for p > 2. Therefore, a direct application of the semismooth Newton method
to the optimality conditions associated with the discrete formulation of (Dµ) results in a mesh-dependent
solver.

5.2.2. Tikhonov regularization. In order to overcome this drawback, we suggest to replace problem
(Dµ) by a Tikhonov-regularized problem induced by a continuous and elliptic symmetric bilinear form

b( . , . ) : H1(Ω; M2×2)×H1(Ω; M2×2)→ R

on the dense Hilbert subspace
H1(Ω; M2×2) ↪→ H(Div; Ω)

of M2×2-valued functions on Ω with distributional partial derivatives in Q, and we denote by

B ∈ L(H1(Ω; M2×2), H1(Ω; M2×2)∗)

the bounded linear operator associated with the bilinear form b. Note that the symmetry condition in the
definition of the space H1(Ω; M2×2) can be easily imposed using a simple parametrization. We now
contemplate the following approximation of the regularized incremental stress problem (D̃µ), which is
induced by a sequence of positive parameters (γ).

(Dµ,γ)


inf J∗µ,γ(σ)

s.t. σν = 0 on Γ1,

over σ ∈ H1(Ω,M2×2),

where

J∗µ,γ(σ) := 1
2
(C−1σ, σ) + 〈p̂n−1, σ〉+ µ

2
‖Div σ + fn‖2

L2(Ω)2 + iµSad
(σ) + 1

2γ
b(σ, σ).

The assumptions on b ensure that each problem (Dµ,γ) has a unique solution, which is henceforth
denoted by σµ,γ . The problem (Dµ,γ) further promises a good approximation of (Dµ) at least for large γ.
In fact, in order to relate the problems (Dµ,γ) to (Dµ) it is necessary to extend the density property

(5.19) C∞c (Ω; MN×N)
H(Div;Ω)

= H0(Div; Ω),

from [23, I, Theorem 2.6], to problems with mixed boundary conditions. For this purpose we define the
appropriate subspace

H0,Γ1(Div; Ω) := {σ ∈ H(Div; Ω) : σν = 0 on Γ1}

ofH(Div; Ω)-functions whose normal component vanishes on Γ1 in the sense of the spaceH−1/2
00 (Γ1).

We further make the following technical assumption on the boundary portion Γ0.

Assumption 5.5. The splitting of ∂Ω = Γ0 ∪ Γ1 ∪ ∂Γ0 is regular enough to ensure that the density
result

(5.20) C∞0,Γ1
(Ω)

H1(Ω)
= H1

0,Γ1
(Ω)
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for H1
0,Γ1

(Ω) = {u ∈ H1(Ω) : u = 0 on Γ1} and

(5.21) C∞0,Γ1
(Ω) := {ϕ ∈ C∞(Ω), ϕ = 0 on Γ1}

holds true.

According to [17, 9], condition (5.20) may only be violated by some degenerate Γ0, such that, from a
practical point of view, Assumption 5.5 does not represent a restriction.

Lemma 5.6. Let N ∈ N and suppose Assumption 5.5 holds true. Then the density property

C∞0,Γ1
(Ω; MN×N)

H(Div;Ω)
= H0,Γ1(Div; Ω)

is satisfied, where

C∞0,Γ1
(Ω; MN×N) := {ϕ ∈ C∞(Ω; MN×N) : ϕ|Γ1 = 0},

Proof. The continuity of the normal trace operator restricted to Γ1 [6],

τΓ1
ν : H(Div; Ω)→ [H

−1/2
00 (Γ1)]N , τΓ1

ν (σ) := τν(σ)
∣∣
Γ1
,

ensures that H0,Γ1(Div; Ω) = ker τΓ1
ν is a closed subspace of H(Div; Ω) and consequently, the

inclusion

C∞0,Γ1
(Ω; MN×N)

H(Div;Ω)
⊂ ker τΓ1

ν

is valid. Following the strategy of the proof of [23, I, Theorem 2.6] we show that any linear form on
(ker τΓ1

ν )∗ that vanishes on C∞0,Γ1
(Ω; MN×N) is identical to zero. In fact, let σ∗ ∈ (ker τΓ1

ν )∗ with

(5.22) 〈σ∗, σ〉 = 0, ∀σ ∈ C∞0,Γ1
(Ω; MN×N).

By the Riesz Representation Theorem, there exists σ0 ∈ ker τΓ1
ν such that

(5.23) 〈σ∗, σ〉 = (σ0, σ)Q + (q0,Div σ)L2(Ω)N , ∀σ ∈ ker τΓ1
ν ,

where q0 := Div σ0. Testing (5.23) with functions σ ∈ C∞c (Ω; MN×N), one deduces that ε(q0) = σ0.
Thus, it holds that

(5.24) q0 ∈ H1(Ω)N .

We further prove that q0 = 0 on Γ0. Using (5.22), Green’s formula implies that

〈σ∗, σ〉 = (ε(q0), σ)Q + (q0,Div σ)L2(Ω)N

= 〈σν, q0〉(H−1/2(∂Ω)N ,H1/2(∂Ω)N )

=

ˆ
Γ0

(σν)q0 dHN−1 = 0,(5.25)

for all σ ∈ C∞0,Γ1
(Ω; MN×N). By the density property (5.20) and the fact that

τΓ0
ν : H1

0,Γ1
(Ω,MN×N)→ [H

1/2
00 (Γ0)]N , τΓ0

ν (σ) := τν(σ)|Γ0 ,

defines a surjective and continuous linear operator (cf. [43, Chapter 5]), (5.25) implies thatˆ
Γ0

z · q0 dHN−1 = 0 ∀ z ∈ H1/2
00 (Γ0)N .

By the density of H1/2
00 (Γ0) in L2(Γ0), we have that q0 = 0 on Γ0. It follows from (5.24) that q0 ∈

H1
0,Γ0

(Ω)N and, by definition, also q0

∣∣
Γ1
∈ H1/2

00 (Γ1)N . Let σ ∈ ker τΓ1
ν . Using q0 ∈ H1

0,Γ0
(Ω)N , we

infer that

〈σ∗, σ〉 = (ε(q0), σ) + (q0,Div σ)L2(Ω)N = 〈σν, q0〉(H−1/2
00 (Γ1)N ,H

1/2
00 (Γ1)N )

= 0,

which shows that σ∗ is the zero functional on ker τΓ1
ν . �
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With the help of the density property provided by Lemma 5.6, the main consistency result for γ →∞
can be derived.

Theorem 5.7. Let µ > 0 be fixed and let Assumption 5.5 be fulfilled. For a sequence of positive
parameters (γ) ⊂ R+ with γ →∞, the solutions σµ,γ ∈ H1(Ω; M2×2) to (Dµ,γ) fulfill

σµ,γ → σµ in H(Div; Ω), as γ →∞,

where σµ is the solution of (D̃µ).

Proof. By convexity, the solution σµ of problem (D̃µ) is characterized by the variational inequality

aµ(σµ, σ̃ − σµ) + jµ(σ̃)− jµ(σµ) ≥ 〈lµ, σ − σ̃〉, ∀ σ̃ ∈ H(Div; Ω),

where

aµ(σ, σ̃) := (C−1σ, σ̃) + µ(Div σ,Div σ̃)L2(Ω)2 ,

jµ(σ̃) := iµSad
(σ̃) + iH0,Γ1

(Div;Ω)(σ̃),

lµ(σ) := −〈p̂n−1, σ〉 − µ(Div σµ, f
n).

On the other hand, the solution σµ,γ of (Dµ,γ) is characterized by the variational inequality

aµ(σµ,γ, σ̃ − σµ,γ) + jµ,γ(σ̃)− jµ,γ(σµ,γ) ≥ 〈lµ, σ̃ − σγ,µ〉, ∀ σ̃ ∈ H(Div; Ω),

where
jµ,γ(σ̃) := iµSad

(σ̃) + iH0,Γ1
(Div;Ω)(σ̃) + 1

γ
‖σ̃‖H1(Ω;M2×2).

Here, it is understood that jµ,γ(σ̃) = +∞ for σ̃ /∈ H1(Ω; M2×2). Using [14, Proposition 5.7], it is easy
to see that (jµ,γ) Mosco-converges in H(Div; Ω) to

iµSad
+ i

H0,Γ1
(Div;Ω)∩H1(Ω;M2×2)

H(Div;Ω) ,

as γ →∞; see [41, Definition 1.1]. From Lemma 5.6, it follows that

H0,Γ1(Div; Ω) ∩H1(Ω; M2×2)
H(Div;Ω)

= H0,Γ1(Div; Ω),

which entails that (jµ,γ) Mosco-converges to jµ in H(Div; Ω) for γ →∞. Together with the ellipticity
of a on H(Div; Ω), standard arguments from the perturbation of variational inequalities (see, for
instance, [24, I, Theorem 6.2]) prove that (σµ,γ) converges strongly to σµ in H(Div; Ω), which
concludes the proof. �

5.2.3. The von Mises yield criterion. In this section we onsider the special case, where the set of
admissible stresses is determined by the von Mises yield criterion, i.e.,

K0 := {q ∈ M2×2
0 : |q|F ≤ σy}, σy > 0 fixed,

which is one of the most frequently used yield criteria in practice. In this case, the projection onto the
feasible set Sad = {σ ∈ Q : dev σ ∈ K0 a.e. in Ω} in the space Q can be computed pointwise. In
fact, one obtains

(5.26) πSad(σ) = σ − [| dev σ|F − σy]+ dev σ
|dev σ|F

.

Under these premises, the problem (Dµ,γ) takes the form

(5.27)


inf 1

2
(C−1σ, σ) + 〈p̂n−1, σ〉+ µ

2
‖Div σ + fn‖2

L2(Ω)2

+µ
2
‖[| dev(σ)|F − σy]+‖2

L2(Ω) + 1
2γ
b(σ, σ).

over σ ∈ H1
0,ν(Ω; M2×2),

where
H1

0,ν(Ω; M2×2) := {σ ∈ H(Ω; M2×2) : σν = 0 on Γ1}.
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It turns out that the optimality conditions associated with (5.27) takes the form of a Newton differentiable
operator equation. In fact, since J∗µ,γ is convex and Fréchet differentiable, the necessary and sufficient
optimality condition for the solution σµ,γ to (5.27), is characterized by the nonsmooth operator equation

(5.28) Ψµ,γ(σµ,γ) = 0,

where Ψµ,γ : H1
0,ν(Ω; M2×2)→ H1

0,ν(Ω; M2×2)∗ is defined by

(5.29) Ψµ,γ(σ) := C−1σ + lµ + µDiv∗Div σ + µ dev∗m(dev σ) + 1
γ
Bσ.

Here,

m(σ) := [(|σ|F − σy)]+q(σ),where q(σ) =

{
σ/|σ|F , if σ 6= 0,

0, else;

denotes the nonlinear operator associated with the Fréchet derivative of the Moreau-Yosida regular-
ization. We proceed by showing that this equation can be solved efficiently by a generalized Newton
scheme, which requires the operator Ψµ,γ to be Newton differentiable in the sense of Definition 5.4.
In this regard, the only issue is the generalized differentiability of the function m, as all other terms in
(5.29) are Fréchet differentiable. The following result is available; cf. [29].

Lemma 5.8. Let β ∈ L∞(Ω) with β(x) ≥ c > 0 a.e. in Ω. Then the mapping

m : u 7→ [|u|2 − β]+q(u)

is Newton differentiable as a mapping from Lp(Ω)d → Ls(Ω)d for 3 ≤ 3s ≤ p < +∞ and

Gm(u) := iA(u) ·M(u)

defines a Newton derivative of m, where

ρ(u) := [|u|2 − β]+ 1
|u|2 ,

M(u)( . ) := ρ(u)( . ) + (1− ρ(u))uu
>( . )

|u|22
,

A(u) := {x ∈ Ω : |u|2(x) > β(x)}.

Corollary 5.9. A Newton derivative

GΨµ,γ (σ) ∈ L(H1
0,ν(Ω; M2×2), H1

0,ν(Ω; M2×2)∗)

of Ψµ,γ at σ is given by

〈GΨµ,γ (σ)σ̃, . 〉 := (C−1σ̃, . ) + µDiv∗Div σ̃ + µ dev∗Gm(dev σ)[dev σ̃] + 1
γ
Bσ̃,

for all σ̃ ∈ H1
0,ν(Ω; M2×2). Here, Gm denotes the Newton derivative of m according to Lemma 5.8.

Moreover GΨµ,γ (σ) is uniformly invertible, i.e., independent of σ.

Proof. According to Lemma 5.8 and the Sobolev embedding theorem, the mapping

σ → m(dev σ)

is Newton differentiable as a mapping from H1
0,ν(Ω; M2×2) to Q0 := {q ∈ Q : tr(q) = 0 a.e. in Ω}.

It follows immediately that the mapping Ψµ,γ is Newton differentiable with Newton derivative GΨµ,γ . It is
further straightforward (see, for instance, [30, Lemma 5.5]) to show that GΨµ,γ (σ) is uniformly elliptic,
i.e., there exists c = c(µ, γ) > 0 (independent of σ) such that

〈GΨµ,γ (σ)σ̃, σ̃〉 ≥ c‖σ̃‖2
H1

0,ν(Ω;M2×2),

which entails that ‖G−1
Ψµ,γ

(σ)‖ is uniformly bounded. �

Remark 5.10. If the safe-load condition (Assumption 2.4) holds, one can choose ξ = σ̂n as the shift
element in (5.17). Then, according to Lemma 5.8, the Newton differentiability of Ψµ,γ is still valid since
dev σ̂n ∈ L∞(Ω; MN×N

0 ).
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As a result of [32, Theorem 1.1], it can be inferred that the corresponding Newton iteration (5.18) (with
F = Ψµ,γ) is well-defined provided the starting point σ(0) is sufficiently close to σµ,γ . Moreover, the
iterates (σ(j)) converge locally at a superlinear rate, which is mesh-independent upon discretization.
To enforce global convergence, one may equip the search directions

δ(j) := −GΨµ,γ (σ
(j))Ψµ,γ(σ

(j))

with a step size determined by the Armijo line search procedure. The resulting method is summarized
in Algorithm (SSN(µ, γ)).

Algorithm SSN(µ, γ): Globalized SSN algorithm

input :σ(0) ∈ H1
0,ν(Ω; M2×2)

1 set j := 0;
2 while some stopping rule is not satisfied do
3 compute the solution δ(j) ∈ of GΨµ,γ (σ

(j))δ(j) = −Ψµ,γ(σ
(j));

4 determine α(j) > 0 by an Armijo line search based on α 7→ J∗µ,γ(σ
(j) + αδ(j));

5 set σ(j+1) := σ(j) + α(j)δ(j) and j := j + 1 ;

With the help of the gradient-relatedness of the search direction and the strong convexity of the objective
function J∗µ,γ , it is standard to infer that the sequence (σ(j)) generated by SSN(µ, γ) equipped with an

Armijo line search is globally convergent in the sense that (σ(j)) converges strongly to the solution of
(5.27) in the norm of H1

0,ν(Ω; M2×2);

σ(j) → σµ,γ in H1(Ω; M2×2).

We refer, e.g., to [10] for details.

5.3. Outlook. In order to approximate the solution σ of (D) one needs to pass to the limit in (Dµ,γ)
with µ, γ → +∞. This can be achieved by a path-following strategy in the spirit of [30, 28]. While the
semismooth reformulation of problem (Dµ) based on a Tikhonov regularization resembles the approach
for hardening plasticity from [30], the construction of a consistent regularization in perfect plasticity,
which does not rely on a vanishing hardening (or visco-plastic) approach, necessitates a more involved
inspection. In fact, for the study of the limiting case as µ, γ → +∞, one may resign to the stability
analysis from [30]. However, this approach is complicated by the presence of the additional equality
constraints

(5.30) −Div σ = fn, σν = gn on Γ1,

defining the feasible set of the limit problem (D), since the extension of the required density property (cf.
[30, Assumption 4.1]) to incorporate the equality constraints (5.30) is not possible. As a consequence,
a special coupling of the penalization-regularization parameters µ and γ is necessary to be consistent
with the limit problem (D). For this issue, we refer, e.g., to [40, Proposition 2.4.6.]. Moreover, the effect
on the primal problem (Pµ) of the Tikhonov regularization of (Dµ) remains to be investigated.

Another aspect concerns the convergence of finite element discretizations for (Dµ,γ) based on a
sequence of meshes with decreasing mesh width h. The stability of the corresponding discretized-
regularized scheme requires a convergence result as h → 0 and µ, γ → ∞, which necessitates a
suitable coupling between the three parameters. Even if the convergence of the discretized-regularized
stresses can be shown, it is still necessary to pass to the limit (as the mesh width tends to 0) in the
resulting discretized version of the primal-dual optimality conditions (5.6)-(5.9) (or their regularized
version) in order to study the convergence of the approximative displacements and plastic strains.
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In the case of elasticity, which formally corresponds to problem (D) with K0 = MN×N
0 , the convergence

of the discrete stress-displacement pair in mixed finite element methods hinges on the validity of the
LBB condition for saddle point problems [11]. Moreover, a conformal discretization of the stresses
requires the incorporation of the symmetry and divergence constraints from the definition of the space
H(Div; Ω). As a result, rather sophisticated finite elements, for example those of Arnold and Winther
[4] are proposed in the literature. The resulting finite-dimensional approximation usually involves a very
large number of (local) degrees of freedom. It is expected that these aspects also need to be taken into
account in order to construct a stable discrete primal-dual path-following strategy in order to solve the
plasticity problem (P) via (Dµ) or (Dµ,γ).
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