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Abstract

Keeler, Ross and Xia [1] recently derived approximation and convergence results, which imply that

the point process formed from the signal strengths received by an observer in a wireless network under

a general statistical propagation model can be modelled by an inhomogeneous Poisson point process

on the positive real line. The basic requirement for the results to apply is that there must be a large

number of transmitters with different locations and random propagation effects. The aim of this note is

to apply some of the main results of [1] in a less general but more easily applicable form to illustrate

how the results can be applied in practice. New results are derived that show that it is the strongest

signals, after being weakened by random propagation effects, that behave like a Poisson process, which

supports recent experimental work.

I. INTRODUCTION

Standard assumptions for stochastic geometry models of wireless networks are that transmitter

positions form a homogeneous Poisson point process, and each transmitter emits a signal whose

power or strength is altered deterministically by path loss distance effects and randomly by

propagation effects (due to signal fading, shadowing, varying antenna gains, etc., or some

combination of these). The Poisson assumption is convenient, particularly under the power-

law path-loss model, because many fundamental quantities become analytically tractable such

as the signal-to-interference ratio. But in wireless networks the transmitter positions do not

always resemble realizations of a Poisson process. However, even if a network does not appear

Poisson, recent results show that in the presence of sufficient propagation effects, the signal

strengths observed by a single observer are close to those under the Poisson assumption. That

is, for a single observer in the network, the presence of random propagation effects, which

weaken the signals, renders the process of the incoming signal strengths close to a Poisson point

process. This was confirmed by deriving a convergence theorem for log-normal-shadowing-

based (for example, Suzuki) models [2]. Keeler, Ross and Xia [1] extended these Poisson

convergence results considerably to the case of any reasonable path-loss model and a general

class of probability distributions for propagation effects. They also derived bounds on the distance

between the distributions of processes of signal strengths resulting from Poisson and non-Poisson

transmitter configurations. These bounds compare the two point processes of signal strengths by

matching their intensity measures and so may form the basis for testing statistical significance

of the signals from the closet transmitters using a Poisson process model. We apply the above

results in a more approachable way. We show that, in an environment of random propagation

effects, the strongest signals more closely resemble a Poisson process. Analogs of the results
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also hold for the order statistics of the strongest signals. We also describe a simple method for

statistically fitting the model.

II. MODEL
We give general conditions for the propagation model and the transmitter configuration, but

stress that some of these assumptions can be more general. We have chosen them to reflect

popular model choices and to reduce mathematical technicalities, and refer the reader to [1].

Let a sequence of positive i.i.d. random variables S1, S2, . . . represent propagation effects such

as fading, shadowing, and so on, and let S be an independent copy of any Si. Assume `(x)

is a non-negative function of the form `(x) = 1/h(|x|), where h is positive on the positive

real line R0
+ := (0,∞), left-continuous and nondecreasing with generalized inverse h−1(y) =

inf{x : h(x) > y}. We assume an observer or user is located in the network at the origin and

the transmitters are located according to a locally finite deterministic point pattern φ = {xi}i≥1

on R2 \ {0}, where the origin is removed to stop the observer being located on a transmitter,

which would prevent Poisson convergence. φ could also be a single realization of a random

point process Φ; in this case we assume Φ is i.i.d. marked by Si. If the transmitters do form a

point process Φ, then our results continue to hold with some embellishments.

For the general propagation model, we define the signal powers or strengths at the origin

Pi := Si`(xi) emanating from a transmitter located at xi ∈ φ, i = 1, 2, . . .. We are interested

in the point process formed by these power values Π := {P1, P2, . . . }, but in anticipation of an

infinite cluster of points at the origin, we consider point process formed from the inverse values

N := {V1, V2, . . . }, where Vi := 1/Pi, which is called the propagation process or the path-loss

with fading process.

III. PRELIMINARIES

A. Intensity measure of signals
Let φ(r) := φ(B0(r)) or Φ(r) := Φ(B0(r)) denote the number of points of φ or Φ located

in a disk or ball B0(r) centered at the origin with radius r. For a deterministic point pattern of

transmitters φ, the intensity measure M of the point process N satisfies

M((0, t]) = E[
∑
Vi∈N

1(Vi ≤ t)] = E[φ(h−1(tS))], (1)

where 1 is an indicator function. M(t) := M((0, t]) is the expected number of points of φ

located in a disk of (random) radius h−1(tS). If the transmitters form a random point process

Φ with a locally finite intensity measure denoted by Λ(r) := Λ((0, r]) := E[Φ(r)], then the

intensity measure of N satisfies

M(t) = E[Λ(h−1(tS))]. (2)
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This result holds for any point process Φ, see [1, Propositions 2.6 and 2.9], and has practical

applications such as statistically fitting models; see Section IV-D. If Φ is a stationary point

process with intensity dΛ(r) = 2πλrdr (so the density of points is λ), then

M(t) = πλE[(h−1(tS))2]. (3)

The intensity measure of the original process of power values Π induced by φ is obtained by

replacing t with 1/t′ in (1), giving

M̄([t′,∞)) = E[
∑
Pi∈Π

1(Pi ≥ t′)]= E[
∑
Vi∈N

1(Vi ≤ 1/t′)] = E[φ(h−1(S/t′))]. (4)

Similarly, for random Φ of transmitters with intensity measure Λ, expression (2) gives

M̄([t′,∞)) =E[Λ(h−1(S/t′))]. (5)

If the transmitters form a Poisson point process Φ with intensity measure Λ, then the Poisson

mapping theorem says that the process N is a Poisson point process on the positive real line

with intensity measure determined by (2), while the process of power values Π is also a Poisson

process with intensity measure satisfying (5). If N is not induced by an underlying Poisson

process of transmitters, but N is still stochastically close to a Poisson point process with intensity

measure M , then the process N is close to the process that is induced by transmitters placed

according to a Poisson process, so one can assume transmitter locations form a Poisson process.

The error made in this substitution can be quantified [1, Theorem 2.7].

B. Examples of M(t)

The standard path-loss model is `(x) = |x|−β , where β > 2, hence h−1(y) = y1/β , y > 0. If the

transmitters form a stationary point process Φ on R2 with density λ, the resulting intensity mea-

sure satisfies M(t) = λπt2/βE(S2/β), which depends on S through only one moment E(S2/β).

For Poisson Φ, one can assume S is, for example, exponential, perform calculations, and then

remove the exponential assumption and change to another model of S by rescaling M . Writing

r = |x|, the multi-slope model [3] is h(r) =
∑k+1

i=1 b
−1
i rβi1(ri−1 ≤ r < ri), where 0 = r0 <r1 <

· · · < rk < rk+1 =∞, βi > 0, and bi > 0 are set appropriately so h is continuous. Each interval

[ri−1, ri) is disjoint, so the inverse of h(r) is h−1(s) =
∑k+1

i=1 cis
1/βi1(si−1 ≤ s < si), where si =

b−1
i rβii and ci = b

1/βi
i . For stationary Φ, M(t) = 2πλ

∑k
i=1 t

2/βiciE
[
S2/βi1(si−1 ≤ tS < si)

]
.

Care must be taken when determining the generalized inverse h−1. For example, the function

`(x) = e−β|x| gives h−1(y) = (1/β) ln+(y) := (1/β) max[0, ln(y)] for y ≥ 0, and not (1/β) ln(y).

For stationary Φ, M(t) = λπ
β2E([ln+(tS)]2). If S is continuous on [0,∞) with probability density

fS , then M(t) = λπ
tβ2

∫∞
1

(lnx)2fS(x/t)dx.
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C. Approximating signals with a Poisson process
For each transmitter xi ∈ φ (deterministic with arbitrary indexing), let pxi(t) := P(0 <

1/(`(xi)Si) ≤ t) = P(0 < Vi ≤ t), we want to approximate the point process N = {Vi}i≥1 with

a Poisson point process Z = {Yi}i≥1 with intensity measure M , given by (1) or, equivalently,

M(t) =
∑

xi∈φ pxi(t), so we need to introduce a probability metric. For two probability measures

µ and ν defined on the same probability space with σ-algebra F of events, the total variation

distance is dTV(µ, ν) := supA∈F |µ(A)− ν(A)|, which is a strong metric that bounds the largest

difference in probabilities between two distributions. We write L(U) to denote the distribution

or law of a point process U (or other random objects). The two point processes Z and N are

stochastically close if their laws L(Z) and L(N) have a small total variation dTV(L(Z),L(N)).

To obtain meaningful values for the total variation, one must compare the point processes on

a finite interval (it’s of no practical use to compare infinite configurations of points because

the difference of undetectable weak signals will dictate the total variation distance), which is a

slight but necessary restriction. We present an approximation theorem [1, Theorem 2.2] for the

restricted parts of Z and N .

Theorem 1. For τ > 0, let N |τ and Z|τ be the points of the point processes N and Z restricted

to the interval (0, τ ]. Then

1

32
min[1,1/M(τ)]

∑
xi∈φ

pxi(τ)2 ≤ dTV(L(Z|τ ),L(N |τ )) ≤
∑
xi∈φ

pxi(τ)2 ≤M(τ) max
xi∈φ

pxi(τ).

Since the theorem is for the inverse signal strengths, 1/τ can be interpreted as the smallest

possible power value of interest for an observer in the network and M(τ) as the expected number

of signals with power value greater than or equal to 1/τ . Essentially the theorem says that if the

network has many transmitters with independent signal strengths, and the chance is small that

any particular transmitter has signal strength more powerful than 1/τ , then the process of signal

strengths should be close to Poisson with the same intensity measure. Increasing the power of

each signal does not make the signals appear more Poisson, but if we focus on the strongest, say,

M(τ) = 3 signals, then as we increase the number of transmitters, τ decreases, hence pxi(τ)

and the bounds decrease, meaning these three signal strengths will appear more Poisson. If x∗

is the transmitter closest to the origin (with S∗), then maxxi∈φ pxi(τ) = P(0 < h(x∗)/S∗ ≤ τ),

which is not as tight as the
∑

xi∈φ pxi(τ)2 term but it is often easier to calculate; we examine

the theorem further in Section IV-A.

D. Poisson convergence
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Theorem 1 is an approximation result, but it has been used to show Poisson convergence

of the process N on the whole positive line [1, Theorem 1.1]. Let P−→ denote convergence in

probability and L(t) be a non-decreasing function on R+
0 , which induces an intensity measure

of a Poisson process on R+
0 .

Theorem 2. Assume

lim
r→∞

φ(r)

πr2
= λ, (6)

so that the transmitters have a nearly constant density. Let (S(v))v≥0 be a family of positive

random variables indexed by some non-negative parameter v, N (v) be the point process generated

by S(v), g and φ. If as v → ∞, (i) S(v)
P−→ 0 and (ii) M (v)(t) := E[φ(h−1(S(v)t)] → L(t),

where t > 0, then N (v) converges weakly to a Poisson process on R0
+ with intensity measure L.

The parameter v can be any parameter of the distributions S(v). To give an example, we

assume ` = |x|−β , a transmitter configuration φ that meets condition (6), and {S(v)
i }i≥1 are iid

log-normal variables, such that S(v)
i = exp[vBi − v2/β], where each Bi is a standard normal

variable, so E[(S
(v)
i )2/β] = 1. Then for any s > 0, P(Bi > log(s)/v + v/β )→ 0 or S(v) P−→ 0

as v → ∞, which is condition (i) in Theorem 2, and M (v)(t) = λπt2/β , so we recover [2,

Theorem 7].

We consider a Rayleigh model, where {S(v)
i }i≥1 are iid exponential variables with mean 1/v.

For any s > 0, P(S(v) > s ) = e−vs, then S(v) P−→ 0 as v → ∞, so condition (i) is met again.

But M (v)(t)→ 0 as v →∞, due to E([S(v)]2/β) = Γ(2/β+ 1)/v2/β . In the limit as v →∞, the

Rayleigh model does not give a meaningful L. But under this and other models, the process N (v)

can still be approximated with a Poisson process with intensity measure M (v) for sufficiently

large v.

If we replace the non-random φ with a random point process Φ, all the above results hold

with suitable modifications. But in the limit as S(v)
P−→ 0, it is possible to see a Cox process

(a Poisson process with a random intensity measure), due to the extra randomness from Φ. To

obtain a Poisson process in this limit, Φ must meet certain conditions, which are satisfied by,

for example, the Ginibre process [1, Section 2.1]. These results further demonstrate that in the

presence of strong random propagation effects the signal strengths can appear as a Poisson or

Cox process, whereas the transmitters form some other point process.

IV. NEW RESULTS
A. Analysis of Theorem 1

The upper bound in Theorem 1 is an increasing function in τ . The smaller we make our interval

(0, τ ], where we only consider signals of power values greater than 1/τ , then the smaller the
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bounds and so the more Poisson the signals in (0, τ ] behave. In other words, the stronger signals

are stochastically the more Poisson ones. We believe that this is the first appearance of this

observation, by purely probabilistic arguments, but it is supported by recent work on fitting a

Poisson model to a real cellular phone network [4, Figure 6]. A functional that is dependent

on k strongest signals can be well-approximated with a functional of a Poisson process with

intensity M(t). Arguably, the first few strongest signals matter the most in the calculations of the

signal-to-interference ratio, further explaining why the Poisson process has been a good model

in practice. To calculate this ratio, Haenggi and Ganti [5] have shown for a power-law path-loss

model that Poisson network models can be used to approximate network models based on other

stationary point processes, which may be connected to our Poisson approximation results. If τ is

made too small, then the bounds lose meaning as there will be no signals in (0, τ ]. Conversely,

for large τ the upper bound will also lack meaning as it will be greater than one. What remains

to be explored is for which values of τ , under suitable propagation models, give meaningful

values for the bounds in Theorem 1. The theorem can be adapted easily for the original process

of power values Π [1, Remark 2.3].

B. Statistics of the strongest signals
An important feature of the total variation distance is that the bounds in Theorem 1 will hold

under simple functions of the two truncated point processes N |τ and Z|τ . We leverage this fact

and the coupling interpretation of total variation distance to derive new bounds for the order

statistics of the whole processes N and Z. Let V(1) ≤ V(2) ≤ . . . denote the increasing order

statistics of the process N = {Vi}i≥1. Similarly, let Y(1) ≤ Y(2) ≤ . . . be the order statistics of

the Poisson process Z = {Yi}i≥1.

Theorem 3. For any τ > 0,

dTV(L(V(1), . . . , V(k)),L(Y(1), . . . , Y(k))) ≤
∑
xi∈φ

pxi(τ)2 +
k−1∑
j=0

M(τ)je−M(τ)

j!
.

Proof. An equivalent definition of total variation distance between probability measures µ, ν is

[6, p. 254] dTV(µ, ν) = minU∼µ,W∼ν P(U 6= W ), where the minimum is taken over all couplings

of µ and ν. Thus Theorem 1 implies that there is a coupling (Z̃|τ , Ñ |τ ) of Z|τ and N |τ such that

P(Z̃|τ 6= Ñ |τ ) ≤
∑

xi∈φ pxi(τ)2. We define a coupling of (V(1), . . . , V(k)) and (Y(1), . . . , Y(k)),

by taking the first k order statistics of Z̃|τ and Ñ |τ if there are at least k points in Z̃|τ and

Ñ |τ , otherwise we set the two vectors in the coupling to be independent. For this coupling, the

probability that the two vectors are not equal is upper bounded by P(Z̃|τ 6= Ñ |τ )+P(#(Z̃|τ ) ≤

k − 1) ≤
∑

xi∈φ pxi(τ)2 +
∑k−1

j=0
M(τ)je−M(τ)

j!
.
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To interpret the theorem, note that the second term in the bound can be made small by choosing

τ large and then for fixed τ the first term is small if each fading variable Si is small with good

probability. As τ grows, the second part of the bound improves while the first part worsens.

This reflects the trade-off between the strongest signals being nearly a Poisson process and the

bounds needing to apply to the order statistics of the whole process.

For a Poisson N , the distribution of V(1) is P(V(1) ≤ t) = 1− e−M(t), which can approximate

the distribution of Y(1). If V(1) and Y(1) are continuous on [0,∞) with probability densities fV

and fY , then dTV(L(V(1)),L(Y(1))) = 1
2

∫∞
0
|fV (x)− fY (x)|dx.

C. Poisson convergence of strongest signals
Theorem 3 leads to a Poisson convergence result.

Theorem 4. Under the notation and assumptions of Theorem 2, for i ≥ 1 , let V (v)
(i) and

Y(i) be the ith smallest order statistic of the process N (v) and a Poisson process on R0
+ with

intensity measure L respectively. Then for fixed k ≥ 1 and as v → ∞, L(V
(v)

(1) , . . . , V
(v)

(k) ) →

L(Y(1), . . . , Y(k)).

Proof: Let Y (v)
(i) be the ith smallest order statistic of a Poisson process with intensity mea-

sure M (v)(t). Then due to the convergence of mean measures, L(Y
(v)

(1) , . . . , Y
(v)

(k) )→ L(Y(1), . . . , Y(k)).

We now use Theorem 3 to show the total variation distance between the V (v)
(i) ’s and Y (v)

(i) ’s tends

to zero. For fixed τ > 0, it was shown in [1] (see Theorems 1.1 and Corollary 2.5) that under

the conditions of the theorem the first term from the bound of Theorem 3 tends to zero as v →∞.

Thus for all τ > 0, with L in Theorem 2, lim supv→∞ dTV(L(V
(v)

(1) , . . . , V
(v)

(k) ),L(Y
(v)

(1) , . . . , Y
(v)

(k) )) ≤∑k−1
j=0

L(τ)je−L(τ)

j!
, and the proof is completed by sending τ →∞ (note that limτ→∞ L(τ) =∞

since φ is infinite).

D. Estimating M(t)

The empirical distribution of Y(1), denoted by Ê(t), gives a way to statistically estimate or fit

M(t) by first assuming that the transmitters are positioned according to a Poisson model, even

if the transmitters don’t appear Poisson, and then approximating with P(V(1) ≤ t). One measures

the largest signal in different locations and fits the empirical distribution of Y(1) to the equation:

− log[1 − Ê(t)] = ˆM(t), t > 0, where ˆM(t) is the estimate of M(t). For a large cellular

phone network, the intensity measure of N has been fitted to experimental signal data under a

Poisson network model with `(x) = |x|−β [2]; also see [4] for models with antenna patterns.

Recent work [7] studies the intensity measure of the path-loss process (so the process N with
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all {Si}i≥1 set to some constant) by using an advanced path-loss model, which can be used in

our setting, and geographic data from cellular networks in two cities. It is not remarked that this

first-moment approach would hold for any stationary point process with density λ > 0, where

the intensity measure of the path-loss process is given by (3), but if random S was incorporated

into the model, our results suggest that the Poisson model would be the most appropriate.

V. CONCLUSION
We justified the Poisson approximation process in a general setting and derived results on

the order statistics of the signal strengths. Similar results hold for other functions of signal

strengths if the function is relatively well-behaved around the origin (or at infinity for the

inverse signal strengths). An interesting observation is that the stronger signals behave more

Poisson, which is convenient for statistics that only depend on the strongest signals. For a

single-observer perspective of a wireless network, our results suggest that the focus should not

be on the locations of the transmitters, but rather studying the process of (inverse) power values

on the real line. We described a simple procedure for statistically estimating the intensity measure

of this process. We encourage future work to explore the practical validity of these results. For

example, independence may not be a justifiable assumption for (large-scale) shadowing. But for

localized shadowing dependence, we expect similar results presented here, since the kind of

Poisson approximation our results rely on typically allows for such dependence. In summary,

if the network has many transmitters, the chance of any transmitter having a strong signal is

small, and the dependence between signals of transmitters is localized, then the point process

of signal strengths is close to a Poisson point process with the same intensity measure. If these

assumptions are justifiable, then practitioners can estimate the intensity measure from empirical

data and draw inferences under Poisson probabilities.
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