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Abstract

Inf-sup stable mixed methods for the steady incompressible Stokes equations that relax the di-
vergence constraint are often claimed to deliver locking-free discretizations. However, this relaxation
leads to a pressure-dependent contribution in the velocity error, which is proportional to the inverse
of the viscosity, thus giving rise to a (different) locking phenomenon. However, a recently proposed
modification of the right hand side alone leads to a discretization that is really locking-free, i.e., its
velocity error converges with optimal order and is independent of the pressure and the smallness
of the viscosity. In this contribution, we extend this approach to the transient incompressible Stokes
equations, where besides the right hand side also the velocity time derivative requires an improved
space discretization. Semi-discrete and fully-discrete a-priori velocity and pressure error estimates
are derived, which show beautiful robustness properties. Two numerical examples illustrate the su-
perior accuracy of pressure-robust space discretizations in the case of small viscosities.

1 Introduction

In the seventies [17, 11, 22], numerical analysts found out how to construct finite element discretizations
for the steady incompressible Stokes equations, which converge with optimal order. The challenge con-
sisted in the phenomenon of Poisson locking — well-known from linear elasticity theory [5] —, which is
related to the discretization of the divergence constraint. The breakthrough observation was that slightly
relaxing the divergence constraint enables an easier construction of optimal order algorithms. However,
numerical analysts at that time did not investigate in depth that relaxing the divergence constraint is
dangerous and leads to another locking phenomenon [26] — sometimes (rather imprecisely) called poor
mass conservation [29, 21] —, mirrored by a pressure-dependent contribution in the velocity error that
is proportional to the inverse of the viscosity [26, 32, 15, 36, 9, 18, 35]. In short, classical mixed meth-
ods for the incompressible Stokes equations like the nonconforming Crouzeix–Raviart element, the mini
element or the Taylor–Hood element have replaced Poisson locking by another locking phenomenon
[26, 34, 21, 7].

However, a closer look on the issue has recently revealed that relaxing the divergence constraint is
only dangerous in the velocity test functions and not in the velocity trial functions [32, 26]. Moreover,
it has been shown that classical mixed methods work well for divergence-free forces [32, 26], and that
’poor mass conservation’ is in fact excited by an inaccurate treatment of large irrotational forces in the
discrete momentum balance [26, 33, 32]. Such velocity errors may appear, since relaxing the divergence
constraint in discrete velocity test functions induces a discrete L2 scalar product for vector fields, where
discretely divergence-free functions are only approximately orthogonal to irrotational vector fields [32, 26].
This observation has led to novel pressure-robust mixed methods for the steady incompressible Stokes
equations, which have the same stiffness matrix as classical mixed methods, but discretize the right hand
side forcing differently [32, 36, 30, 9, 18, 35]. Thus, improved scalar products for L2 vector fields with
better orthogonality properties lead to really locking-free mixed methods, where the velocity error does
not depend on the pressure and not on the inverse of the viscosity, either.

In this sense, classical divergence-free mixed methods like the Scott–Vogelius element [42, 4, 41] and
novel divergence-free mixed methods [31, 20, 16, 23, 14, 19] — whose spaces of discretely divergence-
free vector fields are really divergence-free in the sense of H(div; Ω) — build an (important) subclass
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of all possible pressure-robust methods. Since their discretely divergence-free velocity test functions are
really divergence-free, there is no need for an improved L2 scalar product for vector fields. But note,
please, that classical mixed methods have just been invented, in order to replace divergence-free mixed
methods [11, 22] assuming these schemes would be inefficient in practical computations, e.g., due to the
high order of their approximation spaces [43, 41], the (additional) necessary barycentric refinement [42],
or the use of rational bubble functions [23].

In this contribution, we now extend previous work on pressure-robust mixed methods for the steady in-
compressible Stokes equations to the time-dependent case. The transient incompressible Stokes equa-
tions ut − ν∆u + ∇p = f , ∇ · u = 0, equipped with certain initial and boundary conditions, are
significantly more difficult to handle than the steady ones. Especially, in stabilized (equal-order) mixed
methods there is some ongoing debate on how to choose an appropriate discrete initial value for the time
evolution [13, 12, 2], how to overcome restrictions on a minimal time step [8, 13, 12, 2], how to choose
the necessary (pressure-)stabilization parameter [28, 12, 6] and how to mitigate poor mass conservation
(see the discussion above) by grad-div stabilization [28, 38, 15, 25, 39, 1]. Further, in stabilized mixed
methods strange dependencies of the velocity and pressure errors on the initial pressure (p − ph)(0)
are reported [28].

Amazingly, a numerical error analysis for pressure-robust (or divergence-free) mixed methods for the tran-
sient incompressible Stokes equations has never been presented before — to the best of the knowledge
of the authors, though recently in [37] an attempt was made to analyze a pressure-robust discretization
for the transient incompressible Navier–Stokes equations. But due to a focus on some difficulties involved
by the nonlinear convection term the authors did not look at potential advantages of pressure-robustness
for the transient incompressible Stokes subsystem.

Therefore, we emphasize in this contribution the beautiful robustness properties of pressure-robust mixed
methods for the transient incompressible Stokes equations. All the ambiguities concerning the discrete
initial value have gone, and neither time step restrictions nor stabilization parameters are needed. For
example, in the limit case ν = 0, a time-continuous, space-discrete pressure-robust mixed discretiza-
tion will deliver the L2 best approximation in every time point in some space of divergence-free vector
fields. On the contrary, a classical mixed method that relaxes the divergence constraint can develop in
this situation arbitrarily large velocity errors in long-time computations. Our analysis reveals that in the
time-dependent case pressure-robust mixed methods need not only to improve the standard right hand
side (space) discretization of f (as in the steady problem), but also the space discretization of the time
derivative ut. Indeed, the novel non-standard space discretization of ut makes it possible that for ν = 0
the semi-discrete scheme delivers the L2 best approximation in every time point. Moreover, this im-
provement also pays off in time-dependent potential flows as recently demonstrated in [34]. In fact, for
time-dependent potential flows a pressure-robust (space) discretization may allow for drastically larger
time steps without compromising the numerical accuracy. Briefly, the main highlights of this contribution
are:

1 a pressure-robust space discretization of the transient incompressible Stokes equations requires
to improve the two L2 scalar products (uh,t,vh) and (f ,vh);

2 several a priori error estimates are presented that involve discrete Helmholtz projectors [34] as a
new analytical tool;

3 numerical examples using classical and pressure-robust variants of the P bub
2 -P disc

1 and the Ber-
nardi–Raugel elements are presented that illustrate the theory.

The rest of the paper is structured as follows. Section 2 introduces the model problem and some notation.
Section 3 recalls classical inf-sup stable mixed finite element methods and their modified pressure-robust
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siblings, including a novel (space) discretization of the time derivative. Section 4 concerns the limit case
for ν = 0 and some L2 best approximation results. Section 5 then also discretizes in time with the help
of the θ-schemes with θ = 0.5 or θ = 1. In this section, also stability results and some a-priori error
estimates for the fully discrete classical and pressure-robust schemes are derived. Eventually, Section 6
studies some numerical examples to demonstrate the improved numerical accuracy of pressure-robust
mixed methods in certain benchmark problems.

2 Model problem and preliminaries

Let Ω be a domain in Rd (d = 2 or 3), with a polyhedral boundary. For T > 0, consider the problem:
for u : Ω × (0, T ) → Rd and p : Ω × (0, T ) → R, find the solution of the following time-dependent
Stokes equations: 

ut − ν∆u +∇p = f in Ω× (0, T ),
∇ · u = 0 in Ω× [0, T ),

u = 0 on ∂Ω× (0, T ),
u(·, 0) = u0 in Ω.

(1)

Here, ν > 0 denotes a constant viscosity, f the source term, and u0 : Ω → R the initial velocity field.
To derive a weak formulation of (1), the standard spaces for velocity and pressure are defined as follows:

V := H1
0 (Ω)d, and Q := L2

0(Ω) = {q ∈ L2(Ω) : (q, 1) = 0}.

Moreover,L2(Ω) := L2(Ω)d denotes the vector-valuedL2 space andL2(0, t;X) denotes the Bochner
space equipped with the norm ‖ · ‖2L2(0,t;X) :=

∫ t
0 ‖ · (s)‖

2
Xds. Assuming f ∈ L2(0, T ;L2(Ω)),

u ∈ L2(0, T ;V) with ut ∈ L2(0, T ;L2(Ω)) and p ∈ L2(0, T ;Q), the weak solution of the transient
Stokes problem (1) fulfills: for all (v, q) ∈ L2(0, T ;V)× L2(0, T ;Q) hold

(ut(t),v(t)) + ν(∇u(t),∇v(t))− (p(t),∇ · v(t)) = (f(t),v(t)),

(q(t),∇ · u(t)) = 0,

u(0) = u0.

(2)

In order to study the existence and uniqueness of the velocity, the system (2) is usually considered in the
space of divergence-free functions

Xdiv := {v ∈ V : (q,∇ · v) = 0 ∀q ∈ Q} .

Then, a pressure free formulation of the Stokes problem (2) reads: Find u(t) ∈ Xdiv with u(0) = u0

such that for almost all t ∈ (0, T )

(ut(t),v) + ν(∇u(t),∇v) = (f(t),v) for all v ∈Xdiv. (3)

2.1 Helmholtz decomposition

The Helmholtz decomposition (see e.g. [22]) states that every vector field f ∈ L2(Ω;Rd) can be uniquely
decomposed into

f = ∇α+ σ
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with α ∈ H1(Ω) and σ ∈ L2
σ(Ω) := {w ∈ H(div,Ω) : ∇ ·w = 0,w · n = 0 along ∂Ω}. In the

following, the divergence-free part σ =: P(f) is called the (continuous) Helmholtz projector of f which
can be also written as

P(f) = argmin
w∈L2

σ

‖f −w‖0. (4)

Note, that the Helmholtz projector of any gradient vanishes, i.e. P(∇q) = 0 for all q ∈ H1(Ω) by
L2-orthogonality between gradient fields and L2

σ(Ω).

2.2 Gronwall’s lemma

In the error estimate derivations, the Gronwall’s inequality (5) in the form below is applied.

Lemma 2.1 (Gronwall’s lemma [27]). Let x ∈ W 1,1(0, T ) and Ψ, χ, λ ∈ L1(0, T ) and Ψ(s), χ(s),
λ(s) ≥ 0 for almost all s ∈ [0, T ]. Assume that on (0, T ), it holds

dx(s)

ds
+ Ψ(s) ≤ χ(s) + λ(s)x(s) for almost all s ∈ (0, T ).

Then, for almost all t ∈ [0, T ] there holds

x(t) +

∫ t

0
Ψ(s) ds ≤ exp

(∫ t

0
λ(s) ds

)(
x(0) +

∫ t

0
χ(s) ds

)
. (5)

3 Space discretization

Let Vh ⊂ V and Qh ⊂ Q denote a pair of finite element spaces corresponding to the shape-regular
triangulations Th of Ω that satisfy the discrete inf-sup condition

inf
qh∈Qh\{0}

sup
vh∈Vh\{0}

(∇ · vh, qh)

‖∇vh‖0‖qh‖0
≥ βh ≥ β0 > 0 (6)

as h → 0, where h is maximal diameter of the mesh cell K ∈ Th. The space of discretely divergence-
free functions is defined by

Xh,div := {vh ∈ Vh : (qh,∇ · vh) = 0 ∀qh ∈ Qh}.

In this sense, the choice of the finite element pair defines a discrete divergence operator by

∇h · vh := argmin
qh∈Qh

‖∇ · vh − qh‖L2(Ω).

Note, that ∇h · vh = 0 does not imply ∇ · vh = 0 which is in fact the reason for the lack of pressure-
robustness in all classical non-divergence-free schemes. This can be further explained with the discrete
Helmholtz projector (in analogy to (4)) defined by

Ph(f) := argmin
vh∈Xh,div

‖f − vh‖L2(Ω)

which approximates the discretely divergence-free part of a force f . If the functions in Xh,div are not
really divergence-free, the discrete Helmholtz projector of a gradient f = ∇p is not zero, although the
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Helmholtz decomposition of∇p has no divergence-free part. Throughout the paper, this is expressed in
the dual norm

‖f‖X?
h,div

:= sup
vh∈Xh,div\{0}

(f ,vh)

‖∇vh‖L2(Ω)
. (7)

In fact, it holds

‖Ph(∇p)‖X?
h,div

= min
qh∈Qh

sup
vh∈Xh,div\{0}

(p− qh,∇ · vh)

‖∇vh‖L2(Ω)
≤ min

qh∈Qh
‖p− qh‖L2(Ω), (8)

which is the usual pressure best approximation error that appears in the a priori error analysis of classical
mixed finite element methods that are not pressure-robust.

3.1 Classical inf-sup FEM

The space-semi-discretized mixed FEM seeks (uh(t), ph(t)) ∈ Vh ×Qh for all t ∈ (0, T ) such that
(uh,t(t),vh) + ν(∇uh(t),∇vh)− (ph(t),∇ · vh) = (f(t),vh) ∀vh ∈ Vh,

(qh,∇ · uh(t)) = 0 ∀qh ∈ Qh,
uh(0) = u0

h

(9)

where u0
h is a suitable approximation of the initial velocity u0 in the finite element space Vh. In the

numerical examples of this paper, we focus on the Bernardi–Raugel finite element method and the P bub
2

finite element method but the theory is valid for arbitrary inf-sup stable pairs of finite elements. For the
Bernardi–Raugel element, Vh consists of piecewise linear continuous vector-valued polynomials P1 and
additional face bubbles in normal direction andQh consists of piecewise constant functions P0, see [10].
The P bub

2 finite element method employs piecewise quadratic continuous vector-valued polynomials plus
additional cell bubbles denoted by Vh = (P bub

2 )d and piecewise linear discontinuous pressure ansatz
functions Qh = P disc

1 .

Theorem 3.1. Let (u, p) be the solution of (2) with ut,∆u,∇p ∈ L2(0, T ;L2(Ω)) and let (uh, ph)
be the solution of (9).

(A) For all t ∈ (0, T ) and arbitrary wh ∈ L2(0, t;Xh,div), it holds

‖u(t)−uh(t)‖2L2(Ω)+ν‖∇(u−uh)‖2L2(0,t;L2) ≤ 2
[
‖(u−wh)(t)‖2L2(Ω) + ν‖∇(u−wh)‖2L2(0,t;L2)

]
+2 min

{(
‖w0

h − u0
h‖2L2(Ω) +

2

ν
‖Ph(wh,t − ut +∇p)‖2L2(0,t;X?

h,div)
+ 2ν‖∇(u−wh)‖2L2(0,t;L2)

)
,

exp (1)
(
‖w0

h − u0
h‖2L2(Ω) + t‖Ph(wh,t − ut +∇p)‖2L2(0,t;L2) + ν‖∇(u−wh)‖2L2(0,t;L2)

)}
.

(B) If wh is the L2 best approximation of u inXh,div, then statement (A) holds with

Ph(wh,t − ut +∇p) = Ph(∇p).

Proof of Theorem 3.1 (A). For fixed eh = uh −wh ∈ L2(0, t;Xh,div), the error equation is obtained
by subtracting (2) from (9), i.e., for almost all s ∈ (0, t) it holds

((uh,t −wh,t)(s), eh(s)) + ν(∇(uh −wh)(s),∇eh(s))

= ((ut −wh,t)(s), eh(s)) + ν(∇(u−wh)(s),∇eh(s)) + (∇p(s), eh(s))

= (Ph(ut −wh,t +∇p)(s), eh(s)) + ν(∇(u−wh)(s),∇eh(s)).
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Then, the Cauchy–Schwarz and Young inequalities applied to the right-hand side lead to

1

2

d

ds
‖eh(s)‖2L2(Ω) +

ν

2
‖∇eh(s)‖2L2(Ω)

≤ min

{(
1

ν
‖Ph(ut −wh,t +∇p)(s)‖2X?

h,div
+ ν‖∇(wh − u)(s)‖2L2(Ω)

)
,(

t

2
‖Ph(ut −wh,t +∇p)(s)‖2L2(Ω) +

1

2t
‖eh(s)‖2L2(Ω) +

ν

2
‖∇(wh − u)(s)‖2L2(Ω)

)}
.

Integrating this estimate over 0 to t in the first case, applying the Gronwall Lemma 2.1 with λ(s) = 1/t
in the second case, and applying a triangle inequality conclude the proof.

Proof of Theorem 3.1 (B). This follows directly from the fact that the time derivative and the application
of the projection Ph commute and that wh is theL2 best approximation of u inXh,div, i.e. wh = Ph(u).
Hence,

Ph(ut −wh,t +∇p) =
d

dt
(Ph(u)−wh) + Ph(∇p) = Ph(∇p).

Remark 3.2. Theorem 3.1.(B) shows that classical mixed methods for the transient incompressible
Stokes equations are not really locking-free, since ν−1‖Ph(∇p)‖L2(0,t;X?

h,div)
can be possibly large.

Alternatively, t‖Ph(∇p)‖L2(0,t;L2) can exceed every bound for large t. The reason for such possibly
large errors is just the lack of L2 orthogonality between discretely divergence-free vector fields and
gradient fields in the momentum balance, which are balanced by the pressure gradient. The estimates
above are sharp. We demonstrate this by some simple hydrostatic model problems, which can be ex-
plicitly solved. Denoting by Mh, ∆h and Ph the representation matrices for the FEM mass matrix, the
discrete vector Laplacian and the L2 projector onto the discretely divergence-free vector fields, we inves-
tigate model problems for (2) with a right hand side f = ∇φ with φ ∈ C∞(Ω) ∩ Q ∧ φ 6∈ Qh such
that Ph(∇φ) 6= 0. If not all vector fields inXh,div are divergence-free, then such a φ always exists, ac-
cording to the (continuous) Helmholtz decomposition. Then, for all times t > 0 the continuous solution of
this hydrostatic problem is just (u, p) = (0, φ). However, the discrete velocity solution uh of (9) is non-
zero and can be easily characterized. Defining gh := Ph(∇φ) = Ph(∇p) ∈ Xh,div, for the vanishing
viscosity case ν = 0 the velocity solution is just uh(t) = t(PThMhPh)−1gh, which shows the sharp-
ness of the Gronwall-type estimate. For ν > 0 the discrete velocity solution converges for t → ∞ to a
discrete steady solution, which can be described as u∞h = 1

ν (PTh ∆hPh)−1gh and shows the sharp-
ness of the ν−1-dependent estimate. Indeed, for all t > 0 one gets uh(t) = (I − exp(−νCht))u∞h
with the identity matrix I and Ch = (PThMhPh)−1(PTh ∆hPh). Expanding the matrix series, yields
uh(t) = t(PThMhPh)−1gh− 1

2νt
2Chgh+. . ., which shows that the Gronwall type estimate is sharper

for short time computations, and the ν−1-dependent estimate is sharper for long time computations. In
a nutshell, one can say that the main problem of classical mixed methods for the transient incompress-
ible Stokes equations is that they are not able to handle correctly general hydrostatic flow problems (i.e,
whenever it holds φ 6∈ Qh).

Remark 3.3. Despite locking effects due to small viscosities 0 < ν � 1, Theorem 3.1 shows at
least asymptotically optimal convergence. Indeed, assuming enough regularity for u and p, one can
choose, for almost all s ∈ (0, t), wh(s) as the (space) best approximation in the H1-semi norm.
‖Ph(∇p)‖L2(0,t;X?

h,div)
has the optimal rate, anyway, see (8).
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3.2 Pressure-Robust FEM

In this section, the weak form (2) is discretized in space by a modified pressure-robust mixed finite ele-
ment method that employs a reconstruction operator Π with two important properties.

First, it maps discretely divergence-free functions onto divergence-free test functions. This also implies a
modified discrete Helmholtz projector defined by

P?h(f) := argmin
vh∈ΠXh,div

‖f −Πvh‖L2(Ω).

This modification of the discrete Helmholtz projector leads to the fact that the discrete Helmholtz projec-
tion is zero when applied to gradients, i.e., L2-orthogonality of the operator ΠX0

div onto gradients of
H1-functions is established [32, 34]. This property ensures the pressure-independence of the a priori
error estimates.

Second, the velocity reconstruction operator Π for any pressure-robust finite element method of order k
satisfies some consistency error estimate in the abstract form

(g,vh −Πvh) ≤ Chk|g|k−1‖∇vh‖L2(Ω) for any g ∈ Hk−1(Ω)d. (10)

This property ensures that the modified method still converges with the optimal order. In particular, for
u ∈ Hk+1(Ω)d, it follows

‖∆u ◦ (1−Π)‖X?
h,div

:= sup
vh∈Xh,div\{0}

(∆u,vh −Πvh)

‖∇vh‖L2(Ω)
≤ Chk|u|k+1. (11)

Moreover, similar to (7) the error analysis for the modified method involves dual norms of the type

‖g ◦Π‖X?
h,div

:= sup
vh∈Xh,div\{0}

(g,Πvh)

‖∇vh‖L2(Ω)
. (12)

A triangle inequality and similar arguments as above show the estimate

‖g ◦Π‖X?
h,div
≤ ‖g‖X?

h,div
+ ‖g ◦ (1−Π)‖X?

h,div
= ‖g‖X?

h,div
+ Chs|g|s−1 (13)

where s ≤ k is the regularity of g ∈ Hs−1(Ω). Usually this is only needed for s = 1, i.e., g ∈ L2(Ω)d

to get a higher-order perturbation of the original dual norm in the classical estimates.

Reconstruction operators with these properties are available for many classical finite element methods,
e.g. for the Bernardi–Raugel finite element method [34] or others with discontinuous pressure elements
[32, 35, 36]. There, standard interpolation operators into Brezzi–Douglas–Marini or Raviart-Thomas
spaces can be employed that naturally satisfy (10), see e.g. [3]. Recently, also for the popular Taylor–
Hood and mini finite element method a reconstruction operator with these properties was designed [30].

The reconstruction operator Π is applied to the test-functions only in the right-hand side and in the time-
derivative. This leads to the pressure-robust mixed FEM that reads: For all t ∈ (0, T ), find (u(t), p(t)) ∈
Vh ×Qh such that

(Πuh,t,Πvh) + ν(∇uh,∇vh)− (ph,∇ · vh) = (f ,Πvh) ∀vh ∈ Vh,

(qh,∇ · uh) = 0 ∀qh ∈ Qh,
uh(0) = u0

h.

(14)

This discretization is only semi-discrete with respect to space, but not discrete in time. The fully discrete
scheme is studied below in Section 5. The following assumption is essential, in order to show optimal
convergence orders for the pressure-robust discretization.
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Assumption 3.4. For the velocity reconstruction operator, the kernel of Π : Xh,div → Π(Xh,div) is
denoted by ker(Π). Denoting ker(Π)⊥ as the orthogonal complement of ker(Π) inXh,div with respect
to the scalar product (∇•,∇•), we assume

C1‖vh‖L2(Ω) ≤ ‖Πvh‖L2(Ω) ≤ C2‖vh‖L2(Ω) for all vh ∈ ker(Π)⊥, (15)

where C1 and C2 denote constants, which depends on the shape-regularity of the mesh, but not on the
mesh size.

Remark 3.5. The first inequality of (15) follows in a generic way, even for all vh ∈Xh,div, from the (10)
and an inverse inequality by

‖Πvh‖L2(Ω) ≤ ‖vh‖L2(Ω) + ‖vh −Πvh‖L2(Ω) ≤ ‖vh‖L2(Ω) + Ch‖∇vh‖L2(Ω) ≤ C̃‖vh‖L2(Ω).

The second inequality needs a detailed investigation of the the used mixed finite element method and the
used reconstruction operator. We checked this condition numerically for the used discretizations from the
numerical section, which requires essentially the numerical solution of a generalized eigenvalue problem.

Theorem 3.6. Let (u, p) be the solution of (2) with ut,∆u,∇p ∈ L2(0, T ;L2(Ω)), and let (uh, ph)
be the solution of (9).

(A) For all t ∈ (0, T ) with arbitrary wh ∈ L2(0, t;Xh,div), it holds

‖(u−Πuh)(t)‖2L2(Ω)+ν‖∇(u−uh)‖2L2(0,t;L2) ≤ 2

[
‖(u−Πwh)(t)‖2L2(Ω)+ν‖∇(u−wh)‖2L2(0,t;L2)

]
+2 min

{(
‖Π(w0

h−u0
h)‖2L2(Ω)+3ν‖∆u◦(1−Π)‖2L2(0,t;X?

h,div)
+

3

ν
‖P?h(ut−Πwh,t)◦Π‖2L2(0,t;X?

h,div)

+ 3ν‖∇(u−wh)‖2L2(0,t;L2)

)
,

exp (1)

(
‖Π(w0

h − u0
h)‖2L2(Ω) + 2ν‖∆u ◦ (1−Π)‖2L2(0,t;X?

h,div)
+ t‖P?h(ut −Πwh,t)‖2L2(0,t;L2)

+ 2ν‖∇(u−wh)‖2L2(0,t;L2)

)}
.

(B) If Πwh is chosen as the L2 best approximation of u in Π(Xh,div), then statement (A) holds with

P?h(ut −Πwh,t) = 0,

yielding a locking-free error estimate.

(C) For almost all t ∈ (0, T ) and πQhp denoting the L2 best approximation of p in Qh, it holds

‖(πQhp− ph)(t)‖L2(Ω) ≤
1

β0

(
‖P?h(ut −Πuh,t)(t) ◦Π‖X?

h,div
+ ν‖∆u(t) ◦ (1−Π)‖X?

h,div

+ ν‖∇(u− uh)(t)‖L2(Ω)

)
.

Proof of Theorem 3.6.(A). Subtracting (2) from (14) and testing with vh ∈ L2(0, t;Xh,div), one gets

((Πuh,t − ut)(s),Πvh(s)) + ν(∇(uh − u)(s),∇vh(s))− ν(∆u,vh(s)−Πvh(s)) = 0

for almost all s ∈ (0, t). Here, we used the decisive property of the velocity reconstruction operator Π
in pressure-robust mixed methods that (∇p,Πvh) = 0 holds for all vh ∈ Xh,div [32, 36, 30]. Using
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f − ut = −ν∆u +∇p together with fixed eh := uh −wh ∈ L2(0, t;Xh,div) and a straightforward
calculation with vh = eh leads to

1

2

d

ds
‖Πeh(s)‖2L2(Ω) + ν‖∇eh(s)‖2L2(Ω)

= ((ut −Πwh,t)(s),Πeh(s)) + ν(∆u(s), (eh −Πeh)(s)) + ν(∇(u−wh)(s),∇eh(s)).

Applying the Cauchy–Schwarz and Young’s inequality to the first term on the right-hand side and using
the consistency error (11) gives

1

2

d

ds
‖Πeh(s)‖2L2(Ω) +

ν

2
‖∇eh(s)‖2L2(Ω) ≤ min

{(
3

2ν
‖P?h(ut −Πwh,t)(s) ◦Π‖2X?

h,div

+
3ν

2
‖∆u(s) ◦ (1−Π)‖2X?

h,div
+

3ν

2
‖∇(u−wh)(s)‖2L2(Ω)

)
,

(
t

2
‖P?h(ut −Πwh,t)(s)‖2L2(Ω)

+
1

2t
‖Πeh(s)‖2L2(Ω) + ν‖∆u(s) ◦ (1−Π)‖2X?

h,div
+ ν‖∇(u−wh)(s)‖2L2(Ω)

)}
.

Note that, the ‖∇eh(s)‖2L2(Ω)-norms were absorbed in the left-hand side. Then, the inequality is inte-

grated over the time 0 to t in the first min case, or the Gronwall Lemma 2.1 with λ(s) = 1/t is applied in
the second min case. This leads to

‖Πeh(t)‖2L2(Ω)+ν‖∇eh‖
2
L2(0,t;L2) ≤ min

{(
‖Π(w0

h−u0
h)‖2L2(Ω)+3ν‖∆u◦(1−Π)‖2L2(0,t;X?

h,div)

+
3

ν
‖P?h(ut−Πwh,t)◦Π‖2L2(0,t;X?

h,div)
+3ν‖∇(u−wh)‖2L2(0,t;L2)

)
, exp (1)

(
‖Π(w0

h−u0
h)‖2L2(Ω)

+2ν‖∆u◦(1−Π)‖2L2(0,t;X?
h,div)

+t‖P?h(ut−Πwh,t)‖2L2(0,t;L2) +2ν‖∇(u−wh)‖2L2(0,t;L2)

)}
.

The statement follows by a triangle inequality and (‖a‖+ ‖b‖)2 ≤ 2‖a‖2 + 2‖b‖2.

Proof of Theorem 3.6.(B). The proof is similar to the proof of Theorem 3.1.(B).

Proof of Theorem 3.6.(C). As in the steady case (see e.g. [32, 36]), the operator Π satisfies∇h · vh =
∇h · (Πvh) for any vh ∈ Vh. This and (πQhp(t),∇ · vh) = (p(t),∇ · vh) plus similar arguments as
in (A) yield

((πQhp− ph)(t),∇ · vh) = (P?h(ut − uh,t)(t),Πvh) + ν(∆u(t),vh −Πvh)

+ ν(∇(u− uh)(t),∇vh).

The inf-sup stability guarantees that vh ∈ Vh exists with

∇ · vh = (πQhp− ph)(t) and ‖∇vh‖L2(Ω) ≤
1

β0
‖(πQhp− ph)(t)‖L2(Ω).

The combination of both arguments and Cauchy–Schwarz inequality conclude the proof.

Remark 3.7. According to our estimates, a reasonable choice for the initial value in numerical simulations
u0
h is such that Πwh(0) is the best approximation inL2 of the continuous initial value u0 within the space

of divergence-free vector fields Π(Xh,div).
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Remark 3.8. The choice of Πwh (and therefore of wh) in Theorem 3.6.(B) leads to a locking-free
estimate in the sense that the estimate is independent of ν−1 for 0 < ν � 1. However, it is also
important to know the convergence order of the method with this choice, of course. For this objective, the
pressure-robust mixed method together with its velocity reconstruction operator has to be investigated in
detail.

i) The distance of wh to the L2 best approximation w̃h of u in Ker(Π)⊥ ⊂Xh,div can be estimated by

‖Πwh −Πw̃h‖2L2(Ω) = (Πu−Πw̃h,Πwh −Πw̃h)

≤ ‖Πu−Πw̃h‖L2(Ω)‖Πwh −Πw̃h‖L2(Ω)

≤
(
Ch‖∇(u− w̃h)‖L2(Ω) + ‖u− w̃h‖L2(Ω)

)
‖Πwh −Πw̃h‖L2(Ω)

Under the assumption (15) and standard arguments on shape-regular meshes like inverse inequalities,
one gets

h‖∇(wh − w̃h)‖L2(Ω) . ‖wh − w̃h‖L2(Ω) . ‖Πwh −Πw̃h‖L2(Ω)

For all the used mixed discretizations and the corresponding reconstruction operators in the numerical
section, this result delivers optimal k + 1 order convergence. In these cases, the kernels of the recon-
struction operators are empty, and w̃h is just the L2 best approximation inXh,div. Then, ‖u−w̃h‖L2(Ω)

and Ch‖∇(u− w̃h)‖L2(Ω) converge with optimal order k+ 1 on convex domains. Therefore, ‖∇(u−
wh)‖L2(Ω) converges with optimal order k.

ii) It remains to investigate the approximation error ‖(u − Πwh)(t)‖L2(Ω), which depends on the ap-
proximation properties of ΠXh,div ⊂ L2

σ(Ω). Similarly as above, one estimates

‖u−Πwh‖L2(Ω) ≤ ‖u−Πu‖L2(Ω) + ‖Π(u− w̃h)‖L2(Ω) + ‖Π(w̃h −wh)‖L2(Ω).

Since ‖u−Πu‖L2(Ω) and ‖Π(w̃h −wh)‖L2(Ω) converge with optimal orders, it remains to estimate

‖Π(u− w̃h)‖L2(Ω) ≤ ‖u− w̃h‖L2(Ω) + Ch‖∇(u− w̃h)‖L2(Ω).

Again, by standards arguments on shape-regular meshes the optimal convergence order is proved.

Remark 3.9. The statement (C) in Theorem 3.6 shows a certain pressure-robustness of the pressure
error, as it is known for pressure-robust discretizations of the steady Stokes problem [36]. Indeed, the
discrete pressure at every time is the best approximation of the continuous pressure in L2 up to an error,
which is only velocity-dependent. In [34] it is shown that for time-dependent potential flows, the improved
space discretization of the time derivate (Πuh,t,Πvh) allows sometimes much larger time steps than
the classical discretization (uh,t,vh) without affecting the local-in-time velocity error. Theorem 3.6 shows
that also the local-in-time pressure error will not be affected negatively, since it just follows the velocity
error.

4 Limit case

For ν → 0 our model problem approaches the problem

ut +∇p = f and ∇ · u = 0.

For this limit case some improved error estimates can be proven.

Theorem 4.1. Let (u, p) be the solution of (2) with ut,∇p ∈ L2(0, T ;L2(Ω)).

DOI 10.20347/WIAS.PREPRINT.2368 Berlin 2017



N. Ahmed, A. Linke, Ch. Merdon 11

(A) For the classical discretization (9) with ν = 0, it holds, for almost all t ∈ (0, T ),

‖u(t)− uh(t)‖2L2(Ω)

≤ inf
wh∈Xh,div

‖u(t)−wh‖2L2(Ω) +

(
‖u(0)− uh(0)‖L2(Ω) + ‖

∫ t

0
Ph(∇p(s)) ds‖L2(Ω)

)2

.

(B) For the pressure-robust discretization (14) with ν = 0, it holds, for almost all t ∈ (0, T ),

‖u(t)−Πuh(t)‖2L2(Ω) ≤ inf
wh∈Xh,div

‖u(t)−Πwh‖2L2(Ω) + ‖u(0)−Πuh(0)‖2L2(Ω).

In other words, the solution of the pressure-robust scheme Πuh(t) equals the L2 best approximation in
ΠXh,div of u(t) up to some initial error. Moreover, (B) and (C) of Theorem 3.6 also show that ph is the
L2 best approximation of p for almost all t ∈ (0, T ).

Similarly, a fully divergence-free method (like the Scott–Vogelius finite element method where Ph = P
with Π = 1) gives the best approximation inXh,div up to some initial error.

Proof of (A). Subtracting the continuous problem (2) from the classical discrete problem (9) for ν = 0
and s ∈ (0, t) and inserting f(s) = ut(s) +∇p(s) gives

d

dt
(u(s)− uh(s),vh) = −(∇p(s),vh) = −(Ph∇p(s),vh).

for any (time-independent) test function vh ∈Xh,div. Integration over (0, t) gives

(u(t)− uh(t),vh) = (u(0)− uh(0),vh)−
∫ t

0
(Ph∇p(s),vh) ds

= (u(0)− uh(0),vh)− (

∫ t

0
Ph∇p(s) ds,vh)

≤
(
‖u(0)− uh(0)‖L2(Ω) + ‖

∫ t

0
Ph(∇p(s)) ds‖L2(Ω)

)
‖vh‖L2(Ω).

The best approximation wh of u(t) inXh,div is characterized by

(wh − u(t),vh) = 0 for all vh ∈Xh,div.

Hence, testing with the test function vh := uh(t)−wh ∈Xh,div gives

‖vh‖2L2(Ω) = ‖wh − uh(t)‖2L2(Ω)

= (wh − u(t),vh) + (u(t)− uh(t),vh)

≤
(
‖u(0)− uh(0)‖L2(Ω) +

∫ t

0
‖Ph(∇p(s))‖L2(Ω) ds

)
‖vh‖L2(Ω).

This and a Pythagoras theorem conclude the proof (for details see the end of the proof for the pressure-
robust case).

Proof of (B). Subtracting the continuous problem (2) from the pressure-robust discrete problem (14) for
ν = 0 and s ∈ (0, t) and inserting f(s) = ut(s) +∇p(s) gives

d

dt
(u(s)−Πuh(s),Πvh) = 0
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for any (time-independent) test function vh ∈Xh,div. Integration over (0, t) gives

(u(t)−Πuh(t),Πvh) = (u(0)−Πuh(0),Πvh) ≤ ‖u(0)−Πuh(0)‖L2(Ω)‖Πvh‖L2(Ω).

Moreover, for the best approximation Πwh of u(t) in ΠXh,div with wh − uh = 0 along ∂Ω, it holds

(Πwh − u(t),Πvh) = 0.

Hence, testing with the test function vh := uh(t)−wh ∈Xh,div gives

‖Πvh‖2L2(Ω) = ‖Πwh −Πuh(t)‖2L2(Ω) = (Πwh − u(t),Πvh) + (u(t)−Πuh(t),Πvh)

≤ ‖u(0)−Πuh(0)‖L2(Ω)‖Πvh‖L2(Ω).

Division by ‖Πvh‖L2(Ω) shows ‖Πwh−Πuh(t)‖L2(Ω) ≤ ‖u(0)−Πuh(0)‖L2(Ω) and the Pythagoras
theorem (note that (u(t)−Πwh,Πwh −Πuh(t)) = 0)

‖u(t)−Πuh(t)‖2L2(Ω) = ‖u(t)−Πwh‖2L2(Ω) + ‖Πwh −Πuh(t)‖2L2(Ω)

concludes the proof for the pressure-robust discretization.

Remark 4.2. To illustrate this result we perform a short numerical experiment with the prescribed exact
solution u ≡ 0 and (time-dependent) pressure

pγ(t, x, y) = (1 + γ cos(10πt))(sin(πx) cos(πy)) with γ ∈ {0, 1, 2} (16)

and the right-hand side f(t) := ∇pγ(t). To approach the time-continuous case as close as possible
we use a backward Euler time discretization with time-step τ = 10−4 and ν = 0 in the time interval
(0, 1). Figure 1 shows the L2-error of the classical Bernardi–Raugel finite element method for all three
choices of γ (the pressure-robust Bernardi–Raugel discretization has zero error in this case as predicted
by Theorem 4.1 and is not plotted). The error of the classical method grows linearly in time for γ = 0 and
also for γ = 1 or γ = 2 (besides some oscillations caused by the oscillating part of the pressure). The
case γ = 2 shows that if the pressure changes directions it can lead to a reduction of the error that was
accumulated before. All cases arrive at the same error, since the total integral of the pressure over the
interval (0, 1) is the same for all choices of γ. Altogether this little example shows that the error estimate
in Theorem 4.1 is sharp.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

t

‖u
(t

)
−
u
h
(t

)‖

γ = 0
γ = 1
γ = 2

Figure 1: L2 error of the classical Bernardi–Raugel finite element method for the limit case example with
u ≡ 0 and pressure (16) for γ ∈ {0, 1, 2}.

Remark 4.3. The convergence orders in the limit case are optimal on shape-regular meshes, as argued
in Remarks 3.7 and 3.8.
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5 Time discretization

In this section, the semi-discrete problems (9) and (14) are further discretized in time using the classical
θ-scheme to obtain the fully discrete problem. To this end, consider a non-negative integer N and a
uniform time step length τ := T/N where T is the final time. In the following (unh, p

n
h) stands for

an approximation of (u(tn), p(tn)) with tn := nτ for 1 ≤ n ≤ N . Note, that the following a priori
error analysis extends to non-uniform time-step sizes in a straight-forward way, but is avoided here to
concentrate on the pressure-robustness.

5.1 Time stepping with the θ–scheme

The fully discrete classical mixed FEM discretized in time using the classical θ-scheme with θ ∈ [1/2, 1]
reads: For given u0

h a suitable approximation of the initial velocity u0 in Vh, find (unh, p
n
h) ∈ Vh ×Qh

with 1 ≤ n ≤ N , that satisfy{
(unh,τ ,vh) + ν(∇un−θh ,∇vh)− (pnh,∇ · vh) = (fn−θ,vh) ∀vh ∈ Vh,

(qh,∇ · un−θh ) = 0 ∀qh ∈ Qh
(17)

where unh,τ := (unh − un−1
h )/τ , un−θh := θunh + (1 − θ)un−1

h and fn−θ := f(tn−θ) with tn−θ :=

θtn+(1−θ)tn−1. For θ = 1 this yields the backward Euler scheme and for θ = 0.5 the Crank-Nicolson
scheme.

Similarly, the classical θ-scheme applied to the pressure-robust mixed FEM (14) reads as follows: For
given u0

h and 1 ≤ n ≤ N , find (unh, p
n
h) ∈ Vh ×Qh such that{

(Πunh,τ ,Πvh) + ν(∇un−θh ,∇vh)− (pnh,∇ · vh) = (fn−θ,Πvh) ∀vh ∈ Vh,

(qh,∇ · un−θh ) = 0 ∀qh ∈ Qh.
(18)

In the analysis of the fully discrete schemes, the following discrete version of the Gronwall’s inequality will
be used, see [27, 24].

Lemma 5.1. Let τ , B and aj , bj , cj , γj , for j ≥ 1, be non-negative numbers such that

an +
n∑
j=1

bj ≤ B + τ
n∑
j=1

cj + τ
n∑
j=1

γjaj

holds. If τγj < 1 for all j = 1, . . . , n, then

an +

n∑
j=1

bj ≤ exp

τ n∑
j=1

γj
1− τγj

B + τ

n∑
j=1

cj

 .

Furthermore, the following short form of the norms will be used for a fixed time step index n:

‖v‖20,τ :=

n∑
j=1

τ‖vj‖2L2(Ω), ‖v‖
2
θ,τ :=

n∑
j=1

τ‖vj−θ‖2L2(Ω), ‖v‖
2
θ,τ,X?

h,div
:=

n∑
j=1

τ‖vj−θ‖2X?
h,div
.

In cases where the summation indices change, the complete form of the norms will be used. The next
theorem states the stability of the θ-schemes (17) and (18).
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Theorem 5.2 (Stability of the θ-schemes (17) and (18)). Let u0
h be a given approximation of the initial

velocity u0 in Vh. For the solution (unh, p
n
h) of the fully discrete scheme (17), the following estimate

holds for 1 ≤ n ≤ N with CG = exp
(
T (T − τ)−1

)
1

2
‖unh‖

2
L2(Ω) +

ν

2
‖∇uh‖2θ,τ

≤ min

{(
1

2
‖u0

h‖2L2(Ω) +
1

2ν
‖Ph(f)‖2θ,τ,X?

h,div

)
, CG

(
1

2
‖u0

h‖2L2(Ω) + T‖Ph(f)‖2θ,τ
)}

(19)

and for the solution (unh, p
n
h) of the fully discrete scheme (18) one gets

1

2
‖Πunh‖

2
L2(Ω) +

ν

2
‖∇uh‖2θ,τ ≤ min

{(
1

2

∥∥Πu0
h

∥∥2

L2(Ω)
+

1

2ν
‖P?h(f) ◦Π‖2θ,τ,X?

h,div

)
,

CG

(
1

2
‖Πu0

h‖2L2(Ω) + T ‖P?h(f)‖2θ,τ

)}
. (20)

Proof. The solution ujh ∈Xh,div of (17) for time step j ∈ {1, . . . , n} satisfies

τ(ujh,τ ,vh) + ντ(∇uj−θh ,∇vh) = τ(f j−θ,vh) = τ(Ph(f j−θ),vh) ∀vh ∈Xh,div. (21)

For vh = uj−θh , elementary calculations show

τ(ujh,τ ,vh) = (ujh − uj−1
h , θujh + (1− θ)uj−1

h )

=
1

2

(∥∥∥ujh∥∥∥2

L2(Ω)
−
∥∥∥uj−1

h

∥∥∥2

L2(Ω)

)
+

2θ − 1

2

∥∥∥ujh − uj−1
h

∥∥∥2

L2(Ω)
≥ 1

2

∥∥∥ujh∥∥∥2

L2(Ω)
−1

2

∥∥∥uj−1
h

∥∥∥2

L2(Ω)
.

This and Cauchy–Schwarz and Young inequalities applied to the right-hand side of (21) lead to

1

2

∥∥∥ujh∥∥∥2

L2(Ω)
− 1

2

∥∥∥uj−1
h

∥∥∥2

L2(Ω)
+ ντ

∥∥∥∇uj−θh

∥∥∥2

L2(Ω)

≤ min

{
τ

2ν
‖Ph(f j−θ)‖2X?

h,div
+
ντ

2
‖∇uj−θh ‖2L2(Ω), T τ

∥∥∥Ph(f j−θ)
∥∥∥2

L2(Ω)
+

τ

4T
‖uj−θh ‖2L2(Ω)

}
.

Summation over j = 1, . . . , n and ‖uh‖2θ,τ ≤ 2

n∑
j=0

τ‖ujh‖
2
L2(Ω) = ‖uh‖20,τ +

τ

2T
‖u0

h‖2L2(Ω) gives

1

2
‖unh‖

2
L2(Ω) + ν ‖∇uh‖2θ,τ ≤

1

2
‖u0

h‖2L2(Ω) + min

{
1

2ν
‖Ph(f)‖2θ,τ,X?

h,div
+
ν

2
‖∇un−θh ‖2θ,τ ,

T ‖Ph(f)‖2θ,τ +
1

2T
‖uh‖20,τ +

τ

2T
‖u0

h‖2L2(Ω)

}
.

The first statement of the theorem now follows by absorbing the ‖∇uh‖2θ,τ -norm in the min case on
the right-hand side to the left-hand side, and by applying Lemma 5.1 to the second min case on the
right-hand side, taking γj = 1/T such that τγj = τ/T < 1.

Similarly, the solution ujh ∈Xh,div of (18) satisfies

τ
(

Πujh,τ ,Πvh

)
+ ντ

(
∇uj−θh ,∇vh

)
= τ

(
f j−θ,Πvh

)
= τ

(
P?h(f j−θ),Πvh

)
∀vh ∈Xh,div.
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Setting vh = uj−θh , using the same algebraic inequality as in the previous estimate, and the Cauchy–
Schwarz inequality gives

1

2

∥∥∥Πujh

∥∥∥2

L2(Ω)
− 1

2

∥∥∥Πuj−1
h

∥∥∥2

L2(Ω)
+ ντ

∥∥∥∇uj−θh

∥∥∥
L2(Ω)

≤ τ min

{
ν−1/2

∥∥∥P?h(f j−θ) ◦Π
∥∥∥
X?
h,div

ν1/2
∥∥∥∇uj−θh

∥∥∥
L2(Ω)

,
∥∥∥P?h(f j−θ)

∥∥∥
L2(Ω)

∥∥∥Πuj−θh

∥∥∥
L2(Ω)

}
.

The rest of the proof is identically to the classical case.

5.2 Error estimates of the fully discrete schemes

In this section the a priori error estimates for the fully discrete classical scheme (17) as well as for the
novel pressure-robust scheme (18) are derived.

The next theorem states the convergence results of the fully discrete θ-schemes of the classical and the
pressure-robust mixed finite element methods.

Theorem 5.3 (Error estimates of θ-schemes). Let (u(tn), p(tn)) be the solution of (2) and assume
ut,utt,uttt ∈ L2(0, t;L2(Ω)).

(A) For the solution (unh, p
n
h) of the fully discrete classical θ-scheme (17) for n = 1, . . . , N ≥ 1, it

holds, for arbitrary wh ∈ L2(0, t;Xh,div) with u0
h = w0

h,

‖u(tn)−unh‖2L2(Ω) + ν‖∇(u− uh)‖2θ,τ ≤ 2‖u(tn)−wn
h‖2L2(Ω) + 2ν‖∇(u−wh)‖2θ,τ

+ C min

{(
1

ν
‖Ph(ut −wh,t +∇p)‖2θ,τ,X?

h,div
+
τ2|2θ − 1|

ν
‖Ph(wh,tt)‖2θ,τ,X?

h,div

+
τ4

ν
‖Ph(wh,ttt)‖2L2(0,t;X?

h,div)
+ ν‖∇(u−wh)‖2θ,τ

)
,

CG

(
T ‖Ph(ut −wh,t +∇p)‖2θ,τ + τ2T |2θ − 1| ‖Ph(wh,tt)‖2θ,τ

+ τ4T ‖Ph(wh,ttt)‖2L2(0,t;L2) + ν‖∇(u−wh)‖2θ,τ
)}

.

(B) Similarly, for the solution (unh, p
n
h) of the fully discrete pressure-robust θ-scheme (18) for n =

1, . . . , N ≥ 1, it holds for arbitrary wh ∈ L2(0, t;Xh,div) with u0
h = w0

h,

‖u(tn)−Πunh‖
2
L2(Ω) + ν‖∇(u− uh)‖2θ,τ ≤ 2‖u(tn)−Πwn

h‖2L2(Ω) + 2ν‖∇(u−wh)‖2θ,τ

+C min

{(
ν‖∇(u−wh)‖2θ,τ+ν ‖∆u ◦ (1−Π)‖2θ,τ,X?

h,div
+

1

ν
‖P?h(ut −Πwh,t) ◦Π‖2θ,τ,X?

h,div

+
τ2|2θ − 1|

ν
‖P?h(Πwh,tt) ◦Π‖2θ,τ,X?

h,div
+
τ4

ν
‖P?h(Πwh,ttt) ◦Π‖2L2(0,t;X?

h,div)

)
,

CG

(
ν‖∇(u−wh)‖2θ,τ + ν ‖∆u ◦ (1−Π)‖2θ,τ,X?

h,div
+ T ‖P?h(ut −Πwh,t)‖2θ,τ

+ τ2T |2θ − 1| ‖P?h(Πwh,tt)‖2θ,τ + τ4T ‖P?h(Πwh,ttt)‖2L2(0,t;L2)

)}
.

DOI 10.20347/WIAS.PREPRINT.2368 Berlin 2017



N. Ahmed, A. Linke, Ch. Merdon 16

Here CG = exp
(
T (T − τ)−1

)
and C is a constant independent of h, τ , and ν.

Proof. We just prove the novel estimate (B) for the pressure-robust scheme. The proof of the classical
estimate (A) follows analogously.

The error equation for the fully discrete θ-scheme with pressure-robust mixed FEM is obtained by sub-
tracting (2) from (18) and using f = ut − ν∆u +∇p, that is

(Πenh,τ ,Πvh) + ν(∇en−θh ,∇vh)

=
(
T pr

tr ,Πvh
)

+ ν(∇(u(tn−θ)−wn−θ
h ),∇vh)− ν(∆u(tn−θ),vh −Πvh) (22)

where T pr
tr := ut(t

n−θ) − τ−1(Πwn
h − Πwn−1

h ). The last term on the right-hand sides of (22) is
bounded by the consistency error (11) and the Young’s inequality

ν(∆u(tn−θ),vh −Πvh) ≤ ν‖∆u(tn−θ) ◦ (1−Π)‖X?
h,div
‖∇vh‖L2(Ω)

≤ ν‖∆u(tn−θ) ◦ (1−Π)‖2X?
h,div

+
ν

4
‖∇vh‖2L2(Ω).

The first two terms on the right hand sides of (22) are estimated in a similar fashion by using the Cauchy–
Schwarz and Young’s inequalities. Using similar steps as in the stability estimate (20), one gets

‖Πenh‖2L2(Ω) + ν‖∇eh‖2θ,τ

≤ min

{(
4

ν

∥∥P?h(T pr
tr ) ◦Π

∥∥2

θ,τ,X?
h,div

+ ν ‖∆u ◦ (1−Π)‖2θ,τ,X?
h,div

+ 4ν‖∇(u−wh)‖2θ,τ
)
,

CG

(
2T
∥∥P?h(T pr

tr )
∥∥2

θ,τ
+ ν ‖∆u ◦ (1−Π)‖2θ,τ,X?

h,div
+ 2ν‖∇(u−wh)‖2θ,τ

)}
(23)

where in addition e0
h = 0 was exploited. It remains to get the bounds for the error terms T pr

tr . To achieve
this, the application of the triangle inequality gives

∥∥Ph ? (T pr
tr )
∥∥2

θ,τ
=

n∑
j=1

τ
∥∥∥P?h (ut(tj−θ)− τ−1

(
Πwn

h −Πwn−1
h

))∥∥∥2

L2(Ω)

≤ 2

[
‖P?h (ut −Πwt)‖2θ,τ +

n∑
j=1

τ
∥∥∥P?h (Πwh,t(t

j−θ)− τ−1
(

Πwj
h −Πwj−1

h

))∥∥∥2

L2(Ω)

]
.

The second term can be treated in a standard way, see e.g. [40], using a Taylor series expansion with
integral remainder term for θ ∈ [1/2, 1], which yields

Πwh,t(t
j−θ)−

Πwj
h −Πwj−1

h

τ
=

τ

2
(2θ − 1)Πwh,tt(t

j−θ)− 1

2τ

[∫ tj−θ

tj−1

(t− tj−1)2Πwh,ttt +

∫ tj

tj−θ
(t− tj)2Πwh,ttt

]
.
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Then, using the Cauchy–Schwarz inequality and Fubini theorem, one gets
n∑
j=1

τ
∥∥∥P?h (Πwh,t(t

j−θ)− τ−1(Πwj
h −Πwj−1

h )
)∥∥∥2

L2(Ω)

≤ Cτ2|2θ − 1|
n∑
j=1

τ
∥∥∥P?h(Πwh,tt(t

j−θ))
∥∥∥2

L2(Ω)

+
C

τ

n∑
j=1

∫ tj−θ

tj−1

(t− tj−1)4

∫ tj−θ

tj−1

‖P?h(Πwh,ttt)‖2L2(Ω)

+
C

τ

n∑
j=1

∫ tj

tj−θ
(t− tj)4

∫ tj

tj−θ
‖P?h(Πwh,ttt)‖2L2(Ω)

≤ Cτ2|2θ − 1| ‖P?h(Πwh,tt)‖2θ,τ + Cτ4 ‖P?h(Πwh,ttt)‖2L2(0,t;L2) .

Collecting the above estimate, one gets∥∥P?h(T pr
tr )
∥∥2

θ,τ
≤ C

[
‖P?h(ut −Πwh,t)‖2θ,τ

+ τ2|2θ − 1| ‖P?h(Πwh,tt)‖2θ,τ + τ4 ‖P?h(Πwh,ttt)‖2L2(0,t;L2)

]
.

Similar arguments can be used to bound the term ‖T pr
tr ‖τ,θ,X?

h,div
, which leads to∥∥P?h(T pr

tr ) ◦Π
∥∥2

θ,τ,X?
h,div
≤ C

[
‖P?h(ut −Πwh,t) ◦Π‖2θ,τ,X?

h,div
+ τ2|2θ − 1| ‖P?h(Πwh,tt) ◦Π‖2θ,τ,X?

h,div

+τ4 ‖P?h(Πwh,ttt) ◦Π‖2L2(0,t;X?
h,div)

]
.

By inserting this expression in (23) and using e0
h = 0 leads to the following error bound

‖Πenh‖2L2(Ω) + ν‖∇eh‖2θ,τ

≤ C min

{(
ν‖∇(u−wh)‖2θ,τ + ν ‖∆u ◦ (1−Π)‖2θ,τ,X?

h,div
+

1

ν
‖P?h(ut −Πwh,t) ◦Π‖2θ,τ,X?

h,div

+
τ2|2θ − 1|

ν
‖P?h(Πwh,tt) ◦Π‖2θ,τ,X?

h,div
+
τ4

ν
‖P?h(Πwh,ttt) ◦Π‖2L2(0,t;X?

h,div)

)
,

CG

(
ν‖∇(u−wh)‖2θ,τ + ν ‖∆u ◦ (1−Π)‖2θ,τ,X?

h,div
+ T ‖P?h(ut −Πwh,t)‖2θ,τ

+ τ2T |2θ − 1| ‖P?h(Πwh,tt)‖2θ,τ + τ4T ‖P?h(Πwh,ttt)‖2L2(0,t;L2)

)}
.

This estimate and the application of the triangle inequality

‖u(tn)−Πunh‖2L2(Ω) + ν‖∇(u(tn)− unh)‖2L2(Ω)

≤ 2
(
‖u(tn)−Πwn

h‖2L2(Ω) + ν‖∇(u(tn)−wn
h)‖2L2(Ω)

)
+2
(
‖Πenh‖2L2(Ω) + ν‖∇enh)‖2L2(Ω)

)
concludes the proof of (B).

Remark 5.4. As in the time-continuous case, it is possible to achieve Ph(ut − wh,t) = 0 in case
(A) or P?h(ut − Πwh,t) = 0 in case (B) by choosing proper best approximations, i.e. wh = Ph(u)
or Πwh = P?h(u), respectively, compare with Theorems 3.1.(B) and 3.6.(B). Opposite to the time-
continuous case the terms with the higher time derivatives of wh remain.
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Figure 2: Initial mesh (level = 0) for the numerical simulations.

6 Numerical studies

This section studies two numerical examples to support the theoretical findings by numerical evidence.
Both examples employ uniform refinements of the unstructured initial mesh depicted in Fig. 2 of the unit
square Ω := (0, 1)2.

To compare the classical and the modified finite element methods, the problem is solved on the time
interval (0, 1]. The viscosity parameter ν and the time step length τ are varied to show their influence on
the cumulative L2(Ω) gradient error of the velocity defined by

‖∇(u− uh)‖2τ,h :=
N∑
n=1

τ

2

(
‖∇(u(tn−1)− un−1

h )‖2L2(Ω) + ‖∇(u(tn)− unh)‖2L2(Ω)

)
.

6.1 Analytic example with zero boundary data

This example studies the velocity and pressure

u(x, y, t) := cos(πt)Curl (sin(2πx) sin(2πy)) + 128 sin(πt)Curl
(
(x− 1)2(y − 1)2x2y2

)
,

p(x, y, t) := 128
(
x3 + y3 − 1/2

)
with the right-hand side f := ut − ν∆u + ∇p. Note, that u has zero boundary data along ∂Ω and
therefore all theoretical results of this paper hold without modification.

Figure 3 shows the cumulative error ‖∇(u− uh)‖τ,h for different choices of ν and different refinement
levels for the classical and the modified Bernardi–Raugel finite element method with the backward Euler
time stepping scheme and time step length τ = 10−4. One clearly sees a dependence on the parameter
ν for the error of the classical method, whereas the error of the modified method is independent of ν.
On mesh level 2 and ν = 10−5 the error of the modified Bernardi–Raugel method is about 5000 times
smaller than the error of the classical method. On the opposite, the errors for ν = 1 are almost identical,
i.e., the error of the modified method is less than 4 percent larger than the error of the classical method.
Moreover, the results of the Bernardi–Raugel finite element method do not differ qualitatively, if the Crank-
Nicolson scheme is used instead of the backward Euler scheme, since the time step was chosen small
enough such that the error from the space discretization dominates. To verify this, Figure 5 shows the
errors for several much coarser time steps for two different refinement levels and fixed ν = 10−3. The
main observation for the classical method is that the error is about the same even for very coarse τ ,
possibly because the space discretization error is huge and gives no room for improvement by better
time discretization. For the modified Bernardi–Raugel method the observations are different. Here one
clearly sees that the error gets smaller for smaller time steps τ up to some point where the time error is
smaller than the space error.
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Figure 4 shows similar results for the P bub
2 finite element method and Crank-Nicolson time stepping

scheme with τ = 10−3. Here, the maximal observed improvement factor is about 200 for ν = 10−5 and
refinement level 3, while the error of the modified method is only less than 2 percent larger compared to
the classical method for ν = 1. With respect to different time steps τ and other time stepping schemes
similar conclusions as for the Bernardi–Raugel finite element method can be drawn, see Figure 6.
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Figure 3: Example 1: Cumulative error ‖∇(u − uh)‖τ,h vs the viscosity parameter ν = 10−i, i =
0, . . . , 5, for the classical (left) and modified (right) Bernardi–Raugel finite element method with θ = 1
on different refinement levels and fixed τ = 10−4.
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Figure 4: Example 1: Cumulative error ‖∇(u − uh)‖τ,h vs the viscosity parameter ν = 10−i, i =
0, . . . , 5, for the classical (left) and modified (right) P bub

2 finite element method with θ = 0.5 on different
refinement levels and fixed τ = 10−3.

6.2 Potential flow with zero right-hand side

This example studies a potential flow of the form u(t) := t∇h with the harmonic potential h = 5x4y +
y5 − 10x2y3. This flow solves the time-dependent Stokes problem ut − ν∆u + ∇p = 0 with the
pressure p = −h [34].

Figure 7 displays the accumulated gradient error for the Crank-Nicolson scheme (θ = 0.5) with fixed
time step τ = 10−3 on different refinement levels of the initial mesh and different magnitudes of ν.
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Figure 5: Example 1: Cumulative error ‖∇(u − uh)‖τ,h vs the time step τ for the classical (left) and
modified (right) Bernardi–Raugel finite element method on different refinement levels and fixed ν =
10−3.
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Figure 6: Example 1: Cumulative error ‖∇(u − uh)‖τ,h vs the time step τ for the classical (left) and
modified (right) P bub

2 finite element method on different refinement levels and fixed ν = 10−5.

While the errors are of comparable size for the larger parameters ν ≥ 10−1, the errors of the classical
method deteriorates for the smaller parameters. The errors for the modified method do not increase as
dramatically as the errors of the classical method. For the finest refinement level and ν = 10−6 the error
of the classical method is about 400 times larger than the error of the modified method. Figure 8 displays
the errors for the Bernardi–Raugel finite element method with Crank-Nicolson scheme (θ = 1/2) and
fixed time step τ = 10−3. The overall observations and conclusions are very similar to the first example.

Figure 9 studies the influence of different time step sizes in both time discretization schemes on a fixed
mesh. One can observe that the errors are almost identically for all different choices of τ . This makes
sense, since the velocity field changes linearly in time. Even so this clearly demonstrates the influence
of the reconstruction operator also in the time derivative, since this is the only difference between the
both methods (the right-hand side is zero): although the time derivative ut is constant, ut can have a
large irrotational contribution and cause errors that cannot be healed by mesh or time refinement. The
pressure-robust method (or any divergence-free method) only sees the Helmholtz projector P(uT ) of ut
which is zero in this example, while the classical method sees a nonzero discrete Helmholtz projector

DOI 10.20347/WIAS.PREPRINT.2368 Berlin 2017



N. Ahmed, A. Linke, Ch. Merdon 21

0 1 2 3 4 510−4

10−3

10−2

10−1

100

101

ν

er
ro

rs

level 0 level 1 level 2
level 3

0 1 2 3 4 510−4

10−3

10−2

10−1

100

101

ν

er
ro

rs

level 0 level 1 level 2
level 3

Figure 7: Example 2: Cumulative error ‖∇(u − uh)‖τ,h vs the viscosity parameter ν = 10−i, i =
0, . . . , 5, for the classical (left) and modified (right) P bub

2 finite element method with θ = 0.5 on different
refinement levels and fixed τ = 10−3.
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Figure 8: Example 2: Cumulative error ‖∇(u − uh)‖τ,h vs the viscosity parameter ν = 10−i, i =
0, . . . , 5, for the classical (left) and modified (right) Bernardi–Raugel finite element method with θ = 0.5
on different refinement levels and fixed τ = 10−3.

Ph(ut).
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