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Abstract

We consider a nonlinear system which consists of the incompressible Navier-Stokes equa-
tions coupled with a convective nonlocal Cahn-Hilliard equation. This is a diffuse interface
model which describes the motion of an incompressible isothermal mixture of two (par-
tially) immiscible fluids having the same density. We suppose that the viscosity depends
smoothly on the order parameter as well as the mobility. Moreover, we assume that the mo-
bility is degenerate at the pure phases and that the potential is singular (e.g. of logarithmic
type). This system is endowed with no-slip boundary condition for the (average) velocity
and homogeneous Neumann boundary condition for the chemical potential. Thus the total
mass is conserved. In the two-dimensional case, this problem was already analyzed in
some joint papers of the first three authors. However, in the present general case, only the
existence of a global weak solution, the (conditional) weak-strong uniqueness and the ex-
istence of the global attractor were proven. Here we are able to establish the existence of a
(unique) strong solution through an approximation procedure based on time discretization.
As a consequence, we can prove suitable uniform estimates which allow us to show some
smoothness of the global attractor. Finally, we discuss the existence of strong solutions
for the convective nonlocal Cahn-Hilliard equation, with a given velocity field, in the three
dimensional case as well.

1 Introduction

The so-called model H (see, for instance, [38] and references therein) has been proposed to
describe the motion of a binary mixture of two isothermal, partially immiscible and incompres-
sible fluids. This model is based on the diffuse interface approach and leads to the formulation
of a Cahn-Hilliard-Navier-Stokes (CHNS) system for the average velocity w and the order para-
meter ¢ (i.e., the relative concentration of one of the fluid components). In the case of matched
constant densities, a rather general CHNS system is the following

u, — 2div (v(p)Du) + (v - V)u+ Vi = uVe + v, (1.1)
pr+u- Vo =dv(m(p)Vp), (1.2)
pw=ap—Kx*xp+ F(p), (1.3)
div(u) =0, (1.4)



in Q x (0,7), where Q C R?, d = 2,3, is a bounded smooth domain (say, e.g., of class
C?), T > 0 is a prescribed final time, v stands for the fluid viscosity, D denotes the symmetric
gradient, that is, Du := (Vu + V7u)/2 and v is a given external force (the density has
been taken equal to one). The Cahn-Hilliard (CH) equation with mobility 72 and potential F' is
nonlocal (see, e.g., [6]). The interaction kernel K : R — R is a (sufficiently) smooth even

function and a(z) = / K(z —y)dy, x € Q.
Q

System (1.1)—(1.4) is subject to no-slip boundary condition for the velocity v and to homoge-
neous Neumann boundary condition for the chemical potential v (which ensures the conserva-
tion of the total mass), namely,

u=0, m(p)Vu-n=0, (1.5)
on 92 x (0,7"), and to the initial conditions

in €. Here, m stands for the outward normal to the boundary OS2 of €2, while ug and ¢, are
given.

Problem (1.1)—(1.6) has been studied so far under various assumptions on v, m and F' (see
[12, 21, 22, 23, 24, 25, 26, 27, 28, 37], cf. also [20] for unmatched densities). However, there are
very few results in the physically more relevant case, namely, when the viscosity depends on ¢,
the mobility m degenerate at pure phases (i.e. ¢ = £1) and F'is a singular potential (say, of
logarithmic type). In this case, the existence of weak solutions (d = 2, 3) has been proven in
[25], where, for simplicity, the viscosity ¥ was assumed to be constant (as far as existence of
weak solutions is concerned the case of a ¥ depending on ¢ can be dealt without difficulties as
well).

It is worth recalling that for CHNS systems where the CH equation is the standard (local) one
(see, for instance, [1, 2, 10, 11, 29, 30, 31, 40, 49, 52]), the case of degenerate mobility and
singular potential is already difficult in the case of the CH only (cf. [17]). More precisely, the
existence of a weak solution is essentially the only available result as far as we know (see [10]).

Going back to our nonlocal system, in the two dimensional case, the existence of the global at-
tractor has been proven in [25]. This result can be also extended also to the case of v depending
on . On the other hand, uniqueness of weak solutions and the connectedness of the global
attractor have been established in [21] for the case of constant viscosity only. If the viscosity
depends on ¢ then weak-strong uniqueness has been proven in [21] for constant mobility and
regular potential (i.e. defined on R with polynomially controlled growth). In the more general
case (m degenerate and [’ singular), a conditional weak-strong uniqueness in dimension two
was also established in [21] by supposing the existence of a strong solution.

The basic open issue in the two dimensional case is therefore the existence of a strong solution



under the mentioned assumptions on v, m and F'. This is precisely the goal of the present
contribution.

Proving the existence of strong solutions when v depends on ¢ is much more difficult with
respect to the case of a constant v (cf. [21], cf. also Remark 8 below). We recall that, in the
simplest case (i.e., ¥ and m constants and F' regular), existence of strong solutions in two
dimensions was proven in [24].

The existence of a strong solution to (1.1)—(1.6) paves the road for two further results. The
first is concerned with uniform in time regularization estimates, which, in particular, provide a
regularity property for the global attractor. The second is concerned with the convective nonlocal
CH equation, for which we are able to prove existence of strong solutions also for the more
challenging case d = 3, under quite general regularity assumptions on the given velocity field.
In particular, this allows us to deduce some smoothness for the global attractor.

The plan of the paper follows. In the next section, besides some notation and definitions, the
known results on existence and uniqueness of weak solutions are recalled. Section 3 is devoted
to state the main regularity result of the paper whose proof is given in Section 4. Section 5
contains uniform in time estimates and the related regularity of the global attractor. In the fi-
nal Section 6, we extend the analysis of the previous sections to the convective nonlocal CH
equation with a given velocity field.

2 Weak solutions: what is known

Let us fix some notation first. We set H := L?(Q), V := H'(), and we introduce the
classical Hilbert spaces for the incompressible Navier-Stokes equations with no-slip boundary
conditions (see, e.g., [51]), namely,

L2(Q)2
Gu = {w € CF()2 - dv(u) =0},

and

Vi == {u € Hy(Q)* : div(u) =0} .
Denote by || - || and (-, -) the norm and the scalar product, respectively, on both H and G y;,,,
as well as on L?(Q)? and L?(2)?*? The notation (-, ) x and || - ||x will stand for the duality

pairing between a Banach space X and its dual X', and for the norm of X, respectively. For
every f € V', weset f := |Q]7'(f, 1)y Here || is the Lebesgue measure of {2. The Hilbert
space Vy;, is endowed with the scalar product

(u,v)y,,, = (Vu,Vv) = 2(Du, Dv), Yu,v € Vi,



Let us also recall the definition of the Stokes operator S : D(S) N Gy, — Gy in the case of
no-slip boundary condition (1.5);, i.e. S = — PA with domain D(S) = H?(Q)¢ N Vy,, where
P Lz(Q)d — (4, is the Leray projector (see, for instance, [51]). Notice that we have

(Su,v) = (u,v)y,, = (Vu,Vv), Yu e D(S), Yv € Vy,.

We also recall that S~ : Gy — Gaiv is a self-adjoint compact operator in G, and by the
classical spectral theorems there exists a sequence A; with0 < A; < Ay <--- and \; — oo,
and a family of w; € D(S) which is orthonormal in G 4;, and such that Sw; = A\ jw;.

We also recall Poincaré’s inequality
Mull < [[Vull?,  Yue Vi,

and two other inequalities, which are valid in two dimensions of space and will be used repeat-
edly in the course of our analysis. More precisely, the particular case of the Gagliardo-Nirenberg
inequality (see, e.g., [8])

lolzoey < Co [l Il VoeV, 2<g<os, 2.1)
as well as Agmon’s inequality (see [3])

[0y < Co ol ol sy s Vo€ HYQ). (2:2)

In these inequalities, the positive constant (72 depends on g and on 2 C R?, while the positive
constant C'3 depends on §2 only.

The trilinear form b appearing in the weak formulation of the Navier-Stokes equations is defined
as usual, that is,

b(u,v,w) = /(u-V)v-wdm, Vu,v,we Vy,.
Q

The associated bilinear operator BB from Vy;, x Vi, into V., is defined by (B(u,v), w) =
b(u,v,w), for all u, v, w € Vy,. We also set Bu := B(u, u), for every u € Vy;,, and we
recall that

b(u,w,v) = —b(u,v,w), Vu,v,w € V.

In addition, in two dimensions, the following estimate holds
b, v,w)| < Cy [[ul? [ Vul[ Vo |w]/?||Vwl|'2, Vu,0,w e Vi,

with a constant @1 > () that only depends on ).

If X is a (real) Banach space, we shall denote by L%, (0,00; X), 1 < p < o0, the space of
functions f € L} ([0, 00); X) that are translation bounded in L} ([0, c0); X), i.e. such that

loc

t+1
171 0 ey = 00 / 1£(5) s < oo
t
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We are now ready to recall the result on the existence of weak solutions proven in [25]. For
completeness, we deal with d = 2 and d = 3. The assumptions on the kernel K, on the
viscosity v are the following

(K) K(-—z) € Wh(Q) for almost any = € ) and satisfies

K(z)=K(-z), a(x) :—/QK(x—y)dyEO, ae x €,

a*::sup/’K(:E—y)’dy<OO, b::sup/\VK(m—y)]dy<OO-
0 0

€N z€e)
(V) The viscosity v is locally Lipschitz on R and there exist 1, 5 > 0 such that

ﬁl‘< V(S)fg ﬁg, Vs eR.

The mobility m is supposed to be degenerate at +-1 and the double-well potential F' is assumed
to be singular (e.g. logarithmic like) and defined in (—1,1). More precisely, we assume the
condition

(M) The mobility satisfies m € C'([—1,1]), m > 0, m(s) = Oifand only if s = —1 or
s = 1. Moreover, there exists ¢y > 0 such that m is non-increasing in [1 — g, 1] and
non-decreasing in [—1, —1 + €.

Furthermore, m and F' are supposed to fulfill the condition
(A1) F e C*(—1,1)and X\ := mF"' € C([-1,1]).

Condition (A1) is typical in the analysis of the CH equation with degenerate mobility (see [17,
35, 36, 33]).

As far as F' is concerned we assume that it can be written in the following form
F1:2fﬁ.+'557

where the singular component £ and the regular component F, € C?([—1,1]) satisfy the
following assumptions.

(A2) There exists €y > 0 such that Fl” is hon-decreasing in [1 — €g, 1) and non-increasing in
(—1,——1—F60L

(A3) There exists ¢y > 0 such that

F"(s)+a(x) > ¢, Vse(-1,1), aez€eq.



(Ad) There exists p € [0, 1) such that

pF/(s)+ F)'(s) +a(z) >0, Vsec(-1,1), ae.inQ.

(A5) There exists oy > 0 such that

m(s)F/"(s) > ag, Vse[-1,1].

We denote by ¢ a positive constant the value of which may possibly vary from line to line.

It is worth recalling that a typical situation is m(s) = k1(1 — s?) and F given by

0. 0
F(s) = —532 + 5((1 + s)log(1 + s) + (1 — s)log(1 — s)), (2.3)
where 0 < 6 < 6., 0 being the absolute temperature and 6. a given critical temperature below
which the phase separation takes place.

In [25] the viscosity ¥ was assumed to be constant just to avoid technicalities, but the results
therein also hold for a nonconstant viscosity satisfying (V).

As far as the weak formulation is concerned, we point out that, if the mobility degenerates then
the gradient of the chemical potential ;. is not controlled in some LP space. For this reason, and
also in order to pass to the limit to prove existence of a weak solution, a suitable reformulation
of the definition of weak solution should be introduced in such a way that 1 does not appear
explicitly (cf. [17], see also [25]).

Remark 1. It is worth observing that all the results mentioned or proven in this paper hold, in
particular, when F' is strictly convex and a = 0 (see [34]-[36], cf. also the discussion in [37]).
The definition of weak solution given in [25] is

Definition 1. Let ug € Gy, 0o € H with F(pg) € LY(Q), v € L*(0,T;V}),) and 0 <

T < +o0 be given. A couple [u, | is a weak solution to (1.1)-(1.6) on [0, T if

B u, o satisfy
u € L¥(0,T; Gai) N L0, T; Vi)
u, € LY3(0,T;V),), if d=3,
w, € L*(0,T;V,))), if d=2,
0 € L>(0,T;H)NL*0,T;V),
@ € L2(0,T; V'),

and

v € L*(Qr), lo(z, )| <1 ae (z,t) € Qr:=Qx (0,T);



W foreveryw € Vy,,, everyp € V and for almost any t € (0,T) we have
<ut7 w>Vdiv + 2 (V (90) D’Ll,, Dw) + b(“a u,w) = ((Cl(p — K % SO)VSO»U)) + <’U,’U)> )
(et + [ m@F )V Yo+ [ m(g)ave- vy
Q Q

+ [ o) (Ve - VK £ ) Vo = (up, V)
0
B the initial conditions u(0) = ug, p(0) = ¢ hold.

Recall also that from the regularity properties of the weak solution we have
u € Cu([0,T];Gai), ¢ € Cu([0,T]; H).

Therefore, the initial conditions w(0) = wg, ©(0) = o make sense.

The results on existence of weak solutions and, in the case of constant viscosity, of their unique-
ness, proven in [25, Theorem 2] and in [21, Theorem 4] (cf. also Remark 2), are summarized in
the following

Theorem 1. Assume that (K), (V), (M) and (A1)—(A3) are satisfied. Let uy € Gg;,, and o €

L>(Q2) with F(po) € L'(Q) and M (o) € L' (), where M € C*(—1,1) is defined by

m(s)M"(s) = 1foralls € (—1,1) and M (0) = M'(0) = 0. Letalsov € L2 ([0, 00); V).
Then, for every T" > 0 system (1.1)<1.6) admits a weak solution [u, | on [0, T such that

P(t) = @, forallt € [0,T]. In addition, if d = 2 then the weak solution [u, | satisfies the

energy equation

35 Ul + 161P) + 21T Dul’ + [ m(o)F @)V + [ am(e)|V
Z/M(w)(VK*sD—wW)-Vso+/(a<p—K*<p)u-Vso+<v,U>, (2.4)
Q Q

for almost any t > 0, while if d = 3 then [u, y| satisfies the following energy inequality
(@I + o)l )+2/ Ve Du||2++/ | me PV

1
+ [ [am@Ivel < 3wl + o) + [ [ mo) (VK +o - o70) -
t
+/ /(agp—K*gp)u-V4p+/<’U,u>, vVt > 0. (2.5)
0 JQ 0

N —

Let d = 2 and let v be constant. In addition, suppose that assumptions (A4) and (A5) are
satisfied. Then the weak solution to system (1.1)<(1.6) is also unique. Moreover, let [u;, ;| be
two weak solutions corresponding to two initial data [w;, ©o;] and external force densities v;,



with wgy;, € Gaivs ©Yoi € LOO(Q) such that F(gO()Z) € Ll(Q), M(QOOZ) < L1<Q) and v; €
L2

loc

([0,00); Vi), i = 1,2. Then, setting u := Uy — w1, ¢ := Y3 — 1 and v = vy — vy,
the following continuous dependence estimate holds

I + e @I + 1wl 41, + 1012200 < (1O + e (0)T) Aot)

1RO As (1) + [0 0z yAn(D).
(2.6)

forallt € [0, T], where Ay, Ay and A5 are continuous functions which depend on the norms of
the two solutions. The functions A; also depend on I, K, v and €.

Remark 2. We observe that in [25, Theorem 2] this kind of additional condition was assumed:
there exists k > 4(a* — a. — by), where a, = inf,cq fQ K(x —y)dy, by := min_y 1) FY,
and there exists €5 > 0 such that

F'(s) >k, Vse(—1,—1+¢e]U[l—¢€,1). (2.7)

This assumption was helpful in the proof to deduce the equicoercivity Fi.(s) > d; 52 — 85, for all
s € R (with §; > 0, and d € R both independent of €), for the family of e—regularizations F.
of F'. However, we now show that (2.7) is superfluous. Indeed, it can be removed by employing a
variant of the Elliot-Garcke type of approximation (see [25, Proof of Theorem 2]). More precisely,
the following approximations F}. and F5, for F} and F5, respectively, can be considered (see
also [20])

F(l—e+F/(l—e(s—(1—¢)+iF/(1—e(s—(1- 6))2

—|—(s—(1—e))3, s>1—¢,

Fi(s) =< Fi(s), Is| <1—¢,

Fi(-1+e)+F/(-14+€¢(s—(-1+€e) +iF(-1+e)(s— (-1+ e))2
Hs— -1+, s<-1+e,

(Bl-a+F1-(s—1-e)+ iR 01-e(s—(1—e),

s>1—¢,

FQG(S): F2(5)7 ‘8‘§1_€7
FB(—1+e)+F/(-14+€)(s—(-1+€) +iF (-1+e)(s— (-1 +e))2,
s<—1+4c¢€.

\

It is easy to check that F. € C2!(IR) and that, due to the lower bound F”(s) > —k, for all

s € (—1,1), where k = ||al|z=(q) — co (cf. (A3)), there exist two constants k; > 0 and
ks € R, which do not depend on ¢, such that

FE(S> Z k1|5|3 — ]{52, Vs c R. (28)



Moreover, as a consequence of (A3), we still have
F'(s)+a(z) > ¢, VseR, aexze. (2.9)

and (A2) implies that there exists €y > 0 such that
Fi(s) < F(s)+ €, Vse(-1,1), Vee (0,e). (2.10)

Thanks to the bounds (2.8)—(2.10), the argument of [25, Proof of Theorem 2], to which we refer
for the details, can still be reproduced, and the same basic estimates for the sequence [u., ¢]
of approximate solutions can be recovered. Moreover, the argument to prove that [p| < 1
almost everywhere in () remains unchanged. There only remains to show that we can still
pass to the limit, as e — 0, in the term [, m. () F) () Vi - V) (for all ) € V), which
appears in the variational formulation of the approximate problem, in order to prove that the limit
couple [u, ] is a weak solution. To this aim, notice that, due to (A1) and to the convergence
Y — , pointwise almost everywhere in ()7, it is easy to see that we still have

me(p)F (0c) — m(p)F"(p), a.e. inQr. (2.11)

Moreover, there holds

Ime(s)E(s)] < Ao +6m(1 —€)(s — (1 = €)) X[1—e+00) ()
+6m(—1+e€)|s — (=1 + €)|X(—o0,-1+4(5) , (2.12)

where Ao := ||A]|ze<(—1,1), and x g denotes the characteristic function of a set £ C RR. Since
¢ is bounded in L"(Q7), where r = 10/3if d = 2, and r = 4 if d = 2, then, by Lebesgue’s
theorem, (2.11) and (2.12) entail

me(e) F (pe) = m(p)F"(¢),  stronglyin L"(Qr).

This strong convergence, together with the weak convergence ¢, — ¢ in L*(0,T; V), allow
to pass to the limit in the term above.

Remark 3. It is worth pointing out that, to prove the existence of a weak solution (in the sense
of Definition 1) we do not need that the potential /' has some singular behavior at the endpoints
s = =1 (cf. (A1)—(A3)). Instead, the key role is played by the degenerate mobility, i.e., by
condition (M), with F' being also C*([—1, 1]). This is enough to ensure the crucial bound || <
1 almost everywhere in (). However, concerning uniqueness and regularity results (see the
following sections), assumption (A5) implies that ' must have some singular behavior at the
endpoints, in the sense that, at least, F'”(s) — 0o, as s — +1.

Remark 4. By combining (A1) with the definition of the function M, we can see that F' and
M are not independent. Actually, in the statement of Theorem 1, F(yy) € L'(Q) is a con-
sequence of M () € L*(£2). Moreover, if (A5) holds then the two conditions are equivalent
(see [25]).



3 Strong solutions in two dimensions

Here we state and prove our main result: the existence of strong solutions to (1.1)—(1.6).

Let us introduce some preliminaries that we shall need in the proof. First of all we observe that
equations (1.2)—(1.3) can formally be rewritten as follows

¢t t+u-Vo=AB(-¢) +div(N(p)Va) — div(m(p) (VK * ¢)), (3.1)

where we have set
B(z,s) = /OS B(z,o)do, Bz, s) =m(s)(a(z) + F"(s)), (3.2)
N(s) = sm(s) — M(s), M(s)= S m(o)do , (3.3)

0

forall s € [—1,1] and for a.e. x € (2. Notice that we have
VB(,¢) = M(p)Va+ B(-,¢)Ve. (3:4)
Hence the boundary condition m()V i - 1 = 0 can be rewritten as
[VB(-, ) + N(p)Va —m(p)(VK * )] -n = 0. (3.5)

Thus the equivalent weak formulation of equations (1.2)—(1.3) is

(o )y + /Q VB(.¢) Vit /Q N (@) Va- Vi /Q m(@) (VI %) -V = (wip, Vi),

for every 1) € V and for almost any t € (0, 7).

On account of this formulation we can give our definition of strong solution if d = 2.

Definition 2. Letug € Vg, 0o € V N CP(Q) for some 3 € (0,1) andv € L*(0,T; V)
and 0 < T < +oo be given. A weak solution [u, ] to (1.1)-(1.6) on [0, T'| corresponding to
[wo, @0 is called strong solution if

w € L™ (0,T; Vai) N L2 (0, T H(Q)?) . e € L*(0,T; Gaio)
0 € L0, T; V)N L*0,T; H*(Q)), ¢ € L*(0,T;H),

u; — 2div(v(p)Du) + (u - V)u + Vi = uVep + v,

¢t +u - Vo =AB(-,p) + dv(N(p)Va) — div(m(e)(VK ),
div(u) =0,

almost everywhere in Q) x (0,T") with
u=0, [VB(,p)+N(p)Va—m(p)(VK+p)] n=0,

almost everywhere on 0§2 x (0,T") and (1.6).
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Remark 5. It is worth noting that, for a strong solution, the nonlocal CH equation can also be
written

pr+u - Vo = dv(m(p)F"(¢)Ve +m(p)(aVe + ¢Va - VK * ),
almost everywhere in Q2 x (0,T"), while the boundary condition becomes
[(m(@)F"(9) Vi +m(p)(aVe + ¢Va — VK x p)] -n =0,
almost everywhere on 02 x (0,T).
Then we shall use the following lemma to handle the boundary condition (3.5).
Lemma 1. Let p,1) € H'Y2(0Q) N L>(09Q). Then o € H2(02) N L>(09) and
H90¢|’H1/2(69) < HSOHL‘X’(aﬁ)HwHHl/Q(QQ) + WHLW(aQ)H%OHHI/%Q)-

Proof. The proof is an immediate consequence of the definition of the space H'/2(9Q) with
seminorm given by

[o(x) — )
eliom = [ [ EE=EL @), 29
where dI'(-) is the surface measure on 0 (see, e.g., [13, Chapter IX, Section 18]). O

To establish the regularity of solutions we shall also need the kernel K to be more regular
than W' A possible assumption is that K € W2’1(R2). However, this assumption excludes

loc * loc

physically relevant classes of kernels like, e.g., Newtonian and Bessel kernels. This class can
be included by assuming that K is admissible, according to the following definition (see [7,
Definition 1]).

Definition 3. A kernel I € W' (R?) is admissible if the following conditions are satisfied:

loc
(K1) K € C°(R*\ {0});
(K2) K is radially symmetric, K (x) = K (|x|) and K is non-increasing;
(K3) K" (r) and K'(r)/r are monotone on (0, 1¢) for some 1o > 0;

(K4) |D3K (x)| < Cylz|~3 for some C,, > 0.

The advantage of working with admissible kernels is due to the following lemma (cf. [7, Lemma

2]).
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Lemma 2. Let K be admissible. Then, for every p € (1,00), there exists C,, > 0 such that
IVUllzo@zxe < Cplllliry, V¥ € LP(Q),

wherev = VK ).

Notice that, as a consequence of assumption (K), we have a € Wh>°(Q). If, in addition, K
is admissible, then, as a consequence of Lemma 2 (taking v» = 1, and hence v = Va),
we immediately have that a € W?P(Q), for all p € (1, 00). Hence, the trace of Va on the
boundary X2 is well defined, and, in particular, we have Va - n. € W1=1/PP(90)).

Before stating our result we need to replace (A1) with the following slightly stronger assumption
(A1); F e C3(—1,1)and X\ := mF" € C* ([-1,1)).

Our main theorem is

Theorem 2. Let assumptions (K), (V), (M), (A1),, (A4)—(A5) hold and suppose that K €
W21 (R?) or that K is admissible. Let ug € Gy, 0o € V N L®(Q) with F(ip9) € L(Q)
and M(po) € L'(Q2), where M is defined as in Theorem 1. Let also v € L*(0,T; G ).
Then, for every T' > 0, problem (1.2)—(1.6) admits a weak solution [u, ] on [0, T'| such that

u € L™ (0,T;Ggi) N L? (0,75 Vi) u;, € L2 0,7;V,).), (3.7)
p € L0, T; V)N L0, T HA(Q),  ¢p € L*0,T; H). (3.8)

Assume in addition that wy € Vg, and that oo € V N CP(Q) for some 3 € (0,1). Then,
problem (1.2)—(1.6) admits a (unique) strong solution satisfying (3.8) and

w e L®(0,T; Vy) N L? (0, T; H? (9)2) , w, € L2 (0,T;Gyin) - (3.9)

Finally, suppose that o € H?*(§)) and the following compatibility condition holds

aB(?@O)
on

Then, the strong solution also satisfies

=m(po)(VK x ) -n—N(p)(Va-n), ae ond. (3.10)

0 € L0, T; H*(Q)), ¢, € L>(0,T;H)NL*0,T;V). (3.11)

Remark 6. We observe that uniqueness was already proven in [21, Theorem 7]. Actually, a
conditional weak-strong uniqueness was established by supposing the existence of a strong
solution. That result is no longer a conditional one.
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4 Proof of Theorem 2
The proof is divided into three steps.

Step 1. We first establish the L>°(0,T; V) N L*(0,T; H?*(Q)) regularity for . For this pur-
pose, we need to carefully deduce higher order estimates on the nonlocal CH in such a way
that the only regularity which is exploited for w is the weak one, i.e., u € L*(0,7; Ggir) N
LQ(O, T; V). Indeed, if the viscosity is nonconstant, we cannot directly apply the classical
regularity result [51, Theorem 3.10] for the incompressible Navier-Stokes system in 2D (which
also requires a regularity assumption on the initial velocity uy € Vy;,,) and adapt to our situation
the argument of [24].

The (formal) idea is to test (3.1) by B(-,¢); = B(-,©)¢:. In order to make the argument
rigorous, let us develop a suitable approximation scheme. We first approximate problem (3.1),
(3.5) with the following

et u- Vo =AB(-, ) + div(N(p)Va) — div(m () (VK * Q(¢))) , (4.1)
[VB(-, ) + Ne(p)Va — me(9) (VK x Q(¢))] -n =0, (4.2)

where we have set

Ne(s) = sme(s) = Me(s),  Me(s) =

Be(x,s) = /OS Be(z,0)do,  Be(z,s) =me(s)(alz) + F(s)), VseR, aexeq,
Smg(a)da, Vs e R.
0

Here we the singular potential I is replaced by the regular potential . F, = Fi. + F5., with
Fic and F5, defined by (see [17])

(F(1—¢), s>1—c¢,

Fi(s)=4 F(s), [|s|<1—c¢, (4.3)
L F(=14+¢), s<—1+e,
(Fy(1—¢), s>1—c¢,

Fols) =4 F)(s), [|s|<1—c¢, (4.4)
[ Fy(=14¢), s<—lde,

with £1.(0) = Fi(0), F|.(0) = F|(0), F5.(0) = F5(0), F3.(0) = F3(0). Moreover, the
degenerate mobility m is replaced by

m(1l—e€), s>1—¢€,
me(s) =< m(s), |s] <1—k¢, (4.5)
m(—1+e¢€), s<—-1+e.
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In the last term of (4.1), ) : R — R is the truncation function defined as
Q(s) = max{—1,min{1,s}}, VseR.

Notice that, thanks to condition (A1), we have the bound |m(s)F” (s)] < A, foralls € R

and for all € € (0, 1), where Ao, := ||A[| Lo(—1,1). On account also of conditions (A4) and (A5),
there holds

0<ap(l—p) <pPelz,s) <k*, VseR, ae x€, (4.6)
where k* = Mooloo + Moo, Moo = ||M||1oo(21,1), G = ||a||L(q) doO not depend on €.

Moreover, notice that the functions m., M, and /N, satisfy the following properties

0<m(l—e€) <ms) <Mme, |[Mc(s)|<muls], Ne(s)|<No, VseR,

(4.7)
[me(s2) —me(s1)| < mllsa —s1],  [Me(s2) — Mc(s1)| < moolsa — s1|, Vsi,s2 €R,

(4.8)
‘./\[6(82)—./\[6(81)’ SNOIO‘SQ—Sl‘, V51,32 GR, (49)
where No = || N oo (—1,1), N = [|[N'||oo(1,1) and m, := ||m/|| oo (—1,1) are indepen-

dent of €. Indeed, regarding the last bound in (4.7), it is easy to check that, forall s > 1 — ¢, we
have NV (s) = N (1 — ¢) (a similar expression holds for s < —1 + ¢). Finally, due to condition
(A1), we have

|ﬁ($,$2)—ﬁ($,31)| Sﬁo/o|32_81|7 vs1752€R7 a'e'$€Q7 (4.10)

where B2 = ml aos + AL, and AL := || A/||Loo(—1,1)-

We now prove that problem (4.1), (4.2), for every fixed € > 0, admits a solution ¢ € L>(V) N
L*(H*(9)), with ¢, € L*(H). In order to prove this regularity, the choice of the approximation
argument is crucial. Indeed, we point out that the use of the Faedo-Galerkin (FG) method is
problematic. The reason is that testing the projected (4.1) by 9, B(+, ¢,) (here ,, denotes a
FG approximate solution) is not allowed, since B(-, ¢,) does not belong, in general, to the
subspace spanned by the first n elements of the FG basis. The problem is the nonconstant
mobility. On the other hand, testing by J;¢,, also leads to technical difficulties.

We shall therefore employ a different approximation approach; in particular, the proof will be
carried out by means of a time-discretization argument. For simplicity of notation, for the moment
we drop the indication of the approximation parameter €. We fix N € N and set 7 = T'/N. We
first introduce the following incremental-step problem: for k = 0,..., N — 1, given ¢, € V,
find ¢+1 € V that solves

14



—TAB(, 911) + Y1 = r — TUx - Viprp + 7div(N(¢r) Va)
= 7div(m(pr) (VK + Q(er)) (4.11)

IB(-, r+1) = m(gp) (VK % Q) - n — N(¢p)(Va-n), ae.ondf), (4.12)

on
where U, are given by

1 (k+1)T
Uk::—/ u(s)ds, k=0,...,N—1.

T Jkr
We now claim that (4.11), (4.12), for every ¢y € V, admit a solution (1, . .., pn) € H2(Q)N.
Indeed, introducing, for every &k = 0, ..., N — 1, the nonlinear operator A; : V' — V'’ defined
by

<Ak907 1/}>V = T(VB<7 gp)? v¢) + ((pv ¢> - T(Uk907 V¢) ) V()Ou ¢ S V7 (4.13)

and g, € V' given by
(ks )y = () — T(N (k) Va, V) + 7(m(er) (VK % Q(er)), V), VeV

then problem (4.11)—(4.12) can be written as
Apors1 = g, in V' (4.14)

We now observe that A, is pseudomonotone and coercive on V. Indeed, writing the first term
on the right-hand side of (4.13) as 7(5(-, ») Vi, V) + 7(M(p)Va, V1)), then it is straight-
forward to check that A;, satisfy all the assumptions of the general results given by [47, Lemma
2.31 and Lemma 2.32] (for pseudomonotonicity) and by [47, Lemma 2.35] (for coercivity). This
can be seen by taking a(z,r, s) := 76(z,7)s + TM(r)Va(x) — U, b(z,r) := 0, and
c(x,r,s) := rin[47, Lemma 2.31, Lemma 2.32 and Lemma 2.35]. Therefore (4.14) admits a
solution w11 € V (see [9], cf. also [47, Theorem 2.6]).

Using a bootstrap argument we find that o5 € H?*(Q), for k = 0,..., N — 1. Indeed,
owing to (4.7)—(4.9), from (4.11) and (4.12) we deduce that AB(-, p541) € L*77(Q), for all
0 < v < 1,and OB(-, ri1)/0n € HY2(98). From elliptic regularity theory, we then
infer that B(-, or11) € W*277(Q). Hence we have VB(-, pry1) € WH277(Q)2, for all
0 < ~ < 1. This, by comparison in (3.4), implies that V.1 € L*(Q2)2. Therefore, the
right-hand side of (4.11) is in L?(2) and by applying elliptic regularity theory again we get that
B(-, ory1) € H*(Q). Hence, VB(+, p111) € H'(Q2)? and, thanks to (4.6) and (4.10), it is
easy to check that we also have V3(-, p11) € L4(Q)2. Then, again by comparison in (3.4),
we deduce that Vo1 € H' ()%, whence ¢r1 € H?(S2). Moreover, the following identity,
which will be useful later, holds

1
T
FrkH 5('790k+1)

b
62('7 @k-ﬁ-l)
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_ M) 0; (9;a) — Mawkﬂaa + M B+, ori1)0;

B, ore1) B, ore1) B k)

A .
(4.15)

Let us now begin to establish the basic discrete estimates. We first test (4.11) by ¢x41 and sum
over k from k£ = 0 to kK = n, where n < N. By using the following elementary identity

n

> (k1 — ks Prr1) Z lerer — @il + —H%HII2 - —I\woll2 (4.16)
k=0

and (3.4), we get

—Z @1 — @ill* + —”80n+1H +TZ " Ph+1 V90k+17V901<:+1)

= —||900||2 + TZ NVE « Q1) — N(or)Va, Vria)
- TZ (ors1)Va, Vi ). (4.17)
Observe that
7|3 (M) Va, Vorn)| 703 IVoril? + 7Csmuc 3 lownl’s  @18)
k=0 k=0 k=0
71> (New)Va, Vora) | < 70> IVerall® + Comu T (4.19)
k=0 k=0
71 (mler) (VK % Q(#r)), Veprar)| < 70 Y IVprall* + Comuc T. (4.20)
k=0 k=0

Therefore, inserting estimates (4.18)—(4.20) into (4.17), using the lower bound in (4.6), and
choosing ¢ > 0 small enough (i.e., d < ap(1 — p)/6), we obtain the discrete inequality

D lorsr = el + o ll* + 7an(1 = p) Y [ Veoraal®
k=0 k=0

< llgoll® + Conc T+ 7Cnic Y ks |I®

k=0
n—1

= loll* + Con e T+ 7Cr i o1 I + 7Cm Z ol
k=0

Choosing 7 > 0 small enough (such that, e.g., 7Cy, k < 1/2), by means of the discrete
Gronwall Lemma we hence obtain the estimate

> llorss — @il + llonal? + 7ao(1 = p) Y IVeoraall* < Cr(1 + lwol®), (421)
k=0 k=0
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forn =0,..., N — 1. The next step now consists in testing (4.11) by B(-, pr+1) — B(+, px)-
We employ for B(-, ¢x) the analogue of the elementary (4.16), the lower bound in (4.6), the
following discrete integration by parts formula

TZ (pr)Va, V(B(-, r1) = B or)) = 7(N(pnr1)Va, VB, pui1))

- TZ (prs1) — N(er))Va, VB(:, opi1)) — 7(N (o) Va, VB(-, ¢0)) ,

and a similar formula for the term in the convolution operator, to get

ao(l - ZH‘PRH_S%H +—|IVB o) |I” + ZIIV See) — Bl on)) I
< —||VB(-,s0o)|| — (Mpus1)Va, VB(, gui1))

+Z (k1) = N () Va, VB(-, px11))
+ (N(SOO)V@ VB(-,¢0)) + (m(@n+1) (VK % Q(¢n11)), VB(-, ¢nt1))

- Z M) (VE % Q(pr+1)) — mgi) (VK x Q(¢r)), VB(-, 1))

- (m(@0)<VK * Q(()OO)% VB(? 800)) - Z (Uk : chk:-&-l? B<7 (:Ok-f—l) - B(u Spk))
k=0
(4.22)

Let us now estimate individually the terms on the right-hand side of (4.22). We begin with those
terms which are easier to be estimated. We have

|(N (0ns1)Va, VB(-, 9ni1)) | < Noo|[Valloo| 272 VB(:, 0ns)|

1
< gHVB(, Qanrl)HQ + Cm,K,Q ) (4.23)

| (W) = Npw) Va. VB o))

k=0

<D NLIVallsllonir = erlllIVBC, @nin)
k=0

ap(l —p) - 9
< — 7 —
> AT ;:0: HSOkH SOkH

+ Conicann™ Y IVBC past) I (4.24)

k=0
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|(m<§0n+1)(vK * Q(Qpn+1))7VB<>90n+1))| S mOOb’Q“/ZHVB(ﬂOnJrl)H

1
< SIVBGni)IP + Cokca,  (4:29)

n

| > (m(@r1) (VE % Q(0r41)) — mln) (VK + Qr)), VB(-, gii1))|

k=0

< (m&IQY2 +me) b Y llpess = erllIVBC prs)|

k=0

040(1 - P) . -
< TP S it — oullP + Consesrann ™ 3 IVBC, o)1

- 4t
k=0 k=0
(4.26)

where || Val|o := || Val| 1= (q)2- The estimate for the last term on the right-hand side of (4.22)
is more delicate. We first observe that, by means of a direct computation, the following bounds
can be deduced

n
U < llullexorcan s 7Y IVU < lulioomr,) .  n=0,....N -1
k=0

(4.27)

Then we observe that

‘ > (Ui Vi, B(,oea) — B(-, @k))’ < % > o — @xll®
k=0 k=0

+CE* Y |[U - Vornl®.  (4.28)
k=0

On the other hand, we have

Ck*r Y Uy - Virnll? = Ok 7 Y |Us 5 (VB( 1) = M) Va)
=0 =0 y Ph+1
Ck**r &
< 2= ) kz_o U222 IV B, 9r11) 7402
Ck?r &
+ PEICEAE kz:;mZo“VCLHgoHUk“%‘*(Q)?||90k+1||%4(9)

< Cr Y IUINUIVBC, k) 1B @il

k=0

+C7 Y _IUPIVURE + O Y lernlPllowlly
k=0 k=0

<01 Y IBC o)z + Com Y NUPIVURIPIVB(, @) I

k=0 k=0
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+ Cllullie o1 1eli20.rv,,) + Cr(1+ lleoll®) (4.29)

We proceed to estimate the term in the /2-norm of B(-, pr+1)- By means of a classical elliptic
regularity estimate and by using (4.11), we find

572 ||B('790k+1)||%12(9)
k=0

< 0or Y (IABCpus)l + [BC gin) HMHﬂ
k=0

= Z e = ull® + CérkZO U Voo * + Cér; ldiv (N (1) Va) [

H1/2(89)>

+ 0572 ldiv(m(e) (VE * Qo)) 1P+ Cor Y I B( @)l

k=0

+ Co7 Z HaB—w (4.30)

k=0

H1/2(aﬂ)

As far as the boundary term in (4.30) is concerned, on account of (4.12) we have

eS|

n

< Cérz ([lm(er) (VK * Q(¢r)) - "”izlﬂ(aa)

H/2(6Q) —o

n

N (Va1 m0) < €67 S (1m0 B on | (VE * Qer)) - 200

k=0
+ 1M (i) /200y | (VI # Q1) - Pl Lo 02y + IV (00) [ Tos 90y V- 7l /20

+ NV (i) 5200 IV - 1l T o) < COT Y~ mZ K * Q1) 2

k=0
+ CoT 2(2 méf”‘ﬁk”?{lm(am + 2m§|8Q|1) b* + Cor Z NgoHaH?ﬁ(Q)
k=0 k=0
+ 87 Y N lorl3psgo0) 0 < COT +Co7 Y ll@illy < Crd(1+ [lpoll3), (4.31)
k=0 k=0

where mg := m(0). In the chains of estimates (4.31) we have employed Lemma 1, the classical
trace theorem, the definition of the space H'/?(012) to estimate the term () 1200
(cf. (3.6)), Lemma 2 to estimate the terms in the H?-norms, the fact that ( is bounded, and
inequality (4.21) in the last estimate. Furthermore, we have used the fact that if ¢ € H'(Q)
and |¢| < ( a.e. in ) for some positive constant ¢ (with {2 smooth enough), then the trace
Yo = plaa € HY?(0Q) of ¢ on the boundary O satisfies |1op| < (¢ a.e. on 92 and,
moreover, if L € C'(R), then L(p) € H*(R2) and v L(p) = L(70p). We point out that the
truncation function () allows to control the L>°(9€2)—norm of VK * Q(px) - m by avoiding the
control of the L>°(£2)—norm of . This is the reason for the introduction of () in (4.1).
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The third, fourth and fifth term on the right-hand side of (4.30) can be estimated as follows

n

0572 ldiv(N (01)Va) | < Co Y~ (2N [lallFregq) + 2N I Val I Verl?)

k=0
< Cro(l+ [woll?) (4.32)

C’éTZHdN m(er) (VK * Q(pr))) |I”

n

< 0Ty (2mE K * Qo) i) + 2mb” B | Ver]?)
k=0

< Cro(1+ |leolly) (4.33)

n

Cor Y IBC o)l < Cor Yy (K2 +2mZ [ VallZ) [ ors I
k=0 k=0

+COoT Y 26| Vpnl® < Cro(l+ |wol®),  (4.34)
k=0

where we have used again Lemma 2 and (3.4), (4.7)—(4.9), (4.21).

We now insert (4.31)—(4.34) into (4.30) and then we insert the resulting inequality into (4.29).
By fixing 0 > 0 small enough, we obtain

Ck*QTZ HUk V90k+1||2 Z HSOkH - <PkH

+Cr Z 1T IVURIPIV B er) I
k=0

+ CHUH%w(o,T;de)

|’u’||%2(0,T;Vd,L-,U) +Cr(1+ ||%00||%/) .
(4.35)

By employing (4.35), (4.23)—(4.26) and (4.28), from (4.22) we get

1 n n
- Y lenin = el + IVBC enr) 17+ D IIV(BC k) = Blwr)) |1

< Cr(1+[leollV) + Clluli~orc,,

) |U||2L2(0,T;de)

+ O (r+ T|ULPINULP VB, i) I
k=0

< Cr(1+ leolly) + Cliwlli~oray.)

|u||2L2(O,T;Vdm)

+C(7 + ulli~or:0,,) TIVUR IV B I

('790n+1)
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n—1

+CY (T +T|ULPIVULPIIVBC, @ran) - (4.36)

k=0
Observe that we have
(n+1)7
AIVULIP < / IVu(s)|2ds

T

Hence, for every 1) > 0, there exists 7,, > 0, which only depends on 7 (and on u), such that
T|VU,||*? < nforal 0 < 7 < 7, and for all n. < N. By using this fact, we can take 7

small enough in such a way that the third term on the right-hand side of the last inequality (4.36)

can be absorbed into the term ||V B(+, ¢, 1)||? on the left-hand side. Therefore, on account of

(4.27), by applying the discrete Gronwall Lemma to the ensuing discrete inequality, from (4.36)

we obtain

1 n n
T Z lor1 — ull? + IVB(, pni) |1 + Z IV(B(-; ¢x11) — B, o)) |12
k=0 k=0

< Q(H%HV; HUHL°°(O,T;Gdiv)ﬂLQ(O,T;Vd“,)) ; n=0,...,N—1. (4.37)

We can now proceed to prove the LQ(HQ)—reguIarity of . Let us first notice that (4.30), com-
bined with (4.31)—(4.35), (4.27) and (4.37), implies that

TZ 1B, 901@+1)H§12(Q) < @(HSDOHVa ”u“L°°(O,T;G’dw)ﬁLQ(O7T;Vdiv)) , n=0,...,N—1.
(4.38)

This estimate yields, in particular, a control on the gradient of B(-, ¢x41) in LP, for2 < p < 0.
Indeed, from (4.38) we have

7Y VB o)y < Qllwollv, lullosorannizorva)) -
k=0

This, by (2.1) and (4.37), implies that

TZIIVB Coene) i < Qlleollv, lull e o.ricamnrzorvi) - (4:39)
k=0

Thanks to (3.4) and to the bound
IVBC, re) oo < Mool Vall oo Y + (acembe + M) | Veoriall oz

from (4.39) we also have

TZHWMW”“’ ? +TZHV6 (L ee) e < Q, (4.40)
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where Q = Q(H%HV, \|u\|Loo((),T;de)mLz(O,T;de)). Thus, using (4.39), (4.40) (written for
p = 4), and (4.38), from (4.15) we find the desired bound
TZ ||90k+1||§12(9) < Q(HSOOHV» ||u||LOO(O,T;Gdiv)mL2(07T?Vdiv)) 3 n=0,...,N—1.
k=0
(4.41)

We now need to introduce the functions @, P, and @y which interpolate the values ¢,
piecewise linearly, backward, and forward constantly, respectively, on the partition. Namely,

Pn(t) = m()pn + (L= m(t)pn1, () :=n+1-(t/7),

@N(t) = Pntl,
&N(t) = $n,
fornt <t < (n+1)r,n=0,...,N — 1. As a consequence of estimates (4.21), (4.37) and

(4.41), we have

||<5J<7||%2(0,T;H) + ||9/5N||%°°(0,T;V) + H@N”%w(o,iﬁ;\/) + ||5NH%00(0,T;V) + ||¢N||%2(07T;H2(Q))

3. 3.
+ o o8 — BN llz207.m) + p o8 — enllzzor.m < Q, (4.42)

where Q = Q(H%HV, HuHLoo(Q,T;de)mLz(o,T;de)). Moreover, (4.21) and (4.37) also yield

| B(-,@n) ||l Lo 0,1v) < @(”SOOH% HuHL°°(O,T;de)ﬂLQ(O,T;Vd“,)) . (4.43)

Problem (4.11)—(4.12) can be rewritten in terms of the interpolating functions @, P, PN as
follows

Px = AB(,Py) +un - VPy + dv(N(Px)Va) —div(m(@n)(VE * Q($y))) ,
(4.44)
aB(? @N)
on
where uy are defined by un(t) := U, fornt <t < (n+1)7,n =0,...,N — 1. The
variational formulation of (4.44)—(4.45) reads

=m(pn) (VK *Q(pn)) - n—N(on)(Va-n) a.e.ondf), (4.45)

(@n, Vv + (VB(,8y), VY) = —(unPy, Vi)
+ (m(@n) (VK xQ(&n)), VY) = (N(@n)Va, V), VeV (4.46)

Owing to (4.42) and employing classical compactness results, we deduce that there exists ¢ €
L>=(0,T;V) N L0, T; H*(2)) with ¢, € L?(0,T; H), such that, up to a subsequence, we
have

ON — @, weakly* in L>°(0,T; V), (4.47)
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P% — @i,  weaklyin L*(0,T; H), (4.48)
N — @,  stronglyin C°([0,T]; L9(2)), 2<g¢< o0, (4.49)
N =@,  weakly*in L=(0,T;V), weaklyin L*(0,T; H*(2)), (4.50)
N — 0, weakly* in L>°(0,T;V), (4.51)
(4.52)
(4.53)
(4.54)

€l )

!

S

NP, strongly in L*(0,T; H) ,

<l

$n — @,  stronglyin L*(0,T; H),
B(-,py) — B(-,¢), weakly* in L>°(0,T; V), weaklyin L*(0,T; H*(Q2)) .

Since py —  pointwise almost everywhere in €2 x (0,7"), by virtue of the boundedness of
the functions m, N and ), and by Lebesgue’s theorem, we also have

m(pn) = m(p), Q(en) = Q(p), N(@n) — N(p), stronglyin LI(S2), (4.55)
for all ¢ € [2, 00). Moreover, we have
uy — u, strongly in L*(0, T'; Vi) - (4.56)

Indeed, it easy to check that uy = Pyu, where Py is the projector in L2(de) onto the
subspace Sy := {v € L*(0,T; Vi) : V| (nr,(nt1)r) = Uny Un € Vi, n=0,..., N—1}.
Since Un>1Sy is dense in L?(Vy,), then (4.56) follows.

By means of the weak and strong convergences (4.47)—(4.56), we can now pass to the limit in
(4.46) in a standard fashion, and recover the weak formulation of problem (4.1)—(4.2). Notice
that we can also pass to the limit directly in (4.44)—(4.45) and prove that (4.1)—(4.2) are satisfied
also strongly almost everywhere in 2 x (0,7°) and on 02 x (0,7"), respectively.

We have thus proven that, for every ¢ > 0, problem (4.1)—(4.2) admits a solution ¢, €
HY0,T; H) N L>(0,T;V) N L*0,T; H*()). We can also see, by passing to the lim-
inf in (4.42), that the sequence of . is uniformly bounded with respect to € in these spaces
(just recall that all constants in (4.6)—(4.10) are independent of €). Therefore, there exists a limit
function, which we still denote by p € H'(0,T; H) N L>(0,T; V)N L*(0,T; H*(Q)), such
that, up to a subsequence, the same convergences as (4.47)—(4.55) hold for the sequence of
e to . These convergences allow to pass to the limit in the variational formulation of problem
(4.1)—(4.2) and recover the variational formulation of the following problem

pi+u- Vo= AB(,¢) +div(N(p)Va) —div(m(p)(VE * Qp))) , (4.57)
[VB(-, ) + N(¢)Va—m(e)(VK % Q)] -n =0, on 90 x (0,T). (4.58)
We now show that  satisfies the bound |p| < 1, a.e.in © x (0,7"). This allows to remove
the function () in problem (4.57), (4.58) and hence to conclude Step 1, proving that ¢ solves

problem (3.1) and (3.5). To this purpose, we know that ¢, also satisfies the weak formulation
(cf. Definition 1) of problem
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o +u- Vo =divim(p)Vpu), (4.59)

p=ap—KxQ(p)+ F/(p), (4.60)
me(e)Vu-n=0, ondQdx (0,7T). (4.61)

We can therefore argue as in [25, Proof of Theorem 2]. More precisely, we introduce the C?
function M, defined by m.(s)M!'(s) = 1, forall s € R, M.(0) = M/(0) = 0, and we test
(4.59) by M/(). This gives the estimate

d Co
E/QME(%) + EHV%HQ < Qllollv, N1/l oo 0.7 L2 0.7V

where cg = (1 — p)ag/meo. Then, on account of the fact that for € small enough, we have
M.(s) < M(s)forall s € (—1, 1) (cf. assumption (M)). Thus, recalling that M (o) € L'(2),
we deduce the bound

[Me() =011 < Q(lleollv, [l 220 (0.7:Ga0)n2200.7550) ) -

We can now follow the same lines of [25, Proof of Theorem 2], which rely on an argument
devised in [17, Proof of Theorem 1] (see also [10, Proof of Theorem 2.3]), and get the desired
claim. This concludes the proof of the first part of the theorem. Namely, there exists a weak
solution such that ¢ is smoother (see (3.8)).

Step 2. We now establish the L>°(0, T'; V) N L?(0, T; H*(2)?) regularity for u, assuming
that ug € Vg, and g € V N CP(Q) for some 3 € (0, 1). The argument, which (formally)
consists in testing the Navier-Stokes equations (1.1) by wu;, follows exactly the lines of [21, Proof
of Theorem 5, Step 2]. The key tool is a regularity result for the inhomogeneous Stokes system
in non-divergence form, namely,

—w(z)Au+Vr=f(z), inQ,
div(u) =0, in 2, (4.62)
u=0, on 0.

We report the result for the reader’s convenience:

Proposition 1. [50, Proposition 2.1] Let f € L2 ()* andw € C° (Q) , for some § € (0,1),
such that) < \g < w () < \; < oo forall z € ). Then any solution [u, 7] € H? (Q)* x
H' (Q) of (4.62) satisfies the estimate

[l 2oz + 17l iy < € (”fHL2(Q)2 + H'/THLQ(Q)> ;
for some constant C' = C'( Ao, A1, €2, Hchg(ﬁ)) > 0.
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This result is applied to the Navier-Stokes system (1.1) after writing it in the following form
—v(p)Au+ V7 = f, (4.63)
where

f=(ap—Kxp)Vo+v—(u-V)u—u;+2v(p)DuVy, 7i=m—F(p),
(4.64)

and allows to bound the H?—norm of u in terms of the L2—norm of u,. The only thing to
establish is the Hélder regularity for ¢ (this in turn implies Holder regularity for (), which is
required in order to apply Proposition 1. We therefore need to suitably extend the argument of
[21, Lemma 2] where the Hblder regularity a bounded weak solution to the convective nonlocal
CH equation with constant mobility and regular potential was proven. This can be done thanks
to assumptions (A1), (A4) and (A5). More precisely, we can prove the following

Lemma 3. Assume d = 2 and (A1), (Ad), (A5). Letu € L>®(T",T;Gg,) N LA(T', T; Vi),
for someT > T" > 0 and let p be a bounded weak solution to (1.2), (1.3), (1.5)2. Then there
exists constants C' > 0 and o € (0,1) depending on |¢||L=(q,. ) and on |[ullraq,. ).
respectively, such that

ol t) =@y, )] < C (Jo—y|*+ [t = s|?) (4.65)
for every (x,t), (y,8) € Qi = Q x [T",T).

Proof. Following the lines of [21, Proof of Lemma 2] (cf. also [43]), let k € Randn = 7 (z,t) €
[0, 1] be a continuous piecewise-smooth function which is supported on the space-time cylin-
ders Qi 1o+ (1) := By (x0) X (to, to + 7), where B, (x() denotes the (open) ball centered at
xo of radius > 0. As usual for the interior H5lder regularity, one takes ¢ € €2, while xy € 0f)
for the corresponding boundary estimate and then exploits a standard compactness argument,
in which may be covered by a finite number of such balls. We thus multiply (1.2), (1.3), which
can be written as

o tu-Vo=dv(B(,0)Vo+k), Kz t):=m(p)(eVa— VK *p),

by 7%}, where ¢ := max {0, ¢ — k}, integrate the resulting identity over Qy, ; := Q X
(to,t), where T" < tq <t <ty + 7 < T, to deduce that

/ oo drdt + o)Vl -V (77%02) dzdt

Qrg,t Qtgt

= / up -V () dedt + / Kk (z,t) -V (n*¢f) dadt, (4.66)
Qrg,t Qtg,t
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Since we have Vo - V (n?¢)) = |V (nei) |2 — |Vn)? (90;)2, we obtain from (4.66) and
the assumptions (A4) and (A5) (cf. (5.17)) that

1
5 sup / (77%—:)2 (s)dx 4+ ap(l — ,0)/ ‘V (mp:) !2 dxdt
sE€(to,t) JQ Qto,t

1
= 5/ (Wz)Q(tO)der/ (i01)” 1| dadlt
Q Qtg,t

+ & / (so?)Z V| dwdt + / up -V (n’¢f) dadt
Qg ,t Q

to,t

+ / K (z,t) -V (n*ef) dadt, (4.67)
Qg ,t

where the constant k£* is the same as in (4.6). The fourth term on the right-hand side of (4.66)
can still be estimated in the same fashion as in [50, Proof of Lemma 3.2], using the fact that u €
L* (QT/,T) is also divergence free and arguing by elementary Hélder’s and Young’s inequalities,
to find that

/ up -V (7]2@0;) dzxdt
Qtg,t

1 1
<7 HngsziW(tO,t;H) + ZLO‘O“ — ) HV (7790;) HiQ(QtO,t) + Co ”V’?‘PZHiZ’(QtO,t) , (4.68)

where Cjy > 0 depends on oy, p and the L* (Q1+,r) —norm of w only. For the final term on the
right-hand side of (4.67), we employ Hoélder’s and Young’s inequalities again to deduce that

/ Kk (z,t) -V (n’¢f) dadt / (K (z,t) - pinVn +nk (z,t) - V (ne})) dadt
Qg ,t Qto,t

1
< C’l/ |77|2 dxdt + —/ (90;)2 |V77|2da:dt
Qo 2 Qtg,t

1
+ Zao(l — p)/ ‘V (ngpﬁ) }2 dzdt (4.69)

0>

where C; > 0 depends only on «, p and the L™ (Q7+ )-norm of k. Inserting the estimates
(4.68) and (4.69) into the right-hand side of (4.67), we infer the existence of a constant Cy =
Cy (C(), Cl, ]’C*) > 0 such that

L sup /Q(W;if(S)derao(l—p)/

2 s€(to,t) Qg ot

e </ (¢k+)2|7777t|dxdt+/ (go;)2|vn|2da;dt+/
Qtg,t Qto.t 0

IV ()| dwdt < /Q (nei)” (to) da

In)? dacdt) :

(4.70)

to,t
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Arguing in a similar fashion, inequality (4.70) also holds with ¢ replaced by —¢. In particular,
these inequalities imply that ¢ is an element of the class By (Q7+ 1, 1,7, 4, 1, 1) in the sense of
[43, Chapter Il, Section 7 ], for some 7 = « (Cy), cf. inequality (7.5) of [43, Chapter I, Section
7, Remark 7.2]. Therefore, on account of [43, Chapter Il, Section 7, Theorem 7.1], the Hélder
continuity (4.65) of ¢ follows. This ends the proof. O

The approximation argument that can be employed to show that u € L>°(Vy;,) N L2 (H?(2)?)
is the same as the one of Step 3 of [21, Proof of Theorem 5], to which we refer for the details.
We just recall the main points: 1) ¢ is suitably mollified in the viscosity term of the Navier-Stokes
equation only, namely, the following problem is considered:

u; — 2div (v(ps)Du) + (u - V)u+ Vr = (ap — K x )V + v, (4.71)
div(us) =0, (4.72)

with initial condition us(0) = uo and no-slip boundary condition; 2) [1, Theorem 8] is applied
to get a strong local in time solution us to (4.71)—(4.72), satisfying

us € H'(0, Ty; Gain) N L*(0, Ts; H*(2)*) N L0, Ts; Vi)

for some T5 < T’; 3) thanks to Lemma 3, we have v(yps5) € C7/2(Q x [0, 7)), for some
0 < v < min{a, 3}, and this allows us to apply Proposition 1 to (4.63)—(4.64) (written with w4
and s in place of u and , respectively). Arguing as in [21, Proof of Theorem 5, Step 2], we test
the Navier-Stokes equations (4.71) by O;u. It is then easy to deduce a differential inequality of
the form

1
a /. v(s)| Dusl? + <10us | < O ([l + ol + [IVeesl”)

+ Ollusl* | Vs + [1Vesll e + 1Brsps*) | Duas 1, (4.73)

where )
ls = —%Va — (J x @s)Vps + v.

From (4.73), on account of (V), of the improved regularity for ¢ obtained in Step 1 and of the
fact that we have p € L*(0,T; Wh4(0Q)), (these regularities yield that J;s is bounded in
L?(0,T; H) and that s is bounded in L*(0, T'; W14(€2)), uniformly w.r.t. §), on account of
the uniform w.r.t. § bound of us in L°°(0,T; Ggi) N L2(0,T; Vai,,) (which stems from the
energy identity obtained by testing (4.71) by us in G4;,), and also of the condition on the initial
velocity field uy € V., by means of Gronwall's lemma and of Proposition 1 once again, we
can prove that u; is bounded in L>(0, T5; Vi) N HY(0, Ts; Ggir) uniformly w.r.t. §, and,
by comparison in (4.71), that us is uniformly bounded in L?(0, Ts; H?(2)?). These estimates
entail, in particular, that us can be extended to any interval (0, T'), for all " > 0; 4) the passage
to the limit in (4.71), (4.72), as 0 — 0, is performed, by employing compactness arguments and
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the strong convergence 5(t) — @in V, for almost ant ¢ € (0, T"). This gives a strong solution
u to the same problem solved by the weak solution u. Finally, 4) the limit velocity field & = u,
on account of the uniqueness for Navier-Stokes equation with a given (nonconstant) viscosity.
Therefore, existence of a strong solution satisfying (3.8) and (3.9) is proven. The uniqueness of

this strong solution follows from [21, Theorem 7]. This concludes the proof of the second part of
Theorem 2.

Step 3. In order to prove the last part, the idea is to differentiate (3.1) in time and test the resulting
equation by ;. To make the argument rigorous, we employ the same time-discretization scheme
of Step 1, taking the improved regularity for u (cf. Step 2) into account. Therefore, for k =
1,..., N — 1, we consider problem (4.11)—(4.12) (where, in (4.11), the discrete time derivative
(pr41 — wr)/T is made explicit) at step k and at step & — 1. Taking the difference between
the two equations (4.11) written for these steps, testing the resulting identity by (¢x+1 — @k) /T,
and summing over k = 1,...,n,withn < N — 1, we obtain

i (‘Pk’—i-l — Pk Pk Ph-1 Prtl — @k)

Y
k=1

= _2”: (V(B('790k+1) - B(‘a‘Pk»’v(M))

_; <Uk-Vgok+1 — Uk—l'vwkaw>

3

- Z <(N(90k) - N(‘Pk—ﬂ)Va, V(M))

3 (mlen (VK = Q) — mloe ) (VK = Qi) 7 (22 2)),

k=1
(4.74)

where, again, for simplicity of notation, the explicit indication of the parameter € is omitted.

Let us now estimate the terms on the right-hand side of (4.74). As far as the first term is con-
cerned, we have

n

) (V(B(w wri1) — B, or)), v(w»

T
k=1

_TZ< RO <90k+1_90k>7v<90k+1_90k>>

T T

+Z ( * Pk+1) ﬁ(»%))wkku»
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n

+

<(M(90’€+1) — M(pi))Va,V <M))

ol

=1

% a-p ZHV(%H—%)H_ o ZHﬁ  Preyr) — B @)

T (¢rr1) — M(pr)
- 040(1—/0);” T v

On the other hand, in light of (4.10), (4.37) and (3.4), we have
H ﬁ() Spk-i-l) - 6(7 ‘Pk) v@kHQ

2
V@k”

(4.75)

-
‘M HVSOkHM
— _ VB K -M Va2
I e RO e
k 4
1 —_—
< 100 o(l—p HV(M)H + Q|| B(-, ¢ ||H2(Q)HM ‘M
(4.76)
Therefore, we get

n

3y (V(B(-,g;“l) _B<.,m),v<w>> > Lag(1 -

T
k=1

e

_QTZHB O HH2 H90k+1—<ﬂk

—Qr Z H90k+1 — Pk

Regardlng the second term on the right-hand side of (4.74), we have

n

(4.77)

- " U, - U, -
Z(Uk'v90k+l_Uk—1'vSOkaM) :TZ<—’“ ol -Vgpk,—gpk“ (’pk>
k=1 g k=1 T

HVB(HS%) — M(gok)Va‘
L) B(-, or)

<T@Z"Uk—Uk 1H(H90k+1—s0kH+H90k+1—s0kH1/2H <90k+17—_ wk>H1/2>

< Tz": HUk — U’f—lu”é%ﬂ — Pk
T

L4(Q)2

. oo
(IBCe0liE + 1) <o 3 [T (2P r 30 PP
k=1 1

- Pr+1 — Pk ||?
£ Q57 Y B ) e[| 2
k=1

‘S%H — Pk ||?

: (4.78)

estimated as follows

n

where 0 > 0 will be fixed later. Finally, the last two terms on the right-hand side of (4.74) are

k=1

2 ((M%"k) — N(¢r-1))Va,V (M))
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Hv(%ﬂ - @k) H
T

< OTZ HSOk — Pr—1
T
k=1

oSl v TR,
> (m(e0) (VK + Q(ar)) — mier) (VI Qi) 9 (EE24))

k=1

< (Moo +mL) b7 ; HSOk —TSOk—l HV<901<;+1T— SOk) H

< 57;; Hv<90k+1T— @k) 2 L Oyr ; HSOk —TSOk—1 2 (4.80)

By applying (4.16) to the left-hand side of (4.74), inserting estimates (4.77)—(4.80) into the right-
hand side, choosing d small enough and taking (4.37) into account, we obtain

1 n - n2 1 . - - —1|?
_H‘P+1 p +_2H<ﬂkz+1 Pk Pk~ Pr—1

T

2 ‘901 ®o

<3|
-2

1 & Pr+1 — Pk
gt = v (F=2)| <

n — 2 C U = U112
ARl et R b R
+@T;II (o)l ||| + T; . +Q. (81

Observe now that we have (cf. (4.30)—(4.35) and (4.37))
2 C 2
TIBConlle@ < —llow — el + Cr,

where here the constant C' depends on the norm of w in L>(0, T'; Gg;,,) and in L2(0,T'; Vg, ).
Therefore, from (4.81) we obtain

L||ont1 —¢n])? . 1 Hsakﬂ—wk Ok — Pr1]|2
| *3 0 -

_ 1
+ gaall = p ZHV(W“ Sl =l

— ! ora — k]2 | QO
+QZ;||901€+2—%+1||2 %H +?Z||90k+1_§0k”2
k=0 k=1

+Q. (4.82)

" U —Ug_q |12
—i-C'TZH—k - kol
k=1
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The delicate point is now the control of the L?-norm of the quotient (¢; — o) /7 on the right-
hand side. To this goal, let us first point out a remarkable consequence we have from the im-
proved regularity of the velocity field obtained in Step 2, which concerns the solvability of the
incremental-step problem (4.11)—(4.12). Indeed, for a given ¢, € V, k =0,... N — 1, letus
introduce the nonlinear operator By, : D(By) C H — H, defined by

Bip = —AB(-, ) + Uy - Vi — div(N () Va) + div(m(er) (VK * Q(¢r)))
D(By) := {(,0 e H(Q) :

0B(-,
WD) ) (VK « Qo) -1~ N(20) (Va ) ae.on o2}
We prove that there exists 7o = 79(w) > 0 such that we have
ap(l —
(e — on) + 7(Bupz ~ Bugnll = 20" Py — il Vr, 0 € DB,
(4.83)

and for all 0 < 7 < 7. This, in particular, implies that the solution to each incremental-step
problem (4.11)—(4.12), for k = 0, ..., N — 1, is unique.

In order to prove (4.83), we first observe that, for all 1, o € D(By), we have

(¢2 — 1 + T(Brpa — Brpr), B(-,¢2) — B(-, 1)) > (1 — p)llp2 — 1 )?
+ THV(B(v 902) - B(? 901>>||2 - T(Uk ’ (902 - 301)7 V(B(7 902) - B(7S01))) (4.84)

Thanks to the improved regularity (3.9), we have

1
Uy, < ulleorviy s 1Ukllzz@2 < FHUHL?(O,T;H?(Q)?)- (4.85)

Hence, by means of (4.85), and by Agmon’s inequality (2.2), the last term on the right-hand
side of (4.84) can be estimated as follows

T|(Uk - (92 — 1), V(B(-,02) — B(-, 1)) |

< TIUi=@pellez = @11V (B(-p2) = Bl

< 5IV(BC.02) = Bl.o)) I + 5 G IUsT =zl o2 — 1]
Y

T ~
< §||V(B<'7 p2) — B(:, 901))) ”2 + 9 C?? ||U||L°<>(0,T;de)”UHL?(O,T;HZ(Q)?)H% - ‘Pl||2 .
(4.86)
Therefore, by taking 0 < 7 < 79, with 7 given by
ag(l—p)?

C§|’u||2°o(o,T;de) HUH%Q(O,T;HQ(QP)

70 -

I
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the right-hand side of (4.84) can be estimated from below by

ap(l —p)
2

On the other hand, due to (4.6), we have

lez = o1l + SIV (B 02) = B(oon)) 1 (4.87)

(2 — o1 + T(Brpa — Bipr), B(+, p2) — B(-, ¢1))
< k|2 — @1 + T(Brpz — Brpr) ||[|g2 — o1

a1l — f*2
< O(TP)H% —]* + m”@z — @1+ 7(Brpr — Brp)||* (4.88)
Hence, from (4.84), (4.87) and (4.88) we get
k*2 040(1 — p)

m”% — o1+ 7(Brpr — Brp)I” 2 ————llea — |’

n %HV(B(-,@) — B(-, )17,

and this proves the desired claim (4.83). Therefore, for 0 < 7 < 7, and for every k =
0,...,N — 1, the resolvent operator Ji,, := (I + 7B;)"* is single-valued and Lipschitz
continuous from H to H. Indeed we have

2k*
[ Tkrths = Jesill € ———= s —nll,  Vo1,9n€H, 0<7<7. (489
ag(1 = p)
Notice that, if the first term ;. on the right-hand side of (4.11) is assumed in H, the solvability
of problem (4.11)—(4.12) still holds, arguing as at the beginning of Step 1. Indeed, the nonlinear

operator Ay, is the same and we still have g, € V.

Let us now go back to the problem of controlling the L?-norm of the quotient (1 — ¢g)/7. By
employing (4.89) for k = 0, using the assumption on g which yields that oy € D(B;), and
assuming that 0 < 7 < 79, we find

Hcpl - on _ HJo,TsOO - Jo,T(I+TBo)on o2 1Bogol
T v ool p)
< C(I1AB(, o)l + llull o o/r5vi) [0l 20 + [l0llv + 1), (4.90)

where we have also used (4.85);.

Finally, there remains to bound the last sum on the right-hand side of (4.81). To this aim, we can
first easily see that the following estimate holds

(k+1)7
.
utkr) = OP < T [ )| ds.
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By employing this estimate, a simple computation yields

1 n
= S0 = Ukl < cllwnlEaoiriin (@.91)
k=1

where the constant ¢ can be given by ¢ = 10/3.

We can now apply the discrete Gronwall Lemma to (4.81), taking (4.37), (4.90) and (4.91) into
account, to obtain

H Pn+1 — Pn
T

2 i — 2

Pk Pk

7 [V < @ieollaon Nellxorvamnmorcun) -
=1

(4.92)

From this discrete estimate we get the following new bound for the approximate solutions @,
@ introduced in Step 1

1Bx 1 Foe 0,y + 188122020y < QUlloll 20, 1]l os 0.1v e (0.136000)) -
Therefore, in addition to (4.47)—(4.54), we also have, up to a subsequence,
on — ©r, weakly* in L*>°(0,T; H) , weakly in L*(0,7;V),
and this proves (3.11),. Moreover, since we have (cf. (4.30)—(4.35) and (4.37))

Pn+1 — Pn 2

then, thanks to (4.92), we get the bound
IB( B3Iz 0:m22)) < Qlwoll a2y w20 v )nm 01:64)) -
This obviously implies

||@N||L°°(O,T;W17P(Q)) + ||B(‘7@N)HLOO(O,T;WLP(Q))

+ 18, 2wl Lo, rmre@) < QIleollm2i), 1wl Lo omvanm 016w ) - (4.93)

Hence, recalling (4.15) (written in terms of the approximate solutions ©,;) and using (4.93), we
infer

1@n Lo 0, m20)) < Q[0 ll r2()s 1%l Loo (0,73 Vias)H (05G s ) - (4.94)
Therefore, up to a subsequence, we have
By — @, weakly*in L®(0,T; H*()),

whence we get (3.11);. The argument to pass to the limit in (4.44)—(4.45), and also to prove the
pointwise bound || < 1, is the same as in Step 1 (here we can also rely on even stronger
convergence results). The proof of Theorem 2 is finished.
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Remark 7. It is not known whether a strong solution according to Definition 2 also satisfies
equations (1.2)—(1.3) and the related boundary condition in a strong sense. This occurs if we
can guarantee the validity of a strict separation property, namely, the fact that o stay uniformly
away from the pure phases (see, e.g., [41, 42] for a slightly different version of nonlocal CH
equation). An intermediate situation holds if /(o) € H (see [25, Theorem 3]). In this case
the weak formulation where i1 € L?(0,T'; V') appears explicitly can be recovered (cf. [25,
Definition 1]).

Remark 8. If v is constant then we can prove the existence of strong solutions to (1.1)—(1.5)
by using a different argument which exploits the classical regularity result [51, Theorem 3.10]
for the two dimensional incompressible Navier-Stokes system. This was the strategy followed in
[24, Proof of Theorem 2]. Indeed, notice that (1.1) can be rewritten in the form

ur — vAuU+ (u-V)u+ V7 = (ap — K xp) Vo + v, (4.95)

where the modified pressure ™ := ™ — F'(¢) has been introduced. Thanks to the regularity
properties of the weak solution (cf., in particular, the bound || < 1) and to the assumption
on v, we see that the right-hand side of (4.95) belongs to L? (O, T: L? (9)2) Hence, under
the assumption that uy € Vy;,, the regularity (3.7) for the velocity field « immediately follows
from applying [51, Theorem 3.10] to (4.95). Once (3.7) is available, we can devise an easier
argument in Step 1, by using (4.28) and (4.85), to estimate the last term on the right-hand side
of (4.22) simply as follows

’ > (Ui Ve, B(oea) — B(-, 901@))’ < % > ok — exll®
k=0 k=0

n
2 2 2
+ Ok HU’HLQ(O,T;HZ(Q)Q) Z IVorll®
k=0
(4.96)
This estimate, together with (4.23)—(4.26), still yield a discrete Gronwall’s inequality from (4.22)
(cf. (4.36)) and thus allows to obtain the regularity ¢ € L>(0,T; V), ¢, € L*(0,T; H). Notice
that the assumption that K’ € Wfocl or that K is admissible is not required in this argument (only

(K) is enough). This regularity assumption on the kernel is needed only in Step 3, in order to
prove that o € L2(0,T; H*(Q2)) and, provided o, € H?(1Q) satisfies (3.10), that (3.11) holds.

Remark 9. Assume that ug € Vg, and ¢y € H?((Q) satisfies (3.10). By integrating (4.73)
in time and by passing to the liminf in (4.42), (4.94), we can also prove that there exists a
continuous and nondecreasing function Q; : [0,00) — [0, 400) which only depends on the
data ', m, K, v, 2, T, uy and ¢y, such that

||u”L°°([O,T];de)ﬂLQ(O,T;HQ(QP) + Hut||L2([07T];de)
+ H‘P”L“([O,T];H?(Q)) + ||<PtHLoo([o,T];H)mm(o,T;V)
< Qi (Ivllz20r:6u)) - (4.97)
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Remark 10. We point out that the estimates in the proof of Theorem 2 rely essentially on:

(i) the boundedness and Lipschitz continuity properties of the nonlinear functions (3, m, M,
N, given by (4.6)—(4.10);

(ii) the fact that ¢ is bounded (cf. the control of the boundary term in (4.31)).

Therefore, the argument of Theorem 2 also works for other classes of mobilities and double-well
potentials, provided they ensure the validity of (i) and (ii). An example is given by a nondegener-
ate mobility and a regular potential defined on the whole real line and satisfying the assumptions
of, e.g., [24, Theorem 2]. The boundedness of ¢ follows by simply adapting the Alikakos itera-
tion argument (see [6, Theorem 2.1]). More precisely, in this case, the uniform bound in L>(£2)
of wr11 (cf. Step | of the proof of Theorem 2) will be proven below (cf. proof of Theorem 4).

5 Uniform estimates

In this section we establish some uniform in time regularization estimates. To this aim we shall
first formally deduce the same kind of higher order bounds which were derived rigorously in the
context of the time-discretization scheme in the proof of Theorem 2. These will be the basis for
constructing uniform in time estimates. As a consequence, we establish a regularity property
for the global attractor of the dynamical system generated by (1.1)—(1.6), the existence of which
was proven in [25]. We point out that the argument of Proposition 2 below can be made rigorous
by means of time discretization combined with a discrete variant of the uniform Gronwall lemma
(see [48, Lemma 3]). Thus, we proceed formally just for the sake of brevity.

Proposition 2. Suppose that assumptions (K), (V), (M), (A1), (A4)—(A5) are satisfied and
suppose that K € W2’1(R2) or that K is admissible. Let ug € G, 0o € V N L®(Q)

loc

with F'(pg) € L'(Q) and M (o) € L'(Q), where M is defined as in Theorem 1. Let also
v € L%(0, 00; Gaiv). Then there exists a weak solution [u, ¢] to system (1.2)—(1.6) such that
w € L™ (0,00; Ggi) N L2 (0,00; Vi), ug € L2 (0,00, V) (5.1)
© € L=(0,00; V)N L%(0,00; H*(Q)), ¢, € L2(0,00; H). (5.2)

If, in addition, ug € Vi, and o € V N CP(Q) for some 3 € (0, 1). Then, the (unique) strong
solution given by Theorem 2 satisfies (5.2) and

u € L™ (0,00; Vyi) N L2, (0,00, H2 (), uy € L2 (0,00; Gapy) - (5.3)
Finally, suppose that oo € H 2(9) satisfies (3.10). Then, the strong solution also enjoys the
following properties

@ € L=(0,00; H*(Q)), @ € L™(0,00; H)NL%(0,T;V). (5.4)
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Moreover, there exists a constantI' = I'(k), depending on s € [0, 1], on [|v]| 12 (0,00;6,,) (@Nd
on F,m, K, v, (), such that, for every initial data [ug, o] € Vg, X H?(S2), with g satisfying
(3.10), F'(¢0), M (o) € L*(2) (hence |po| < 1 almost everywhere in ), and |g,| < k,
there exists a time t; = t; (E(uo, goO)) > 0, where E(uy, o) is given by (5.9), such that the
strong solution corresponding to [uy, | satisfies the following dissipative estimate

t+1
lu(®)II7,, +/ ()2 0pe ds + o)) <T(k),  VE=ti.  (55)
t

Proof. Firs we observe that, by arguing as in [25, Proof of Proposition 2], from (2.4) we deduce
the following differential inequality

d A 1
—(lull® +1lel?) + 1 = plao [Vel* + n|[Vaul® < C+ —[[]*.  (5.6)
dt Vl)\l

Moreover, again by arguing as in [25, Proof of Proposition 2] (see also [12, Proof of Corollary
2]), from (5.6) we infer the following dissipative estimate

lu®I + eI < (ol + llpol)e™* + L, vt =0, (5.7)

where the positive constant L depends on i, and on [|v|| 2, (0;00:2,,,)- THiS, in particular, entails
that u € L>°(0, 00; Gg;,)- Let us now integrate (5.6) between ¢ and ¢ + 1. We get

t+1 t+1
e+ DIP + (e + 1) [P+ oot = p) [ [96()Pds + 01 [ [Fu(s)|Pds
t t
R 1 t+1
< Jlu@®P + o) 1* +C + —/ [v(s)][?ds, VYt >0. (5.8)
V1AL Jy
Hence, (5.7) and (5.8) yield
1— t+1 t+1
M/ IV(s)2ds + %/ |Va(s)|?ds < E(ug, po)e " + Ty, ¥t >0,
t t
where we have set
1
E(uo, o) == §(Hu0|’2 + [leol?) (5.9)

and where L'y = Q(~;, [|v|| 22, (0.00:¢4,,))» With & € [0, 1] such that [y| < k. In particular, this
gives

u € Lt2b(0> 05 Vdiv) > Y E Lfb((), oQ; V) .

Moreover, there exists a time ty = t, (E(uo, cpo)) > 0, which can be given by

1
to = 7 log E(ug, o)
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such that
1_ t+1 t+1
W=D [ vt Pas+ 2 [ [Futs)as s Ty k1. vz, 610
t t

Let us now begin with the higher order estimates. We test (3.1) by B(-, ¢); = B(-,¢)ps. On
account of (3.5), we obtain

37IVBCRIE + [ 8ot + (u Te. 8,00
= —(N(p)Va, VB(, ))+( (@) (VK % ©), VB(-,¢);) . (5.11)
Observe that
VB(,¢): = B(, ) Vr + (m(p)Va + (m'(p)a + N(p)) V) p: . (5.12)

Hence, the two terms on the right-hand side of (5.11) can be written as follows, respectively,

d

— (N (¢)Va, VB( ©)) = —E(N(@)V&,ﬁ(-,w)vw) + (N ()i Va, B(, ) Vi)
+ (N(9)Va, (m'(9)a + X (), V)
N (9)Va, (m(@)Va + (m'(g)a + N () Ve)er) = - (N () Va, B 0) Vo)

dt
m'(p)e:Va, B(-, ) Vo) — (N (@) Va, m(p)p:Va), (5.13)

—

(

(PVE %), VB, 0)) = - (m(@) (VK * ), 5, £)Ve)

— (M (@) ed(VK % ¢), B(-,0)V) — (m(0) (VK @), B(-, 0)Vep)
— (

(

AS)

m()(VK @), (m/(p)a+ XN(p))e: V)
m()(VK @), (m(p)Va+ (m'(e)a+ XN())Ve)er)
(m(p)(VK %), B(-,0)Ve) — (m'(©)ei(VK % @), B(-, ) Vo)
— (m(@)(VK % @), B(-,0) V) + (m(@)(VE * ), m(p)p:Va) . (5.14)

Therefore, plugging (5.13) and (5.14) into the differential identity (5.11), we get

2 dt

= (em'(¢)e:Va,B(-,9)Ve) — (N(p)Va,m(p)e:Va)

— (m'(©)ee(VEK * ©), 8(-,0)Vy)

— (m(@)(VK % @), B(-,0) V) + (m(@) (VK * ), m(p)pVa) (5.15)

(
d
1_@+/5(.,¢)¢?+(u-Vsa,ﬂ(~,<ﬂ)<Pt)
Q

where the functional ® is given by
O = [[VB(-, 9)|? + 2(N(p)Va, (-, 9) V) = 2(m(p) (VK * @), B(-, 9) V). (5.16)
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On account of assumptions (A1), (A4) and (A5), which ensure that
(1—plag < B(z,s) <k, Vsel|-1,1], aezeQ, (5.17)

it is immediate to estimate the terms on the right-hand side of (5.15). Indeed, the first, third and
fourth term can be controlled by

1

- p)oolledll* + Conp ik [V,

while the second and fifth term can be controlled by
1 2
(L= p)aolleill” + Crn

As far as the last term on the left-hand side of (5.15) is concerned, taking (3.4) into account, we
have

< [lullL1@2 VB[ La@z |l + Mool Valloollwll [l
< CHUHWHVUHUQHVBHWHBH}{@(Q)H%H + Moo || Val|solull [l -
(5.18)

Let us now control the H?—norm of B(-, () in terms of the L?—norm of ¢;. To this end, we
first employ elliptic regularity, namely

B¢ o)l < © (HAB(-,wH +IBC ol + |

. (5.19)
H1/2(9Q)

Then we estimate the boundary term on the right-hand side by taking (3.5) into account. Arguing
in a similar way as in the time discrete version (4.31), we find

on

< Im(e) (VK * ) - nHH1/2(aQ) +[N(p)Va- n||H1/2(aQ)
H/2(00Q)

< [Im(o) Iz o) (VK * ) - 1l gr1/2090) + (VK * @) - 1| Lo @0y [m(0) | 12 (00)
+ N (@)= @0) | Va - 1l grr2a0) + IV a - 1| oo o0y IV (@) r2r200)

1/2
< Moo | K % 9 || 2y + 30mi @l 200 + 2bmo|Tfy" + Na lall 20y

< (Moo + Nao) Cic +3bml Ca || [l + 2bmo| TR < Crie (IVB( )| + 1)
(5.20)

Notice that, here, the control of the L°°(9€2)-norm of the term VK * ¢ - n is automatically
provided by the bound || < 1, which we are assuming to be available in the framework of
these formal estimates (hence, we do not need to introduce a truncation, as done for handling
the same control in the time discretization scheme).
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Therefore, on account of (3.1), (3.4) and (5.20), from (5.19) we obtain

I1BC o)l < CABC @)+ IVB( @)l +1)
(el + [lw - Vool + [ldiv (N () Va)[| + [[div (m(e)(VE + @) + [V B[ + 1)
1

< C(|

¢ (Il + - (5980 - SMeve)
¢ (

<C

IN

VBl +1)

IN

el + el o IV BC, @)lsye + Nl + VB0 + 1)
(leall =+ Ul I [V BI 2 Bll gy + Nl + VB +1) . 5:21)
which, thanks to Young’s inequality, entails the desired estimate

IBC @)l < Clleddl + [[ull IVl VB, @)l + llull + [VB( o)l +1) -

(5.22)
Estimating the term in the 2 —norm of B in (5.18) by means of (5.22), we get
1
[(u- Ve, B0, 0)¢)| < 5 (1= plaolied® + C (lelPIVulP VB, ) + ful* + 1) .
(5.23)

Therefore, by estimating the term coming from convection in (5.15) through (5.23), the other

terms as done above, and employing (3.4) once more, we are led to the following differential

inequality
dd
dt

On the other hand, it is easy to see that there are two constants /1, Ko > 0, depending on m,
A and K, such that

+ (1= paolled® < Copxe (1 + [[ul?[[Vull®) (1+[Ve]?). (5.24)

K (|[Ve@)|? = 1) < @1t) < Ko (|Ve()]* + 1) . (5.25)

Therefore, on account of (5.10) and of the fact that u € L*(0, 00; Gg;,), by applying the
uniform Gronwall Lemma, from (5.24) and (5.25), we can find a time 7 (E(uo, gpo)) =ty +1
such that

le@®IF <Ti(k),  VE>t. (5.26)
Moreover, by integrating (5.24) between t and ¢ 4 1, for all £ > ¢;, we also get
t+1
ao(1 —p)/ lou(s)|2ds < Ta(k), ¥t > 1. (5.27)
t
Summing up, we have
p € L>(0,00:V), ¢ €L5(0,00;H). (5.28)
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We now prove that ¢ € L2 (0, 0o; H*((2)). First, from (5.10), (5.27), (5.26) and (5.22) we infer
that we have

t+1
/ 1BC o) 2oy ds < Tslh),  WE>t, (5.29)
t

and hence B(-,¢) € L?(0,00; H*(2)). This, by Gagliardo-Nirenberg inequality (2.1) and
(5.26), implies that (cf. (4.39))

t+1 S t41 -y
/ IV (s)]1 28 ds +/ IVB(, (o) 2
t

t+1
+/ IVB(-, (s ))HQW Vs <Tu(k), 2<p<oo, (5.30)
t

forall ¢ > t;. Thus we have @, B(-, @), 3(,¢) € L "72(0, 00; W(12)). Notice that we
have used the identity V3(-, ) = m(¢)Va + (m' (¢) a + X (¢)) V. As far as the second
spatial derivatives 8%50 are concerned, recall that we have the following identity (cf. (4.15))

M),

5 9;30;a.. (5.31)

= 1028 52 5:80,8 — M) 5 9.0y - ™D g 09,0 4 MP)

p p p
Combining now (4.15) with (5.29) and (5.30) (with p = 4), we obtain

t+1
[ e ads <Tst), i1,
t

so that p € L2 (0, 00; H?(£2)). This concludes the proof of the first part of the theorem.

Let us now assume that uy € Vg, andthat ¢y € VﬂC’ﬁ(ﬁ). On account of (5.10), assumption
(V), (56.27) and (5.30) (with p = 4), by applying the uniform Gronwall Lemma to (4.73) we
immediately deduce that

||u(t)||vdw < F6(’i) ) Vit >ty (5.32)

this yields u € L>°(0, 0o; Vy,). By integrating (4.73) between ¢ and ¢ + 1, and using Proposi-
tion 1, (4.63), (4.64), it is not difficult to obtain

t+1 t+1
/ AGIRE +/ ||u(s)||§,2(m2ds <TI'7(k), Vt>t. (5.33)
t t

Thus we have u; € L2 (0, 00; Gg;,) and u € L2 (0, 00; H*(Q2)?).

In order to prove (5.4), we take the time derivative of (3.1) and test the resulting equation by ;.
By using the boundary condition (3.5), we obtain the following identity:

1d

ST —leel|? + (VB(, )t Vior) = — (ue - Vo, 00) — (om'(p)p:Va, Vo)
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+ (m'()er (VK *9), Vo) + (mle) (VK = @), Vigr) (5.34)

Owing to (3.4) and (4.6), we have
(VB 9)i, Vi) > ag(1 = p) [V |* + ((m(sO)Va + (M (p)a+ X(9) V) g1, Vi)
1 m2 ﬁ/ 2
> —ap(l — Vo = ——=—||V R S

where the constant 3/ is defined as in (4.10). As far as the last term in (5.35) is concerned, on

||sotVso||2 (5.35)

\)

account of (3.4), we have that

eV oll? < el 7aoyIVellzagye

HEVB L pt(o)val
B B ()2

< C ([leell? + NeelIVeell) (IVBC @MIBC @)l + 1)

< 20IVerl® + Csllee 1B, o)1 Fr2 ) + Cslleel?,

< C(leel® + el vVerd)

for all 9 > 0, where the first of (5.28) and (3.4) have been taken into account, which yield that
B(-, ) € L*(0, 00; V). Hence, combining this last estimate with (5.35) and choosing 6 > 0
small enough, we obtain the estimate

1
(VB(, )i, Vi) 2 201 = p)IVerl* = ClledPIBC o) lza) — Cllad” . (5:36)

The H?2-norm of B(, ¢) by the L?-norm of ¢; can be obtained by arguing as above (cf. (5.19)—
(5.21)), i.e., by first using elliptic regularity theory and then by estimating the boundary term, to
get (5.22). From (5.22), on account of the improved regularity (5.28); and (5.32), we get

B, o)l 2@y < C ([l +1) - (5.37)

Let us now estimate the terms on the right-hand side of (5.34). For the first term, on account of
(3.4), (5.28); and (5.37), we have

| (ui - Vo, 1)
1
< Clludlleellza) || 7——=VB(¢) — WM(W)VG
L4(Q)2
< Cllwl (muuwum rwtum) IVBC @)Y 1B o) +1)

< Cllwll (el + led > 192 (el + 1)
1). (5.38)

< 30[Verll® + Cs (lleell* + lluel® +

41



As far as the remaining terms on the right-hand side of (5.34) are concerned, they can simply
be controlled by

8 Veel|? + Csllee] (5.39)

Therefore, by taking the estimates (5.36)—(5.39) into account, from (5.34) we can deduce the
differential inequality

d 1
EII%H2 + 7ol = PIIVel* < C (el + llell* + lluel|* + 1) (5.40)
Then, using (5.27), (5.33) and the uniform Gronwall Lemma we obtain
leeI* < Ts(k),  VE=t1, (5.41)

whence we have ¢; € L>(0, co; H). By integrating (5.40) between ¢ and ¢ + 1, for t > ¢;, we
also get

t+1
/ IVeu(s)|Pds < To(k), V>t
t

so that ¢y € L2 (0,00; V). Finally, we prove that o € L>(0, 00; H?(2)). First, notice that
(5.37) and (5.41) entail that || B(-, ¢(t)) || 2() < Tio(k), forallt > 1. Then, we have

o) lwrey + | B eO)llwre@) + 180 o) lwrr@) < Tu(x),  VE>t,
(5.42)

with 2 < p < oo, whence ¢, B(+, ¢), 3(-, ) € L* (0, 00; WP (2)). Therefore, recalling
(5.31) and employing (5.42), we deduce

o)) < Tha(k),  VE>1,
which is the final desired claim. The proof is complete. n

Remark 11. Assume that ug € Vi, 0o € H?*(€2) and that the compatibility condition (3.10)
is satisfied. Moreover, assume also that

(M); The mobility satisfies (M) and also m € C? ([—1, 1]).
(A1), F e CY—1,1)and X := mF" € C*([-1,1]).
Then, the following time continuity properties for the strong solution of Theorem 2 hold
u e CU[0,T); V), ¢ €C°([0,T); H*(Q) NCH[0,T]; H).  (5.43)
Let us sketch the argument for proving (5.43), omitting some details.

42



The time continuity of the velocity field (5.43); is a consequence of the factthat w € C, ([0, T']; Vaiv)
and of the differential identity
1d
2 dt
= ((agp — K x @)V@,Su) + (v, Su),

[Vul]®* = (v(p)Au, Su) — 2(v'(¢)Ve - Du, Su) + (Bu, Su)

which is deduced by testing (4.63) and (4.64) by Swu (recall that S := —PA is the Stokes
operator, cf. Section 2).

In order to show (5.43)-, we first observe that from (5.34) and from the regularity properties
(3.9), (3.8), it is not difficult to see that [|i.(-)]|> € C°([0,T]). Moreover, (3.11) implies that
o € C°[0,T]; V). From this we infer that B(-, ) € C°([0,T]; V). Since ¢, B(-,¢) €
L>=(0,T; H*(2)), we then have ¢, B(-,¢) € C,([0,T]; H*(2)). Also, recalling that u €
CO([0,T]; LA(2)) and Vip € C,, ([0, T]; L*(2)), we have u - Vo € C,, ([0, T]; H). ltis also
easy to see that div(N ' (¢)Va), div(m(p)(VK * ¢)) € C°([0,T]; H). Hence (3.1) yields
o1 € Cy([0,T]; H). This weak in time continuity, together with the L?—norm continuity for ¢,
implies that ; € C°([0, T']; H). On the other hand, we also have ¢ € C°([0, T']; H*(Q2)), for
1 < s < 2, and this entails that Vo € C°([0,T]; L*(2)). Hence, u - Vo € C°([0,T); H),
and from (3.1) again, we infer that AB(-, ) € C°([0,T]; H). We now employ the following
estimate (see [23])

2 — @1lla2) + [1B(-, 02) — B(, 1)l m2) < CIA(B(-, 02) — B(-, 1))l
+ Cller — e2llv (5.44)

which requires slightly stronger assumptions than (M) and (A1), that is, (M); and (A1), above.
By means of (5.44), we eventually get that ¢, B(-, ¢) € C°([0,T]; H*(2)).

Let us now assume that v is time independent, i.e., v € Gy;,. Following [25, Section 5], for
k € [0, 1] fixed, we introduce the metric space X, defined by

X = Gaiw X Vs s
with ), given by
Ve={peL®Q):|p| <1 aeinQ, F(p),M(p)c L'(Q), |p|<kr}. (545)
The metric on X, is
dx, (22, 21) = [luz — w1 + [[p2 — @1]],

for every z1 := [uy, 1] and z5 1= [ug, o in X.

Suppose that (K), (V), (M), (A1)—(A5) are satisfied. Then we know that the set G, of all weak
solutions to (1.1)—(1.6) from [O, oo) to A, (cf. Definition 1 and Theorem 1), corresponding to
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all initial data zg = [ug, ©o] € X, is a generalized semiflow on X, (in the sense of [5]) which
possesses a (unique) global attractor A,. (see [25, Section 5]). Notice that in [25, Section 5]
the viscosity v was assumed to be constant, for simplicity. However, the arguments therein can
be easily adapted also to the case of nonconstant viscosity satisfying (V). We also remark that
unigueness of weak solutions is not know in general. However, if 1 is constant then, thanks
to the uniqueness result of [21, Theorem 4] (cf. (2.6)), the generalized semiflow becomes a
semigroup of closed operator on X, and the global attractor is connected.

Assume now that the assumptions of Proposition 2 are satisfied. Take z; € X, and consider a
weak solution z := [u, @] € C°([0, 00); X,;) corresponding to 2. By integrating (5.6) in time
between 0 and 7 > 0, we can deduce that, for every 7 > 0, there exists ¢, € (0, 7] such that
z(t,) € Vg X V. We now consider (5.24) in [t,, 00). By integrating this differential inequality
between ¢, and t > t,, we can see that there exists s, € (t.,t]| such that v;(s,) € H. This,
assuming also that u(s,) € Vg, and ¢(s,) € V, owing to (5.22) and (5.31), implies that
©(s;) € H?(S2). Moreover, since the boundary condition (3.5) holds almost everywhere on
092 % (0,T"), we can suppose that (3.10) holds in s.- (i.e., with oo replaced by ¢ (s, )). Therefore
we can apply the last statement of Theorem 2 with initial time s... Let us then consider the metric
space

Wi = Vaiv X Zy,
where
Z,. = {gp € H*(Q) : % =m(¢)(VK x¢) -n—N(¢)(Va-n), ae ondl,
o] <1 ae.inQ, F(p),M(p) € L'(Q), |p]< /{}, (5.46)
endowed with the metric
dw, (22, 21) = [[ua — willv,, + [lv2 — o1llm2@) z1,22 € Wy,

then, for every 7 > 0, there exists s, € (0, 7] such that z(s,;) € Wi, and starting from
the time s, the weak solution corresponding to z, becomes a (unique) strong solution z &
C°([s,,00); W) (cf. Remark 11). Furthermore, from s, on, this solution satisfies the dissipa-
tive estimate (5.5), namely, there exists a time t; = #,(E(zg)) > s, such that z satisfies (5.5)
forall t > {;.

Let us now consider a subset #4 C X}, bounded in the metric of X}.. We can choose 7 = 1
for every zy € 4, and then infer that every weak solution starting from z, becomes (at some
time s; € (0, 1], which depends on zy and on the weak solution considered from zg) a strong
solution satisfying (5.5) for all ¢ > t, with ] = ¢;(R) > 1, where R > 0 is such that
dy. (w,0) < R, for all w € . Therefore, we deduce that there exists a time t}(%4) > 1,
such that

z(t) € Bw, (A(k)),  Vt>17,
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where A(k) := I''/?(k), and By, (A(k)) is the closed ball in W, given by
B, (A(K)) = {w € W, : dy,(w,0) < A(k)} .

Thanks to the full invariance property of the global attractor A,., we immediately deduce that
A, C By, (A(k:)) In conclusion, we have proven the following regularity result for the global
attractor.

Theorem 3. Let (K), (V), (M), (A1), (A4)—(A5) be satisfied, assume that K € Wfocl (R?) or

that K is admissible, and that v € G y;, is independent of time. Then, the global attractor A,
of the generalized semiflow G,, associated to system (1.1)—(1.6) is such that

A, C By, (A(K)) .

Remark 12 (Corrigendum for [24]). Similarly to (3.10) of Theorem 2, also in [24, Theorem
2 and Proposition] a compatibility condition, associated with the assumption ¢y € HQ(Q)
must be required. More precisely, setting 1o := apo — J * o + F'(vp) (in [24] J stands
for the convolution kernel), the missing condition is Op,t90 = 0 almost everywhere on Of).
Consequently, the metric space y}n, for m > 0 fixed, introduced before the result on existence
of the global attractor (see [24, Theorem 3]) must be defined as follows

Vi ={p € H*Q) : Opp=0aeonQ, u=p—Jxo+F'(p), |(p,m)] <m}.

This observation also applies to [21, Theorem 5], to the definition of the space K, in [21, Theo-
rem 10]), and to [27, Theorem 2.3].

6 The convective nonlocal CH equation

The results of the previous sections can essentially be established for the nonlocal CH equation
with degenerate mobility and with a prescribed (and not necessarily divergence-free) velocity
field w. We shall consider d = 2, 3. However, if d = 3 the results are poorer than in the case
d = 2 (cf. Remark 14).

Theorem 4. Suppose that assumptions (K), (M), (A1),, (A4)—(A5) are satisfied and suppose
that K € W} (R?) or that K is admissible. Let oo € V N L=(Q) with F(¢y) € L'(Q) and
M (o) € L*(2), where M is defined as in Theorem 1. Assume also that u is given and

we L=, 7 L"(Q)?), d<r<oo. (6.1)

Then, for every T > 0, problem (1.2), (1.3), (1.5)2, (1.6)2 admits a strong solution ¢ on [0, T']
such that

0 € L0, T;V)NH(0,T; H), (6.2)
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o€ L*0,T; H*(Q)). (6.3)
This solution is also unique, provided r = oo when d = 3.

Ifd = 2, u satisfies the additional regularity

w € L¥(0,T; L=®(Q)*) N L>(0,T; L°(Q)*), s,0>2, u, € L*(0,T; Gai)
(6.4)

andpy € H 2(Q) satisfies (3.10), then, the (unique) strong solution also satisfies

p e L0, T; H*(Q), @€ L¥(0,T; H)NL*0,T;V). (6.5)

Proof. Since the argument follows the same lines of the time-discretization scheme of Step 1
and of Step 3 in the proof of Theorem 2, we just highlight the main points. The approximate
problem (4.1)—(4.2) is considered, and, by applying time-discretization, we are led to formulate
the incremental-step problem (4.11)—(4.12).

In view of (6.1), the bootstrap argument to prove that, for oy € V, the solution to this problem
satisfies (o1, ..., pn) € H*(Q)Y, is now a bit more delicate. Let us sketch this argument only
for the case d = 3. By comparison in (4.11)—(4.12), we first see that we have AB(+, pr41) €
LP1(Q), where p; = 2r/(r + 2), and OB(-, 11)/0n € H'?(0K). From elliptic regularity
theory, we then infer that B(-, p5,1) € W2P1(Q). Hence, on account also of (3.4), we have
VB(-, ¢rs1), Viorsr € WHP1(Q). Thus by Sobolev embedding we get an improved regularity
for the convective term U, - Vi1, which, by means of elliptic regularity again, implies that
B(-, pr11) € W2P2(Q), with 1/ps = 1/p; — 1/3 + 1/r. By repeating this argument n times,
we get B(-, opy1) € W2Pn(Q), where 1/p,41 = 1/p, — 1/3 + 1/r. This recursive relation
can be made explicit and gives
P1 1 1
:1—(71—1)0;;917 T3

DPn

Therefore, after n steps with n big enough, we have p,, > 2. The bootstrap argument then
leads to B(+, pry1) € H?(), and, by (4.15), we also have @1 € H*(Q) (actually, one
could also push the regularity for i1 further; however the H?—regularity is enough for our
purposes).

Let us now consider the discrete estimates that can be derived from the incremental-step prob-
lem (4.11)—(4.12). The basic estimate (4.21) still holds. As far as estimates (4.22)—(4.26) and
(4.28) are concerned, these can be repeated. However, the contribution coming from the con-
vective term U, - V11 in (4.28), instead of being estimated as in (4.29), is now controlled as
follows (let us consider just the case d = 3, and estimate only the main part of this contribution,
recalling (4.6))

T Z |Uk - VB(-, ori)[|* < TZ !IUk!\%T(Q)sHVB(-, 90k+1)H%27‘/(7‘—2)(Q)3

k=0 k=0
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n e é
< TZ ||Uk||%r(9)3||VB('a ere)F 7T IVB(-; er) Iy

k=0
< 572 IB(s o)1 20y + CJTZ U 1y VB ) (6.6)
k=0 k=0

where § > 0 is to be fixed later. Here the Gagliardo-Nirenberg inequality has been used. It is
easy to see that we have

2r

" : (6.7)

L7=3(0,T;L™()3)

n 2r
P> U <
k=0

Therefore,taking estimates (4.30)—(4.34) into account, from the discrete Gronwall Lemma and
from (6.1), (6.7), we can recover estimate (4.37) (the constant Q now depends on the norm of
u on the right-hand side of (6.7)). This allows us to deduce (6.2).

Next, as far as the regularity (6.3) is concerned, let us consider the two cases d = 2, 3 sepa-
rately. In the case d = 2, we can argue exactly as in Step 1 in the proof of Theorem 2, by using
estimate (4.38), which can now be written into the form

7Y IBC i) < QUlwollv, lull oo @) (6.8)
k=0

and which is derived from (4.30), combined with (4.31)—(4.34), (6.1), (6.6), (6.7), and (4.37). If
d = 3, the argument requires some care. The first step is to prove a bound in L*(0, T'; L*(€2)?)
for the sequence of VB(-, ¢y ), namely

Y IVBC er) e < QUlvollv, lwllzre-sorir@p) .  n=0,...,N—1.
k=0
(6.9)

This bound is a consequence of (6.8) and of the following Gagliardo-Nirenberg inequality (which
holds for every dimension d, see, e.g., [18, 19, 45])

IVB(ni)llzs@p < CIBC erin)llf2 e IBC @k lagy . (6:10)

provided that we prove a uniform bound in L>°(£2) for the time discrete solutions 1 to the
incremental-step problem (4.11)—(4.12), namely

sup || @r1le() < C(||¢0|\Loo(g)) , n=20,...,N—1. (6.11)
0<k<

SN

Once we have (6.9), we also find a bound for V@ and for V3(-, gn) in L*(0,T; L*(Q)?).
Moreover, since we know that ¢y 1 € H?({2), then (4.15) holds. From this identity we deduce
the bound for @y in L?(0,T; H?(S2)) which yields (6.3). Therefore, we need to prove the
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uniform L>°(£2) bound (6.11). This will now be achieved through a Moser-Alikakos iteration
argument performed on (4.11)—(4.12).

Let us begin with an elementary identity that can be obtained from 2(a—b)a = a*—b*+(a—b)?,
by multiplying it by a?, then by multiplying the resulting identity by a*, and iterating this procedure
m > 1 times. We obtain

m 1
(a —b)a®" ! =

m 1 m
—a¥" — —bv" + An(a,b), (6.12)
2m 2m

where A,,(a,b) > 0 is some polynomial function of order 2" which we do not write explicitly,

since it is not essential.

We now set p,,, := 2™, multiply (4.11) by 90k+1 , integrate over (2 (taking the boundary con-
dition (4.12) and the incompressibility condition for U, into account), and sum the resulting
identity over k, for k = 0,...,n,with0 < n < N — 1. By means of (6.12) we easily get the
following estimate

4a0 1— /2 1 m
_/M ol Z/\v () p/ﬂsog
- TZ (¢r+1)Va,V @Zfﬁl TZ (¢x)Va, V(Spﬁl 1))

+TZ m(on) (VI * Q(en)). Vel ) 6.43)

where p/. is the conjugate exponent to p,,. Let us estimate the last three terms on the right-hand
side of (6.13). We have

m m2 m /2
)Z (Pus1)Va. v«ozﬂl»\ mooHVaHooTZ / adCry]

Z |V b2y, OOHVCLHQ Z |pm/z (6.14)
pmpm k+1 ( me Pr+1 -

n

m m—2)/2 m /2
r\ (WlonVa. D) < oo||Va||ooTZ / ol V()

k=0
/2 N HVGHQ m/22 2
e [ e [ (i L)

pml

pmpm
(6.15)

and a similar estimate as (6.15) holds for the last term. By means of these estimates, and setting
™ = P2 (6.13) yields

/ i+ 2 =p) Z / V| / 5™ r2+clpm72 / 1% + Copim

(6.16)
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where C;, 7 = 1,2, ..., shall henceforth denote some positive constants which may depend
onm, K, ayg, p, 2 and T', but are independent of m and V.

Usinf the following Gagliardo-Nirenberg inequality in three dimensions

H%HHQ < C(H¢k+1H4/5 ||V¢k+1”6/5 + H%HHLI(Q)) (6.17)

and Young’s inequality in (6.16), we obtain

/ |¢n+1 Z/ }V¢k+1| / Wom ’2 + C3Pm72 ||¢k+1HL1

The last inequality implies that

V4 D 5 - 2
/%%11 §/900m+03pm7'§ (/ |90k+1|pm71)
Q Q i /o
2
< / 908"”+03pf;T max / Iwk+1|p’"*1>
Q

< Pm— 1 1
< Cup), 0<rkn<a]§< ) / [y (6.18)

where we have used the fact that ||| o< (0) < 1, and the constant C; depends on || || Lo (q)
Setting

E, = {1 pm} >
Ogl;crlga]\}/(—l 7/9 |Q0/€+1| ) Vm = 07

from (6.18) we obtain the recursive relation
E, <Cyp> E% |, m>1,

so that

7.”701 27 ! 5.27 om
j= :
E, <Cj P B

=0

Hence, we get

m( < 520, tZ < }
Ogrkngaj\)f(_lHSOkJrlHLP Cy2 2f By 050<ka1<&]§<1 17/Q’@k+1’

< Cs([leoll =) » (6.19)

where (4.21) has been taken into account in the last estimate. Letting m — o0, and using the
fact that the constant Cy does not depend neither on m nor on NV, from (6.19) we get (6.11).
We now prove uniqueness of the strong solution satisfying (6.2)—(6.3). Let us start with the
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case d = 2. We take the difference of (3.1) and (3.5) written for two solutions and multiply the
resulting identity by ¢ := @9 — 1 in H. We get

Sl + (V(BC,22) = B o1)), Vo) = ((mies) — mlpn)) (VK * 22), Vi)
+ (m(e1) (VK ), Vo) = (N (p2) = N(¢1))Va, Vi) . (6.20)

Thanks to (A4) and (A5), we deduce

(V(B(7902) - B(u 901))7V90) > 050(1 - p)‘|v§0|l2 + ((6(7@2) - 5(7 ¢1>)v§02,v§0)
+ ((M(p2) = M(1))Va, Vi) , (6.21)

and, due to (6.2) for 9, we have

[((BC02) = BC00))Vea, V) | < Clllgll + el IVl 2V o222 IV
1
< 7001 = P)IVel* + A+ llallae)llell”

The estimates of the three terms on the right-hand side of (6.20) and of the last term in (6.21)
being straightforward, we are led to

d
e’ + a0 =p)IVell® < 1+ llallae)llell”

Unigueness (and also a continuous dependence estimate) then follows by Gronwall’'s Lemma,
on account of (6.3) for ps.

For d = 3, the test by ¢ does not work for uniqueness (the difficulty lies in the estimate
of the term ((B(-, p2) — B(-, 1)) V2, Vo). The test by (—Ay) ' works (—Ay being
the Laplace operator with homogeneous Neumann boundary condition), provided that u &
L?(0,T; L*°(£2)3). Uniqueness then follows by arguing as in [25, Proposition 4].

Let us now prove the last part of the theorem. If d = 2 then we can argue as in Step 3 of the
proof of Theorem 2. Identity (4.74) and estimates (4.75)—(4.80) can be rewritten in such a way
that the discrete inequality (4.82) holds, where the constant () now depends on the norm of u
on the right-hand side of (6.7). Also the argument for the control of (¢; — @) /7 in L? still works,
with only one difference. More precisely, instead of (4.85), we now have, as a consequence of
(6.4)1,

1
1Okl =02 = 7 lullieoriz=oy)

Hence, instead of using Agmon’s inequality in (4.86), we can deduce
T[(Uk - (2 — 1), V(B(,02) — B(-,¢1))))|
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< 7|Ukllz=@pzllo2 = o1llIV (B ¢2) = B(, 1))

< TIV(BC.¢2) — BO o)) + 5 7%

71

2Ls(o,T;Loo(gp) 2 — <P1||2-

Since s > 2, we can choose 0 < 7 < 7, with 71 small enough (and depending on the norm
of w on the right-hand side of (6.7)), and still obtain (4.89), yielding the desired control for the
quotient (1 — ¢g)/7. Owing to this control and to (6.4), and (4.91), from (4.82) we still get
(4.92), which allows to obtain (6.5),.

Finally, in order to deduce (6.5),, we can argue as in Step 1 of the proof of Theorem 2, estimating
first the H2—norm of B(-, ¢y 1) by elliptic regularity, and then using (4.11) (cf. (4.30)). The
L?—norm of the convective term, which essentially amount to control Uy, - VB(-, ¢r1), on
account of (6.4); can now be estimated as

1UL - VB okl < Ukl @2 I VB ori)ll 20/0-2) ()2
—2/0 2/o0
< Ollull o770 IV B( rn) I HB("SOR+1)HH/2(Q)

< OIB(-, ers) @) + Qs (leollv, 1wl oo o,r:L0 )2), [l por/-2 0 1 (02)) -

Therefore, choosing & > 0 small enough, we get

1B( em)llz20) < Qlleollv, el Lo o127 @)2)nmerre-2 0127002y (1881 + 1)

which, owing to the bound for @, in L>(0, T'; H), yields a bound for B(+, ¢ ) in L>(H?(2)),
and hence on VB(-, pn), Von, VB(-, gn) in L>=(0,T; LP(Q)?), for all p < oco. Thus, on
account of (4.15), we find the desired bound for @y in L>(0,T; H*(f2)). Hence, (6.5); is
proven and the proof is finished. O

Remark 13. The bound (6.11) obviously also holds for d = 2. Therefore, the argument relying
on (6.10) can be employed, both in Theorem 2 and in Theorem 4, to deduce the L?(0, T'; H?(12))
regularity for ¢ in two dimensions as well. However, we point out that, in the case d = 2, this
regularity can be established without using (6.11).

Remark 14. If d = 3 the regularity (6.5) is open, unless we suppose A := mF}” constant
and a(z) + F’ = 0 almost everywhere in (2 (namely, (3 is constant; in this case (6.4) is still
required). It is worth observing that these assumptions are basically the ones considered in
[33]) whose regularity was discussed in [42]. Moreover, if 3 is constant then uniqueness of the
strong solution satisfying (6.2)—(6.3) holds for d = 3, also under the more general condition
(6.1) (without the need to assume r = ©0). Indeed, the second term on the right-hand side of
(6.21) vanishes.

Similarly to Proposition 2, by employing the uniform Gronwall Lemma (or, more precisely, its
discrete variant, see [48, Lemma 3]), uniform in time regularity estimates can also be established
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for the convective nonlocal CH equation with a prescribed velocity. We can therefore deduce
from Theorem 4 another result obtained by working with translation bounded functions and
providing also a dissipative estimate for ¢ (cf. (5.5)). We omit the statement of this theorem and
its proof, since they can be deduced in a straightforward way. Moreover (cf. Remark 14),if d = 3
and

mE! =\, F)'(s)+a(x) =0, aexze, (6.22)

where ), is a positive constant, then we can prove that ¢ € L*(0, 00; H*(2)) and that
o1 € L>®(0,00; H) N L%(0,T;V), provided po € H?(N) satisfies (3.10) and u satisfies
(6.4) in the corresponding translation bounded spaces.

As far as the time continuity property (5.43), is concerned, assume that all the conditions of
Theorem 4 and, in addition, suppose that (M1), (A1), are fulfilled. By arguing as in the second
part of Remark 11, we can easily see that (5.43) still holds, under the further regularity u &€
C°([0, T); L°(Q)%), for some o > d, and, if d = 3, provided that (6.22) holds.

Suppose now that assumptions (K), (M), (A1)—(A5) are satisfied and that u & L“(Q)d is
independent of time. Then, from [25, Section 6] we know that (1.2), (1.3), (1.5)2 and (1.6),
generates a semigroup of closed operators {S,(t)}:>0, with k € [0, 1] fixed, on the phase
space ). defined as in (5.45) and endowed with the metric induced by the L?—norm, namely
o € C°[0,00),V.) given by ©(t) := S, (t)po, for all t > 0, is the (unique) weak solution
to (1.2), (1.3), (1.5)2 and (1.6), corresponding to ¢y € )V.. According to [25, Theorem 5], this
semigroup possesses a connected global attractor .ZN.

Assume now, in addition, that the (M1); and (A1), are fulfilled, and, for d = 3, that (6.22) holds.
It is then easy to check that the argument devised at the end of Section 5 to prove the regularity
of the global attractor for (1.2)—(1.6), can be adapted to the present situation. This yields

Theorem 5. Suppose that assumptions (K), (M), (A1)s, (A4)—(A5) are satisfied, that K &
T/Vfocl (R?) or that K is admissible, and that w € L>(Q)¢, d = 2,3, is independent of time.

Moreover, if d = 3, assume that (6.22) holds. Then, the global attractor A;, of the dynamical
system (i, {Sx(t) }1>0) generated by (1.2), (1.3), (1.5)2, (1.8)2 is such that

A, C Bz, (A(K)),

where Bz, (A(k)) is the closed ball in the metric space Z;. (cf. (5.46)), endowed with the metric
induced by the H*—norm, having radius A(k), for some A(k) > 0.
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