
Weierstraß-Institut
für Angewandte Analysis und Stochastik

Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 2198-5855

The parabolic Anderson model on the hypercube

Luca Avena 1, Onur Gün 2, Marion Hesse 3

submitted: October 21, 2016

1 Universiteit Leiden

Niels Bohrweg 1

2333 CA Leiden

The Netherlands

E-Mail: l.avena@math.leidenuniv.nl

2 Weierstrass Institute

Mohrenstrasse 39

10117 Berlin

Germany

E-Mail: onur.guen@wias-berlin.de

3 London

E-Mail: hessemarion87@gmail.com

No. 2319

Berlin 2016

2010 Mathematics Subject Classification. Primary 60H25, 82C27, 92D25; Secondary 82D30, 60K37.

Key words and phrases. parabolic Anderson model, mutation-selection model, localisation, random energy

model.

This work was supported by German Research Foundation (DFG), within the SPP Priority Programme 1590

“Probabilistic Structures in Evolution”.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications Server of the Weierstrass Institute for Applied Analysis and Stochastics

https://core.ac.uk/display/289299165?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Edited by

Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)

Leibniz-Institut im Forschungsverbund Berlin e. V.

Mohrenstraße 39

10117 Berlin

Germany

Fax: +49 30 20372-303

E-Mail: preprint@wias-berlin.de

World Wide Web: http://www.wias-berlin.de/



We consider the parabolic Anderson model (PAM) on the n-dimensional hy-

percube with random i.i.d. potentials. We parametrize time by volume and study

the solution at the location of the k-th largest potential. Our main result is that,

for a certain class of potential distributions, the solution exhibits a phase tran-

sition: for short time scales it behaves like a system without diffusion, whereas,

for long time scales the growth is dictated by the principle eigenvalue and the

corresponding eigenfunction of the Anderson operator, for which we give pre-

cise asymptotics. Moreover, the transition time depends only on the difference

between the largest and the k-th largest potential.

One of our main motivations in this article is to investigate the mutation-

selection model of population genetics on a random fitness landscape, which

is given by the ratio of the solution of PAM to its total mass, with the field cor-

responding to the fitness landscape. We show that the phase transition of the

solution translates to the mutation-selection model as follows: a population ini-

tially concentrated at the site of the k-th best fitness value moves completely

to the site of the best fitness on time scales where the transition of growth

rates happens. The class of potentials we consider involve the Random Energy

Model (REM) of statistical physics which is studied as one of the main examples

of a random fitness landscape.

1 Introduction and main results

1.1 The Model.

Consider the n-dimensional hypercube Σn = {−1, 1}n, n ∈ N. For x ∈ Σn, we use the

notation x = (x(1), . . . , x(n)), where x(i) denotes the spin of x at spin site i. The Hamming

distance on Σn is defined by

d(x, y) = #{i : x(i) 6= y(i)}. (1.1)

We declare that x and y are neighbours, denoted by x ∼ y, if d(x, y) = 1.

Our model is described through a system of differential equations with random potential,

∂

∂t
vn(t, x, y) = κ∆nvn(t, x, y) + ξn(x)vn(t, x, y), t ≥ 0, x ∈ Σn (1.2)

with the localized initial condition vn(0, ·, y) = δy(·). Here, κ > 0 is the diffusion constant

and ∆n, acting on the second coordinate, denotes the Laplace operator on Σn

∆nf(x) :=
1

n

∑

z∼x

(

f(z) − f(x)
)

, x ∈ Σn, (1.3)
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where f is a function on Σn and ξn := {ξn(x) : x ∈ Σn} is the random potential.

The solution of (1.2) admits a Feynman-Kac representation

vn(t, x, y) = Ex[exp(

∫ t

0

ξn(Xs)ds)1{Xt = y}] (1.4)

where (Xs : s ≥ 0) is distributed as a simple random walk on Σn with the generator κ∆n

and Ex stands for its expectation when the walk starts at x, i.e., X0 = x. Since the simple

random walk on Σn is time reversible, we can conclude from (1.4) that

vn(t, x, y) = vn(t, y, x). (1.5)

We also deal with the de-localized model. Let vn(t, ·) be the solution of (1.2) with the initial

condition vn(0, ·) ≡ 1. It is trivial that vn(t, y) =
∑

x∈Σn
vn(t, x, y) and vn(t, y) admits

the Feynman-Kac representation

vn(t, y) = Ey[exp(

∫ t

0

ξn(Xs)ds)]. (1.6)

Equation (1.2) and its variants are often called the parabolic Anderson model. PAM originates

as the parabolic version of the Anderson localization problem and has found a wide range

of applications such as chemical kinetics, magnetism, turbulence and population dynamics,

the last being one of the motivations of this article. PAM is also attractive for mathematicians

since it yields precise solutions based on the Feynman-Kac representation and the spec-

tral analysis of the Hamiltonian operator κ∆ + ξ. We refer the readers to the recent book

[15] and the references therein for the applications of PAM and a survey of mathematical

results. The main feature of (1.2) is the competition between the diffusion term that flattens

the solution and the potential part that creates peaks. A feature of this competition is the

intermittency effect, namely, the total mass of the solution vn is carried by a few separated

regions with small diameters. Indeed, the rigorous mathematical research on PAM started

with the seminal paper [12] in which intermittency was proved under minimal conditions on

the potential. In a follow-up paper [13] the same authors gave a description of the shape of

relevant islands in terms of a variational problem in the growth rate. The potentials consid-

ered in [13] consisted of distributions with upper tails that are double exponential or slightly

heavier/lighter. The asymptotic size of the islands are finite for double exponential tails that

and shrinks to a single site for heavier tails. This geometric picture was made precise in [11].

The growth of the solution for much heavier tails has random first order terms, and results

in this direction was achieved in [19] for potentials with Pareto and exponential distributions.

Later, [16] proved single site localization for the same kind of potentials and The evolution of

the localization point was investigated in the context of aging in [18].

In this work we consider PAM on the n-dimensional hypercube for class of potentials that lead

to single site localization. We will describe the growth of the solution and provide localisation

results. Our point of view focuses on solutions starting from the site of an extremal potential

and how the growth and localisation change with time, observing a phase transition in time.

Moreover, we will explore the fact the normalized solution of PAM corresponds to a mutation-

selection model and explain our localisation results in term of the latter.
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We want to mention that the state space for all the results we have mentioned from the

literature is the d-dimensional lattice. There are only a few work about PAM on different

graphs, one being [7] where the authors study PAM on complete graph with exponentially

distributed random potential. This work has been an inspiration for us as it also proves a

phase transition on the growth depending on the time scales. One big simplicity of working

on the complete graph is that the exact asymtotics of the whole spectrum of eigenvalues and

eigenvectors is readily available.

Let us now briefly explain the results of this article. Our first main result is an exact de-

scription of the behaviour of the solution at the location of the k-th largest potential. Let

x1,2n , x2,2n , . . . , x2n,2n denote the locations of the largest potential, second largest potential

and so on. We denote by λ1 the principle eigenvalue of the operator κ∆n + ξn. For the po-

tential we essentially assume that, for any k ∈ fixed, almost surely ξn(xk,2n) ∼ θn for some

θ > 0 and the gap between the extremal points ξn(x1,2n) − ξn(xk,2n) stays order of (ran-

dom) constant (see Section 1.2). The behaviour of vn(tn, xk,2n) goes through a transition

on time scales of order n log n. To this end let cn = 1
2
n log n and let tn/cn → α ∈ [0,∞].

We prove that (see Section 1.3) for α < (ξ(x1,2n) − ξ(xk,2n))−1

vn(tn, xk,2n) ∼ exp
{

(ξ(xk,2n) − κ)tn
}

, (1.7)

and for α > (ξ(x1,2n) − ξ(xk,2n))−1

vn(tn, xk,2n) ∼ exp
{

λ1tn
}

exp
{

− cn(1 + o(1))
}

. (1.8)

Hence, in the short time regime the solution at all the high peaks grows like a system with-

out diffusion, more precisely, when the potential is shifted down by κ and the diffusion is

removed. However, on the long time regimes, with the observation that (see Lemma 2.1)

λ1 = ξ1,2n − κ+O(1/n2), (1.9)

we see that the growth is much higher. We also mention that the second term in (1.8) is the

decay of the principle eigenfunction at xk,2n . The class of potentials we consider involves

the Random Energy Model (REM) of spin glasses introduced in [4], where the potential field

is formed by i.i.d. Gaussian random variables with mean 0 and variance n.

Now we describe the mutation-selection model on the hypercube with random fitness land-

scape and explain how it is connected to PAM. The mutation-selection model is given by the

solution un(t, ·, y) of the following PDE

un(t, x, y) = κ∆nun(t, x, y) +
[

ξn(x) − ξ̄(t)
]

un(t, x, y), t ≥ 0, x ∈ Σn (1.10)

with the localized initial condition un(t, ·, y) = δy(·), where ξ̄(t) is the mean fitness

ξ̄(t) :=
∑

x∈Σn

un(t, x, y)ξn(x). (1.11)

Let us briefly explain the biological meaning of the mathematical objects appearing in (1.10).

Haploid genotypes are identified with linear arrangement of n sites x = (x(1), . . . , x(n))
with each site taking values −1 or +1. In the multilocus context sites correspond to loci and
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the variables x(i) to alleles. In the context of molecular evolution, x corresponds to a DNA

(or RNA) sequence where the nucleotides are lumped into purines (say, +1) and pyrimidines

(say, −1). In biology literature the hypercube Σn is usually called the sequence space. Then

the mutation-selection model given in (1.10) describes the evolution of an infinite population

of haploids that experience only mutation and selection. The population evolves in continu-

ous time (non-overlapping generations) with mutation and selection occurring independently

(parallel). ξn(x) is the Malthusian fitness of type x and form a fitness landscape, which in

our case is random. Site mutations happen with rate κ/n (hence, a total rate of κ). From

(1.11) it follows that
∑

x un(t, x, y) = 1, and un(t, x, y) corresponds to the frequency of

type x under this evolution. Finally, note that the localized initial condition means that initially

the population consists of only type y. The competition between diffusion and potential dis-

cussed in PAM translates as competition between mutation and selection, two driving forces

of Darwinian evolution. The mutation-selection model dates back to Wright [20]. We refer

readers to the classical book [2] for an introduction to population genetics and to [10] for an

excellent survey that involves the statistical physics methods used to solve mutation-selection

models for a wide range of landscapes.

The motivation to consider a random fitness landscape is the following. Realistic landscapes

are expected to be complex with structures such as valleys and hills [3]. Random fitness

landscapes naturally form a class of complex landscapes. The first obvious choice, that is an

i.i.d. landscape, is also known as the House of Cards model and was introduced by Kingman

[14].

It is well-known that (see e.g. [17]) the linear system vn can be transformed to un via nor-

malization by its total mass, that is,

un(t, x, y) =
vn(t, x, y)

vn(t, y)
. (1.12)

In a way vn(t, x, y) can be thought as absolute frequencies. Hence, behaviour of the mutation-

selection model is related to the localization properties of the PAM model. Indeed, we will

prove that (see Section 1.4) the phase transition occurring exhibited in growth rates of vn

translates to the behaviour of un. Namely, on short time scales un(tn, xk,2n , xk,2n) → 1,

whereas, on long time scales un(tn, x1,2n , xk,2n) → 1. In other words, a population initially

consisted of xk,2n type individuals stays that way for a certain threshold in time, after which

it is invaded by the best fit type xk,2n .

The coupled model where the reproduction events are followed by mutation is known as

quasispecies model, introduced by Eigen in [5]. Main feature of this model is the existence

of a error threshold, that is, for a single peak landscape (a master sequence has a fitness

σ > 1 and the rest has the same fitness of 1) in the limit as the genome length n → ∞
and time t → ∞ the population is essentially randomly distributed over the space if the

mutation rate is above a certain value, whereas for the mutation rates below this critical

value the population consists of individuals close to the master sequence, what Eigen calls a

quasispecies. Similar results were proven in [9] and [8] for the REM landscape. We have to

emphasize that our model is actually not in the direction of these results. In the quasispecies

models we have mentioned the mutation rate and the fitness at highest peak is on the same

scale. In our case the fitness of the highest peak is on the scale of n while the mutation rate
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is kept at constant. Hence, we do not have the quasispecies picture. Instead, what we focus

on is studying the evolution in intermediate time scales, that is, before the equilibrium. The

phase transition we observe is on the time scale of observation rather than on the mutation

rate.

In the rest of this section we describe precisely the potentials we use, then we state our main

results on the growth rates and localisation, and finally we quickly show that REM landscape

satisfies our assumptions on the potential field.

Notation. Throughout the paper we use the notations o,O,Θ,�,�,∼ for any two se-

quences fn, gn as follows. We write fn = o(gn), fn � gn or gn � fn if fn/gn → 0
as n → ∞; fn = O(gn) if lim supn→∞ fn/gn < ∞; fn = Θ(gn) if there are positive

constants C1, C2 such that C1gn ≤ fn ≤ C2gn for all n large enough; and fn ∼ gn if

fn/gn → 1 as n→ ∞. Moreover, For constants in our estimates we use the letter C freely

as long as it does not appear at the end result.

1.2 The potential

For each n, ξn = {ξn(x) : x ∈ Σn} is a collection of i.i.d. random variables whose common

cumulative distribution function is denoted by Gn. We assume that Gn is continuous, i.e.

ξn(x) has no atoms. We define

ϕn(r) := log
1

1 −Gn(r)
, r ∈ R, (1.13)

and its left-continuous inverse

ψn(s) := min{r : ϕn(r) ≥ s}, s > 0. (1.14)

Let ηn = {ηn(x) : x ∈ Σn} be an i.i.d. field of mean 1 exponential random variable. Then

ψn(ηn)
d
= ξn, and from now on we assume without loss of generality that ξn = ψn(ηn). Note

that since ψn is strictly increasing the sites ordered according to their potentials coincide for

the two fields. More precisely, we can label the vertices of Σn by x1,2n , . . . , x2n,2n so that

ξn(x1,2n) := ξ1,2n > ξ(x2,2n) := ξ2,2n > · · · > ξn(x2n,2n) := ξ2n,2n (1.15)

and

ηn(x1,2n) := η1,2n > ηn(x2,2n) := η2,2n > · · · > ηn(x2n,2n) := η2n,2n . (1.16)

Note that the above inequalities are strict because Gn is continuous. Let σi, i ∈ N, be

an independent sequence of random variables where σi is exponentially distributed with

intensity i. It is well-known that (see e.g. Section I.6 of [6])

(η1, η2, . . . , η2n)
d
= (σ1 + · · · + σ2n , σ2 + · · · + σ2n , . . . , σ2n). (1.17)

From now on we describe the field ηn (and in turn the field ξn) through the sequence (σi, i ∈
N). Namely, ηn is given by its order statistics (η1,2n , η2,2n , . . . , η2n,2n) coupled to (σi, i ∈
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N) via ηi,2n = σi + · · · + σ2n . We denote by P and E the distribution and expectation in

this common probability space, respectively.

Since

P (η1,2n ≥ nc log 2) ≤ 2−n(c−1), ∀c > 1, (1.18)

and

P (η1,2n ≤ nc log 2) ≤ exp(−2n(1−c)), ∀c < 1, (1.19)

by an application of Borel-Cantelli lemma P -a.s.

lim
n→∞

η1,2n

n
= log 2. (1.20)

We have η1,2n − ηk,2n = σ1 + · · · + σk−1. Hence, P -a.s. for any k ∈ N

lim
n→∞

ηk,2n

n
= log 2. (1.21)

Therefore, the extremes of the field ηn all grow like n log 2 and the gap between extremal

points are (random) constants, i.e.,

ηk,2n − ηl,2n = σk + · · ·σl−1, for any k < l. (1.22)

We now list our assumptions for the field ξn. The first set of assumptions is about the ex-

tremes of the field and concerns only the right-tail of the distribution of ξn in terms of ψn.

The following assumption identifies the growth rate of the extremes.

Assumption (R1) For any a > 0

ψn(an) ∼ f(a)n (1.23)

where f : R
+ → R

+ is a strictly increasing function. We define θ := f(log 2).

Hence, by (1.20), ξ1,2n grows like θn. The choice of this growth rate is arbitrary but it makes

the representation cleaner and this is the actual case for REM.

Our second assumption on the right-tail is more crucial, it guarantees that, like in the expo-

nential field, the gaps between extremes are order of (random) constants.

Assumption (R2) For any sequence sn ∼ θn, for any c ∈ R,

ψ(sn + c) − ψ(sn) → g(c), (1.24)

where g : R → R is such that g(c) 6= 0 for any c 6= 0.

Therefore, by (1.20) and (1.22), P -a.s.

ξk,2n − ξl,2n = g(σk + · · · + σl−1) + o(1), for any k < l. (1.25)

Recall that g(c) > 0 for c > 0, that is, the gap above does not vanish. For convenience we

define

ξk,l := g(σk + · · · + σl−1), for k < l, (1.26)

and set ξk,l = 0 for k ≥ l. Note that ξk,l does not depend on n.

For further reference, we sum up the implications of Assumptions (R1) and (R2) in a lemma
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LEMMA 1.1. Let assumptions (R1) and (R2) be satisfied. Then P -a.s. for any k, l ∈ N

(i)

lim
n→∞

ξk,2n

n
= θ; (1.27)

(ii)

ξk,2n − ξl,2n = ξk,l + o(1), for any k < l. (1.28)

Our last assumption concerns the left tail of the distribution of ξn.

Assumption (L) There exists a sequence ln � n for which

∑

n∈N

nGn(−ln) <∞. (1.29)

Essentially, above assumption yields that there are enough path between extremal points

that avoid sites with potential smaller than −ln. Moreover, it guarantees that the neighbours

of extremal points also have potential not smaller than −ln.

Now we are ready to formulate our results rigorously.

1.3 Growth Rates

Let

cn :=
1

2
n log n, (1.30)

and consider time scales tn such that

tn
cn

−→
n→∞

α ∈ [0,∞]. (1.31)

We denote by λ1 the principle eigenvalue of the operator κ∆n + ξn. Note that with a slight

abuse of notation we do not use n in λ1.

THEOREM 1.2. Let Assumptions (R1), (R2) and (L) be satisfied. Then P -a.s. for any k ∈
N \ {1} as n→ ∞

vn(tn, xk,2n) ∼















exp
{

(

ξk,2n − κ
)

tn

}

if α < 1/ξ1,k,

exp
{

λ1tn − cn(1 + o(1))
}

if α > 1/ξ1,k.

(1.32)

Moreover, for any α ∈ [0,∞]

vn(tn, x1) ∼ exp
{

λ1tn
}

. (1.33)
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So on the short time scales the solution grows by the single peak, which can be seen as the

model with no diffusion and potential ξk,2n −κ, and on the other hand, for longer time scales

the growth is larger which is determined by the principle eigenvalue and a correction term

given by the decay of the principle eigenfunction at xk,2n (see Lemma 2.2 below). We also

mention that (see Lemma 2.1 below)

λ1 = ξ1,2n − κ+ Θ(1/n2). (1.34)

Let us consider the time scale of phase transition and for simplicity take tn = αcn. Then

the growth rate, to be precise the ratio of the term in the exponentials to the time scale

tn, is ξk,2n − κ for α < 1/ξ1,k and ξ1,2n − κ − 1/α + o(1) for α > 1/ξ1,k. Since

ξ1,2n − ξk,2n = ξ1,k + o(1) the phase transition is second order, see Figure 1.

1/ ξ
1,k

α

r
k

r
1

r

Figure 1: Plot of growth rate with respect to time. α-axis is time normalized by cn, that is,

tn = αcn. r-axis is the growth rate shifted by θn. Here r1 = ξ1,2n − κ and

rk = ξk,2n − κ.

1.4 Localization

THEOREM 1.3. Let Assumptions (R1), (R2) and (L) be satisfied. Then P -a.s. for any k ∈
N \ {1} as n→ ∞

(i) if α < 1/ξ1,k

un(tn, xk,2n , xk,2n) −→ 1; (1.35)

(ii) if α > 1/ξ1,k

un(tn, x1,2n , xk,2n) −→ 1. (1.36)

Moreover, for any α ∈ [0,∞] P -a.s. as n→ ∞

un(tn, x1,2n , x1,2n) −→ 1. (1.37)
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1.5 REM landscape

Our main application is the REM landscape, that is, ξn is a collection of i.i.d. Gaussian

random variables with variance n.

PROPOSITION 1.4. The REM landscape satisfies Assumptions (R1), (R2) and (L).

Proof. Let Z denote a standard normal random variable. Then

1 −Gn(r) = P (Z ≥ r/
√
n) =

1

2
√
π

∫ ∞

r/
√

n

e−x2/2dx. (1.38)

We use the following trivial bounds

e−r2/2
(1

r
− 1

r3

)

≤
∫ ∞

r

e−x2/2dx ≤ e−r2/2 1

r
, ∀r > 0. (1.39)

Using the above and the definitions of ϕn and ψn, we get that for any sequence sn ∼ an,

a > 0 and c ∈ R

ψn(sn + c) =
√

2nsn +
c

√

2sn/n
− log

√
2π

√

2sn/n
− log

√
2sn

√

2sn/n
+ o(1). (1.40)

Setting c = 0, Assumption (R1) follows with f(a) =
√

2a. Then by definition θ =
√

2 log 2.

Moreover,

ψn(sn + c) − ψ(sn) = c/
√

2a+ o(1), (1.41)

which yields, for a = θ, Assumption (R2) with g(c) = c/
√

2θ. Using (1.40) we have

Gn(−ln) ≤ e−l2n/(2n). (1.42)

Setting ln = nc, for some c ∈ (1/2, 1), Assumption (L) is satisfied.

In the rest of this paper we prove the main results in Section (2) using two lemmas on spectral

properties of the operator κ∆n + ξn, which are proved in Section (3).

2 Proof of Theorem 1.3 and Theorem 1.2

We describe the growth of vn(tn, ·, xk,2n) by using spectral properties of the operator κ∆n+
ξn with zero boundary conditions on certain vertices of extremal potential. To this end we

have two main ingredients: firstly, precise descriptions of principle eigenvalue, spectral gap

and localization of the principle eigenvector for the aforementioned operators; secondly, a

general mechanism allowing us to turn these spectral properties to estimates for vn. For the

latter, we follow the general framework established in [11].

We introduce the spectral objects we use for our estimates. For l ∈ N set Γl = {x1,2n , . . . , xl,2n}.

For xi,2n ∈ Γl, i ∈ {1, . . . , l}, consider the principle eigenvalue and (positive) eigenfunc-

tion of the operator κ∆n + ξn with zero boundary conditions on Γl \ {xi,2n}, denoted by
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λi,l and νi,l, respectively, where νi,l is normalized so that νi,l(xi,2n) = 1. Let gi,l denote

the corresponding spectral gap, that is, the difference between the principle eigenvalue and

the second largest eigenvalue. We write λi and νi for λi,i and νi,i, respectively. Note that as

before we do not use n in the notation for eigenvalues and eigenvectors. Finally, forA ⊆ Σn

we define the hitting time

τA := inf{t ≥ 0 : Xt ∈ A}, (2.1)

and write simply τx for τ{x}.

We have a probabilistic representation for νi,l given by

νi,l(x) = Ex

[

exp
(

∫ τxi,2n

0

[

ξn(Xs) − λi,l

]

ds
)

1{τxi,2n ≤ τΓl
}
]

. (2.2)

The following two lemmas contain the main spectral results. We postpone their proof until

the next section.

LEMMA 2.1. Let Assumptions (R1), (R2) and (L) be satisfied. Then P -a.s. for any k ∈ N

for all 1 ≤ i ≤ l ≤ k
λi,l = ξi,2n − κ+ Θ(1/n2) (2.3)

and

gi,l ≥ ξi,2n − ξl+1,2n . (2.4)

LEMMA 2.2. Let Assumptions (R1), (R2) and (L) be satisfied. Then P -a.s. for any k ∈ N

the followings are true:

(i)
∑

x 6=xi
νi,l(x) −→ 0 and ‖νi,l‖2

2 −→ 1, for all 1 ≤ i ≤ l ≤ k;

(ii) νi,l(xk,2n) = exp(−cn(1 + o(1))), for all for all 1 ≤ i ≤ l < k.

Now we describe a general mechanism that allows us to use these spectral properties to get

certain estimates. For the following randomness is not relevant and one can take a general

connected graph Σ with ∆ denoting the generator of the nearest neighbour simple random

walk. Consider a potential V : Σ → R and subsets Υ,Λ ⊂ Σ such that Υ ∩ Λ = ∅.

Let λz be the principle eigenvalue of the operator κ∆ + V on
(

Σ \ (Υ ∪ Λ)
)

∪ {z} zero

boundary conditions (this is same as setting V to −∞ on (Υ ∪ Λ) \ {z}). For z ∈ Υ, let

νz be the corresponding (positive) eigenfunction normalized so that νz(z) = 1. Then νz has

the probabilistic representation

νz(x) = Ex[exp
(

∫ τz

0

[V (Xs) − λz]ds
)

1{τz = τΥ < τΛ}]. (2.5)

Define

ω(t, x, y) = Ex

[

exp
(

∫ t

0

V (Xs)ds
)

1{Xt = y}1{τΥ ≤ t}1{τΛ > t}
]

. (2.6)

LEMMA 2.3. For any t > 0

ω(t, x, y) ≤
∑

z∈Υ

ω(t, z, y)νz(x)‖νz‖2
2. (2.7)
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This lemma is a version of Theorem 4.1 in [11] but since the results in [11] are written for Z
d

for the sake of completeness we give a proof.

Proof. We claim that for any u ∈ [0, t] and z ∈ Υ

Ez

[

exp
(

∫ t−u

0

V (Xs)ds
)

1{Xt−u = y}1{τΛ > t− u}
]

≤ e−λzu‖νz‖2
2 ω(t, z, y).

(2.8)

We have the following lower bound for w(t, z, y)

ω(t, z, y) = Ez

[

exp
(

∫ t

0

V (Xs)ds
)

1{Xt = y}1{τΛ > t}
]

≥ Ez

[

exp
(

∫ u

0

V (Xs)ds
)

1{Xu = z}1{τΛ > u}1{τΥ\{z} > u}
]

× Ez

[

exp
(

∫ t−u

0

V (Xs)ds
)

1{Xt−u = y}1{τΛ > t− u}
]

.

(2.9)

In the first equality above we used the fact that z ∈ Υ. By the spectral decomposition

Ez

[

exp
(

∫ u

0

V (Xs)ds
)

1{Xu = z}1{τΛ > u}1{τΥ\{z} > u}
]

≥ euλz‖νz‖−2
2 ,

(2.10)

which implies (2.8) through (2.9). Since we use the type of estimate in (2.10) throughout the

rest of this section, here we explain it in detail. Let

h(t, x) := Ex

[

exp
(

∫ t

0

V (Xs)ds
)

1{Xt = z}1{τΛ > t}1{τΥ\{z} > t}
]

. (2.11)

Then h solves the parabolic equation

∂

∂t
h(t, x) = κ∆nh(t, x) + ξn(x)h(t, x), t ≥ 0, x ∈

(

Σ \ (Υ ∪ Λ)
)

∪ {z} (2.12)

with initial condition h(0, ·) = δz(·) and boundary conditions

h(t, x) = 0, ∀t ≥ 0, x ∈ Υ ∪ Λ \ {z}. (2.13)

Therefore, h can be given using the spectrum of κ∆ + ξ with zero boundary conditions on

Υ ∪ Λ \ {z}. We already defined λz and νz as the principle eigenvalue and eigenvector,

respectively. Let λ(i) and ν(i), i = 2, . . . , 2n − |Λ| − |Υ| + 1 := L, denote the the

rest of eigenvalues and the corresponding eigenvectors, respectively, in the spectrum. Here,

eigenvectors have the usual l2 normalization: ‖ν(i)‖2
2 = 1. Then, with the initial condition

h(0, ·) = δz(·), we get

h(t, x) = eλztνz(x)νz(z)

‖νz‖2
+

L
∑

i=2

eλ(i)tν(i)(x)ν(i)(z). (2.14)

For x = z all the coefficients in the second sum becomes (ν(i)(z))2, thus, non-negative.

Since we chose νz(z) = 1, we arrive at that h(t, x) ≥ etλz‖νz‖−2
2 . Then, (2.8) follows.
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Now we continue with the proof of (2.7). By the definition (2.6) we have

ω(t, x, y) =
∑

z∈Υ

Ex [ exp
(

∫ τΥ

0

V (Xs)ds
)

1{XτΥ = z}1{τΥ ≤ t}1{τΛ > t}

Ez

[

exp
(

∫ t−τΥ

0

V (Xs)ds
)

1{Xt−τΥ = y}1{τΛ > t− τΥ}
]]

(2.15)

Since on 1{XτΥ = z} we have τΥ = τz, we can replace 1{XτΥ = z} by 1{τz = τΥ},

and τΥ ≤ t < τΛ implies that τΥ < τΛ and we get a upper bound if we replace 1{τΥ ≤
t}1{τΛ > t} by 1{τΥ < τΛ}. Hence,

w(t, x, y) ≤
∑

z∈Υ

Ex[exp
(

∫ τz

0

V (Xs)ds
)

1{τz = τΥ < τΛ}

× Ez[exp
(

∫ t−τz

0

V (Xs)ds
)

1{Xt−τz
= y}1{τΛ > t− τz}]]

≤
∑

z∈Υ

Ex[exp
(

∫ τz

0

V (Xs)ds
)

1{τz = τΥ < τΛ}e−λzτz ] ‖νz‖2
2 ω(t, z, y)

=
∑

z∈Υ

ω(t, z, y)‖νz‖2
2 νz(x).

(2.16)

For the inequality on the second line we used (2.8) and for the equality on the third line we

used the representation of νz given in (2.5).

We divide the expectation in the Feynman-Kac representation (1.4) of vn(t, x, xk,2n) into

two parts: expectation along the paths that visit Γk−1 and those that do not. Namely,

v(t, x, xk,2n) = ωk(t, x, xk,2n) + ω̃k(t, x, xk,2n) (2.17)

where

ωk(t, x, y) := Ex

[

e
R t

0 ξn(Xs)ds
1{Xt = y}1{τΓk−1

≤ t}
]

, (2.18)

and

ω̃k(t, x, y) := Ex

[

e
R t

0 ξn(Xs)ds
1{Xt = y}1{τΓk−1

> t}
]

. (2.19)

We first prove the following.

LEMMA 2.4. P -a.s. for any k ∈ N as n→ ∞

ω̃k(tn, xk,2n , xk,2n) ∼ eλktn (2.20)

Proof of Lemma 2.4. Using the spectral decomposition of the operator κ∆n + ξn with zero

boundary conditions on Γk−1, as discussed before, and part (i) of Lemma 2.2 we get

ω̃(tn, xk,2n , xk,2n) ≥ eλktn‖νk‖−2
2 ∼ eλktn (2.21)

We use the spectral gap to get the upper bound

ω̃k(tn, xk,2n , xk,2n) ≤ eλktn‖νk‖−2
2 + eλktne−gk,ktn‖δxk

‖2
2. (2.22)
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Since ‖δxk,2n‖2 = 1, using Lemma 1.1 part (iii), Lemma 2.1 and Lemma 2.2 part (ii) we are

finished with the proof.

Note that for k = 1, ω̃1(t, x, y) = vn(t, x, y). Hence, the above lemma gives

vn(tn, x1,2n , x1,2n) ∼ eλ1tn . (2.23)

We need the following result. Recall that we have defined cn = 1
2
n log n.

LEMMA 2.5. P -a.s. for any k ∈ N and for any i = 1, . . . , k − 1 as n→ ∞

vn(tn, xi,2n , xk,2n) ≤ eλ1tn exp
(

−2cn(1+o(1))
)

+eλitn exp
(

−cn(1+o(1))
)

. (2.24)

Proof of Lemma 2.5. We prove (2.24) using strong induction. For k = 1 there is nothing

to check. Now assume that (2.24) is true for 1, . . . , k − 1. Let i ∈ {2, . . . , k − 1}. We

use Lemma 2.3 with Υ = Γi−1 and Λ = ∅. In this case the corresponding ω defined in

(2.6) coincides with ωi defined as in (2.18). Note that we have ωi(t, x, y) = vn(t, x, y) if

x ∈ Γi−1. Hence, using Lemma 2.3

wi(tn, xi,2n , xk,2n) = wi(tn, xk,2n , xi,2n) ≤
i−1
∑

j=1

vn(tn, xj,2n , xi,2n)νj,i−1(xk,2n)‖νj,i−1‖2
2

(2.25)

By part (ii) of Lemma 2.2, since i < k, we have νj,i−1(xk,2n) = exp
(

− cn(1 + o(1))
)

for

j = 1, . . . , i− 1 and by part (i) of the same Lemma we have ‖νj,i−1‖2
2 ∼ 1. By the strong

induction step we have v(tn, xj,2n , xi,2n) ≤ eλ1tn exp
(

− cn(1 + o(1))
)

. Hence,

wi(tn, xi,2n , xk,2n) ≤ eλ1tn exp
(

− 2cn(1 + o(1))
)

. (2.26)

Now we use Lemma 2.3 with Υ = {xi,2n} and Λ = Γi−1. Since1{Xt = xi,2n}1{τxi,2n ≤ t} =
1{Xt = xi,2n},ω(t, ·, xi,2n) defined in (2.6) coincides with ω̃i(t, ·, xi,2n), and using Lemma

2.3 we get

ω̃i(tn, x, xi,2n) ≤ ω̃i(tn, xi,2n , xi,2n)νi(x)‖νi‖2
2. (2.27)

Hence, by parts (i) and (ii) of Lemma 2.2 and Lemma 2.4 we have

ω̃i(tn, xk,2n , xi,2n) ≤ eλitn exp
(

− cn(1 + o(1))
)

. (2.28)

Since vn = ωi + ω̃i, we have proved that (2.24) holds true for i = 2, . . . , k − 1. For i = 1
recall that vn = ω̃1. Similar to how we arrived at (2.27) we get

vn(tn, x, x1,2n) ≤ vn(tn, x1,2n , x1,2n)ν1(x)‖ν1‖2
2. (2.29)

Hence, using once again part (ii) of Lemma 2.2 and Lemma 2.4 we have

vn(tn, x1,2n , xk,2n) ≤ eλ1tn exp
(

− cn(1 + o(1))
)

(2.30)

This completes the proof.
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LEMMA 2.6. P -a.s. for any k ∈ N as n→ ∞

vn(tn, xk,2n , xk,2n) ≤ eλ1tn exp
(

− 2cn(1 + o(1))
)

+ eλktn . (2.31)

Proof of Lemma 2.6. Using Lemma 2.3 with Γ = Γk−1 and Λ = ∅ we get

ωk(tn, xk,2n , xk,2n) ≤
k−1
∑

i=1

vn(tn, xi,2n , xk,2n)νi,k−1(xk,2n). (2.32)

Hence, using part (ii) of Lemma 2.2 and Lemma 2.5 we have

ωk(tn, xk,2n , xk,2n) ≤ eλ1tn exp
(

− 2cn(1 + o(1))
)

. (2.33)

Finally, Lemma 2.4 finishes the proof.

LEMMA 2.7. P -a.s. for any k ∈ N as n→ ∞

vn(tn, x1,2n , xk,2n) ≥ eλ1tn exp
(

− cn(1 + o(1))
)

. (2.34)

Proof of Lemma 2.7. Note that the description in (2.2) gives

ν1(x) = Ex

[

exp
(

∫ τx1,2n

0

[

ξn(Xs) − λ1

]

ds
)

]

. (2.35)

Hence, using the Feynman-Kac formula, the spectral decomposition of κ∆n + ξn we get

vn(tn, x, x1,2n) = Ex

[

e
R tn
0 ξn(Xs)ds

1{Xtn = x1,2n}
]

= Ex

[

e
R

τx1,2n

0 ξn(Xs)dsEx1,2n [e
R

tn−τx1,2n

0 ξn(Xs)ds
1{Xtn−τx1,2n

= x1,2n}]
]

≥ Ex

[

e
R

τx1,2n

0 ξn(Xs)dseλ1(tn−τx1,2n )‖ν1‖−2
2

]

= etnλ1‖ν1‖−2
2 Ex

[

e
R

τx1,2n

0

(

ξn(Xs)−λ1

)

ds

]

= etnλ1‖ν1‖−2
2 ν1(x).

(2.36)

Then, part (i) and (ii) of Lemma 2.2 finish the proof.

Note that, Lemma 2.5 and Lemma 2.7 yield that P -a.s. for any k ∈ N \ {1} as n→ ∞

vn(tn, x1,2n , xk,2n) = eλ1tn exp
(

− cn(1 + o(1))
)

(2.37)

Now we are ready to prove the main results.

Proof of Theorem 1.3 and Theorem 1.2. We first prove the statements for k = 1, namely,

(1.37) and (1.33). Recalling (2.29) and that vn(t, x1,2n) =
∑

x∈Σn
v(t, x, x1,2n) we have

∑

x 6=x1,2n

vn(t, x, x1,2n) ≤ vn(t, x1,2n , x1,2n)
∑

x 6=x1,2n

ν1(x) (2.38)
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Hence, using part (i) of Lemma 2.2 as n→ ∞ we have vn(tn, x1,2n) ∼ vn(tn, x1,2n , x1,2n),

that is, (1.37). Finally, (2.23) finishes the proof of (1.33). Now we assume k ∈ N\{1}. Using

Lemma 2.3 with Υ = Γk−1 and Λ = ∅ and Lemma 2.5 we have as n→ ∞

ωk(tn, x, xk,2n) ≤ vn(tn, x1,2n , xk,2n)ν1,k−1(x) +
k−1
∑

i=2

vn(tn, xi,2n , xk,2n)νi,k−1(x)

≤ vn(tn, x1,2n , xk,2n)ν1,k−1(x)+
[

eλ1tn exp
(

− 2cn(1 + o(1))
)

+ eλ2tn exp
(

− cn(1 + o(1))
)]

×
k−1
∑

i=2

νi,k−1(x).

(2.39)

The same reasoning we used to get (2.27) yields

ω̃k(tn, x, xk,2n) ≤ ω̃k(tn, xk,2n , xk,2n)νk(x)‖νk‖2
2. (2.40)

We separate the short and long time regimes.

Short time regime: The key point is that in this time regime, by Lemma 2.1,

eλ1tn exp
(

− cn(1 + o(1))
)

� eλktn . (2.41)

Recall that vn = ωk + ω̃k. Due to (2.41), Lemma 2.4 and Lemma 2.6 yield

vn(tn, xk,2n , xk,2n) ∼ eλktn . (2.42)

For the second item on the right hand side of the last inequality in (2.39), (2.41) gives

[

eλ1tn exp
(

− 2cn(1 + o(1))
)

+ eλ2tn exp
(

− cn(1 + o(1))
)]

� eλktn . (2.43)

By part (i) of Lemma 2.2 we have
∑

x

∑k−1
i=2 νi,k−1(x) ≤ k(1 + o(1)). Via Lemma 2.5 and

(2.41) we get vn(tn, x1,2n , xk,2n) � eλktn . Hence, applying again part (i) and (ii) of Lemma

2.2 we have
∑

x

ωk(tn, x, xk) � vn(tn, xk, xk) (2.44)

Hence, by part (i) of Lemma 2.2

∑

x 6=xk,2n

ω̃k(tn, x, xk,2n) ≤ ω̃k(tn, xk,2n , xk,2n)
∑

x 6=xk,2n

νk(x)‖νk‖2
2 � ω̃k(tn, xk,2n , xk,2n)

(2.45)

and we get vn(tn, xk,2n) ∼ ω̃k(tn, xk,2n , xk,2n). Since ω̃k(t, xk, xk) ≤ vn(t, xk, xk) we

reach at

u(tn, xk,2n , xk,2n) =
vn(tn, xk,2n , xk,2n)

vn(tn, xk,2n)
−→ 1. (2.46)

This finishes the proof of the statement in Theorem 1.3 concerning short time scales. By

Lemma 2.4 we have ω̃k(tn, xk,2n , xk,2n) ∼ eλktn and by Lemma 2.1 λk = ξk − κ +

15



Θ(1/n2). Since on short time scales tn � n2 we have eλk,2n2n ∼ e(ξk,2n−κ)tn . Hence, we

are finished with the proof Theorem 1.2 for short time scales.

Long time regime: In this time regime, by Lemma 2.1,

eλ1tn exp
(

− cn(1 + o(1))
)

� eλktn . (2.47)

By Lemma 2.1 and part (ii) of Lemma 1.1 there exist random positive constants C and C ′

such that λ1 − λ2 > C and λ1 − λk > C ′. By the latter and Lemma 2.1, in this regime we

have tn > C ′′n log n for some random positive constant C ′′. Therefore, for some εn → 0,

eλ2tn exp
(

− cn(1 + o(1))
)

eλ1tn exp
(

− cn(1 + o(1))
) ≤ e−Ctneεnn log n ≤ e−(C′′n−εn)n log n. (2.48)

By part (i) of Lemma 2.2 and Hölder’s inequality

∑

x∈Σn

k−1
∑

i=2

νi,k−1(x) ≤ 2k2n/2. (2.49)

Then, since n� n log n, using (2.37) we get

∑

x

(

eλ1tn exp
(

− 2cn(1 + o(1))
)

+ eλ2tn exp
(

− cn(1 + o(1))
))

k−1
∑

i=2

νi,k−1(x)

� vn(tn, x1,2n , xk,2n).
(2.50)

Using part (i) of Lemma 2.2 we have

∑

x 6=x1,2n

vn(tn, x1,2n , xk,2n)ν1,k−1(x) � vn(tn, x1,2n , xk,2n), (2.51)

and conclude through (2.39) that
∑

x ωk(tn, x, xk,2n) ∼ vn(tn, x1,2n , xk,2n). Once more

using part (i) of Lemma 2.2, Lemma 2.4 and Lemma 2.7 we have

∑

x

ω̃k(tn, x, xk,2n) ≤ ω̃k(tn, xk,2n , xk,2n)
∑

x

νk(x) ∼ω̃k(tn, xk,2n , xk,2n) ∼ eλktn

� vn(tn, x1,2n , xk,2n).
(2.52)

Hence, vn(tn, xk,2n) ∼ vn(tn, x1,2n , xk,2n), and (2.37) finishes the proof for the long time

scales.

3 Proof of spectral results

In this section we prove of Lemma 2.1 and Lemma 2.2. For proving the results about eigen-

values we first give a general result for a given potential on Σn which is similar in spirit to the
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cluster expansion result given in [13] (Lemma 2.18, on page 45). Let V : Σn → [−∞,∞)
be a potential and A ⊂ Σn be such that

dmin(A) = min{d(x, y) : x, y ∈ A, x 6= y} > 2. (3.1)

We set

N := max
A

V, M := max
Σn\A

V. (3.2)

LEMMA 3.1. If

M ≤ N − κ, (3.3)

then

N − κ ≤ λ1 < γ (3.4)

for any γ > N − κ with

κ

γ − (N − κ)
<
n(γ −M)

κ
. (3.5)

Proof of Lemma 3.1. The lower bound in (3.4) follows easily by replacing V with −∞ ev-

erywhere expect at the site in A where the maximum value N is reached and using the fact

that λ1 is non-decreasing in V .

For the upper bound we will show that any γ > N − k that satisfies (3.5) is in the resolvent

set of κ∆n + V . This is enough because if γ > 0 satisfies (3.5) then so does any γ′ > γ.

We denote by Rγ the resolvent at γ. Using the probabilistic representation of the resolvent,

since we are on a finite space, it is enough to check that

Rγ1(x) = Ex[

∫ ∞

0

dt e
R t

0 (V (Xs)−γ)ds] <∞ (3.6)

for any x ∈ Σn where 1 denotes the constant function of 1. We define hitting times 0 ≤
σ0 < τ0 < σ1 < τ1 < · · · by

σ0 = inf{t ≥ 0 : X(t) ∈ A}, (3.7)

and for i ∈ N ∪ {0}
τi = inf{t ≥ σi : X(t) /∈ A},

σi+1 = inf{t ≥ τi : X(t) ∈ A}. (3.8)

Note that, since dmin(A) > 2, τi − σi, i = 0, 1, . . . , is an independent sequence of

exponential random variables with rate κ. Using these stopping times we can write

Rγ1(x) = Ex[

∫ σ0

0

dt e
R t

0 (V (Xs)−γ)ds] +
∞

∑

i=0

Ex[

∫ σi+1

σi

dt e
R t

0 (V (Xs)−γ)ds]. (3.9)

Note that V (x) ≤M ≤ N − κ < γ for x /∈ A. Since X(t) /∈ A for t ∈ [0, σ0)

Ex[

∫ σ0

0

dt e
R t

0 (V (Xs)−γ)ds] ≤
∫ ∞

0

dt e
R t

0 (M−γ)ds =

∫ ∞

0

dt e−t(γ−M) =
1

γ −M
<∞.

(3.10)
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For i = 0, 1, . . . we have

Ex[

∫ σi+1

σi

dt e
R t

0 (V (Xs)−γ)ds] = Ex

[

e
R σ0
0 (V (Xs)−γ)ds

× EX(σ0)[e
R σi
0 (V (Xs)−γ)ds]

× EX(σi)[

∫ σ1

0

dt e
R t

0 (V (Xs)−γ)ds]
]

.

(3.11)

Since V (Xs) < γ for s ∈ [0, σ0) we have e
R σ0
0 (V (Xs)−γ)ds < 1. By the strong Markov

property

EX(σ0)[e
R σi
0 (V (Xs)−γ)ds] ≤

(

max
x∈A

Ex[e
R σ1
0 (V (Xs)−γ)ds]

)i

. (3.12)

Hence,

Ex[

∫ σi+1

σi

dt e
R t

0 (V (Xs)−γ)ds] ≤
(

max
x∈A

Ex[e
R σ1
0 (V (Xs)−γ)ds]

)i

× max
x∈A

Ex

[
∫ σ1

0

dt e
R t

0 (V (Xs)−γ)ds

]

.

(3.13)

Therefore, to finish the proof of (3.6) it is enough to check that

max
x∈A

Ex[e
R σ1
0 (V (Xs)−γ)ds] < 1 (3.14)

and

max
x∈A

Ex[

∫ σ1

0

dt e
R t

0 (V (Xs)−γ)ds] <∞. (3.15)

For the former we write

Ex[e
R σ1
0 (V (Xs)−γ)ds] = Ex

[

e
R τ0
0 (V (Xs)−γ)ds

EX(τ0)[e
R σ0
0 (V (Xs)−γ)ds]

]

. (3.16)

Since dmin(A) > 2 any z /∈ A has at most one neighbour that is in A. Hence, σ0, for

the walk starting from any z /∈ A, is stochastically bounded from below by an exponential

random variable with rate κ/n. Hence, using once again that V ≤ M < γ on Ac, we can

conclude that for any z /∈ A

Ez[e
R σ0
0 (V (Xs)−γ)ds] < Ez[e

−(γ−M)σ0 ] ≤ κ/n

κ/n+ γ −M
<

κ

n(γ −M)
. (3.17)

Also, recall that starting from x ∈ A, τ0 is distributed as an exponential random variable with

rate κ. Hence,

max
x∈A

Ex[e
R σ1
0 (V (Xs)−γ)ds] = max

x∈A
Ex

[

e
R τ0
0 (V (Xs)−γ)ds

EX(τ0)[e
R σ0
0 (V (Xs)−γ)ds

]

≤ max
x∈A

Ex

[

e
R τ0
0 (V (Xs)−γ)ds

] κ

n(γ −M)

= max
x∈A

κ

κ+ γ − V (x)

κ

n(γ −M)

=
κ

κ+ γ −N

κ

n(γ −M)
.

(3.18)
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By (3.5) the last quantity above is less than 1 and thus, (3.14) is satisfied. Now it remains to

check (3.15). To this end we write

Ex[

∫ σ1

0

dt e
R t

0 (V (Xs)−γ)ds] = Ex[
(

∫ τ0

0

+

∫ σ0

τ0

)

dt e
R t

0 (V (Xs)−γ)ds]. (3.19)

For any x ∈ A for a c > 0 appropriately chosen V (x) − γ ≤ N − γ < c < κ. Hence,

Ex[

∫ τ0

0

dt e
R t

0 (V (Xs)−γ)ds] ≤ Ex[
eτ0c − 1

c
]. (3.20)

Now since τ0 is distributed as an exponential random variable with rate κ and c < κ the

above quantity is finite. The second integral on the right hand side of (3.19) is equal to

Ex[e
R τ0
0 (V (Xs)−γ)ds

EX(τ0)[

∫ σ0

0

dt e
R t

0 (V (Xs)−γ)ds]]. (3.21)

Since V ≤M < γ on Ac for any z /∈ A

Ez[

∫ σ0

0

dt e
R t

0 (V (Xs)−γ)ds] ≤
∫ ∞

0

dte−t(γ−M) <∞. (3.22)

We have already seen in (3.18) that maxx∈A Ex[e
R τ0
0 (V (Xs)−γ)ds] = κ

γ−(N−κ)
. Thus, (3.21)

is finite and (3.15) is satisfied. This completes the proof of the lemma.

The key ingredient of the proofs of Lemma 2.1 and Lemma 2.2 is the next result. For δ ∈
(0, 1) define

Aδ
n := {x : η(x) ≥ nδ log 2}. (3.23)

Let

I(x) := x log x+ (1 − x) log(1 − x) + log 2, x ∈ [0, 1] (3.24)

be Cramer’s rate function.

LEMMA 3.2.

(i) Let δ > 1/2 and ωδ be the unique solution of I(ωδ) = 2(1 − δ) log 2. Then P -a.s.

for any c < ωδ

dmin(Aδ
n) := min

{

d(x, y) : x, y ∈ Aδ
n, x 6= y

}

≥ cn, (3.25)

for all n large enough.

(ii) P -a.s. for any i, k ∈ N with i 6= k

d(xi, xk) ∼ n/2, (3.26)

for all n large enough.
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Proof of 3.2. Since P (η(x) ≥ nδ log 2) = 2−δn the statement of part (i) is same as part

(ii) of Lemma ?? on page ?? of [1] with δ is replaced by γ in the notation used in the afore-

mentioned article. For part (ii) note that for any i, k the distribution of d(xi, xk) is that of

a Binomial random variable with parameters n and 1/2, conditioned to be non-zero. Hence,

the result follows from strong law of large numbers.

Proof of Lemma 2.1. For δ ∈ (1/2, 1) let

Aδ
n = {x : η(x) ≥ nδ log 2} (3.27)

Then by Lemma 3.2 for some c ∈ (0, ωδ), P -a.s.

dmin(A
δ
n) := min{d(x, y) : x, y ∈ Aδ

n, x 6= y} ≥ cn (3.28)

for all n large enough. We use Lemma 3.1 with V given by V ≡ ξ on Σn \Γl ∪{xi,2n} and

V ≡ −∞ on Γl \ {xi,2n}. Part (i) of Lemma 1.1 and the fact that f in Assumption (R1) is

strictly increasing imply that P -a.s. xi,2n ∈ Aδ
n for n large enough. This yields

N = max
Aδ

n

V = ξi,2n . (3.29)

Hence, with γ = ξi,2n − κ+ εn,

λi,l ≤ ξi,2n − κ+ εn (3.30)

if
κ

εn

<
n(ξi,2n − κ+ εn −M)

κ
. (3.31)

By the definition ofAδ
n and Assumption (R1) we haveM ≤ ψn(nδ log 2) ≤ δ1θn for some

δ1 ∈ (0, 1). By Lemma 1.1 ξi ≥ δ2θn for some δ2 ∈ (δ1, 1). Thus, (3.31) is satisfied if

κ

εn

<
(δ2 − δ1)θn

2 − κn

κ
. (3.32)

Hence, we can choose the sequence εn so that εn = C/n2. Therefore,

λi,l ≤ ξi,2n − κ+O(1/n2). (3.33)

Now we prove the lower bound for λi,l. Let ln be as in Assumption (L). We first claim that

P -a.s.

ξn(y) ≥ −ln, ∀y ∼ xk,2n , ∀k ∈ N. (3.34)

Note that the random variables ξn(y), y ∼ xk,2n , are independent and have the distribution

of ξn conditioned on not being the k-th largest. We have the following obvious bound for the

latter

P (ξn(y) ≤ −ln| y 6= xk,2n) =
P (ξn(y) ≤ −ln, y 6= xk,2n)

P (y 6= xk,2n)
≤ Gn(−ln)

P (y 6= xk,2n)

=
Gn(−ln)

1 − 1/2n
.

(3.35)
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Consequently,

P (∃y ∼ xk,2n s.t. ξn(y) ≤ −ln) ≤ CnGn(−ln). (3.36)

By Assumption (L) the last quantity above is summable in n, and an application of Borel-

Cantelli lemma proves (3.34). Using (3.34) we have λi,l is bounded below by the principle

eigenvalue, λ̃, of κ∆n +V on xi,2n ∪{y : y ∼ xi,2n} with zero boundary conditions, where

V (xi,2n) = ξi,2n and V (y) = −ln for y ∼ xi,2n . Since ξi,2n − κ � −ln, the principle

eigenvalue of the operator one gets by collapsing the neighbours of xk,2n to a single state

with potential −ln is same as λ̃. The matrix representation of the the states operator is

[

ξi,2n − κ κ
κ/n −κ(1 − /n)−ln

]

. (3.37)

Using the fact that ln � n (by Assumption (L)), a simple calculation shows that the principle

eigenvalue of the above matrix is

ξi − κ+
Cκ2

nξi,2n

+ o(n−2). (3.38)

Finally, since ξi,2n ∼ θn we have the right upper and conclude that

λi,l = ξi,2n − κ+ Θ(n−2). (3.39)

For the spectral gap, using the min-max formula, we have that the second largest eigenvalue

is bounded above by the principle eigenvalue of κ∆n + ξn with zero boundary conditions on

Γl. With the same exact proof above we get that this principle eigenvalue is ξl+1,2n−κ+o(1)
(since N in this case is ξl+1,2n). Hence, we are finished with the proof of the spectral gap.

Proof of Lemma 2.2 part (i). Since νi,l is the principle eigenfunction of a symmetric operator,

by Perron-Frobenius theorem its values are non-negative. Therefore, recalling that νi,l(xi) =
1,

∑

x 6=x1
νi,l(x) → 0 implies ‖νi,l‖2 → 1.

Now we show that
∑

x 6=x1
νi,l(x) → 0. For δ ∈ (1/2, 1) letAδ

n and ωδ be as in Lemma 3.2.

We again set ξ = ∞ on Γl \ {xi}, and define Bn := B(xi, cn− 3) for some c ∈ (0, ωδ).

We will first prove that

max
x/∈Bn

νi,l(x) ≤ exp
(

− cn(1 + o(1))
)

, (3.40)

where as before cn = 1
2
n log n. We write

νi,l(x) = Ex[exp(

∫ τxi,2n

0

(ξ(Xs) − λi,l)ds)1{τxi,2n = τΓl
}1{τAδ

n\{xi,2n} > τxi,2n}]

+ Ex[exp(

∫ τxi,2n

0

(ξ(Xs) − λi,l)ds)1{τxi,2n = τΓl
}1{τAδ

n\{xi,2n} ≤ τxi,2n}]
(3.41)
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Since X(s) /∈ Aδ
n for any s ∈ [0, τxi,2n ) on the event τAδ

n\{xi,2n} > τxi,2n , using the

definition of Aδ
n and Assumption (R1) we have ξ(Xs) ≤ θ′n on the same event, for some

θ′ < θ. Hence, the first expectation on the right hand side of (3.41) is bounded above by

Ex[exp(

∫ τxi,2n

0

(θ′n− λi,l)ds)] (3.42)

By Lemma 2.1 we have λi,l = ξi,2n − κ + o(1). As a result, via Lemma 1.1, λi,l � θ′n.

Finally, since x /∈ Bn, τxi,2n is stochastically bounded below by the sum of cn − 3 i.i.d.

exponentials with rate κ, and this yields

Ex[exp(

∫ τxi,2n

0

(θ′n− λi,l)ds)] ≤
[

κ

κ+ λi,l − θ′n

]cn−3

. (3.43)

Using the fact that λi,l = ξi,2n − κ+ o(1) and Lemma 1.1 we get

[

κ

κ+ λi,l − θ′n

]cn−3

= exp (−cn log n(1 + o(1))) . (3.44)

On the event 1{τAδ
n\{xi,2n} ≤ τxi,2n}, for any s ∈ [0, τAδ

n\{xi,2n}) we have ξ(Xs) ≤ θ′n�
λi,l . Hence, using the strong Markov property the second term on the right hand side of

(3.41) is bounded above by

max
x∈Aδ

n\{xi}
νi,l(x). (3.45)

Since dmin(Aδ
n) ≥ cn and xi ∈ Aδ

n for n large enough, if x ∈ Aδ
n \ {xi} then for any

y ∼ x we have y /∈ Aδ
n and d(y,Bn) > 1. Hence,

max
x∈Aδ

n\{xi,2n}
νi,l(x) ≤

κ

κ+ λi,l − ξl+1,2n

κ

κ+ λi,l − θ′n
max
x/∈Bn

νi,l(x)

≤ C

n
max
x/∈Bn

νi,l(x)
(3.46)

for some positive constant C . For the first inequality in the above display we used the fact

that ξ(x) ≤ ξl+1,2n for x ∈ Aδ
n \ {xi,2n} and ξ(x) ≤ θ′n for x /∈ Aδ

n, and for the second

inequality we used both parts of Lemma 1.1 and Lemma 2.1. Hence, together with (3.41)

and (3.44) we get

max
x/∈Bn

νi,l(x) ≤ exp (−cn log n(1 + o(1))) +
C

n
max
x/∈Bn

νi,l(x). (3.47)

Then
max
x/∈Bn

νi,l(x) ≤ (1 − C/n)−1 exp (−cn log n(1 + o(1)))

= exp (−cn log n(1 + o(1))) .
(3.48)

Since ωδ → 1/2 as δ → 1, by part (i) of Lemma 3.2, as δ → 1, we can choose c as close

to 1/2 as we wish. Hence, we are finished with the proof of (3.40). By (3.40) we have

∑

x∈Bc
n

νi,l(x) ≤ 2n exp

(

−1

2
n log n(1 + o(1))

)

−→ 0. (3.49)
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Hence, it remains to prove that

∑

x∈Bn\{xi}
νi,l(x) → 0. (3.50)

As before ξ(x) ≤ θ′n � λi,l for x /∈ Aδ
n, and Bn ∩ AN δ = {xi,2n}. Therefore, by (3.40)

and the strong Markov property, for any x ∈ Bn \ {xi,2n}

Ex[exp(

∫ τxi,2n

0

(ξ(Xs)−λi,l)ds)1{τxi,2n = τΓl
}1{τBc

n
< τxi,2n}] ≤ exp

(

−cn(1+o(1))
)

.

(3.51)

As a result, it is enough to check that

∑

x∈Bn\{xi,2n}
Ex[exp(

∫ τxi,2n

0

(ξ(Xs) − λi,l)ds)1{τxi,2n = τΓl
}1{τBc

n
> τxi,2n}] −→ 0.

(3.52)

We now construct a stochastic lower bound for τxi,2n through the Coupon collector’s problem.

Let x be such that d(xi,2n , x) = r. Without loss of generality we can assume that xi,2n =
(+1,+1, . . . ,+1). Then the number of −1’s in the configuration of x is exactly r. Now we

reject all the jumps that switches a +1 to a −1, in other words, we consider only the spin

sites with −1 and wait for all of them to become +1. Then this waiting time, denoted by

τ ′, is a lower bound. Observe that the first time a −1 becomes a +1 is distributed as an

exponential random variable with rate κr/n (recall that per spin the jump rate is κ/n); after

this event there are now r − 1 spins with a −1 sign and the first time one of them becomes

a +1 is distributed as an exponential random variable with rate κ(r− 1)/n; proceeding like

this we wait finally an exponential time with rate κ/n for the last −1 sign to become a +1.

Hence, τ ′ is given by

τ ′ =
αr

κr/n
+

αr−1

κ(r − 1)/n
+ · · · + α1

κ/n
(3.53)

where α1, . . . is an i.i.d. sequence of exponential random variables with rate 1. Hence, for

any x s.t. d(xi,2n , x) = r

Ex[exp(

∫ τxi,2n

0

(ξ(Xs) − λi,l)ds)1{τxi,2n = τΓl
}1{τBc

n
> τxi,2n}]

≤ E[exp(−τ ′(λi,l − θ′n))]

=
r

∏

j=1

κj/n

κj/n+ λi,l − θ′n
≤

r
∏

j=1

j

Cn2

(3.54)

for some positive constant C . Note that for the last step once again we used that λi,l ∼ θn.

For the last term above we use the following upper bound

r
∏

j=1

j

Cn2
= C ′ exp

(

− 2r log n+
r

∑

j=1

log j
)

≤ C ′′ exp
(

− 2r log n+ r log r
)

= C ′′n−2rrr.

(3.55)

23



for some positive constants C ′, C ′′. Since

|{x : d(xi,2n , x) = r}| =

(

n

r

)

, (3.56)

in order to finish the proof it is enough to check that

cn
∑

r=1

n−2rrr

(

n

r

)

−→ 0. (3.57)

Since c < 1, using Sterling’s approximation we get

cn
∑

r=1

n−2rrr

(

n

r

)

≤ C
cn

∑

r=1

n−2rrr nn

(n− r)n−rr!
e−r

= C
cn

∑

r=1

n−r r
r

r!

[

1 +
r

n− r

]n−r
e−r

≤ C
cn

∑

r=1

n−r r
r

r!

(3.58)

Since rr ≤ r! er for any r ∈ N we get

cn
∑

r=1

n−r r
r

r!
≤

cn
∑

r=1

n−rer ≤
∞

∑

r=1

(e/n)r =
1

1 − e/n
− 1 −→

n→∞
0. (3.59)

Hence, we are finished with the proof of part (i).

Proof of Lemma 2.2 part (ii). Since i 6= k and xk,2n ∈ Aδ
n for n large enough, xk,2n /∈ Bn,

where Bn = B(xi,2n , cn − 3) as described in the proof of Lemma 2.2 part (i). Hence, via

(3.40) we have the right upper bound for νi,l(xk,2n).

For ln given in Assumption (L) for some δ ∈ (0, 1) we define

Ln := {x ∈ Σn : −ln ≤ ξn(x) ≤ ψn(nδ log 2)} (3.60)

and

pn := P (ξn(x) /∈ Ln). (3.61)

For x 6= xi,2n we denote by H(x) the number of nearest neighbour paths x = y0 → y1 →
· · · → yd = xi,2n , where d = d(x, xi,2n), such that, ξn(yj) ∈ Ln for all j = 1, . . . , d− 1.

It is understood that H(x) = 1 for x such that d(x, xi,2n) = 1. Note that H(x) and

H(z) have identical distributions for any x, z with d(x, xi,2n) = d(z, xi,2n). We label the

expectation of any such distribution by H(d), that is, H(d) = E[H(x)] for some x with

d(x, xi,2n) = d. Finally, we define

S(x) := {y ∼ x : d(y, xi) = d(x, xi,2n) − 1 and y ∈ Ln}. (3.62)
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Any nearest neighbour path from x to xi,2n of length d(x, xi,2n) that stays in Ln in between

should move to a vertex in S(x) in its first step. Hence,

H(x) =
∑

y∈S(x)

H(y). (3.63)

Since 1{y ∈ S(x)}, y ∼ x, and H(y′) are independent events for any y′ ∼ x we get

E[H(x)] = E[|S(x)|]E[H(y)] (3.64)

For x, with d = d(x, xi), |S(x)| is a Binomial random variable with parameters d and

(1 − pn). This yields

H(d) = d(1 − pn)H(d− 1), (3.65)

From H(1) = 1 it readily follows that

H(d) = d!(1 − pn)d−1. (3.66)

Since H(x) ≤ d!, for any θ ∈ (0, 1) we get

H(d) = E[H(x)] = E[H(x)1{H(x) ≤ θH(d)}] + E[H(x)1{H(x) ≥ θH(d)}]
≤ θH(d) + d!P (H(x) ≥ θH(d)).

(3.67)

Hence,

P (H(x) ≥ θH(d)) ≥ (1 − θ)
H(d)

d!
= (1 − θ)(1 − pn)d−1. (3.68)

Let θ = θn = o(1). Since d(x, xi) ≤ n for any x ∈ Σn

P (H(x) ≤ θnH(d)) ≤ 1 − (1 − θn)(1 − pn)n−1 ≤ C
(

θn + npn + θnnpn

)

. (3.69)

Recalling (3.61)

pn = G(−ln) + P (ξn(x) ≥ ψn(nδ log 2)). (3.70)

The second term above decay as 2−δ′n for some δ′ > 0. Hence, using Assumption (L) we

have
∑

n npn <∞. Now we choose θn = n−1−a for some a > 0 and get
∑

n

(

θn + npn + θnnpn

)

<∞. (3.71)

Hence, by an application of Borel-Cantelli lemma we reach at that P -a.s. H(x) ≥ θnH(r).

Assumption (R1) and part (i) of Lemma 1.1 imply ξn(xl,2n) � ψn(δ log 2n). Thus, P -a.s.

Ln ∩ Γl = ∅ for n large enough.

Let d = d(xk,2n , xi,2n). Since H(xk,2n) ≥ n−1−aH(d) = n−1−ad!(1 − pn)d−1 and the

probability of any nearest neighbour path of length d is n−d, using the probabilistic repre-

sentation of νi,l we get that P -a.s. for n large enough

νi,l(xk,2n) = Exk,2n [exp(

∫ τxi,2n

0

(ξn(Xs) − λi,l)ds1{τxi,2n = τΓl
})]

≥ n−1−ad!(1 − pn)d−1

nd

d−1
∏

j=0

κ

κ+ λi,l − ξn(yj)

≥ n−1−ad!(1 − pn)d−1

nd

κ

κ+ λi,l − ξk,2n

[

κ

κ+ λi,l + ln

]d−1

.

(3.72)
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d = dist(xi, xk) ∼ n/2 by part (ii) of Lemma 3.2. This and the fact that pn → 0 yield for

the first term above
n−1−ad!(1 − pn)d−1

nd
= exp(−O(n)). (3.73)

λi,l + κ = ξi,2n + o(1) by Lemma 2.1; ξi,2n ∼ θn by part (i) of Lemma 1.1; by part (ii) of

Lemma 1.1 ξi,2n − ξk,2n = C + o(1) for some random positive constant C . Hence, using

the fact that d = dist(xi, xk) ∼ n/2 and ln � n we can conclude that

νi,l(xk,2n) ≥ C ′ exp
(

− d log(ξi,2n + o(1) + ln) +O(n)
)

= exp
(

− n

2
log n(1 + o(1))

)

.
(3.74)

This gives the right lower bound and we are finished with the proof of part (ii) of Lemma 2.2.
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[1] G. Ben Arous and J. Černý. The arcsine law as a universal aging scheme for trap

models. Comm. Pure Appl. Math., 61(3):289–329, 2008.

[2] J.F. Crow and M. Kimura. An introduction to population genetics theory. Harper & Row,

New York, 1970.

[3] J. de Visser and J. Krug. Empirical fitness landscapes and the predictability of evolution.

Nat. Rev. Genet., (15):480–490, 2014.

[4] B. Derrida. Random-energy model: an exactly solvable model of disordered systems.

Phys. Rev. B (3), 24(5):2613–2626, 1981.

[5] M. Eigen. Self-organization of matter and the evolution of macromolecules. Naturwis-

senschaften, 58(10):465–523, 1971.

[6] W. Feller. An introduction to probability theory and its applications. Vol. II. John Wiley

& Sons, Inc., New York-London-Sydney, 1966.

[7] K. Fleischmann and S. A. Molchanov. Exact asymptotics in a mean field model with

random potential. Probab. Theory Related Fields, 86(2):239–251, 1990.

[8] S. Franz and L. Peliti. Error threshold in simple landscapes. J. Phys. A, 30(13):4481–

4487, 1997.

26



[9] S. Franz, L. Peliti, and M. Sellitto. An evolutionary version of the random energy model.

J. Phys. A, 26(13):L1195, 1993.

[10] W. Gabriel and E. Baake. Biological evolution through mutation, selection, and drift: An

introductory review. 1999.

[11] J. Gärtner, W. König, and S. Molchanov. Geometric characterization of intermittency in

the prabolic anderson model. Ann. Probab., 35(2):439–499, 2007.

[12] J. Gärtner and S. A. Molchanov. Parabolic problems for the Anderson model. I. Inter-

mittency and related topics. Comm. Math. Phys., 132(3):613–655, 1990.

[13] J. Gärtner and S. A. Molchanov. Parabolic problems for the Anderson model. II.

Second-order asymptotics and structure of high peaks. Probab. Theory Related Fields,

111(1):17–55, 1998.

[14] J. F. C. Kingman. A simple model for the balance between selection and mutation. J.

Appl. Probability, 15(1):1–12, 1978.

[15] W. König. The parabolic Anderson model, random walk in random potential. Birkhäuser,

Basel, 2016.

[16] W. König, H. Lacoin, P. Mörters, and N. Sidorova. A two cities theorem for the parabolic

Anderson model. Ann. Probab., 37(1):347–392, 2009.

[17] P. A. P. Moran. Global stability of genetic systems governed by mutation and selection.

Math. Proc. Cambridge Philos. Soc., 80(2):331–336, 1976.

[18] P. Mörters, M. Ortgiese, and N. Sidorova. Ageing in the parabolic Anderson model.

Ann. Inst. Henri Poincaré Probab. Stat., 47(4):969–1000, 2011.

[19] R. van der Hofstad, P. Mörters, M. Ortgiese, and N. Sidorova. Weak and almost sure

limits for the parabolic anderson model with heavy-tailed potentials. Ann. Appl. Probab.,

18(6):2450–2494, 2008.

[20] S. Wright. The roles of mutation, inbreeding, crossbreeding and selection in evolution.

Proceeding of the sixth international congress of genetics, 1:356–366, 1932.

27


