
Weierstraß-Institut
für Angewandte Analysis und Stochastik

Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 2198-5855

The divisible sandpile with heavy-tailed variables

Alessandra Cipriani1, Rajat Subhra Hazra2, Wioletta M. Ruszel3

submitted: November 3, 2016

1 Weierstrass Institute

Mohrenstr. 39

10117 Berlin

Germany

E-Mail: alessandra.cipriani@wias-berlin.de

2 Indian Statistical Institute

203 B. T. Road

Kolkata-700108

India

E-Mail: rajatmaths@gmail.com

3 TU Delft

Mekelweg 4

2628 CD Delft

The Netherlands

E-Mail: w.m.ruszel@tudelft.nl

No. 2328

Berlin 2016

2000 Mathematics Subject Classification. 60G52, 60J45, 60G15, 82C20.

Key words and phrases. Divisible sandpile, heavy-tailed variables, α-stable random distribution.

We are grateful to Mark Veraar for helpful discussions. The second author also would like to thank Deepak Dhar

for an enlightening discussion on sandpile models. The first author’s research was partially supported by the Dutch

stochastics cluster STAR (Stochastics – Theoretical and Applied Research). The second author’s research was

supported by Cumulative Professional Development Allowance from Ministry of Human Resource Development,

Government of India and Department of Science and Technology, Inspire funds.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Publications Server of the Weierstrass Institute for Applied Analysis and Stochastics

https://core.ac.uk/display/289299173?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Edited by

Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)

Leibniz-Institut im Forschungsverbund Berlin e. V.

Mohrenstraße 39

10117 Berlin

Germany

Fax: +49 30 20372-303

E-Mail: preprint@wias-berlin.de

World Wide Web: http://www.wias-berlin.de/

preprint@wias-berlin.de
http://www.wias-berlin.de/


This work deals with the divisible sandpile model when an initial configuration

sampled from a heavy-tailed distribution. Extending results of Levine et al. (2015)

and Cipriani et al. (2016) we determine sufficient conditions for stabilization and

non-stabilization on infinite graphs. We determine furthermore that the scaling limit

of the odometer on the torus is an α-stable random distribution.
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1 Introduction

The divisible sandpile model, a continuous version of the (discrete) abelian sandpile model

(ASM) was introduced by Levine and Peres (2009, 2010) to study scaling limits of the rotor

aggregation and internal DLA growth models.

The basic mechanism in these models is that to each site of some graph there is associated a

height or mass. If the height exceeds a certain value then it collapses by distributing the excess
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mass (uniformly) to the neighbours which can then result in a series of cascades.

One of the questions arising for these cascading models is the dichotomy between stabilizing

and exploding configurations.

For the ASM Fey et al. (2009) showed that given an initial i.i.d. configuration on Z
d

the model will

stabilize almost surely, depending solely on the mean density at a fixed site and the dimension d.

In Levine et al. (2015) the authors extended this study to the divisible sandpile model on general

vertex-transitive graphs. One of their results deals with the characterization of this dichotomy

according to the mean height and transience resp. recurrence of the graph (and not anymore

on d). If the mean height is larger than 1 then almost surely the initial configuration does not

stabilize whilst a value smaller than 1 ensures stabilizability. At the critical value 1 under the

additional assumption of finite variance the model does not stabilize.

The proof of non-stabilizability at the critical value involves studying a so-called odometer func-

tion. It measures the amount of mass emitted from a site during stabilization. Levine et al. (2015)

study the expected odometer growth in the case of an initial Gaussian configuration using an

interesting connection with the discrete bilaplacian Gaussian field. The discrete bilaplacian (or

membrane) model is a particular random interface model (similar to the Gaussian Free Field)

and was introduced in the mathematics literature by Sakagawa (2003), Kurt (2007, 2009). Levine

and coauthors conjectured that the rescaled odometer converges to a continuum bilaplacian

field when the mesh size of the discrete torus becomes finer.

In Cipriani et al. (2016) the authors considered a general divisible sandpile model with i.i.d. initial

distribution on a discrete torus and proved the conjecture of Levine et al. (2015) on the torus T
d

determining the limiting field.

In this article we are interested in exploring the properties of the divisible sandpile model when

the initial mass comes from heavy-tailed distributions. We are interested in extending results

from both Cipriani et al. (2016) and Levine et al. (2015), namely we first study the dichotomy

between stabilizing versus exploding configurations and secondly determine the scaling limit of

the odometer function for heavy-tailed distributions on the torus. The novelty of the article is to

consider the stabilization versus explosion dichotomy for divisible sandpiles for more general

initial distributions by removing the finite variance assumption at the critical value E(s) = 1 and

to study scaling limits for those generalized random variables. To the authors’ knowledge this is

the first result constructing an α-stable random distribution on the torus.

More precisely, the divisible sandpile of a locally finite, undirected, connected graphG = (V,E)
is defined as follows: start with an initial configuration s : V → R. A vertex x is unstable if its

height s(x) > 1 and stable otherwise. At the first time instance all unstable vertices x topple

keeping mass 1 to themselves and redistributing the excess s(x) − 1 equally among their

neighbours. If at time n the total mass distributed from x is given by un(x), then it can be proved

that un → u where u : V → [0, +∞]. u is called the odometer for the configuration s; if the

odometer is finite for all x ∈ V then we say that a configuration is stable. In Levine et al. (2015)

many properties of the divisible sandpile were studied when (s(x))x∈V are independent and

identically distributed random variables with finite mean and finite variance. It then becomes a

natural question to see if their analysis can be pushed further to more general random variables,

especially when mean and variance are infinite. In particular, we shall see that the finiteness of
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the mean is not necessary to study the dichotomy of stabilization versus explosion.

We will consider initial heights which are regularly varying with index α, i.e. they satisfy

P(|s| > t) ∼ t−αL(t) as t→ +∞ (1.1)

where L is some slowly varying function and α ∈ (0, 2]. Such variables arise naturally when

one considers domain of attractions of stable distributions.

We show that the initial configuration almost surely will not stabilize if E(s) ∈ (1,∞] or if

E(s) = 1, assuming infinite variance and some additional property of the underlying graph and

α. On the other hand the initial configuration will stabilize almost surely if E(s) ∈ [−∞, 1). It is

tempting to consider the value of α in (1.1) as a parameter which is in some sense tuning the

dichotomy, since it is related to finiteness resp. infiniteness of the first and second moment. If

α ∈ (0, 1) then the mean E(s) = ±∞ whereas for α ∈ (1, 2) we know that E(s) < ∞ and

the variance is infinite. However in the boundary cases α = 1 and α = 2 the finiteness of the

moments depends on the function L, hence we cannot decide a priori whether the configuration

is stabilizable or not knowing solely α.

A second part of this paper focuses on a special finite connected graph, the discrete torus.

In general on a finite graph G with |V | = n and for which the mass is conserved, that is,∑
x∈V s(x) = n, the system stabilizes to the configuration constantly equal to 1. This regime

corresponds to the critical case when E(s) = 1. The odometer u satisfies the following discrete

equation (Levine et al., 2015, Lemma 7.1):

{
∆u(x) = 1 − s(x)

minx∈V u(x) = 0
, (1.2)

where ∆ is the discrete Laplacian. When V is the discrete torus of side length n (denoted by

Z
d
n) the study of the scaling limit of the odometer becomes interesting. We construct a new field

on the dual of C∞(Td) (the space of smooth functions on the torus) to which we show that the

rescaled odometer converges. This field belongs to the class of α-stable generalised random

fields, which is a natural extension of Gaussian random fields. It is remarkable that the sandpile

is able to span through a whole class of generalised fields which all have the stability property

like stable random variables.

Outline of the article The article is structured as follows: in Section 2 we give the basic defi-

nitions and explain rigorously the results obtained. In Section 3 we deal with the proofs of the

results concerning stabilization on infinite graphs. In Section 4 we determine the scaling limit of

the odometer on the discrete torus. Auxiliary results are proved in Appendix A.

Acknowledgements We are grateful to Mark Veraar for helpful discussions. The second author

also would like to thank Deepak Dhar for an enlightening discussion on sandpile models. The
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tics – Theoretical and Applied Research). The second author’s research was supported by Cu-

mulative Professional Development Allowance from Ministry of Human Resource Development,
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2 Basic setup and main results

2.1 Notation

We start with some preliminary notations which are needed throughout the paper. Let T
d be the

d-dimensional torus, viewed as R
d/Zd

or as [−1/2, 1/2)d ⊂ R
d

alternatively. The discrete

torus of side-length n ∈ N is Z
d
n := [−n/2, n/2]d∩Z

d
, and T

d
n := [−1/2, 1/2]d∩(n−1

Z)d

is the discretization of T
d. For a discrete set V we denote as |V | its cardinality. Moreover let

B(z, ρ) be a ball centered at z of radius ρ > 0 in the `∞-metric. We will use throughout the

notation z · w for the Euclidean scalar product between z, w ∈ R
d
. With ‖ · ‖∞ we mean

the `∞-norm, and with ‖ · ‖ the Euclidean norm. We will let C, c be positive constants which

may change from line to line within the same equation. We define the Fourier transform of a

function u ∈ L1(Td) as û(y) :=
∫

Td u(z) exp (−2πiy · z) d z for y ∈ Z
d
. We will use the

symbol ·̂ to denote also Fourier transforms on Z
d
n and R

d
. We say a function has mean zero if∫

Td f(z) d z = 0. We will denote for a real-valued random variable X and x ∈ R

FX(x) := P(X ≤ x), FX(x) := 1 − FX(x) = P(X > x). (2.1)

We write for two positive functions f, g

f(x) ∼ g(x) as x→ x0

if limx→x0 f(x)/g(x) = 1.

2.2 Assumptions on the configuration

We recall here the definition of regularly varying function: a non-negative random variable X is

called regularly varying of index α ≥ 0, and we write X ∈ RV−α, if

FX(x) ∼ x−αL(x) as x→ +∞

where L is a slowly varying function, i. e.,

lim
x→+∞

L(tx)

L(x)
= 1 for all t > 0.

We recall the definition of variables in the domain of attraction of a stable distribution:

Definition 1 (Domain of normal attraction of stable variables). Let α ∈ (0, 2]. Let V be a

countably infinite index set and (W (x))x∈V be i.i.d. symmetric random variables with common
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distribution function in the domain of normal attraction of an α-stable distribution. This means

that, for V1 ⊂ V2 ⊂ . . . such that ∪k≥1Vk = V , we have the following limit:

lim
k→+∞

|Vk|
− 1

α

∑

x∈Vk

W (x)
d
= ρα, (2.2)

where ρα has a symmetric α-stable law which we denote as SαS(c), that is, E[exp(iθρα)] =
exp(−c

α|θ|α) for some θ ∈ R.

In our work we will often use this definition setting V := Z
d
n (it will be clear from the context

when). If the scale parameter of the α-stable law is 1, we will write σ(x)
d
= SαS(1). If this

happens, it is well known that |σ(x)| has a regularly varying tail with index −α, for α ∈ (0, 2].

Remark 2. The results we are going to prove can be extended to a more general set-up assum-

ing further necessary and sufficient conditions for the (σ(x))x∈V to be in the domain of attrac-

tion of stable variables (classical references on the topic are Mikosch (1999), Samorodnitsky and Taqqu

(1994)). However to keep the exposition accessible without harming the mathematical aspects

we assume the simpler Definition 1.

2.3 Stability on infinite graphs: beyond finite variance

First we shall see some properties of divisible sandpiles on infinite graphs. More specifically

we consider G = (V,E) to be an infinite vertex transitive graph. Let Γ ⊂ Aut(G) be a sub-

group which acts transitively on V and let P be a Γ-invariant probability measure. Let o be a

distinguished vertex of V which we keep fixed. Denote by R
V

the set of divisible sandpile con-

figurations on G. Recall from Levine et al. (2015, Section 2) that in toppling procedure starting

from an initial configuration s ∈ R
V

, the total mass emitted by a site x ∈ V to each of its

neighbours during the time interval [0, n] is un(x), so that the resulting configuration at time

n is sn = s + ∆un. In the same work it is shown that if u is a finite toppling procedure then

s∞ = limt→sup T st exists, where T is a well-ordered set of toppling times. A toppling proce-

dure u is called stabilizing for s if u is finite and s∞(x) ≤ 1 for all x ∈ V . One says that s
stabilizes if there exists a stabilizing toppling procedure for s.

Our first Theorem tries to explore the case when initial configurations does not necessarily have

finite mean.

Lemma 1. Let G = (V,E) and P be as above. Let (s(x))x∈V be i.i.d.

(i) If E[s(o)] = +∞, then P(s stabilizes) = 0.

(ii) If E[s(o)] = −∞, then P(s stabilizes) = 1.

Recall that if X is a (non-negative) regularly varying random variable with index −α then

E
[
Xβ
]
< +∞ for β < α and E

[
Xβ
]

= +∞ for β > α. At β = α the mean may be

finite or infinite. Note that when one assumes that s has a regularly varying tail of index −α with

α < 1 then the above result implies that there is no stability almost surely, since s has infinite

mean.
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The configurations for which the mean is finite (but not necessarily the variance) require some

more analysis. Again note that if s has a regularly varying tail of index −α with α ∈ (1, 2), the

mean is finite. Recall also that the cases E[s(o)] < 1 and E[s(o)] ∈ (1, +∞) can be dealt

with the results from Levine et al. (2015, Lemmas 4.1, 4.2). When the mean is 1 we must study

the dependence on the underlying graph more closely, and in particular the behavior of the

simple random walk on it. Levine et al. (2015) show that there is no stability adopting different

techniques according to the transience or recurrence of the graph, and we will adopt a somewhat

similar viewpoint for regularly varying variables. Let us recall the Green’s function g(x, y) :=∑+∞
j=0 Px(Sj = y), x, y ∈ V , where Sj is the simple random walk on V started at x. We split

the critical case into two broad cases:
∑

x∈V g(o, x)
α = +∞ and

∑
x∈V g(0, x)

α < +∞.

With a bit of abuse of nomenclature we call the first case α-singly transient and the second case

α-doubly transient (for a summary of stabilizability, see Table 1). In the following results, since

s(x) has mean 1, we impose conditions on the recentered variable s(x) − 1, as it is natural

to assume symmetry. Given that s(x) − 1 and s(x) are tail equivalent in the case of regular

variation, this does not effect the outcome of the result.

Theorem 2 (α-singly transient). Let (s(x))x∈V be a divisible sandpile on an infinite vertex

transitive graph G = (V,E) such that (Y (x))x∈V := (s(x) − 1)x∈V are i.i.d., zero-mean,

symmetric random variables in the normal domain of attraction of a SαS random variable with

α ∈ [1, 2) (recall Definition 1). Suppose g(o, y) < +∞ uniformly for all y ∈ V and

∑

y∈V

g(0, y)α = +∞. (2.3)

Then P(s stabilizes) = 0.

Remark 3. In the case in which V := Z
d
, d ≥ 3, then by Lawler and Limic (2010, Theo-

rem 4.3.1) we obtain that (2.3) is satisfied if α ≤ d/(d− 2). In particular this implies that

the singly transient case for the square lattice corresponds to α ∈ (1, d/(d− 2)), hence it

comprises the cases d = 3, 4.

Now we deal with the case α-doubly transient case. Although in this case one may expect to

assume
∑

y∈V g(o, y)
α < +∞, we shall assume something stronger to prove our results.

Assumption 1. Assume that

(a) (Y (x))x∈V := (s(x) − 1)x∈V are i.i.d., zero-mean, symmetric random variables in the

normal domain of attraction of a SαS(1) random variable with α ∈ (1, 2].

(b) There exists δ ∈ (1, α) such that

∑

y∈V

g(o, y)δ < +∞.

Then we can state the following

Theorem 3 (α-doubly transient case). Let G = (V, E) be an infinite vertex transitive graph

and let (s(x))x∈V such that they satisfy Assumption 1. Then P(s stabilizes) = 0.
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We note that (b) implies that
∑

y∈V g(0, y)
α < +∞. In fact, we will deal with infinite series

of the form
∑

x∈V g(0, x)Y (x) which converge almost surely when one assumes (b). Such

assumptions are well-known in heavy-tailed time series literature. The series also converges if

one assumes additional conditions on slowly varying functions (see Mikosch and Samorodnitsky

(2000, Lemma A.4) for these conditions). For example, if Y (o) satisfies FY (t) = t−α, then one

can relax the assumption (b) and choose δ := α to obtain the statement of Theorem 3.

Remark 4. Analogously to Remark 3, one can show that for the graph Z
d
, d ≥ 5, an exponent

δ < α such that (b) holds can always be found (indeed one needs d/(d− 2) < δ < α)).

X
X

X
X

X
X

X
X

X
X

X
X

Var[s(o)]
E[s(o)]

[−∞, 1) 1 (1, +∞) +∞ −∞

Finite 1 0 0 × ×

Infinite 1 : Lemma 1 0 :

{
α− singly transient (Thm. 2)

α− doubly transient (Thm. 3)
0 0: Lemma 1 1: Lemma 1

Table 1: Summary of stabilizability. In each cell we write the value of P(s stabilizes).

This completes the picture of stability on a divisible sandpile for regularly varying random vari-

ables. We now explore the odometer behavior on the finite graphs, and specifically on a torus.

2.4 Scaling limit of the odometer on the torus

For a finite connected graph, the divisible sandpile is stable if and only
∑

x∈V s(x) ≤ |V |.
When the sum is exactly |V | the configuration stabilizes to the all 1 configuration and the

odometer u is the unique function u which satisfies (1.2) (Levine et al. (2015, Lemma 7.1)).

This equation can be useful in determining the representation of the odometer. One can obtain

the following result, for which we do not give a proof since it mimicks closely that of Levine et al.

(2015, Proposition 1.3).

Proposition 4. Consider G = (V,E) a finite connected graph. Let s(x) be a configuration

such that
∑

x∈V s(x) = |V |. Then the configuration stabilizes to the all 1 configuration and the

distribution of the odometer u is given by

(u(x))x∈V =

(
v(x) − min

z∈V
v(z)

)

x∈V

where

v(x) =
1

deg(x)

∑

w∈V

g(w, x)(s(w) − 1) (2.4)

and g(w, x) = |V |−1∑
z∈V g

z(w, x), where gz(x, y) is the expected number of visits to y by

a simple random walk started at x before hitting z.

When (σ(x))x∈V are i.i.d. Gaussians and

s(x) = 1 + σ(x) −
1

|V |

∑

w∈V

σ(w), x ∈ V (2.5)
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then one can show that v(x) is distributed as a discrete bilaplacian field on the torus, that is, it

is a centered Gaussian field with covariance given by

E[v(x)v(y)] =
1

deg(x)deg(y)

∑

w∈V

g(x,w)g(w, y).

In this Gaussian case, this hints at the possibility that the field u, appropriately rescaled, may

converge to the continuum bilaplacian field on the torus. To describe the general case, let us

consider the interpolated rescaled odometer:

Ξn(x) := 4π2nd− d
α
−2
∑

z∈Td
n

u(nz)1B(z, 1
2n)(x).

For f ∈ C∞(Td) and mean zero we can define the action of the field Ξn on f as

〈Ξn, f〉 = 4π2nd− d
α
−2
∑

z∈Td
n

u(nz)

∫

B(z, 1
2n)

f(t) d t.

Theorem 5. Let d ≥ 1. Let (σ(x))x∈Z
d
n

be i.i.d. and satisfy Definition 1, and furthermore let

(s(x))x∈Z
d
n

as in (2.5) where V := Z
d
n. There exists a random distribution Ξα on (C∞(Td))∗

such that: for all m ∈ N and f1, f2, . . . , fm ∈ C∞(Td) with mean zero, the random variables

〈Ξn, fj〉 converge jointly in distribution to a random variable 〈Ξα, fj〉. Moreover, the character-

istic functional of Ξα is given by

E[exp(i 〈Ξα, f〉)] = exp


−

∫

Td

∣∣∣∣∣∣

∑

z∈Z
d \{0}

exp(−2πiz · x)

‖z‖2
f̂(z)

∣∣∣∣∣∣

α

dx


 . (2.6)

The above theorem describes the finite dimensional convergence of the odometer field. The

limiting characteristic function is well-defined and indeed defines an α-stable cylindrical random

field, of which we recall the definition. Let “∼” be the equivalence relation that identifies two

functions differing by a constant and call T := C∞(Td)/∼. Let α ∈ (0, 2]. A random variable

Ξα on T ∗ is called α-stable if, given two independent copies Ξα, 1 and Ξα, 2 of Ξα, then for any

a, b > 0 and f ∈ T

E[exp(i 〈Ξα, 1, af〉)]E[exp(i 〈Ξα, 2, bf〉)] = E

[
exp

(
i

〈
Ξα, (a

α + bα)
1
αf
〉)]

(Kumar and Mandrekar, 1972, Definition 2.1). Using the above characteristic function (2.6), it is

immediate that the limiting field satisfies this form of stability. An equivalent classical definition,

as can be found in Linde (1983, Section 4.8), matches ours by means of the Laplacian operator

which we introduce as follows. Choose a ∈ R. Let us define the operator (−∆)a acting on

L2(Td)-functions u with Fourier series
∑

ν∈Z
d û(ν)eν(·) as follows ((eν)ν∈Z

d denotes a mean-

zero orthonormal basis of L2(Td)):

(−∆)a



∑

ν∈Z
d

û(ν)eν


 (ϑ) =

∑

ν∈Z
d \{0}

‖ν‖2aû(ν)eν(ϑ).
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With this notation we can say the characteristic functional of Ξα can be represented as

E[exp(i 〈Ξα, f〉)] = exp
(
−‖(−∆)−1f‖α

Lα(Td)

)
. (2.7)

For a reference on α-stable cylinder measures one can consult the monograph Linde (1983).

For the reader’s convenience, we show that such functionals are well-defined via the Bochner-

Minlos theorem (see Appendix A2).

Remark 5. Pluggin in the value α = 2 in the above Theorem matches the main result of

Cipriani et al. (2016), concerned specifically with the Gaussian case.

The rest of the paper is devoted to the proofs of the above results.

3 Proofs on stabilization

3.1 Proof of Lemma 1

Before we prove the first lemma let us make a general trivial remark. If we assume that E[s(o)] =
+∞ resp. −∞ then necessarily we have that E[s+(o)] = +∞ resp. E[s−(o)] = −∞ where

s+ denotes the positive part and s− the negative part of the configuration s.

(i) By the remark before we can assume that E[s−(o)] < +∞, hence s− is integrable. Note that

since the event that s stabilizes is Γ-invariant, by ergodicity it has probability 0 or 1. Assume

that s stabilizes almost surely. For M ≥ 1, denote by

sM(o) := s(o)1{s(o)≤M} = s+(o)1{0≤s(o)≤M}−s
−(o)

the truncation of the configuration at level M . First we make the following claim:

P(sM
stabilizes for all M ≥ 1) = 1.

To see this we note that Fs := {f : V → R : s+ ∆f ≤ 1, f ≥ 0} is non-empty if and only

if s stabilizes (see Levine et al. (2015, Corollary 2.8)). Now the event that Fs 6= ∅ implies that

the event FsM 6= ∅ for all M ≥ 1, since sM ≤ s. Hence we have the claim.

Consequently for any M fixed it holds that

E[sM(o)] = E[s+(o)1{0≤s(o)≤M}] − E[s−(o)] < +∞

and hence applying conservation of density (Proposition 3.1 of Levine et al. (2015)) we have that

E[sM
∞(o)] = E[sM(o)]. Since the configuration sM

∞ is stable, sM
∞ ≤ 1 and so E[sM(0)] ≤ 1 for

all M ≥ 1. Note that we have on the one side that sM(o) converges to s(o) almost surely and

on the other hand sM(o) is a monotone increasing sequence inM such that sM(o) ≥ −s−(o)
where s−(o) > 0 was assumed integrable. Hence by Fatou’s lemma we would get

+∞ = E

[
lim inf
M→+∞

sM(o)

]
≤ lim inf

M→+∞
E
[
sM(o)

]
≤ 1,

a contradiction.
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(ii) Since E[s(o)] = −∞ we can find M ∈ (−∞, 0] such that E
[
s(o)1{s(o)≥M}

]
< 1. Having

s(o) ≤ s(o)1{s(o)≥M} with probability one, stability follows from Levine et al. (2015, Lemma 4.2).

3.2 The α-singly transient case

The proof in this case requires a central limit type theorem which we recall here for the reader’s

convenience.

Theorem 6 (Lindeberg-Feller type stable limit theorem, Dombry and Jung (2014, Theorem 1.1).).

Suppose (ξk, j)k, j∈N is an i.i.d. array of centered random variables in the domain of normal at-

traction of SαS(1), α ∈ (0, 2], that is,

lim
n→+∞

n−
1/α

n∑

k=1

ξk, j
d
= SαS(1), ∀ j ∈ N .

Let
(
u(j)
)

j∈N
is a sequence of vectors in `α , i.e. u(j) :=

(
u

(j)
k

)
k∈N

∈ `α for all j ∈ N. If both

(1) limj→+∞

∥∥u(j)
∥∥

α
= c,

(2) limj→+∞

∥∥u(j)
∥∥
∞

= 0

hold, then
∑

k u
(j)
k ξk, j < +∞ a. s. for all j ∈ N and

lim
j→+∞

∑

k∈N

u
(j)
k ξk, j

d
= SαS(c).

Proof of Theorem 2. We proceed as in Fey et al. (2009, Theorem 3.5), Levine et al. (2015,

Lemma 5.1). Assume on the contrary that s stabilizes with probability one. Let V1 ⊂ V2 ⊂ . . .
with ∪n≥1Vn = V . Then using a nested toppling procedure (we stabilize in each volume Vn

successively)

s+ ∆un = ξn, n ∈ N

with ξn ≤ 1. Let gn(x, y) be the expected number of visits to y by a simple random walk started

at x and killed on exiting Vn. It holds that (Levine et al., 2015, Equation (12))

un(y) = r−1
∑

x∈Vn

gn(x, y)(s(x) − 1) + r−1
∑

x∈Vn

gn(x, y)(1 − ξn(x))

where r is the common degree. Let

νn, α :=

(
∑

y∈Vn

gn(o, y)α

) 1
α

.

We observe that

P (un(o) ≥ ενn, α) ≥ P

(
ν−1

n, α

∑

y∈Vn

gn(0, y)(s(y)−1) ≥ rε

)
. (3.1)

To analyse the right-hand side, we need the following Claim.
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Claim 7.

ν−1
n, α

∑

y∈Vn

gn(0, y)(s(y)−1) (3.2)

converges in law to a non-degenerate SαS(1) random variable as n→ +∞.

Since un(o) ↑ u∞(o) as n→ +∞ and that we have assumed stabilization, the left-hand side

of (3.1) converges to 0, while the right-hand side is strictly positive by Claim 7. This gives a

contradiction.

Let us go into the proof of Claim 7.

Proof of Claim 7. Observe that s(x) − 1 is a centered random variable for all x ∈ V . Fur-

thermore it belongs to the domain of attraction of an SαS(1). Let us then verify (1)-(2) for

ν−1
n, α

∑
y∈Vn

gn(0, y)s(y). Taking up the notation of Theorem 6, we define for each j ∈ N a se-

quence

(
u

(j)
k

)
k∈N

as follows: if we enumerate the points in Vj such that Vj =
{
y1, . . . , y|Vj |

}
,

let us put

u
(j)
k :=

{
ν−1

j, α gj(o, yk) k = 1, . . . , |Vj|

0 otherwise
.

This sequence belongs to `α for fixed j since

∥∥u(j)
∥∥α

α
=
∑

k∈N

(
u

(j)
k

)α

=
1

να
j, α

∑

y∈Vj

gj(o, y)
α = 1.

The above calculation clearly gives that limj→+∞

∥∥u(j)
∥∥

α
= 1, so that (1) is satisfied. As for

(2) observe that the boundedness of g(o, ·) and (2.3) give

lim
j→+∞

gj(o, y)

νj, α

= 0.

This concludes the proof.

3.3 The α-doubly transient case

In order to characterize the behavior of the divisible sandpile in the α doubly transient case,

we rely on a result inspired by Levine et al. (2015, Lemma 5.5), and hence we will postpone its

proof to the Appendix in Section A1.

Lemma 8. Let {yi}i≥1 be an enumeration of the group G. For γ ∈ Γ, x ∈ V and r the

common degree on V we define

vγ(x) :=
1

r

∞∑

i=1

g(x, γyi)Yγyi
. (3.3)

Let e be the identity element of Γ. Then
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(I) ve(o) is convergent almost surely.

(II) ve(o) is Γ-invariant.

(III) ve(o) is almost surely unbounded below.

We are now ready to show the main result for the doubly transient case.

Proof of Theorem 3. Suppose s stabilizes almost surely with odometer u∞. Then as in Lemma

5.5 of Levine et al. (2015) we have that ve (defined in (3.3)) has Γ-invariant law and ∆ve =
1−s, hence h = v−u∞ has invariant law and is harmonic on V . Observe that the assumptions

of Kokoszka and Taqqu (1996, Theorem 2.2) are satisfied, in such a way that we can conclude

that

lim
t→+∞

P(|ve(o)| > t)

P(|Yo| > t)
=

1

r

+∞∑

i=1

g(o, yi)
α.

As a consequence ve has a right regularly varying tail of index −α and hence

E
[
|ve(o)|

α−ε] < +∞

for all 0 < ε < α. Hence by Levine et al. (2015, Lemma 5.4), we have that h is constant

almost surely. Since u∞ ≥ 0 and ve is unbounded below almost surely by Lemma 8, we have

a contradiction.

4 Proof of Theorem 5

4.1 Preliminaries

Consider the Hilbert space L2(Zd
n) of complex valued functions on the discrete torus endowed

with the inner product

〈f, g〉 =
1

nd

∑

x∈Z
d
n

f(x)g(x).

The Pontryagin dual group of Z
d
n is identified again with Z

d
n. Let {χw : w ∈ Z

d
n} denote the

characters of the group where χw(x) = exp(2πix · w/n). The eigenvalues of the Laplacian

∆g on discrete tori are given by

λw = −4
d∑

i=1

sin2
(πwi

n

)
, w ∈ Z

d
n .

We use the shortcut gx(y) := g(y, x). Let ĝx denote the Fourier transform of gx.
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4.2 Proof of Theorem 5

The proof of Theorem 5 relies on two steps. As done in Cipriani et al. (2016), the proof is

based on determining the scaling limit in a “simpler” case, that is, when the variables σ in

Proposition 4 are i.i.d. SαS(1). Then we will conclude in the more general case using the

theorem for symmetric stable laws.

4.2.1 Proof for the α-stable case

By means of Proposition 4 and the fact that all test functions have mean 0, the main Theorem

on the scaling limit of the odometer will follow once we prove this statement:

Theorem 9. Let (σ(x))x∈Z
d
n

be i.i.d. SαS(1) random variables. For all f ∈ C∞(Td) with

mean zero, the variables 〈Ξn, f〉 converges in distribution to 〈Ξα, f〉 where Ξα is the same of

Theorem 5.

Overview of the proof. Let us denote by vn(y) = (2d)−1
∑

x∈Z
d
n
g(x, y)(s(x) − 1) and as

u(·) the odometer function. Note that it follows from Proposition 4 that the odometer has the

following representation:

u(x) = vn(x) − min
z∈Z

d
n

vn(z). (4.1)

Let us define the following functional: for any function hn : Z
d
n → R set

Ξhn
(x) := 4π2

∑

z∈Td
n

nd− d
α
−2hn(nz)1B(z, 1/2n)(x), x ∈ T

d.

For f ∈ C∞(Td) such that
∫

Td f(x) dx = 0 it follows immediately that

〈Ξu, f〉 = 〈Ξvn
, f〉 .

If we call

wn(y) := (2d)−1
∑

x∈Z
d
n

g(x, y)σ(x),

by the mean-zero property of the test functions and the Random Target Lemma (see Section

5 of Cipriani et al. (2016)) we deduce that 〈Ξvn
, f〉 = 〈Ξwn

, f〉 . Therefore we shall reduce

ourselves to study the convergence of the field Ξwn
.

The proof consists of 5 steps, which we will elucidate here together with some notation. Later

we will show each step separately. We write cn := 4π2nd−d/α−2. Let us denote by

Hn(z) =

∫

B(z, 1
2n)

f(t) d t. (4.2)

We can then rewrite

〈Ξwn
, f〉 = cn

∑

z∈Td
n

w(nz)Hn(z)

=
∑

x∈Z
d
n


cn(2d)−1

∑

z∈Td
n

g(x, nz)Hn(z)


σ(x) =

∑

x∈Z
d
n

kn(x)σ(x), (4.3)
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where

kn(x) := cn(2d)−1
∑

z∈T d
n

g(x, nz)Hn(z), x ∈ Z
d
n . (4.4)

Hence using the characteristic function of α-stable variables

E[exp(i 〈Ξwn
, f〉)] = exp


−

∑

x∈Z
d
n

|kn(x)|α


 .

Letting Ln(z) := Hn(z/n), we rewrite (using Perseval’s lemma)

kn(x) = cn(2d)−1
∑

z∈Td
n

g(x, nz)Hn(z) = cn(2d)−1
∑

z∈Z
d
n

g(x, z)Ln(z)

= cn(2d)−1nd 〈gx, Ln〉 = cn(2d)−1nd
∑

z∈Z
d
n

ĝx(z)L̂n(z) (4.5)

for x ∈ Z
d
n. Now we will split the above sum into contributions from the site z = 0 and from

other sites. Note that ĝx(0) is independent of x (cf. Equation (3.1) of Cipriani et al. (2016)).

Moreover

L̂n(0) = n−d
∑

z∈Z
d
n

Ln(z) = n−d
∑

z∈Td
n

Hn(z)

= n−d
∑

z∈Td
n

∫

B(z, 1
2n)

f(u) du = n−d

∫

Td

f(u) du = 0.

We can use the fact that (Levine et al., 2015, Equation (20))

λaĝx(a) = −2dn−dχ−a(x), a 6= 0 (4.6)

to deduce that

cnn
d(2d)−1

∑

z∈Z
d
n \{0}

ĝx(z)L̂n(z) = −cn
∑

z∈Z
d
n \{0}

χ−z(x)

λz

L̂n(z)

= −cn
∑

z∈Z
d
n \{0}

χ−z(x)

λz

〈Ln, χz〉 = −
cn
nd

∑

z∈Z
d
n \{0}

χ−z(x)

λz

∑

w∈Z
d
n

Ln(w)χ−z(w)

= −
cn
nd

∑

w∈Td
n

∫

B(w, 1
2n)

f(u) du
∑

z∈Z
d
n \{0}

χ−z(x)χ−z(nw)

λz

.

Defining

Rn(w) :=

∫

B(w, 1
2n)

(f(u) − f(w)) du
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we can split further the integral in the above equality and obtain

kn(x) = −
cn
nd

∑

w∈Td
n

(
n−df(w) +Rn(w)

) ∑

z∈Z
d
n \{0}

χ−z(x)χ−z(nw)

λz

= −
cn
n2d

∑

w∈Td
n

f(w)
∑

z∈Z
d
n \{0}

χ−z(x)χ−z(nw)

λz

−
cn
nd

∑

w∈Td
n

Rn(w)
∑

z∈Z
d
n \{0}

χ−z(x)χ−z(nw)

λz

:= ln(x) + Cn(x). (4.7)

Now our first step is to show that the convergence of exp
(
−
∑

x∈Z
d
n
|kn(x)|α

)
can be given

in terms of the same quantity where kn(·) is replaced by ln(·):

Step 1.

lim
n→+∞

∣∣∣∣∣∣
exp


−

∑

x∈Z
d
n

|kn(x)|α


− exp


−

∑

x∈Z
d
n

|ln(x)|α




∣∣∣∣∣∣
= 0.

The next steps aim at proving that ln is giving us the correct characteristic function. In Step 2

we are introducing a mollifier which will help to extend sums from Z
d
n to the whole lattice.

Step 2. Let φ ∈ S(Rd), the Schwartz space, with
∫

R
d φ(x) dx = 1. Let ε > 0 and let

φε(x) := ε−dφ (xε−1) for ε > 0. Then

lim
ε↓0

lim
n→+∞

∣∣∣∣∣∣

∑

x∈Z
d
n

|ln(x)|α −
cαn
ndα

∑

x∈Td
n

∣∣∣∣∣∣

∑

z∈Z
d
n \{0}

φ̂ε(z) exp(−2πiz · x)

λz

f̂n(z)

∣∣∣∣∣∣

α∣∣∣∣∣∣
= 0.

where f̂n(z) = n−d
∑

w∈Td
n
f(w) exp(2πiw · z).

The goal of the third step is to approximate each eigenvalue λz of the Laplacian with the norm

of the point z, namely

Step 3. For all ε > 0

lim
n→+∞

cαn
ndα

∣∣∣∣∣∣

∑

x∈Td
n




∣∣∣∣∣∣

∑

z∈Z
d
n \{0}

φ̂ε(z) e−2πiz·x

λz

f̂n(z)

∣∣∣∣∣∣

α

−
n2α

4απ2α

∣∣∣∣∣∣

∑

z∈Z
d
n \{0}

φ̂ε(z) e−2πiz·x

‖z‖2
f̂n(z)

∣∣∣∣∣∣

α


∣∣∣∣∣∣
= 0

In the next step we extend the sums in Step 3 over Z
d

using the decay of the mollifier.
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Step 4. For all ε > 0

lim
n→+∞

cαnn
2α

ndα4απ2α

∣∣∣∣∣∣

∑

x∈Td
n

∣∣∣∣∣∣

∑

z∈Z
d
n \{0}

φ̂ε(z) exp(−2πiz · x)

‖z‖2
f̂n(z)

∣∣∣∣∣∣

α

−
∑

x∈Td
n

∣∣∣∣∣∣

∑

z∈Z
d \{0}

φ̂ε(z) exp(−2πiz · x)

‖z‖2
f̂n(z)

∣∣∣∣∣∣

α∣∣∣∣∣∣
= 0.

At last, we can finally show the convergence of the sum to the required integral.

Step 5.

lim
ε↓0

lim
n→+∞

cαnn
2α

ndα4απ2α

∑

x∈Td
n

∣∣∣∣∣∣

∑

z∈Z
d \{0}

φ̂ε(z) exp(−2πiz · x)

‖z‖2
f̂n(z)

∣∣∣∣∣∣

α

=

∫

Td

∣∣∣∣∣∣

∑

z∈Z
d \{0}

exp(−2πiz · x)

‖z‖2
f̂(z)

∣∣∣∣∣∣

α

dx.

The core of the proof is showing the 5 steps. They are logically dependent one from another as

follows:

Step 5⇒ Step 4⇒ Step 3⇒ Step 2⇒ Step 1.

We will now begin to show the proof of each step assuming the subsequent ones, and will finally

conclude with Step 5.

Proof of Step 1. Let us denote by

tn(x) := tkn(x) + (1 − t)ln(x), t ∈ [0, 1]. (4.8)

Using | exp(−a) − exp(−b)| ≤ |a− b| for a, b ≥ 0 we get

∣∣∣∣∣∣
exp


−

∑

x∈Z
d
n

|kn(x)|α


− exp


−

∑

x∈Z
d
n

|ln(x)|α




∣∣∣∣∣∣

≤

∣∣∣∣∣∣

∑

x∈Z
d
n

|kn(x)|α − |ln(x)|α

∣∣∣∣∣∣
≤
∑

x∈Z
d
n

||kn(x)|α − |ln(x)|α| . (4.9)

By the mean value theorem we can bound the last term as follows:

{∑
x∈Z

d
n
α|tn(x)|α−1|Cn(x)| if α > 1

∑
x∈Z

d
n
|Cn(x)|α if α ≤ 1

. (4.10)
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From (4.8), (4.10) and the bound

(a+ b)r ≤ 2r (ar + br) , a, b ≥ 0, r ≥ 0

we get

∑

x∈Z
d
n

||kn(x)|α − |ln(x)|α|

≤

{
α2α−1

∑
x∈Z

d
n
|Cn(x)|α + α2α−1

∑
x∈Z

d
n
|Cn(x)| |ln(x)|α−1

if α > 1
∑

x∈Z
d
n
|Cn(x)|α if α ≤ 1

. (4.11)

Let us look at
∑

x∈Z
d
n
|Cn(x)|α. We notice that



∑

x∈Z
d
n

|Cn(x)|α




1/α

= n
d
α


n−d

∑

x∈Z
d
n

|Cn(x)|α




1/α

(4.12)

Observe that by Hölder’s inequality we have that


n−d

∑

x∈Z
d
n

|Cn(x)|α




1/α

≤


n−d

∑

x∈Z
d
n

|Cn(x)|2




1
2

= ‖Cn‖2.

Hence an appropriate bound on the L2-norm of Cn will suffice to prove that this term is small.

First we provide a crude bound for Cn(x):

Cn(x) =
cn
nd

∑

w∈Td
n

Rn(w)
∑

z∈Z
d
n \{0}

χ−z(x)χ−z(nw)

λz

= cn
∑

z∈Z
d
n \{0}

χ−z(x)

λz

n−d
∑

w∈Z
d
n

Rn(w/n)χ−z(w) = 4π2nd− d
α
−2

∑

z∈Z
d
n \{0}

χ−z(x)

λz

R̂n(z)

= 4π2n−
d
α
−2

∑

z∈Z
d
n \{0}

χ−z(x)

λz

ndR̂n(z) (4.13)

where Rn(w) := Rn(w/n). We wish to bound the L2-norm of Cn and to do so we employ

Cipriani et al. (2016, Lemma 7). It follows from it and (4.13) that

‖Cn‖
2
2 = (4π2)2n2(d− d

α
−2)

∑

z∈Z
d
n \{0}

∣∣∣R̂n(z)
∣∣∣
2

|λz|2
≤ Cn2(d− d

α)
∑

z∈Z
d
n

∣∣∣R̂n(z)
∣∣∣
2

= Cnd− 2d
α

∑

z∈Z
d
n

|Rn(z)|2 = Cnd− 2d
α

∑

z∈Td
n

|Rn(z)|2 ≤ Cn−
2d
α
−2.

Note that in the last step we have used that

|Rn(w)| ≤

∫

B(w, 1
2n)

|f(u) − f(w)| du ≤ ‖∇f‖∞n
−d−1.
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We have deduced that

‖Cn‖2 ≤ Cn−
d
α
−1. (4.14)

This plugged into (4.12) shows that the first summand of the first line resp. the second line of

(4.11) tends to zero.

As for the second summand of the first line in (4.11), we wish to apply Hölder’s inequality:

∑

x∈Z
d
n

|Cn(x)||ln(x)|α−1 ≤ nd


n−d

∑

x∈Z
d
n

|Cn(x)|α




1
α

n−d

∑

x∈Z
d
n

(
|ln(x)|α−1

) α
α−1




α−1
α

α≤2

≤ nd


n−d

∑

x∈Z
d
n

|Cn(x)|2




1
2

n−d

∑

x∈Z
d
n

|ln(x)|α




α−1
α

= nd‖Cn‖2n
−

d(α−1)
α



∑

x∈Z
d
n

|ln(x)|α




α−1
α

(4.14)

≤ ndn−
d
α
−1n−

d(α−1)
α



∑

x∈Z
d
n

|ln(x)|α




α−1
α

= n−1



∑

x∈Z
d
n

|ln(x)|α




α−1
α

(4.15)

Now in Steps 3-4-5 we shall show that

lim
n→+∞

∑

x∈Z
d
n

|ln(x)|α =

∫

Td

∣∣∣∣∣∣

∑

z∈Z
d \{0}

exp(−2πiz · x)

‖z‖2
f̂(z)

∣∣∣∣∣∣

α

dx.

Hence (4.15) and consequently the second summand in the first inequality of (4.11) tends to

zero. This concludes the proof of the first step.

Proof of Step 2. Recall that we have

∑

x∈Z
d
n

|ln(x)|α =
∑

x∈Td
n

∣∣∣∣∣∣
cn
nd

∑

w∈Td
n

n−df(w)
∑

z∈Z
d
n \{0}

exp(−2πiz · x/n) exp(2πiz · w)

λz

∣∣∣∣∣∣

α

.

Let us write as before ln(x) as sum of two quantities:

ln(x) =
cn
nd

∑

w∈Td
n

n−df(w)
∑

z∈Z
d
n \{0}

(
1 − φ̂ε(z)

) exp(−2πiz · x/n) exp(2πiz · w)

λz

+

+
cn
nd

∑

w∈Td
n

n−df(w)
∑

z∈Z
d
n \{0}

φ̂ε(z)
exp(−2πiz · x/n) exp(2πiz · w)

λz

=: C(1)
n (x) + l(1)n (x).
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Exactly as in (4.10) one has
∣∣∣∣∣∣

∑

x∈Z
d
n

|ln(x)|α −
∑

x∈Z
d
n

∣∣l(1)n (x)
∣∣α
∣∣∣∣∣∣

≤




α2α−1

∑
x∈Z

d
n

∣∣∣C(1)
n (x)

∣∣∣
α

+ α2α−1
∑

x∈Z
d
n

∣∣∣C(1)
n (x)

∣∣∣
∣∣∣l(1)n (x)

∣∣∣
α−1

if α > 1
∑

x∈Z
d
n

∣∣∣C(1)
n (x)

∣∣∣
α

if α ≤ 1
. (4.16)

As before in Step 1, we show the terms on the right-hand side go to zero. Let us look at the first

sum. 

∑

x∈Z
d
n

∣∣C(1)
n (x)

∣∣α



1
α

= n
d
α


n−d

∑

x∈Z
d
n

∣∣C(1)
n (x)

∣∣α



1
α

= n
d
α‖C(1)

n ‖α.

Observe that by Hölder’s inequality, using α < 2, we have that n
d
α

∥∥∥C(1)
n

∥∥∥
α
≤ n

d
α

∥∥∥C(1)
n

∥∥∥
2
.

Hence again it all boils down to finding an estimate for

∥∥∥C(1)
n

∥∥∥
2
. Recall that

C(1)
n (x) =

cn
nd

∑

z∈Z
d
n \{0}

(
1 − φ̂ε(z)

) e−2πiz· x
n

λz

f̂n(z).

Now note that, since

∣∣∣1 − φ̂ε(z)
∣∣∣ ≤ Cε‖z‖ as proved by Cipriani et al. (2016, Eq. (2.11)),

n−d
∑

x∈Z
d
n

∣∣C(1)
n (x)

∣∣2

= n−d c
2
n

n2d

∑

x∈Z
d
n

∑

z,z′∈Z
d
n \{0}

(
1 − φ̂ε(z)

)(
1 − φ̂ε(z

′)
) e−2πiz· x

n e2πiz′· x
n

λzλz′
f̂n(z)f̂n(z′)

= n−2dc2n
∑

z∈Z
d
n \{0}

∣∣∣1 − φ̂ε(z)
∣∣∣
2

|f̂n(z)|2

|λz|2
≤ Cn−2d+4c2n

∑

z∈Z
d
n \{0}

∣∣∣1 − φ̂ε(z)
∣∣∣
2

|f̂n(z)|2

‖z‖4

using the bound of Cipriani et al. (2016, Lemma 7). We can further bound the last member of

the inequality from above with

Cn−2d+4c2n
∑

z∈Z
d
n \{0}

ε2‖z‖2|f̂n(z)|2

‖z‖4
≤ Cn−2d+4ε2c2n

∑

z∈Z
d
n \{0}

∣∣∣f̂n(z)
∣∣∣
2

≤ Cε2n−d−2 d
α

∑

z∈Z
d
n

|fn(z)|2.

To sum up, for the first summand of (4.16) we have obtained a bound of the form

‖C(1)
n ‖2 ≤ n−

d
α ε


 1

nd

∑

z∈Td
n

|f(z)|2




1
2

. (4.17)
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Hence for the first term we have

n
d
α‖C(1)

n ‖α ≤ ε


 1

nd

∑

z∈Td
n

|f(z)|2




1
2

.

Observing that n−d
∑

z∈Td
n
|f(z)|2 →

∫
Td |f(z)|2 d z we get the result.

It is time now to handle the second term appearing in (4.16). Using Hölder we have that

∑

x∈Z
d
n

|C(1)
n (x)||l(1)n (x)|α−1 ≤ nd‖C(1)

n ‖2n
−

d(α−1)
α



∑

x∈Z
d
n

|l(1)n (x)|α




α−1
α

(4.17)

≤ ε



∑

x∈Z
d
n

|l(1)n (x)|α




α−1
α

 1

nd

∑

z∈Td
n

|f(z)|2




1
2

= ε



∑

x∈Z
d
n

|l(1)n (x)|α




α−1
α

 1

nd

∑

z∈Td
n

|f(z)|2




1
2

.

Steps 3-4-5 will show that
∑

x∈Z
d
n
|l

(1)
n (x)|α converges as n → +∞ to a finite quantity, and

hence the above product will be neglibile in the limit.

Proof of Step 3. We rewrite

cαn
ndα

∑

x∈Z
d
n

∣∣∣∣∣∣

∑

z∈Z
d
n \{0}

φ̂ε(z) e−2πiz· x
n

λz

f̂n(z)

∣∣∣∣∣∣

α

= cαnn
α(2−d)

∑

x∈Z
d
n

∣∣∣∣∣∣

∑

z∈Z
d
n \{0}

φ̂ε(z) e−2πiz· x
n

4‖πz‖2
f̂n(z)

+
∑

z∈Z
d
n \{0}

φ̂ε(z) e−2πiz· x
n

(
1

n2λz

−
1

4‖πz‖2

)
f̂n(z)

∣∣∣∣∣∣

α

=:
∑

x∈Z
d
n

∣∣l(2)n (x) + C(2)
n (x)

∣∣α .

We will only deal here with the case α > 1. The same procedure of Steps 1-2 can be followed

to treat the case α ≤ 1. We observe that

cαn
ndα

∑

x∈Z
d
n

∣∣∣∣∣∣

∑

z∈Z
d
n \{0}

φ̂ε(z) e−2πiz· x
n

λz

f̂n(z)

∣∣∣∣∣∣

α

≤ α2α−1
∑

x∈Z
d
n

∣∣C(2)
n (x)

∣∣α

+ α2α−1
∑

x∈Z
d
n

∣∣C(2)
n (x)

∣∣ ∣∣l(2)n (x)
∣∣α−1

. (4.18)

In order to show that the first term goes to zero, it is enough to show that n
d
α‖C

(2)
n ‖2 tends to

0. We get

C(2)
n (x) = cnn

2−d
∑

z∈Z
d
n \{0}

φ̂ε(z) e−2πiz· x
n

(
1

n2λz

−
1

4‖πz‖2

)
f̂n(z).
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In the same fashion as before, we use the orthogonality of the characters, Cipriani et al. (2016,

Lemma 7), the uniform bound on

∥∥∥φ̂
∥∥∥
∞

and Parseval’s identity to get

n−d
∑

x∈Z
d
n

∣∣C(2)
n (x)

∣∣2 = c2nn
4−2d

∑

z∈Z
d
n \{0}

∣∣∣φ̂ε(z)
∣∣∣
2
∣∣∣∣

1

n2λz

−
1

4‖πz‖2

∣∣∣∣
2 ∣∣∣f̂n(z)

∣∣∣
2

≤ Cc2nn
4−2dn−4

∑

z∈Z
d
n \{0}

∣∣∣φ̂ε(z)
∣∣∣
2 ∣∣∣f̂n(z)

∣∣∣
2

= Cn2d−2 d
α
−4n−2d

∑

z∈Z
d
n

∣∣∣f̂n(z)
∣∣∣
2

≤ n−
2d
α
−4


n−d

∑

z∈Td
n

|f(z)|2


 .

Hence we have that

∥∥C(2)
n

∥∥
2
≤ n−

d
α
−2


n−d

∑

z∈Td
n

|f(z)|2




1
2

showing that n
d
α‖C

(2)
n ‖2 → 0. Now provided we can show Step 4 and Step 5, the second

term of (4.18) would converge to zero along the lines of (4.15), completing thus the proof of

Step 3.

Proof of Step 4. As before we write l
(2)
n (x) := l3n(x) + C

(3)
n (x) where we recall

l(2)n (x) = cnn
2−d

∑

z∈Z
d \{0}

φ̂ε(z) exp(−2πiz · x)

4‖πz‖2
f̂n(z)

and set

C(3)
n (x) := cnn

2−d
∑

‖z‖∞>n

φ̂ε(z) exp(−2πiz · x)

4‖πz‖2
f̂n(z).

We now show that n
d
α‖C

(3)
n ‖2 tends to 0. Using orthogonality and the approximation of Euler-

MacLaurin’s formula (Apostol, 1999, Theorem 1) we get that

n−d
∑

x∈Z
d
n

∣∣C(3)
n (x)

∣∣2 =
c2nn

4−2d

16

∑

‖z‖∞>n

|φ̂ε(z)|
2

‖πz‖4

∣∣∣f̂n(z)
∣∣∣
2

≤ ‖f‖2
∞n
−2 d

α

∑

‖z‖∞>n

|φ̂ε(z)|
2

‖z‖4

≤ ‖f‖2
∞n
−2 d

α

∑

‖z‖∞>n

1

‖z‖4(1 + ‖z‖)d+1

≤ ‖f‖2
∞n
−2 d

α

∫ +∞

n

td−1t−d−5 d t+ Cn−2 d
α
−6 ≤ Cn−

2d
α
−5.

We have used here that |f̂n(z)| ≤ ‖f‖∞ and the fast decay of φ̂ε at infinity. Hence we have

that n
d
α‖C

(3)
n ‖2 ≤ Cn−5/2. Since the conclusion follows similarly to Steps 1-2 we skip the rest

of the proof.
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Proof of Step 5. By our choice of cn we have

cαnn
2α+d

(4π2)αndα
= 1.

Hence we need to show that we have

lim
ε↓0

lim
n→+∞

1

nd

∑

x∈Td
n

∣∣∣∣∣∣

∑

z∈Z
d \{0}

φ̂ε(z) e−2πiz·x

‖z‖2
f̂n(z)

∣∣∣∣∣∣

α

=

∫

Td

∣∣∣∣∣∣

∑

z∈Z
d \{0}

e−2πiz·x

‖z‖2
f̂(z)

∣∣∣∣∣∣

α

dx.

(4.19)

We need this preliminary Lemma:

Lemma 10. There exists C > 0 depending only on f such that for all n ∈ N

∣∣∣f̂(z) − f̂n(z)
∣∣∣ ≤ Cn−1.

Proof. We can write

f̂(z) − f̂n(z) =
∑

x∈Td
n

∫

B(x, 1/2n)

[f(u) cos (2πz · u) − f(x) cos (2πz · x)] du

+ i

∑

x∈Td
n

∫

B(x, 1/2n)

[f(u) sin (−2πz · u) − f(x) sin (−2πz · x)] du.

Hence

∣∣∣f̂(z) − f̂n(z)
∣∣∣ is bounded above by the modulus of the two terms on the right-hand

side of the previous equation. We will bound the first one, as the second is very similar. Using

that the function ψ : u 7→ f(u) cos (2πz · u) is C∞(Td), we have from Taylor’s series that

|f(u) cos (2πz · u) − f(x) cos (2πz · x)| ≤ sup
w∈Td

∣∣∂βψ(w)
∣∣ ‖x− u‖ ≤ Cn−1,

where β is a multi-index of degree 1. Hence the conclusion follows.

Let us now go back to (4.19). Its left-hand side can be rewritten as

∑

x∈Td
n

∣∣∣∣∣∣
1

nd/α

∑

z∈Z
d \{0}

φ̂ε(z) exp(−2πiz · x)

‖z‖2
f̂n(z)

∣∣∣∣∣∣

α

=:
∑

x∈Td
n

∣∣l(3)n (x)
∣∣α .

As in the previous steps we write l3n(x) = C
(4)
n (x) + l

(4)
n (x) with

l(4)n (x) :=
1

nd/α

∑

z∈Z
d \{0}

φ̂ε(z) exp(−2πiz · x)

‖z‖2
f̂(z)

and

C(4)
n (x) :=

1

nd/α

∑

z∈Z
d \{0}

φ̂ε(z) exp(−2πiz · x)

‖z‖2

(
f̂n(z) − f̂(z)

)
.
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We need again to show that nd/α

∥∥∥C(4)
n

∥∥∥
2

goes to 0. In order to do so, Lemma 10 yields

∥∥C(4)
n

∥∥2

2
= n−

2d/α
∑

z∈Z
d
n \{0}

∣∣∣φ̂ε(z)
∣∣∣
2 ∣∣∣f̂n(z) − f̂(z)

∣∣∣
2

‖z‖4
≤

C

n
2d
α

+2

∑

z∈Z
d
n \{0}

∣∣∣φ̂ε(z)
∣∣∣
2

‖z‖4
≤

C

n
2d
α

+2
.

Here we have used the fast decay of φε at infinity. Hence we get

lim
n→+∞

1

nd

∑

x∈Td
n

∣∣∣∣∣∣

∑

z∈Z
d \{0}

φ̂ε(z) e−2πiz·x

‖z‖2
f̂(z)

∣∣∣∣∣∣

α

=

∫

Td

∣∣∣∣∣∣

∑

z∈Z
d \{0}

φ̂ε(z) e−2πiz·x

‖z‖2
f̂(z)

∣∣∣∣∣∣

α

dx.

Now noting that f is a smooth function on T
d and

∣∣∣f̂(z)
∣∣∣ ≤ (1 + ‖z‖)−d−s for s ≥ 0 we can

apply the dominated convergence theorem for ε→ 0 and observing that φ̂ε(z) → 1 we obtain

the result.

4.2.2 Scaling limit for regularly varying functions

In this section we consider the scaling limit for a more general class of random variables. Since

we are seeking a central limit type result it is natural to consider variables belonging to the

domain of attraction of α-stable distributions.

Let (σ(x))x∈Z
d be i.i.d. random variables satisfying Definition 1; we can now start the proof of

Theorem 5.

Proof of Theorem 5. An argument analogous to the one leading to (4.3) shows that, by Propo-

sition 4 and the zero-mean property of test functions, it suffices to show that the statement holds

for the field

〈Ξn, f〉 := 4π2nd− d
α
−2
∑

z∈Td
n

wσ(nz)

∫

B(z, 1
2n)

f(t) d t

where

wσ(z′) := (2d)−1
∑

x∈Z
d
n

g(x, z′)σ(x).

Let (ρ(x))x∈Z
d
n

be independent and distributed as ρα in (2.2). Then set

〈
Ξ̃n, f

〉
:= 4π2nd− d

α
−2
∑

z∈Td
n

wρ(nz)

∫

B(z, 1
2n)

f(t) d t

with wρ defined as wσ replacing σ by ρ. The proof will follow from Proposition 12 which will

show the following equality in law:

〈Ξn, f〉 =
〈
Ξ̃n, f

〉
+Rn

where Rn goes to 0 in probability. Thus it follows from Theorem 9 that 〈Ξn, f〉 converges in

distribution to

〈
Ξ̃n, f

〉
for all test functions f .
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To prove Proposition 12 we need to recall the following result. Consider a collection (Ux)x∈Z
d

of i.i.d. U(0, 1) random variables and let (Yx)x∈Z
d be a collection of i.i.d. random variables

distributed as ρα. We have

Lemma 11 (Simons and Stout (1978), Klüppelberg and Mikosch (1993, Lemma 3.3)). Under

the assumption of (2.2) we have that

{
F←ρ (Ux)

}
x∈Z

d

d
= (ρ(x))x∈Z

d

{
F←σ(0)(Ux)

}
x∈Z

d

d
= (σ(x))x∈Z

d

and

lim
n→+∞

n−
d
α

∑

x∈Z
d
n

∣∣[F←ρ (Ux) − F←σ(0)(Ux)
]∣∣ = 0 (4.20)

in probability.

Now without of loss of generality we assume that (ρ(x))x∈Z
d and (σ(x))x∈Z

d live on the same

probability space as in Lemma 11. Let us now complete the proof of Theorem 5 by giving the

proof of the last Proposition needed for it.

Proposition 12. For f ∈ C∞(Td) with mean zero, for every ε > 0,

lim
n→+∞

P

(∣∣∣〈Ξn, f〉 −
〈
Ξ̃n, f

〉∣∣∣ ≥ ε
)

= 0.

Proof. To obtain the above statement note that we have

〈Ξn, f〉 −
〈
Ξ̃n, f

〉
=
∑

x∈Z
d
n

kn(x) [σ(x) − ρ(x)] .

Here we have employed (4.2), (4.4). Observe that

sup
n≥1

sup
x∈Z

d
n

|kn(x)| ≤ Cn−d/α. (4.21)

To prove this, we use an important technical estimate from Cipriani et al. (2016, Lemma 13):

there exists M > 0 such that ∑

z∈Z
d
n

∣∣∣L̂n(z)
∣∣∣ ≤ Mn−d,

where Ln is as defined in (4.5). Also |λz| ≥ C‖z‖2n−2 ≥ Cn−2 for ‖z‖ ≥ 1. Hence we get

that

|kn(x)| ≤ Cnd− d
α
−2

∑

z∈Z
d
n \{0}

∣∣∣L̂n(z)
∣∣∣n2 ≤ Cn−

d
α .

Hence this proves (4.21). Now we obtain Proposition 12 from Lemma 11.
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A Appendix

A1 Proof of Lemma 8

The proof of the Lemma requires a control on the tail behavior of the odometer series in the

following way:

Lemma 13. Let (Zj)j∈N be RV−α, α ∈ (1, 2). Moreover E[Zj] = 0 holds for all j and

P(Zj > t) = P(Zj < −t) for all t ≥ 0. Let (cj)j∈N satisfy

∑

j≥1

|cj|
δ < +∞, for some δ < α.

Then for any M ≥ 1 there exist n1 = n1(M), a > 0 for which

P

(∣∣∣
∑

j≥n1

cjZj

∣∣∣ >
1

M

)
≤M−a. (A.1)

Proof. Let δ be as in the assumptions. SinceZj isRV−α there exists x1 such that for all x ≥ x1

we have P(|Z1| > x) ≤ 1/2 x−δ. We use Karamata’s theorem (Resnick, 1987, Theorem 0.6)

which gives that

U(x) := E
[
|Z1|

2
1|Z1|≤x

]
∈ RV2−α.

Hence there exists x2 such that

U(x) ≤
1

2
xα−δ, (A.2)

for all x ≥ x2.

Fix ε > 0. The following conditions hold for n1 large enough:

(C.1)
∑+∞

j=n1
|cj|

δ < ε2δ,

(C.2) ε|cj|
−1 ≥ max{x1, x2} and |cj| ≤ 1, j > n1.

Note that such choices can be made as cj → 0 as j → +∞. We have then

P

(∣∣∣
+∞∑

j=n1

cjZj

∣∣∣ > ε

)
≤ P

(∣∣∣
+∞∑

j=n1

cjZj

∣∣∣ > ε, sup
j≥n1

|cjZj| > ε

)

+ P

(∣∣∣
+∞∑

j=n1

cjZj

∣∣∣ > ε, sup
j≥n1

|cjZj| ≤ ε

)

≤
+∞∑

j=n1

P(|cjZj| > ε) + P

(∣∣∣
+∞∑

j=n1

cjZj 1{|cjZj |≤ε}

∣∣∣ > ε

)
.

First we tackle the first sum. Note that

∑

j≥n1

P(|cjZj| > ε) =
∑

j≥n1

P

(
|Zj| >

ε

|cj|

)
≤
ε−δ

2

∑

j≥n1

|cj|
δ <

εδ

2

25



thanks to (C.1). Next we handle the second term with Markov’s inequality:

P

(∣∣∣
+∞∑

j=n1

cjZj 1{|cjZj |≤ε}

∣∣∣ > ε

)
≤ ε−2

E

[∣∣∣
+∞∑

j=n1

cjZj 1


|Zj |≤
ε

|cj |

ff

∣∣∣
2
]
.

Let us denote byWj := cjZj 1{|Zj |≤ε/|cj |}. Now note that the independence of theZj ’s, Fatou’s

lemma and the monotone convergence theorem imply

E

[∣∣∣
+∞∑

j=n1

Wj

∣∣∣
2
]
≤

+∞∑

j=n1

E
[
W 2

j

]
+

(
+∞∑

j=n1

E[|Wj|]

)2

.

We bound each one of the terms above. Observe that E
[
W 2

j

]
= c2jU(ε/|cj|). Since ε|cj|

−1 >
x2 by (C.2) we have that from (A.2)

E
[
W 2

j

]
≤

1

2
εα−δ|cj|

α−δ

follows Hence we have

+∞∑

j=n1

E
[
W 2

j

]
≤
ε2−δ

2

+∞∑

j=n1

|cj|
δ ≤

1

2
ε2+δ.

Now an argument analog to Kokoszka and Taqqu (1996, Equation (2.6)) gives us

E [|Wj|] ≤
(1 + α− δ)δ

δ − 1
ε1−δ|cj|

δ.

So we get that for some constant C > 0

+∞∑

j=n1

E [|Wj|] ≤
(1 + α− δ)δ

δ − 1
ε1−δ|cj|

δ

+∞∑

j=n1

|cj|
δ ≤ Cε1+δ.

This shows that

P

(∣∣∣∣∣

+∞∑

j=n1

cjZj

∣∣∣∣∣ > ε

)
≤ max

{
εδ,

1

2
ε2+δ, Cε1+δ

}
.

This completes the proof.

Corollary 14. For all M ≥ 1 there exist n1 and N ≥ n1 such that

P

(∣∣∣∣∣

N∑

j=n1

cjZj

∣∣∣∣∣ ≥
1

M

)
≤M−a.

Proof. It follows from Lemma 13 setting cj := 0 for all j > N1.

Proof of Lemma 8.

(I) The series is finite almost surely by Cline (1983, Theorem 2.1 ii)) and (b).
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(II) The proof follows the steps of Levine et al. (2015, Lemma 5.5 b), d)). While d) carries over

to our setting, we have a substantial difference in b), where we do not have finite variance

of the random variables

vγ, N :=
N∑

j=1

g(o, γyj)Yγyi
,

for γ ∈ Γ. However, we can estimate P(|vγ, N − ve,N | > ε), N ∈ N, ε > 0 by

Corollary 14 and obtain the same conclusion.

(III) Choose ε1 ∈ (1, α). Since L is slowly varying, we have that tε1L(t) → +∞ as t →
+∞. Hence there exists a t0 such that L(t) > t−ε1 for t ≥ t0, and so

P (Yo < −t) > t−(α+ε1) > 0, t ≥ t0. (A.3)

ChooseM ≥ 1 arbitrarily large. We use Lemma 13 for cj := r−1g(o, yj) andZj := Yyj

to find an n1 = n1(M) such that

P

(
1

r

∑

i≥n1

g(o, yi)Yyi
> M

)
≤M−a. (A.4)

Observe furthermore that on the event {Yyi
< −t : i ≤ n1 − 1} one has

1

r

∑

i≤n1−1

g(o, yi)Yyi
≤ −

t

r

∑

i≤n1−1

g(o, yi). (A.5)

Moreover we can choose t = t(M) ≥ t0 large enough so that

t

r

∑

i≤n1−1

g(o, yi) > 2M. (A.6)

Thus for t = t(M), n1 = n1(M) as above

P (ve(o) < −M) ≥ P

(
1

r

∑

i≤n1−1

g(o, yi)Yyi
< −2M

)
P

(
1

r

∑

i≥n1

g(o, yi)Yyi
< M

)

(A.5),(A.6)

≥ P

(
Yyi

< −t : i ≤ n1 − 1

)
P

(
1

r

∑

i≥n1

g(o, yi)Yyi
≤M

)

(A.3), (A.4)

≥ t−(α+ε1)N
(
1 −M−a

)
> 0.

Hence by ergodicity of ve and the fact that M is arbitrary, we have that

P

(
inf
x∈V

ve(x) < −t

)
= 1.

27



A2 Stable distributions

We have shown that the characteristic functional of 〈Ξn, f〉 has the form exp(−Lα(f)), where

Lα(f) =

∫

Td

∣∣∣∣∣∣

∑

z∈Z
d \{0}

exp(−2πiz · x)

‖z‖2
f̂(z)

∣∣∣∣∣∣

α

dx.

We want to investigate properly the measure associated to the latter characteristic functional.

Recall the definition of the space T := C∞(Td)/∼. This is a nuclear space and it is reflexive

(by Edwards (1995, Section 8.4.7) and the fact that the quotient of a reflexive space by a closed

subspace is reflexive). We would like here to show that this functional defines a measure on T ∗

via the Bochner-Minlos theorem. If this is true, then

(−∆)−1 : T ∗∗ = T → Lα(Td)

defines an α-stable measure on T ∗ (cf. Linde (1982, Theorem 5) in the setting of Banach

spaces).

Theorem 15 (Bochner-Milnos). Let V be a nuclear space. Then a complex valued function Φ
on V is the characteristic function of a probability measure ν on V ∗ if and only if Φ(0) = 1, Φ
is continuous and Φ is positive definite, that is,

n∑

j, k=1

zjzkΦ(vj − vk) ≥ 0

for all v1, . . . , vn ∈ V and z1, . . . , zn ∈ C.

We apply Bochner-Minlos theorem to obtain

Theorem 16. The functional Φ(f) := exp (−Lα(f)) on the space T is the characteristic

function of a probability measure on T ∗.

Proof. From Bochner-Minlos theorem we need to check three assumptions.

1 Recall

(−∆)−1f(x) =
∑

z∈Z
d \{0}

f̂(z)

‖z‖2
exp(−2πiz · x).

Using |e−x − e−y| ≤ |x− y| we obtain for two arbitrary f1, f2 ∈ C∞(Td)
∣∣e−Lα(f1) − e−Lα(f2)

∣∣ ≤ |Lα(f1) − Lα(f2)|

=

∣∣∣∣
∫

Td

∣∣(−∆)−1f1(x)
∣∣α dx−

∫

Td

∣∣(−∆)−1f2(x)
∣∣α dx

∣∣∣∣ .

From Samorodnitsky and Taqqu (1994, Lemma 4.7.2) we see that the last term is bounded

above by

2
1/αα

(
‖(−∆)−1f1‖

α−1
α + ‖(−∆)−1f2‖

α−1
α

)(∫

Td

∣∣(−∆)−1(f1 − f2)(x)
∣∣α dx

)1/α

=: Cα

∥∥(−∆)−1(f1 − f2)
∥∥

α
.
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One case see that (−∆)−1f ∈ Lα(Td) if f is smooth: in fact

∣∣(−∆)−1f(x)
∣∣ ≤

∑

z∈Z
d \{0}

f̂(z)

‖z‖2
< +∞

due to the fact that f̂(0) = 0, ‖z‖ ≥ 1 and by the decay properties of f̂ (Roe, 1998,

Theorem 5.4). Then (−∆)−1f ∈ L∞(Td) and so is in any Lα. So we notice now that

∥∥(−∆)−1(f1 − f2)
∥∥

α
≤
∥∥(−∆)−1(f1 − f2)

∥∥
2

≤

(
∑

z∈Z
d \{0}

‖z‖−4
∣∣∣f̂1(z) − f̂2(z)

∣∣∣
2
)1/2

≤

(
∑

z∈Z
d

∣∣∣f̂1(z) − f̂2(z)
∣∣∣
2
)1/2

using the orthogonality of the characters in the second-to-last equality and the fact that ‖z‖ >
1 in the last. Parseval’s theorem yields then

∥∥(−∆)−1(f1 − f2)
∥∥

α
≤

(∫

Td

(f1(x) − f2(x))
2 dx

)1/2

≤ sup
x∈Td

|f1(x) − f2(x)| .

Since the Fréchet topology on C∞ is given by the uniform convergence of all derivatives, we

have continuity.

2 The fact that Φ(0) = 1 is immediate.

3 The positive definiteness of exp(−Lα(f)) follows since it is a limit of positive definite func-

tionals.
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