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Chance constraints in PDE constrained optimization
M. Hassan Farshbaf-Shaker, René Henrion, Dietmar Hömberg

Abstract

Chance constraints represent a popular tool for finding decisions that enforce the satisfac-
tion of random inequality systems in terms of probability. They are widely used in optimization
problems subject to uncertain parameters as they arise in many engineering applications. Most
structural results of chance constraints (e.g., closedness, convexity, Lipschitz continuity, differen-
tiability etc.) have been formulated in finite dimensions. The aim of this paper is to generalize
some of these well-known semi-continuity and convexity properties as well as a stability result to
an infinite dimensional setting. The abstract results are applied to a simple PDE constraint control
problem subject to (uniform) state chance constraints.

1 Introduction

Many mathematical and engineering applications contain some considerable amount of uncertainty
in their input data, e.g., unknown model coefficients, forcing terms and boundary conditions. Partial
differential equations with uncertain coefficients play a central role and are efficient tools for modeling
randomness and uncertainty for the corresponding physical phenomena. Recently there is a growing
interest and meanwhile a large amount of research literature for such PDEs, see e.g. [7, 8, 9, 22,
23] and references therein. Moreover, optimal control problems of such uncertain systems are of
great practical importance. We mention here the works [10], [18], [24] and references therein. We
note that the analysis of PDE constrained optimization with uncertain data is still in its beginning, in
particular when uncertainty enters state constraints. The appropriate approach depends critically on
the nature of uncertainty. If no statistical information is available, uncertainty cannot be modeled as
a stochastic parameter but could be rather treated in a worst case or robust sense (e.g., [32]). On
the other hand, if a (usually multivariate) statistical distribution can be approximated for the uncertain
parameter, then a robust approach could turn out to be unnecessarily conservative and methods from
stochastic optimization are to be preferred.

In [16], [13], the authors consider the minimization of different risk functionals (expected excess and
excess probability) in the context of shape optimization, where the uncertainty is supposed to have
a discrete distribution (finite number of load scenarios). In [4] an excess probability functional has
been considered for a continuous multivariate (Gaussian) distribution. Randomness in constraints can
be delt with by imposing a so-called chance constraint. To illustrate this, consider a random state
constraint

y(x, ω) ≤ ȳ(x) ∀x ∈ D,

where x, y refer to space and state variables, respectively, ω is a random event, D is a given domain
and ȳ a given upper bounding function for the state. The associated joint state chance constraint then
reads as

P(y(x, ω) ≤ ȳ(x) ∀x ∈ D) ≥ p,
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Chance constraints in PDE constrained optimization 2

where P is a probability measure and p ∈ [0, 1] is a safety level, typically chosen close to, but different
from one. The chance constraint expresses the fact that the state should uniformly stay below the given
upper bound with high probability. In a problem of optimal control, the state chance constraint trans-
forms into a (nonlinear) control constraint, thus defining an optimization problem with decisions which
are robust in the sense of probability. This probabilistic interpretation of constraints has made them a
popular tool first of all in engineering sciences (e.g., hydro reservoir control, mechanics, telecommu-
nications etc.). We note that the state chance constraint above could be equivalently formulated as a
constraint for the excess probability

P(C(y, ω) ≥ 0) ≥ p

of the random cost function
C(y, ω) := sup

x∈D
{y(x, ω)− ȳ(x)},

thus making a link to the papers discussed before. Note, however, that C is nondifferentiable in this
case.

A mathematical theory treating PDE constrained optimization in combination with chance constraints
is still in its infancy. The aim of this paper is to generalize semi-continuity and convexity properties
of chance constraints, well-known in finite-dimensional optimization/operations research, to a setting
of control problems subject to (uniform) state chance constraints. Although optimization problems
with chance constraints (under continuous multivariate distributions of the random parameter) are
considered to be difficult already in the finite-dimensional world, there exist a lot of structural results
on, for instance, convexity (e.g., [27], [28], [20]), or differentiability (e.g., [26], [33]). For a numerical
treatment in the framework of nonlinear optimization methods, efficient gradient formulae for probability
functions have turned out to be very useful in the case of Gaussian or Gaussian-like distributions (e.g.,
[21], [5]). A classical monograph containing many basic theoretical results and numerous applications
of chance constraints is [29]. A more modern presentation of the theory can be found in [31].

The paper is organized as follows: In Section 2, we provide some basic results on weak sequential
semi-continuity properties of probability functions and on convexity of chance constraints in an abstract
framework. Section 3 presents a stability result for optimal values and solutions to optimizatin problems
with chance constraints under perturbations of the random distribution. In Section 4, these results will
be applied to a specific PDE constrained optimisation problem with random state constraints.

2 Continuity properties of probability functions

We consider the following probability function

h(u) := P (g (u, ξ, x) ≥ 0 ∀x ∈ C) (u ∈ U). (1)

Here, U is a Banach space, C is an arbitrary index set, g : U × Rs × C → R is some constraint
mapping and ξ is an s-dimensional random vector living on some probability space (Ω,F ,P). Prob-
ability functions of this type figure prominently in stochastic optimization problems either in the form
of chance constraints h(u) ≥ p or as an objective in reliability maximization problems. We are going
to provide conditions for weak sequential upper semicontinuity of h first and, by adding appropriate
assumptions, for weak sequential lower semicontinuity next. Throughout the paper we shall make use
of the abbreviations w.s.u.s. for ’weakly sequentially upper semicontinuous’ and w.s.l.s. for ’weakly
sequentially lower semicontinuous’.
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Proposition 1 In (1), assume that the g(u, ·, x) are Borel measurable for all u ∈ U and x ∈ C and
that the g (·, z, x) are weakly sequentially upper semicontinuous (w.s.u.s.) for all x ∈ C and z ∈ Rs.
Then, h defined in (1) is w.s.u.s.

Proof. Defining
g̃ (u, z) := inf

x∈C
g (u, z, x) (u ∈ U, z ∈ Rs) , (2)

(1) can be equivalently described as h(u) = P (g̃ (u, ξ) ≥ 0). By assumption on g, the function g̃
is Borel measurable in its second and w.s.u.s. in its first argument. Now, the assertion follows from
Lemma 12 (applied to g̃) in the Appendix. 2

The simple analogue of the previous Proposition, providing weak sequential lower semicontinuity of h
under the condition that all functions g(·, ·, x) (x ∈ C) are weakly sequentially lower semicontin-
uous (w.s.l.s.) cannot hold true even in a one-dimensional setting, where g : R × R × R is defined
as

g(u, z, x) := u− z ∀x ∈ C := R
and the distribution of ξ is the Dirac measure in zero. Then, clearly, g is even continuous but the
probability function satisfies

h(u) =

{
0 if u < 0
1 if u ≥ 0

.

Hence, it fails to be lower semicontinuous at ū := 0.

The following proposition provides some missing conditions ensuring the weak sequential lower semi-
continuity of h:

Proposition 2 In (1), assume that

1 C is a compact subset of Rd.

2 g is w.s.l.s. (as function of all three variables simultaneously).

Then h is w.s.l.s. at all u ∈ U satisfying

P (g̃ (u, z) = 0) = 0, (3)

where g̃ is defined in (2).

Proof. We show first that g̃ is w.s.l.s. Indeed, fix an arbitrary (ū, z̄) ∈ U×Rs and consider an arbitrary
weakly convergent sequence (uk, zk) ⇀ (ū, z̄) and a realizing subsequence such that

lim
l
g̃(ukl , zkl) = lim inf

k→∞
g̃(uk, zk).

By our assumptions 1. and 2., the infimum in (2) is attained. Hence, there exists a sequence xl ∈ C
such that g̃(ukl , zkl) = g(ukl , zkl , xl). By compactness of C , we may assume that xlα →α x̄ for
some subsequence and some x̄ ∈ C . Exploiting 2. once more, we arrive at

lim inf
k→∞

g̃(uk, zk) = lim
α
g̃(uklα , zklα ) = lim

α
g(uklα , zklα , xlα)

= lim
α

inf g(uklα , zklα , xlα) ≥ g(ū, z̄, x̄) ≥ g̃(ū, z̄).

Consequently, g̃ is w.s.l.s. in both variables simultaneously. In particular, it is Borel measurable in the
second one and, so, one may invoke Lemma 12 (applied to g̃) in the Appendix in order to derive that
h is w.s.l.s. at all u ∈ U satisfying (3). 2
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Remark 1 The result of Proposition 2 can be maintained by using the following alternative assump-
tions:

1 C is a finite subset of Rd

2 g(·, ·, x) is w.s.l.s. for all x ∈ C

Note, that here we have strengthened the first assumption in favor of weakening the second one. The
reason, why this is possible, is that g̃ in the proof of Proposition 2 happens to be w.s.l.s. as a finite
minimum of w.s.l.s. functions.

We observe the following easy to check sufficient condition for (3) to hold:

Proposition 3 In the setting of Proposition 2 assume that

1 the g(u, ·, x) are concave for all u ∈ U and x ∈ C .

2 for each u ∈ U there exists some z̄ ∈ Rs such that g(u, z̄, x) > 0 for all x ∈ C .

3 ξ has a density.

Then, (3) holds true at all u ∈ U .

Proof. Fix an arbitrary u ∈ U . Observe first that, as a consequence of 1., g̃(u, ·) is a concave function.
The assumptions of Proposition 2 ensure that the infimum in (2) is attained. Hence, by 2., there exists
some z̄ ∈ Rs such that g̃(u, z̄) > 0. Both observations entail that the set

E := {z ∈ Rs | g̃(u, z̄) = 0}

is a subset of the boundary of the convex set

{z ∈ Rs | g̃(u, z̄) ≥ 0}.

Since the boundary of a convex set has Lebesgue measure zero,E itself has Lebesgue measure zero.
By 3., the distribution of ξ is absolutely continuous with respect to the Lebesgue measure, whence
P(ξ ∈ E) = 0. This finally yields (3). 2

We next address the question of convexity for a chance constraint h(u) ≥ p for h introduced in (1).
To this aim, we recall that a function ϕ : V → R (V a vectors space) is defined to be quasiconcave,
if the following relation holds true:

ϕ(λu+ (1− λ)v) ≥ min{ϕ(u), ϕ(v)} ∀u, v ∈ V ; ∀λ ∈ [0, 1]

The next proposition can be proven exactly in the same way as in [29, Theorem 10.2.1]. As this original
proof has been given in an unnecessarily restricted setting (U finite dimensional, C a finite index set),
we provide here a streamlined proof applicable to our setting in (1) for the readers convenience.

Proposition 4 LetU be an arbitrary vector space andC be an arbitrary index set. Let the s-dimensional
random vector ξ have a log-concave density (i.e., a density whose logarithm is a possibly extended-
valued concave function). Finally, assume that the g(·, ·, x) are quasiconcave for all x ∈ C . Then, the
set

M := {u ∈ U | h(u) ≥ p} (4)

is convex for any p ∈ [0, 1], where h refers to (1).
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Proof. Recall that, for g̃ defined in (2), we may write

h(u) = P(g̃(u, ξ) ≥ 0) (u ∈ U). (5)

We note that g̃ is quasiconcave. Indeed, fix an arbitrary pair of points

(u1, z1), (u2, z2) ∈ U × Rs

along with an arbitrary λ ∈ [0, 1]. Moreover, choose an arbitrary ε > 0. Then, there exists some
x ∈ C such that

g̃(λ(u1, z1) + (1− λ)(u2, z2)) ≥ g(λ(u1, z1) + (1− λ)(u2, z2), x)− ε
≥ min{g(u1, z1, x), g(u2, z2, x)} − ε
≥ min{g̃(u1, z1), g̃(u2, z2)} − ε.

Here, in the second inequality, we exploit the quasiconcavity assumption on g(·, ·, x) for all x ∈
C . As ε > 0 was arbitrarily chosen, the claimed quasiconcavity of g̃ follows. Next, the assumption
on ξ having a logconcave density implies by Prekopa’s Theorem [29, Theorem 4.2.1] that ξ has a
logconcave distribution. This means that

P(ξ ∈ λA+ (1− λ)B) ≥ [P(ξ ∈ A)]λ[P(ξ ∈ B)]1−λ (6)

holds true for all convex subsetsA,B ∈ Rs and all λ ∈ [0, 1]. In order to prove the claimed convexity
of the setM in (4), let u1, u2 ∈M and λ ∈ [0, 1] be arbitrarily given. Accordingly, h(u1), h(u2) ≥ p.
We have to show that λu1 + (1− λ)u2 ∈M . To this aim, define a multifunction H : U ⇒ Rs by

H(u) := {z ∈ Rs | g̃(u, z) ≥ 0} (u ∈ U).

Observe thatH(u1) andH(u2) are convex sets as an immediate consequence of the quasiconcavity
of g̃. We claim that

H(λu1 + (1− λ)u2) ⊇ λH(u1) + (1− λ)H(u2). (7)

Indeed, selecting an arbitrary z ∈ λH(u1) + (1 − λ)H(u2), we may find z1 ∈ H(u1) and z2 ∈
H(u2) such that z = λz1 + (1− λ)z2. In particular,

g̃(u1, z1), g̃(u2, z2) ≥ 0.

Exploiting the quasiconcavity of g̃ proven above, we arrive at

g̃(λu1 + (1− λ)u2), z) = g̃(λ(u1, z1) + (1− λ)(u2, z2)

≥ min{g̃(u1, z1), g̃(u2, z2)} ≥ 0.

In other words, z ∈ H(λu1 + (1− λ)u2), which proves (7). Now, (5) along with (6) yields that

h(λu1 + (1− λ)u2) = P(ξ ∈ H(λu1 + (1− λ)u2))

≥ P(ξ ∈ λH(u1) + (1− λ)H(u2))

≥ [P(ξ ∈ H(u1))]λ[P(ξ ∈ H(u2))]1−λ

= hλ(u1)h1−λ(u2) ≥ pλp1−λ = p.

Consequently, λu1 + (1− λ)u2 ∈M as desired. 2

We note that in the previous convexity result the assumption of a log-concave density could be relaxed
in the sense of generalized concavity properties (r-concavity), see [29]. We restrict ourselves here
to log-concavity for the sake of simplicity and observe that many prominent multivariate distributions
(including the Gaussian one) have a log-concave density.
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3 A stability result for chance constrained optimization prob-
lems

In this section we establish a stability results for optimal solutions and optimal values of a chance
constrained optimization problem in Banach spaces under perturbations of the distribution of the ran-
dom vector. In this way, corresponding earlier finite-dimensional results in [19, 30] are substantially
extended.

We consider the following (nominal) optimization problem with chance constraint:

min
u∈U0

{f(u)|P (g (u, ξ, x) ≥ 0 ∀x ∈ C) ≥ p} . (8)

Here, U0 is a subset of the Banach space U and f : U → R is some objective function, while g, ξ
and C are as in (1). The scalar p ∈ [0, 1] denotes a probability or safety level at which the random
inequality system is supposed to be satisfied. We recall the set-valued mappingH : U ⇒ Rs already
introduced in the proof of Proposition 4 and defined by

H(u) := {z ∈ Rs | g (u, z, x) ≥ 0 ∀x ∈ C} (u ∈ U).

By µ := P◦ξ−1 we denote the distribution (the law) of our random vector ξ. Cleary, µ is the probability
measure on Rs induced by ξ. By definition,

µ (H (u)) = P (g (u, ξ, x) ≥ 0 ∀x ∈ C) = h(u) (u ∈ U) , (9)

where h is defined in (1). Then, problem (8) can be rewritten as

min
u∈U0

{f(u)|µ (H (u)) ≥ p} . (10)

The solution of this problem requires the distribution µ of the random vector ξ to be known. This,
however, is rarely the case in practice and, more typically, one replaces the unknown µ by some
approximating probability measure ν whose construction may be based on historical observations
of ξ. This fact leads us to embed the nominal problem (10) into a family of optimization problems
parameterized by the family P (Rs) of all probability measures on Rs :

min {f(u)|u ∈ Φ (ν)} (ν ∈ P (Rs)) . (11)

Here, Φ : P (Rs) ⇒ U is a mutlifunction representing the constraint set and being defined as

Φ (ν) := {u ∈ U0|ν (H(u)) ≥ p} .

Clearly, for ν = µ, problem (11) reduces to the nominal problem (10). In general, however, ν will
be different from µ and so, the solution of (11) will differ from the theoretical solution of (10). Then,
it comes as a natural question, under what conditions solutions and optimal values will behave in a
stable way when perturbing the nominal measure µ. Does closeness of ν to µ (for instance, thanks to
a large historical data base) imply closeness of solutions and optimal values of (11) to those of (10).
In order to answer this question, we have to define first closeness of probability measures. To this aim,
we introduce a so-called discrepancy distance:

α (ν1, ν2) :=

max

{
sup
u∈U0

|ν1 (H(u))− ν2 (H(u))| , sup
z∈Rs

∣∣ν1

(
z + Rs

−
)
− ν2

(
z + Rs

−
)∣∣}

(ν1, ν2 ∈ P (Rs)) (12)
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We note that α is a metric on P (Rs) by comparing ν1 and ν2 on all ’cells’ z+Rs
−. To emphasize this

fact, we will write (P (Rs) , α) for this metric space of probability measures. Moreover, by comparing
ν1 and ν2 on all sets H(u) with u ∈ U0, this metric will turn out to be a suitable one for our stability
analysis. Finally, we introduce the optimal value function φ : P (Rs) → R as well as the optimal
solution mapping Ψ : P (Rs) ⇒ U for the parametric problem (11) as:

φ (ν) := inf {f(u)|u ∈ Φ (ν)} ; Ψ (ν) := {u ∈ Φ (ν) |f(u) = φ (ν)} . (13)

Theorem 5 In (8), let U be a reflexive Banach space and C an arbitrary index set. Let p ∈ (0, 1).
Assume the following conditions:

1 ξ has a log-concave density.

2 The g(·, ·, x) are quasiconcave for all x ∈ C .

3 The g (·, z, x) are w.s.u.s. for all x ∈ C and z ∈ Rs.

4 U0 is bounded, closed and convex.

5 There exists some û ∈ U0 such that P (g (û, ξ, x) ≥ 0 ∀x ∈ C) > p

6 f is w.s.l.s.

Then, there exists some ε > 0 such that, with µ referring to the probability distribution of ξ,

Ψ (ν) 6= ∅ ∀ν ∈ P (Rs) : α (µ, ν) < ε. (14)

Moreover, φ is lower semicontinuous at µ. If additionally f is w.s.u.s., then φ is upper semicontinuous
at µ. In other words, if f is weakly sequentially continuous, then φ is continuous at µ. Moreover, in
this case, Ψ is weakly upper semicontinuous at µ, i.e., for every weakly open set V in U such that
Ψ (µ) ⊆ V , there exists some ε > 0 such that

Ψ (ν) ⊆ V ∀ν ∈ P (Rs) : α (µ, ν) < ε. (15)

Proof. Define the multifunction M̃ : R ⇒ U by

M̃(t) := {u ∈ U0|µ (H(u)) ≥ t} (t ∈ R) .

For every ν ∈ P (Rs) one has by (12) the implication

u ∈ M̃(p+ α (µ, ν)) =⇒ u ∈ U0, µ (H(u)) ≥ p+ α (µ, ν) ≥ p+ µ (H(u))− ν (H(u)) ,

which entails the inclusion
M̃(p+ α (µ, ν)) ⊆ Φ (ν) .

Taking this into account and recalling (9), Lemma 13 in the Appendix allows us to prove the existence
of some ε, γ > 0 such that for all u ∈ U0 and all ν ∈ P (Rs) with α (µ, ν) < ε:

d(u,Φ (ν)) ≤ d(u, M̃(p+ α (µ, ν))) = d(u, {u ∈ U0|µ (H(u)) ≥ p+ α (µ, ν)})
= d(u, {u ∈ U0|h(u) ≥ p+ α (µ, ν)}
≤ γmax{log (p+ α (µ, ν))− log h(u), 0}.
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Assume now that u ∈ Φ (µ) is arbitrarily given. In particular, u ∈ U0 and h(u) = µ (H(u)) ≥ p.
Exploiting the general relation log (c+ d)− log c ≤ d/c for c, d > 0, we may continue the estimation
above as

d(u,Φ (ν)) ≤ γmax{log (µ (H(u)) + α (µ, ν))− log µ (H(u)) , 0}
≤ γmax{α (µ, ν) /µ (H(u)) , 0} ≤ γmax{α (µ, ν) /p, 0}
= Lα (µ, ν) ∀u ∈ Φ (µ) ∀ν ∈ P (Rs) : α (µ, ν) < ε, (16)

for L := γ/p. By 5., we have that µ (H(û)) > p, whence û ∈ Φ (µ). According to (16), we know
that

d(û,Φ (ν)) ≤ Lα (µ, ν) ≤ Lε <∞ ∀ν ∈ P (Rs) : α (µ, ν) < ε.

In particular, the sets Φ (ν) are nonempty and they are also weakly sequentially compact by Lemma
14 in the Appendix. As a consequence of 6., f attains its minimum over Φ (ν). This proves (14).

Let now νn ∈ P (Rs) be a sequence with α (µ, νn)→ 0 and

lim inf
α(µ,ν)→0

φ (ν) = lim
n→∞

φ (νn) .

By the already proven relation (14), we may choose an associated sequence

wνn ∈ Ψ (νn) ⊆ Φ (νn) ⊆ U0.

By definition, f (wνn) = φ (νn) for all n. Since wνn is a bounded sequence in a reflexive Banach
space, there exist a weakly converging subsequence wνnk ⇀k w̄. Since also α (µ, νnk) →k 0, it
follows from Lemma 15 in the Appendix that w̄ ∈ Φ (µ). Consequently, exploiting 6., one arrives at

lim inf
α(µ,ν)→0

φ (ν) = lim
k→∞

f (wνnk ) ≥ f (w̄) ≥ φ (µ) .

This proves the asserted lower semicontinuity of φ at µ.

Next, assume that f is w.s.u.s. and let νn ∈ P (Rs) be a sequence with α (µ, νn)→ 0 and

lim sup
α(µ,ν)→0

φ (ν) = lim
n→∞

φ (νn) .

According to the already proven relation (14), we may select some u∗ ∈ Ψ (µ) ⊆ Φ (µ). Then,
φ (µ) = f(u∗) and, by (16), we have that

d(u∗,Φ (νn)) ≤ Lα (µ, νn)

for n large enough. Since we have already seen that the Φ (ν) are nonempty, whenever α (µ, ν) < ε,
we may select elements uνn ∈ Φ (νn) satisfying the relation

‖u∗ − uνn‖ ≤ d(u∗,Φ (νn)) + n−1 ≤ Lα (µ, νn) + n−1.

Consequently, uνn → u∗. Moreoverϕ (νn) ≤ f(uνn) and we conclude from f being w.s.u.s. (actually
upper semicontinuity of f in the strong topology would be sufficient here) that

lim sup
α(µ,ν)→0

φ (ν) ≤ lim sup
n→∞

f(uνn) ≤ f(u∗) = φ (µ) .

This proves the asserted upper semicontinuity of φ at µ.
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Hence, we have shown so far that weak sequential continuity of f implies continuity of φ at µ. Having
this result in mind, we finally prove the weak upper semicontinuity of Ψ at µ. If this didn’t hold true, then
there would exist a weakly open set V in U such that Ψ(µ) ⊆ V as well as a sequence νn ∈ P (Rs)
such that α (µ, νn) → 0 and a sequence uνn ∈ Ψ(ν)\V . In particular, f(uνn) = φ (νn) for all n.
Since Ψ(ν) ⊆ Φ (ν) ⊆ U0, where U0 is bounded, there exists a weakly convergent subsequence
uνnk ⇀k ū /∈ V . From uνnk ∈ Φ (νnk) and α (µ, νnk) →k 0 we derive with the help of Lemma 15
that ū ∈ Φ (µ). On the other hand, the weak sequential continuity of f and the already proven in this
case continuity of φ at µ provide

f(ū) ↼k f(uνnk ) = φ (νnk)→k φ(µ).

The relations ū ∈ Φ (µ) and f(ū) = φ(µ) now lead to the contradiction ū ∈ Ψ (µ) ⊆ V . 2

The following Corollary provides an important consequence of the weak upper semicontinuity of the
solution set mapping at the nominal distribution µ ∈ P (Rs):

Corollary 1 In addition to assumptions 1. - 5. in Theorem 5, let the objective f in (8) be weakly
sequentially continuous and convex. Moreover, let un ∈ U and νn ∈ P (Rs) be sequences such that
un ∈ Ψ (νn) and α(µ, νn)→n 0. Then, each weakly convergent subsequence unk of un has a weak
limit in Ψ (µ), i.e., a weak limit which is a solution of the nominal problem (8).

Proof. By assumption, (8) is a convex optimization problem (i.e., it has a convex objective and a convex
constraint set Φ (µ) as a consequence of assumption 4. in Theorem 5 and of Proposition 4). Hence,
the set Ψ (µ) of optimal solutions to (8) is convex. Now, if unk ⇀k ū ∈ U is a weakly convergent
subsequence of un and if we assumed that ū /∈ Ψ (µ), then by the Hahn-Banach Theorem, one could
find u∗ ∈ U∗ and γ ∈ R, such that

〈u∗, u〉 < γ < 〈u∗, ū〉 ∀u ∈ Ψ (µ) .

Since Ψ is weakly upper semicontinuous at µ by Theorem 5, there exists ε > 0 such that

Ψ (ν) ⊆ V ∀ν ∈ P (Rs) : α (µ, ν) < ε.

for the weakly open set
V := {u ∈ U | 〈u∗, u〉 < γ} .

It follows that 〈u∗, unk〉 < γ for k sufficiently large. Hence, unk is not contained in the weakly open
set

Ṽ := {u ∈ U | 〈u∗, u〉 > γ}

containing ū. This contradicts unk ⇀k ū. 2

4 Example from PDE constrained optimization

Chance constraints arise in many important engineering applications, where PDEs play a crucial role.
The framework developed in Section 2 is used to treat simple linear PDE constrained optimization
subject to such chance constraint. The solutions of linear PDEs depend linearly and continuously on
the given data and this fact guarantees the weak sequentially semicontinuity of the function g in the
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chance constraint, which makes the framework developed in Section 2 applicable. More precisely, we
consider the following simple PDE:

−∇x · (κ(x)∇xy(x, ω)) = r(x, ω), (x, ω) ∈ D × Ω

n · (κ(x)∇xy(x, ω)) + α y(x, ω) = u(x) (x, ω) ∈ ∂D × Ω, (17)

where D ⊂ Rd, d = 2, 3, α > 0 and∇x is the gradient operator with index x indicating that the gra-
dient has to be build with respect to the spatial variable x ∈ D. Moreover ω is the stochastic variable,
which belongs to a complete probability space denoted by (Ω,F , P ). Here Ω is the set of outcomes,
F ⊂ 2Ω is the σ-algebra of events, and P : F → [0, 1] is a probability measure. In (17) the function
denoted by u will play the role of a deterministic control variable (boundary control), whereas the func-
tion r indicates an uncertain source function. Such PDEs appear for instance in shape optimization
with stochastic loadings, see e.g. [16], or in induction heating problems in semiconductor single crystal
growth processes, see e.g. [14]. For problems arising in the context of crystal growth of semiconduc-
tor single crystals optimizing the temperature - the state of the system - within a desirable range is
one of important goals. In [14] a stationary heat equation is considered with a source term caused by
an induction process. There, such an induction process generated by time-harmonic electromagnetic
fields can not be realized exactly and exhibits uncertainty which consequently results in a random
temperature field.

Remark 2 In order to make this section self-contained, we collect some well-known results concerning
the well-posedness of (17), see [7, 8, 11, 18, 25], and highlight properties which are important for the
applicability of the results of Section 2 in Section 4.2. We note that with the framework presented in
section 2, we are not able to treat PDE constrained optimization with a chance constraint involving
nonlinear source terms in the PDE or even the case, where the coefficient κ in (17) is a random field
κ(x, ω).

To ensure well-posedness of (17), we follow the lines in [7, 8, 11, 18] and assume that

D ∈ C1,1, κ ∈ C0,1(D) and ∃κ0 > 0 : κ0 ≤ κ(x)∀x ∈ D. (18)

4.1 Well-posedness of (17)

Throughout this paper, we use standard notations (e.g., see [3]) for the Sobolev spaces Hm(D) for
each real number m with norms ‖ · ‖Hm(D). We denote the inner product on Hm by (·, ·)Hm and c a
generic constant whose value may change with the context. Let ξ be an Rs-valued random variable in
a probability space (Ω,F , P ). If ξ ∈ L1

P (Ω), we define Eξ =
∫

Ω
ξ(ω) dP (ω) as its expected value.

We now define the stochastic Sobolev spaces

L2(Ω;Hm(D)) = {v : D × Ω→ R | ‖v‖L2(Ω;Hm(D)) <∞},

where

‖v‖2
L2(Ω;Hm(D)) =

∫
Ω

‖v‖2
Hm(D)dP (ω) = E‖v‖2

Hm(D).
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Note that the stochastic Sobolev space L2(Ω;Hm(D)) is a Hilbert space with the inner product

(u, v)L2(Ω;Hm(D)) = E
∫
D

∇u · ∇v dx.

For simplicity, we use the following notation:

Hm(D) = L2(Ω;Hm(D)).

For instance,

L2(D) = L2(Ω;L2(D))

and

H1(D) = {v ∈ L2(D) | E‖v‖2
H1(D)<∞}.

Moreover we define

B(D̄) = L2(Ω;B(D̄)),

where by B(D̄) we denote the space of continuous functions on D̄.

We now state the well-posedness for (17).

Proposition 6 Let (18) be fulfilled. Then for every (r, u) ∈ L2(D)×H 1
2 (∂D) there exists a unique

solution y ∈ H2(D) of (17) in the sense

E
(∫

D

κ(x)∇xy(x, ω) · ∇xρ(x, ω) dx+ α

∫
∂D

y(x, ω) ρ(x, ω) ds

)
= E

(∫
D

r(x, ω) ρ(x, ω) dx+

∫
∂D

u(x) ρ(x, ω) ds

)
, ∀ρ ∈ H1(D) (19)

Moreover, the mapping

Y : L2(D)×H
1
2 (∂D)→ H2(D), (r, u) 7→ y := Y (r, u)

is linear and continuous, i.e.

‖y‖H2(D) ≤ c
(
‖r‖L2(D) + ‖u‖

H
1
2 (∂D)

)
. (20)

Proof. This a conseuqence of the Lax-Milgram Lemma. 2

Remark 3 For dim(D) = 3, we know that the continuous embedding H2(D) ↪→ B(D̄) is fulfilled.
Hence, the solution y from Proposition 6 belongs to B(D̄) and we further obtain

‖y‖B(D̄) ≤ c
(
‖r‖L2(D) + ‖u‖

H
1
2 (∂D)

)
. (21)
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4.2 Optimization problem

In preparation of the PDE constrained optimization problem we make the following assumptions:

(O1) Let U := H
1
2 (∂D), ȳ(·) ∈ B(D̄) and a subset C ⊆ D of the domain be given.

(O2) The admissible set Uad is a bounded, closed and convex subset of U .

(O3) The cost functional L : H2(D)×H 1
2 (∂D)→ R is weakly sequentially lower semi-continuous

and bounded from below by zero.

Now, our overall optimization problem reads as

(P )


min E(L(y(x, ω), u(x)))

over H2(D)× Uad
s.t. (19) is satisfied

P(ω ∈ Ω | y(x, ω) ≤ ȳ(x), ∀x ∈ C) ≥ p, p ∈ (0, 1)

Remark 4 As indicated in the beginning of this section for problems arising in the context of crystal
growth of semiconductor single crystals optimizing the temperature - the state of the system - within
a desirable range is one important goal. In application this is an important issue since engineers are
interested to prevent damage in semiconductor single crystals which are caused by high temperature
distributions. But as one has to deal with uncertain time-harmonic electromagnetic fields. The temper-
ature field is consequently random, too. In this case it is reasonable to request that the temperature
as state variable stays with high probability in some prescribed domain.

4.3 Finite sum expansion

For the source function r in (17) we make the ansatz of a finite (truncated) sum expansion extensively
used in the literature:

r(x, ω) :=
s∑

k=1

βk(x) ξk(ω), (22)

which enables us to approximate the infinite dimensional stochastic field by a finite dimensional (s-
dimensional) random variable. For a discussion of this ansatz, we refer to [17] or [4, Section 2.4].
With

β(x) := (β1(x), . . . , βs(x))T ; ξ(ω) := (ξ1(ω), . . . , ξs(ω))T ,

we define

r̃(x, ξ) := β(x) · ξ(ω), (23)

where ξ is is an Rs-valued random variable. Using the solution operator Y and (23) we define

g : U × Rs ×D → R, g(u, ξ, x) := ȳ(x)− Y (r̃(x, ξ), u(x)). (24)

Lemma 7 The function g(·, ·, x), defined in (24), is weakly sequentially continuous and quasiconcave
for all x ∈ D.
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Proof. Using Proposition 6, under the assumption (22), we obtain from (20) the estimate

‖y‖H2(D) ≤ c
(
(‖β‖[L2(D)]s · ‖ξ‖[L2(Ω)]s) + ‖u‖U

)
. (25)

which means that y is depending linearly and continuously on the data (ξ, u) for fixed x ∈ D. Linearity
in combination with continuity provides weak sequential continuity and quasiconcavity. Consequently
the assertions of the lemma immediately follow. 2

4.4 Properties of the reduced problem

Defining the reduced cost functional by

f(u(·)) := E(L(Y (r̃(·, ξ), u(·)), u(·))) (26)

and using the definition

h(u) := P(g(u, ξ, x) ≥ 0,∀x ∈ C), (27)

with g, defined in (24), and ξ, defined in (23), the chance constraint in (P ) can be formulated as

M := {u ∈ U |h(u) ≥ p}. (28)

Then the reduced optimal control problem reads as

(P ) min
u∈Uad∩M

f(u). (29)

The aim of the following Theorem is to establish the existence of a solution to (P ).

Theorem 8 Assume (O1)-(O3). Then, the problem (P ) admits a solution.

Proof. By Lemma 7, the function g(·, ·, x) is weakly sequentially continuous for all x ∈ D. Then,
Proposition 1 yields that h is weakly sequentially upper semicontinuous, whence M in (28) is weakly
sequentially closed. Consequently, by (O2) Uad ∩M is weakly sequentially closed, too. Moreover, the
reduced cost function f , defined in (26) as a composition of three operators E, L and Y , is weakly
sequentially lower semicontinuous. This is true, because E and Y are linear and continuous and E
additionally monotonous. Hence, (O3) provides the desired property of f . Now, the existence of a
solution to (P ) follows by the direct method in the calculus of variations. 2

In the previous theorem, one of the main ingredients in proving the existence result was to establish
the weak sequential upper semicontinuity of the function h. This was done by using Lemma 7 and
Proposition 1. In the following theorem we will refine this upper semicontinuity result to a semicontinuity
result by additionally taking into account a lower semicontinuity property. The theorem will then ensure
weak sequential continuity of the fuction h.

Theorem 9 Let C be a finite subset of Rd and the random variable ξ, defined in (23), have a density.
Moreover, assume that for each u ∈ U there exists some z̄ ∈ Rs such that

Y (r̃(x, z̄), u(x)) < ȳ(x) ∀x ∈ C. (30)

Then the function h, defined in (27), is weakly sequentially continuous.
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Proof. Using once again Lemma 7, it follows that g(·, ·, x) is weakly sequentially continuous for all
x ∈ C ⊆ D. Then, h is w.s.u.s. by Proposition 1. Moreover, it is obvious that g(u, ·, x) is linear
for all u ∈ U and x ∈ C , and consequently concave. This is assumption 1. in Proposition 3, while
the existence of a density for ξ required here, corresponds to assumption 3. of the same Proposition.
Finally, (30) translates by (24) to assumption 2. of Proposition 3. Now this Proposition guarantees via
Remark 1 that h is w.l.s.c. 2

We observe that we could not derive the result of the last Theorem for general compact sets C ⊆ D
by referring to Proposition 2. The reason is that we are not able in Lemma 7 to establish the required
weak sequential lower semicontinuity of g in all three variables simultaneaously. Therefore we benefit
from the alternative result mentioned in Remark 1 and using weak sequential lower semicontinuity of
g in the first two variables only. This, of course, comes at the price of reducing C to a finite set.

The condition given by (30) can be interpreted as a Slater’s condition. It means that for every given
control u there must exists a realization z̄ of the random variable ξ such that the state y has to be
uniformly strictly smaller than the given state ȳ. If this condition is not fulfilled then the upper limit
function ȳ was chosen too restrictively.

An instance for the use of Theorem 9 is the consideration of random state constraints in disjunctive
form which would lead to the following state chance constraint:

P(ω ∈ Ω | ∃x ∈ C : y(x, ω) > ȳ(x)) ≥ p.

Here, in contrast to the previous setting in problem (P) one is interested in the complementary situation,
namely that with high probability the random state exceeds some given threshold at least somewhere
on the domain. Turning this state chance constraint into a control constraint as before and using the
functions g, h defined in (24) and (27), respectively, we arrive at the condition

P(ω ∈ Ω | ∃x ∈ C : y(x, ω) > ȳ(x)) = P(ω ∈ Ω | ∃x ∈ C : g(u, ξ, x) < 0)

= 1− h(u) ≥ p.

So, instead of (28) the chance constraint would be defined by M := {u | h(u) ≤ 1− p}. In order to
prove an existence result similar to that of Theorem 8, one would now need the weak sequential lower
(rather than upper) semicontinuity of h. This would come as a consequence of Theorem 9.

In the following theorem we are going to establish a condition such that (P ) becomes a convex opti-
mization problem.

Theorem 10 Assume (O1)-(O3). Let the random variable ξ, defined in (23), have a density whose log-
arithm is a (possibly extended-valued) concave function. Moreover, assume that the objective function
L is convex. Then problem (P ) is a convex optimization problem.

Proof. The convexity of L and the linearity of the solution operator Y , see (25), yield that the mapping

u(·) 7→ L(Y (r̃(·, ξ), u(·)), u(·))

is convex. Then by the linearity of the expectation E, we obtain that u 7→ f(u) is convex. Moreover,
Lemma 7(b) provides that g(·, ·, x) is quasiconcave for all x ∈ C . Then, it follows from Proposition 4
thatM is convex. By assumption Uad is convex and consequently the intersectionM ∩Uad is convex,
too. Hence, the assertion of the theorem follows. 2
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Remark 5 Numerous multivariate distributions have log-concave densities, e.g. normal distribution,
Student’s t-distribution, uniform distribution on compact and convex sets, see e.g. [29]. Hence, the
assumption about the logconcave densities is fairly general. Often in PDE constrained optimization
the objective functional L has the form L(y, u) = L1(y) + L2(u) where L1 and L2 are separately
convex and are defined by L1 : H2(D) 3 y 7→ L1(y) ∈ R and L2 : U 3 u 7→ L2(u) ∈ R.

As indicated in Remark 4 one has to deal with uncertain time-harmonic electromagnetic fields which
result in uncertain temperature fields. In practice the distribution of such uncertain time-harmonic
electromagnetic fields are unknown and engineers work instead with some approximating probability
measure whose construction in most cases is based on historical observations of the uncertain elec-
tromagnetic fields. Now the stability results in Section 3 guarantee stability of solutions and optimal
values of (P ) to those with approximating probability measure.

In preparation of a stability result for our optimization problem with respect to perturbations of the
random distribution, we denote by µ := P ◦ ξ−1 the distribution of our random vector ξ, defined in
(23). We adapt the notation of Section 3 to our concrete optimization problem (29). We define the
multifunction

H(u) := {z ∈ Rs|Y (r̃(x, z), u(x)) ≤ ȳ(x) ∀x ∈ C} (u ∈ U).

Moreover, with each probability measure ν ∈ P(Rs) we associate the feasible set

Φ(ν) := {u ∈ Uad|ν(H(u)) ≥ p}.

This allows us to embed our given problem (29) into a family of problems

(Pν) min {f(u)|u ∈ Φ (ν)} (ν ∈ P (Rs)) . (31)

parameterized by all probability measures. We observe that for ν := µ = P ◦ ξ−1 we recover our
nominal problem (29) with the given distribution of the random vector ξ: Indeed, by definition,

Φ(µ) = {u ∈ Uad|µ(H(u)) ≥ p} = {u ∈ Uad|P(ξ ∈ H(u)) ≥ p}
= {u ∈ Uad|P(Y (r̃(x, ξ), u(x)) ≤ ȳ(x) ∀x ∈ C) ≥ p} = Uad ∩M.

Consequently, problems (Pν) can be considered as perturbations of the nominal problem and it is of
interest, whether optimal solutions and optimal values of (Pν) behave stable under small perturba-
tions. Here, closeness between ν and µ will be measured by the discrepancy distance α introduced in
(12). Finally, we recall the defintions of the parameter-dependent optimal value function φ and optimal
solution mapping Ψ defined in (13) and associated with the family of problems (Pν) in (31). Now, we
have paved the way for the desired stability result:

Theorem 11 Consider the optimization problem (P) introduced in Section 4.2 and corresponding to
29. Assume (O1)-(O3) with an arbitrary index set C . Let the random variable ξ, defined in (23), have
a density whose logarithm is a (possibly extended-valued) concave function. Moreover, assume that
there exists some û ∈ Uad such that

P (Y (r̃(x, ξ), û(x)) < ȳ(x) ∀x ∈ C) > p (32)

Then, there exists some ε > 0 such that, with µ referring to the probability distribution of ξ,

Ψ (ν) 6= ∅ ∀ν ∈ P (Rs) : α (µ, ν) < ε. (33)
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Moreover, φ is lower semicontinuous at µ. If additionally the cost functionL in our optimization problem
(P) is weakly sequentially upper semicontinuous, then φ is upper semicontinuous at µ. In other words,
if L is weakly sequentially continuous, then φ is continuous at µ. Moreover, in this case, Ψ is weakly
upper semicontinuous at µ, i.e., for every weakly open set V in U such that Ψ (µ) ⊆ V , there exists
some ε > 0 such that

Ψ (ν) ⊆ V ∀ν ∈ P (Rs) : α (µ, ν) < ε. (34)

Proof. To prove Theorem 11 we have to check the assumptions of Theorem 5, where the first one
is evident by being directly imposed here. Next, Lemma 7 guarantees the assumption 2. and 3. of
Theorem 5. Defining U0 as Uad, the assumption (O2) provides assumption 4. in Theorem 5. Moreover,
sinceH

1
2 (∂Ω) as a Hilbert space is reflexive and arguing as in the proof of Theorem 8 that the reduced

cost function f , defined in (26) as a composition of three operators E, L and Y , is weakly sequentially
lower semicontinuous gives assumption 6. in Theorem 5. Clearly, (32) corresponds to assumption 5.
in Theorem 5. Therefore, we get the first part of the assertion of our Theorem. Arguing as in the proof
of Theorem 8 that the reduced cost function f , defined in (26) as a composition of three operators E,
L and Y , is weakly sequentially upper semicontinuous, the second part of our Theorem 11 is proved
by the second part of Theorem 5. 2

Corollary 2 In addition to the assumptions in Theorem 11, let the objective L in (O3) be weakly
sequentially continuous and convex. Moreover, let un ∈ U and νn ∈ P (Rs) be sequences such that
un ∈ Ψ (νn) and α(µ, νn)→n 0. Then, each weakly convergent subsequence unk of un has a weak
limit in Ψ (µ). In other words: each weakly convergent subsequence of solutions to the approximating
problems has a weak limit which is a solution of the nominal problem (P).

Proof. Arguing as in the proof of Theorem 8 that the reduced cost function f , defined in (26) as
a composition of three operators E, L and Y , is weakly sequentially semicontinuous, Corollary 2
provides the assertion. 2

Conlusions: We have shown that and how certain basic structural and stability properties of chance
constraints, which are well established in finite dimensions, can be carried over to and verified in
a Banach space setting. So far, a simple class of PDE constrained optimization problems could be
demonstrated to be a good candidate for ensuring these properties and, in particular, for deriving
the existence of solutions and their stable dependence on perturbations of the underlying probability
distribution. Figuring out more complex problem classes will be a major future challenge. Moreover,
passing to more interesting structural properties like Lipschitz continuity and differentiability of the
probability functions or convexity of the feasible set under less restrictive assumptions will be in the
focus of future research. The ultimate goal of such analysis - which is nontrivial already in finite di-
mensions (see [1, 2, 20, 21]) - would be the efficient numerical solution of state chance constrained in
PDE constrained optimization.

Acknowledgment: The authors express their gratitude to two anonymous referees whose very careful
reading and and critical comments led to a substantially improved presentation of this paper.

5 Appendix

Lemma 12 Let X be a Banach space and g : X × Rm → R, be Borel measurable in the second
argument. Further, let ξ be anm-dimensional random vector defined on a probability space (Ω,A,P).
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Then, the probability function

ϕ(x) := P (g (x, ξ) ≥ 0) (x ∈ X)

is well-defined and if g is weakly sequentially upper semicontinuous (w.s.u.s.) in the first argument,
then ϕ is w.s.u.s. too. If, conversely, g is weakly sequentially lower semicontinuous (w.s.l.s.) in the first
argument, then ϕ is w.s.l.s. too in those arguments x̄ ∈ X satisfying the relation

P (g (x̄, ξ) = 0) = 0. (35)

Proof. Observe first, that ϕ is well defined by Borel measurability of g in the second argument. Fix
an arbitrary x̄ and let xn ⇀ x̄ be an arbitrary weakly convergent sequence. Denote by xnl a subse-
quence such that

lim sup
n→∞

ϕ(xn) = lim
l→∞

ϕ(xnl). (36)

Define the sets

A := {ω ∈ Ω|g (x̄, ξ (ω)) ≥ 0} ; An := {ω ∈ Ω|g (xn, ξ (ω)) ≥ 0} (n ∈ N) .

Then, by g being w.s.u.s. in the first argument, we have that

lim sup
n→∞

g(xn, ξ (ω)) ≤ g (x̄, ξ (ω)) < 0 ∀ω ∈ Ω\A.

Consequently, g(xn, ξ (ω)) < 0 for all ω ∈ Ω\A and all n ≥ n0(ω). Denoting by χC the charac-
teristic function of a set C , this entails that χAn (ω) →n→∞ 0 for all ω ∈ Ω\A. By the dominance
convergence theorem, ∫

Ω\A
χAn (ω)P (dω)→n→∞ 0 ∀ω ∈ Ω\A.

On the other hand, χAn (ω) ≤ χA (ω) = 1 for ω ∈ A, whence

lim
l→∞

ϕ(xnl) = lim
l→∞

P (g (xnl , ξ) ≥ 0) = lim
l→∞

∫
Ω

χAnl (ω)P (dω)

= lim
l→∞

(∫
Ω\A

χAnl (ω)P (dω) +

∫
A

χAnl (ω)P (dω)

)
≤ lim

l→∞
sup

∫
Ω\A

χAnl (ω)P (dω) + lim
l→∞

sup

∫
A

χAnl (ω)P (dω)

= lim
l→∞

sup

∫
A

χAnl (ω)P (dω)

≤ lim
l→∞

sup

∫
A

P (dω) = P (A) = P (g (x̄, ξ) ≥ 0)

= ϕ(x̄).

Combining this with (36) yields that ϕ is w.s.u.s. in x̄.

Next, let x̄ ∈ X be arbitrary such that (35) is fulfilled. Let xn ⇀ x̄ be an arbitrary weakly convergent
sequence. Define the sets

A := {ω ∈ Ω|g (x̄, ξ (ω)) > 0} ; An := {ω ∈ Ω|g (xn, ξ (ω)) ≥ 0} (n ∈ N) .
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Then, with g being w.s.l.s. in the first argument, we have that

lim inf
n→∞

g(xn, ξ (ω)) ≥ g (x̄, ξ (ω)) > 0 ∀ω ∈ A.

Hence, χAn (ω) →n→∞ χA (ω) = 1 for all ω ∈ A, whereas χAn (ω) ≥ χA (ω) = 0 for all
ω ∈ Ω\A. Now, Fatou’s Lemma combined with (35) yields that

lim inf
n→∞

ϕ(xn) = lim inf
n→∞

∫
Ω

χAn (ω)P (dω) ≥
∫

Ω

lim inf
n→∞

χAn (ω)P (dω)

≥
∫
A

χA (ω)P (dω) = P (g (x̄, ξ) > 0)

= P (g (x̄, ξ) ≥ 0) = ϕ(x̄).

Hence, ϕ is w.s.l.s. in x̄ ∈ X . 2

Lemma 13 Under the assumptions of Theorem 5, there are constants ε, γ > 0 such that (with d
referring to the point-to-set distance)

d (u, {u ∈ U0|h(u) ≥ τ}) ≤ γmax{log τ − log h(u), 0} ∀u ∈ U0 ∀τ ∈ [p− ε, p+ ε] .

Proof. By definition of h in (1), the inequality µ (H (u)) ≥ p is equivalent with h(u) ≥ p. At the end
of the proof of Proposition 4 (which to invoke is justified by 1. and 2. in Theorem 5), we have shown
that, for arbitrary u1, u2 ∈ U and λ ∈ [0, 1] the inequality

h(λu1 + (1− λ)u2) ≥ hλ(u1)h1−λ(u2)

holds true. This means that log h is concave and, hence, the inequality µ (H (u)) ≥ p is equivalent
with h̃(u) ≤ − log p, where h̃ := − log h is a convex function. By 3. in Theorem 5 and Proposition
1, h is w.s.u.s. and, hence, h̃ is w.s.l.s. Define the multifunction M : U ⇒ R by

M(u) :=

{
[h̃(u),∞) if u ∈ U0

∅ else
.

We claim thatM has a closed and convex graph. To this aim, consider an arbitrary sequence (un, tn)→
(ū, t̄) with tn ∈M(un). Then, un ∈ U0 and, hence, ū ∈ U0 by closedness of U0 (see 4. in Theorem
5). Moreover, h̃(un) ≤ tn. Since h̃ is w.s.l.s., we derive that

h̃(ū) ≤ lim inf
n→∞

h̃(un) ≤ lim inf
n→∞

tn = t̄.

Consequently, t̄ ∈ M(ū) implying that the graph of M is closed. To show its convexity, let t1 ∈
M(u1), t2 ∈ M(u2) and λ ∈ [0, 1] be arbitrarily given. Then, first, u1, u2 ∈ U0, whence λu1 +
(1− λ)u2 ∈ U0 by convexity of U0 (see 4. in Theorem 5). Second, we have that h̃(u1) ≤ t1 and
h̃(u2) ≤ t2. Then, convexity of h̃ yields that

h̃(λu1 + (1− λ)u2) ≤ λt1 + (1− λ) t2.

In other words,
λt1 + (1− λ) t2 ∈M(λu1 + (1− λ)u2),

proving that the graph of M is also convex.
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Finally, observe that 5. in Theorem 5 implies h(û) > p, whence h̃(û) < − log p. It follows that
− log p ∈ intM(û). Altogether, the previously shown properties allow us to invoke the Robinson-
Ursescu Theorem [6, Chapter 3, Theorem 1] in order to derive the existence of some ε > 0 such
that

d
(
u,M−1(t)

)
≤ 1

ε
d(t,M(u))(1 + ‖u− û‖) ∀u ∈ U0 ∀t ∈ [− log p− ε,− log p+ ε] .

Here, d represents the point to set distance andM−1 refers to the inverse multifunction corresponding
to M . This is easily identified to be

M−1(t) = {u ∈ U0|h̃(u) ≤ t}.

Since U0 is bounded, there exists some L̃ > 0 with ‖u− û‖ ≤ L̃ for all u ∈ U0. Hence, with
L := L̃+ 1, we get the estimate

d
(
u, {u ∈ U0|h̃(u) ≤ t}

)
≤ L

ε
max{h̃(u)− t, 0}

∀u ∈ U0 ∀t ∈ [− log p− ε,− log p+ ε] .

which can further be developed to

d (u, {u ∈ U0|h(u) ≥ e−t}) ≤ L
ε

max{log e−t

h(u)
, 0}

∀u ∈ U0 ∀t ∈ [− log p− ε,− log p+ ε] .

and, finally, to

d (u, {u ∈ U0|h(u) ≥ τ}) ≤ L

ε
max{log τ − log h(u), 0} ∀u ∈ U0 ∀τ ∈

[
pe−ε, peε

]
.

Observing that pe−ε < p < peε, the assertion follows. 2

Lemma 14 Under the assumptions of Theorem 5, one has that for every ν ∈ P (Rs) the function
ν (H(u)) is w.s.u.s. and the set Φ (ν) is weakly sequentially compact.

Proof. Let η be an s-dimensional random vector having distribution ν. Then, by definition

ν (H(u)) = P (η ∈ H(u)) = P (g (u, η, x) ≥ 0 ∀x ∈ C) .

Replacing ξ by η in the definition of the probability function (1), Proposition 1 implies via 3. in Theorem
5 that the function ν (H(·)) is w.s.u.s. Hence, the set

{u ∈ U |ν (H(u)) ≥ p}

is weakly sequentially closed. On the other hand,U0 is weakly sequentially compact by being bounded,
convex and closed in a reflexive Banach space [12, p. 217] (see assumptions of Theorem 5). It follows
that Φ (ν), as an intersection of a weakly sequentially compact with a weakly sequentially closed set
is weakly sequentially compact again.
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Lemma 15 Let the assumptions of Theorem 5 hold true. Then, for every sequence (νn, un) ∈
P (Rs)× U and every (ν̄, ū) ∈ P (Rs)× U satisfying the relations

α (νn, ν̄)→ 0, un ⇀ ū, un ∈ Φ (νn) ,

it follows that ū ∈ Φ (ν̄).

Proof. Clearly, ū ∈ U0 due to un ∈ U0 and by U0 being weakly sequentially closed. By definition,

νn (H(un)) ≥ p ∀n ∈ N.

Next, let ε > 0 be arbitrarily given and let η be an s-dimensional random vector having distribution ν̄.
Then, by definition

ν̄ (H(u)) = P (η ∈ H(u)) = P (g (u, η, x) ≥ 0 ∀x ∈ C) .

Replacing ξ by η in the definition of the probability function (1), Proposition 1 implies that the function
ν̄ (H(·)) is w.s.u.s. Consequently, for n large enough, one has that

ν̄ (H(un)) ≤ ν̄ (H(ū)) + ε/2.

Since also α (νn, ν̄) ≤ ε/2 for n large enough, we infer that

ν̄ (H(ū)) ≥ ν̄ (H(ū))− ν̄ (H(un))− |ν̄ (H(un))− νn (H(un))|+ νn (H(un))

≥ −ε/2− α (νn, ν̄) + p ≥ p− ε.

As ε > 0 was chosen arbitrarily, it follows that ν̄ (H(ū)) ≥ p which entails that ū ∈ Φ (ν̄). 2
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