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ABSTRACT. In a recent work Levine et al. (2015) prove that the odometer function of a divisible sandpile
model on a finite graph can be expressed as a shifted discrete bilaplacian Gaussian field. For the discrete
torus, they suggest the possibility that the scaling limit of the odometer may be related to the continuum
bilaplacian field. In this work we show that in any dimension the rescaled odometer converges to the
continuum bilaplacian field on the unit torus.

1. INTRODUCTION

The concept of self-organized criticality was introduced in Bak et al. (1987) as a lattice model with a fairly
elementary dynamics. Despite its simplicity, this model exhibits a very complex structure: the dynamics
drives the system towards a stationary state which shares several properties of equilibrium systems at the
critical point, e.g. power law decay of cluster sizes and of correlations of the height-variables. The model
was generalised by Dhar (1990) in the so-called Abelian sandpile model (ASP). Since then, the study
of self-criticality has become popular in many fields of natural sciences, and we refer the reader to Járai
(2014) and Redig (2006) for an overview on the subject. In particular, several modifications of the ASP
were introduced such as non-Abelian models, ASP on different geometries, and continuum versions like
the divisible sandpile treated in Levine and Peres (2009, 2010). We are interested in the latter one which
is defined as follows. By a graph G = (V, E) we indicate a connected, locally finite and undirected graph
with vertex set V and edge set E. By deg(x) we denote the number of neighbours of x ∈ V in E and
we write “y ∼V x” when (x, y) ∈ E. A divisible sandpile configuration on G is a function s : V → R,
where s(x) indicates a mass of particles at site x. Note that here, unlike the ASP, s(x) is a real-valued
(possibly negative) number. If a vertex x ∈ V satisfies s(x) > 1, it topples by keeping mass 1 for
itself and distributing the excess s(x)− 1 uniformly among its neighbours. At each discrete time step, all
unstable vertices topple simultaneously.

Given (σ(x))x∈V i.i.d. standard Gaussians, we construct the divisible sandpile with weights (σ(x))x∈V
by defining its density

s(x) = 1 + σ(x)− 1
|V| ∑

y∈V
σ(y). (1.1)

As in many models of statistical mechanics, one is interested in defining a notion of criticality here too.
For a sequence of finite graphs Vn such that Vn ↑ V∞ with |V∞| = +∞, let eVn(x) denote the total
mass distributed by x ∈ Vn to any of its neighbours. If en ↑ eV∞ where eV∞ : V∞ → [0, +∞], then
eV∞ is called the odometer of s. We have the following dichotomy: either eV∞ < +∞ for all x ∈ V
(stabilization), or eV∞ = +∞ for all x ∈ V (explosion). It was shown in Levine et al. (2015) that if s(x)
is assumed to be i.i.d. on an infinite graph, and if E[s(x)] > 1, s does not stabilize, while stabilization
occurs for E[s(x)] < 1. In the critical case (E[s(x)] = 1) the situation is graph-dependent. For an
infinite vertex transitive graph, with E[s(x)] = 1 and 0 < Var(s(x)) < +∞ then s almost surely does
not stabilize.

For a finite graph, stabilization is defined in a slightly different way. Write em(x) for the total amount of
mass emitted before time m from x to one of its neighbors. This quantity increases with m, so em ↑ e∞
as m ↑ +∞ for a function e∞ : V → [0, +∞]. We call e∞ the odometer of s. For a finite connected
graph, one can give quantitive estimates and representations for e∞. It is shown in Levine et al. (2015,
Proposition 1.3) that the odometer corresponding to the density (1.1) on a finite graph V has distribution

(eV(x))x∈V
d=
(

η(x)−min
z∈V

η(z)
)

x∈V
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where η is a “bilaplacian"centered Gaussian field with covariance

E[η(x)η(y)] =
1

deg(x)deg(y) ∑
w∈V

g(x, w)g(w, y)

setting

g(x, y) =
1
|V| ∑

z∈V
gz(x, y) (1.2)

and gz(x, y) = E
[
∑τz

m=0 1{Sm=y}

]
for S = (Sm)m≥0 a simple random walk on V starting at x and

τz := inf{m ≥ 0 : Sm = z}. The field is called “bilaplacian” since a straightforward computation
shows that

∆2
g

(
1

deg(x)deg(y) ∑
w∈V

g(x, w)g(w, y)

)
= −δx(y)− 1

|V|

where ∆g denotes the graph Laplacian

∆g f (x) := ∑
y∼V x

f (y)− f (x), f : V → R.

Hence the covariance is related to the Green’s function of the discrete bilaplacian (or biharmonic) opera-
tor.

The interplay between the odometer of the sandpile and the bilaplacian becomes more evident in the
observation made by Levine et al. on the odometer in V := Zd

n, the discrete torus of side length n > 0
in dimension d. They write (after the statement of Proposition 1.3):

“We believe that if σ is identically distributed with zero mean and finite variance, then
the odometer, after a suitable shift and rescaling, converges weakly as n → +∞ to the
bilaplacian Gaussian field on Rd".

Note that, although they work with Gaussian weights in the proof of Proposition 1.3, their comment com-
prises also the case when σ has a more general distribution. Inspired by the above remark, we determine
the scaling limit of the odometer in d ≥ 1 for general i.i.d. weights: we show that indeed it equals
Ξ, the continuum bilaplacian, but on the unit torus Td (see Theorems 1.1 and 1.2). A heuristic for the
toric limit is that the laplacian we consider is on Zd

n, which can be seen as dilation of the discrete torus
Td ∩ (n−1Z)d. We highlight that Ξ is not a random variable, but a random distribution living in an appro-
priate Sobolev space on Td. There are several ways in which one can represent such a field: a convenient
one is to let Ξ be a collection of centered Gaussian random variables

{
〈Ξ, u〉 : u ∈ H−1(Td)

}
with

variance E
[
〈Ξ, u〉2

]
= ‖u‖2

−1, where

‖u‖2
−1 :=

(
u, ∆−2u

)
L2(Td)

and ∆2 now is the continuum bilaplacian operator. We will give the analytical background to this definition
in Subsection 2.2. As a by-product of our proof, we are able to determine the kernel of the continuum
bilaplacian on the torus which, to the best of the authors’ knowledge, is not explicitly stated in the literature.
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Related work. Scaling limits for sandpiles have already been investigated: in the ASP literature limits for
stable configurations have been studied, for example, in Levine et al. (2016) and Pegden and Smart
(2013). Their works are concerned with the partial differential equation that characterizes the scaling limit
of the ASP in Z2. They also provide an interesting explanation of the fractal structure which arises when
a large number of chips are placed at the origin and allowed to topple. The properties of the odometer
play an important role in their analysis. In the literature of divisible sandpiles models, the scaling limit of
the odometer was determined for an α-stable divisible sandpile in Frómeta and Jara (2015), who deal
with a divisible sandpile for which mass is distributed not only to nearest-neighbor sites, but also to “far
away” ones. Their limit is related to an obstacle problem for the truncated fractional Laplacian.

The discrete bilaplacian (also called membrane) model was introduced in Sakagawa (2003) and Kurt
(2007, 2009) for the box of Zd with zero boundary conditions. In d ≥ 4 Sun and Wu (2013) and Lawler
et al. (2016) construct a discrete model for the bilaplacian field by assigning random signs to each com-
ponent of the uniform spanning forest of a graph and study its scaling limit. As far as the authors know,
Levine et al. (2015) is the first paper in which the discrete bilaplacian model has been considered with
periodic boundary conditions.

1.1. Main results.

Notation. We start with some preliminary notations which are needed throughout the paper. Let Td be the
d-dimensional torus, alternatively viewed as Rd/Zd or as [−1/2, 1/2)d ⊂ Rd. Zd

n := [−n/2, n/2]d ∩
Zd is the discrete torus of side-length n ∈N, and Td

n := [−1/2, 1/2]d ∩ (n−1Z)d is the discretization
of Td. Moreover let B(z, ρ) a ball centered at z of radius ρ > 0 in the `∞-metric. We will use throughout
the notation z · w for the Euclidean scalar product between z, w ∈ Rd. With ‖ · ‖∞ we mean the
`∞-norm, and with ‖ · ‖ the Euclidean norm. We will let C, c be positive constants which may change
from line to line within the same equation. We define the Fourier transform of a function u ∈ L1(Td) as
û(y) :=

∫
Td u(z) exp (−2πιy · z) dz for y ∈ Zd. We will use the symbol ·̂ to denote also Fourier

transforms on Zd
n and Rd. We will say that a function f (n) = o (1) if limn→+∞ f (n) = 0.

We can now state our main theorem: we consider the piecewise interpolation of the odometer on small
boxes of radius 1/2n and show convergence to the continuum bilaplacian field.

Theorem 1.1 (Scaling limit of the odometer for Gaussian weights). Let d ≥ 1 and let (σ(x))x∈Zd
n

be

a collection of i.i.d. standard Gaussians. Let en(·) be the odometer on Zd
n associated to these weights.

The formal field

Ξn(x) := 4π2 ∑
z∈Td

n

n
d−4

2 en(nz) 1B(z, 1/2n)(x), x ∈ Td (1.3)

converges in law as n → +∞ to the bilaplacian field Ξ on Td. The convergence holds in the Sobolev
space H−ε(Td) with the topology induced by the norm ‖ · ‖H−ε(Td) for any ε > max {1 + d/4, d/2}
(see Section 2.2 for the analytic specifications).

Observe that max {1 + d/4, d/2} has a transition at d = 4, which is reminiscent of the phase transition
of the bilaplacian model on Zd (see for instance Kurt (2009)).

We can now show the next Theorem, which generalises the previous one to the case in which the weights
have an arbitrary distribution with mean zero and finite variance. We keep the proof separate from the
Gaussian one, as the latter will allow us to obtain precise results on the kernel of the bilaplacian, and has
also a different flavor. Moreover, the more general proof relies on estimates we obtain in the Gaussian
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case. With a slight abuse of notation, we will define a field Ξn as in Theorem 1.1 also for weights which
are not necessarily Gaussian (in the sequel, it will be clear from the context to which weights we are
referring to).

Theorem 1.2 (Scaling limit of the odometer for general weights). Assume (σ(x))x∈Zd
n

is a collection of

i.i.d. variables with E [σ] = 0 and E
[
σ2] = 1. Let d ≥ 1 and en(·) be the corresponding odometer. If

we define the formal field Ξn as in (1.3) for such weights, then it converges in law as n → +∞ to the
bilaplacian field Ξ on Td. The convergence holds in the same fashion of Theorem 1.1.

We now give an explicit description of the covariance structure of Ξ. Our motivation is also a comparison
with the whole-space bilaplacian field already treated in the literature. More precisely, for d ≥ 5, Sun and
Wu (2013, Definition 3) define the bilaplacian field Ξ̃d on Rd as the unique distribution on

(
C∞

c (Rd)
)∗

such that, for all u ∈ C∞
c (Rd),

〈
Ξ̃d, u

〉
is a centered Gaussian variable with variance

E

[〈
Ξ̃d, u

〉2
]

=
∫∫

Rd×Rd
u(x)u(y)‖x− y‖4−ddxdy.

Since we obtain a limiting field on Td, we think it is interesting to give a representation for the covariance
kernel of the biharmonic operator in our setting. From now on, when we use the terminology “mean zero”
for a function u, we always mean

∫
Td u(x)dx = 0.

Theorem 1.3 (Kernel of the biharmonic operator in higher dimensions). Let d ≥ 5. Let furthermore
u ∈ C∞(Td) and with mean zero. Then there exists Gd ∈ L1(Rd) such that

E
[
〈Ξ, u〉2

]
=
(

u, ∆−2u
)

L2(Td)

=
∫∫

Td×Td
u(z)u(z′) ∑

w∈Zd

Gd(z− z′ + w)dzdz′. (1.4)

Gd can be computed explicitly as follows: there exists hd ∈ C∞(Rd) depending on d such that

Gd( · ) = π4− d
2 Γ
(

d− 4
2

)
‖ · ‖4−d + hd( · ). (1.5)

Remark 1.4 (Kernel of the biharmonic operator in lower dimensions). The convergence result of Theo-
rem 1.2 allows us to determine the kernel in d ≤ 3 too. In fact, for such d interchanging sum and integrals
is possible, so that we can write(

u, ∆−2u
)

L2(Td)
= ∑

ν∈Zd\{0}

|û(ν)|2

‖ν‖4 =
∫∫

Td×Td
u(z)u(z′)K(z− z′)dzdz′, (1.6)

where we can define the kernel of the bilaplacian to be

K(z− z′) := ∑
ν∈Zd\{0}

e2πι(z−z′)·ν

‖ν‖4 , z, z′ ∈ Td.

In d = 4 the explicit kernel is difficult to obtain. However, if we use a suitable compactly supported
mollifier φκ (as defined on page 13) depending on a parameter κ > 0 and define

Kκ(z− z′) := ∑
ν∈Zd\{0}

φ̂κ(ν)
e2πι(z−z′)·ν

‖ν‖4 , z, z′ ∈ Td,
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then one can write (1.6) replacing K with Kκ. See Remark 4.6 for a derivation of this kernel.

Outline of the article. The necessary theoretical background is given in Section 2, together with an outline
of the strategy of the proof of Theorem 1.1. Auxiliary results and estimates are provided in Section 3. The
proof of Theorem 1.1 lies in Section 4, and of Theorem 1.2 in Section 5. Finally we conclude with the
proof of Theorem 1.3 in Section 6.

Acknowledgments. We would like to thank Xin Sun for pointing out to us the paper Lawler et al. (2016).
We are grateful to Swagato K. Ray and Enrico Valdinoci for helpful discussions. The first author’s re-
search was partially supported by the Dutch stochastics cluster STAR (Stochastics – Theoretical and
Applied Research). The second author’s research was supported by Cumulative Professional Develop-
ment Allowance from Ministry of Human Resource Development, Government of India and Department
of Science and Technology, Inspire funds.

2. PRELIMINARIES

In this section we review the basics of the spectral theory of the Laplacian on the discrete torus from
Levine et al. (2015). We also remind the fundamentals of abstract Wiener spaces which enable us to
construct standard Gaussian random variables on a Sobolev space on Td. The presentation is inspired
by Silvestri (2015). We also comment on the basic strategy of the proof of Theorem 1.1 and make some
important remarks on the test functions we use for our calculations. We refer for the Fourier analytic
details used in this article to Stein and Weiss (1971) and for a survey on random distributions to Gel’fand
and Vilenkin (1964).

2.1. Fourier analysis on the torus. We now recall a few facts about the eigenvalues of the Laplacian
from Levine et al. (2015) for completeness. Consider the Hilbert space L2(Zd

n) of complex valued func-
tions on the discrete torus endowed with the inner product

〈 f , g〉 =
1
nd ∑

x∈Zd
n

f (x)g(x).

The Pontryagin dual group of Zd
n is identified again with Zd

n. Let {ψa : a ∈ Zd
n} denote the characters

of the group where ψa(x) = exp(2πιx · a/n). The eigenvalues of the Laplacian ∆g on discrete tori are
given by

λw = −4
d

∑
i=1

sin2
(πwi

n

)
, w ∈ Zd

n.

Recalling (1.2), we use the shortcut gx(y) := g(y, x). Let ĝx denote the Fourier transform of gx. It
follows that

ĝx(0) = n−d ∑
y∈Zd

n

gx(y) =: L (2.1)

for all x ∈ Zd
n (it can be seen in several ways, for example by the proof of Proposition 2.1, that L is

independent of x). Finally, we recall Levine et al. (2015, Equation (20)): for all a 6= 0,

λa ĝx(a) = −2dn−dψ−a(x). (2.2)
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2.2. Gaussian variables on homogeneous Sobolev spaces on the torus. Since our conjectured scal-
ing limit is a random distribution, we think it is important to keep the article self-contained and give a brief
overview of analytic definitions needed to construct the limit in an appropriate functional space. Our pre-
sentation is based on Sheffield (2007, Section 2) and Silvestri (2015, Sections 6.1, 6.2).

An abstract Wiener space (AWS) is a triple (H, B, µ), where:

1 (H, (·, ·)H) is a Hilbert space,
2 (B, ‖ · ‖B) is the Banach space completion of H with respect to the measurable norm ‖ · ‖B on

H, equipped with the Borel σ-algebra B induced by ‖ · ‖B, and
3 µ is the unique Borel probability measure on (B,B) such that, if B∗ denotes the dual space of

B, then µ ◦ φ−1 ∼ N (0, ‖φ̃‖2
H) for all φ ∈ B∗, where φ̃ is the unique element of H such that

φ(h) = (φ̃, h)H for all h ∈ H.

We remark that, in order to construct a measurable norm ‖ · ‖B on H, it suffices to find a Hilbert- Schmidt
operator T on H, and set ‖ · ‖B := ‖T · ‖H .

Let us construct then an appropriate AWS. Choose a ∈ R. Let us define the operator (−∆)a acting on
L2(Td)-functions u with Fourier series ∑ν∈Zd û(ν)eν(·) as follows ((eν)ν∈Zd denotes a mean-zero

orthonormal basis of L2(Td)):

(−∆)a

(
∑

ν∈Zd

û(ν)eν

)
(ϑ) = ∑

ν∈Zd\{0}
‖ν‖2aû(ν)eν(ϑ).

Let “∼” be the equivalence relation on C∞(Td) which identifies two functions differing by a constant and
let Ha(Td) be the Hilbert space completion of C∞(Td)/∼ under the norm

( f , g)a := ∑
ν∈Zd\{0}

‖ν‖4a f̂ (ν)ĝ(ν).

Define the Hilbert space

Ha :=
{

u ∈ L2(Td) : (−∆)au ∈ L2(Td)
}

/∼.

We equipHa with the norm

‖u‖2
Ha(Td) = ((−∆)au, (−∆)au)L2(Td) .

In fact, (−∆)−a provides a Hilbert space isomorphism between Ha and Ha(Td), which when needed
we identify. For

b < a− d
4

(2.3)

one shows that (−∆)b−a is a Hilbert-Schmidt operator on Ha (cf. also Silvestri (2015, Proposition 5)).
In our case, we will be setting a := −1. Therefore, by (2.3), for any −ε := b < 0 which satisfies
ε > 1 + d/4, we have that (H−1, H−ε, µ−ε) is an AWS. The measure µ−ε is the unique Gaussian
law onH−ε whose characteristic functional is

Φ(u) := exp

(
−
‖u‖2

−1
2

)
.

The field associated to Φ will be called Ξ and is the limiting field claimed in Theorem 1.1.
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There is a perhaps more explicit description of Ξ which is based on Gaussian Hilbert spaces (Janson,
1997, Chapter 1). The construction is taken from Janson (1997, Example 1.25). Let (Ω, A, P) be a
probability space with A its Borel σ-algebra. Assume that on Ω one can define a sequence of i.i.d.
standard Gaussians (Xm)m∈N. Let further (Xm)m∈N be an orthonormal basis of H−1(Td). Then,
L2(Ω, P) is a Gaussian Hilbert space and Ξ is an isometric embedding H−1(Td) ↪→ L2(Ω, P) such

that 〈Ξ, Xm〉
d= Xm for all m. Indeed, by the properties of AWS, the mapping (H−ε)∗ 3 φ 7→ 〈Ξ, φ〉

is an isometry of the dense subspace (H−ε)∗ onto S := {〈Ξ, u〉 : u ∈ (H−ε)∗}. The mapping can
be extended by continuity to an isometry between H−1 and the corresponding closure of S. Taking
Ω := H−ε and P := µ−ε, this entails an alternative construction of Ξ: it is the unique Gaussian

process indexed by H−1 such that Ξ d=
{
〈Ξ, u〉 : u ∈ H−1(Td)

}
with 〈Ξ, u〉 ∼ N

(
0, ‖u‖2

−1
)

for any u ∈ H−1(Td).

2.3. Strategy of the proof of Theorem 1.1. Firstly, we show that η can be decomposed into the sum of
two independent fields, namely

Proposition 2.1. There exist a centered Gaussian field (χx)x∈Zd
n

with covariance E[χxχy] = H(x, y)
as in (3.2) and a centered normal random variable Y with variance (2d)−2ndL2 (where L is as in (2.1)),
such that Y is independent from (χx)x∈Zd

n
and

(η(x))x∈Zd
n

d= (Y + χx)x∈Zd
n
.

In particular, en(·) admits the representation

(en(x))x∈Zd
n

d=

(
χx − min

z∈Zd
n

χz

)
x∈Zd

n

.

This decomposition is similar in spirit to the one in the proof of Levine et al. (2015, Proposition 1.3), but
we stress that the random fields we find are different. The proof of the above Proposition can be found in
Subsection 3.1. As a consequence, to achieve Theorem 1.1 it will suffice to determine the scaling limit of
the χ field, because test functions have mean zero, and hence we can get rid of the minimum appearing
in the odometer representation. We will therefore show

(P1) (L(Ξn))n∈N is tight in the spaceH−ε(Td) where −ε < −d/2.
(P2) From the above tightness result, there exists a subsequential scaling limit Ξ = limk→+∞ Ξnk

for the convergence in law in the space H−ε. The proof is complete once we show this limit is
unique: by Ledoux and Talagrand (1991, Section 2.1), it suffices to prove that, for all mean-zero
test functions u ∈ C∞(Td),

lim
n→+∞

E [exp (ι 〈Ξn, u〉)] = Φ(u),

where the RHS is the characteristic function of Ξ. We will calculate the limit of the second moment
of 〈Ξn, u〉 directly in d ≤ 3 and through a mollifying procedure in d ≥ 4.

This will conclude the proof. Since the “finite dimensional” convergence is somewhat more interesting, we
will defer the tightness proof to Subsection 4.2 and show (P2) in Subsection 4.1.
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A note on test functions. By the above construction, the set of test functions we will consider is the set
of smooth functions C∞(Td) with zero mean. We need to stress at this juncture an important remark:
C(Td) does not correspond to the class of continuous functions on [−1/2, 1/2)d, but only to functions
which remain continuous on Rd when extended by periodicity. Similar comments apply to C∞(Td) func-
tions. See also Stein and Weiss (1971, Section 1, Chapter VII) for further discussions. Therefore, when we
consider u : Rd → R which is periodic and belongs to C∞, we consider its restriction to [−1/2, 1/2)d

while computing its integral on Td.

3. AUXILIARY RESULTS

In this section we provide a proof of Proposition 2.1. The result helps us tackle the singularity arising from
the zero eigenvalue of ∆g and will also reduce the determination of the scaling limit to finding the scaling
limit of (χx)x∈Zd

n
.

3.1. Proof of Proposition 2.1.

Proof. First, observe that, by Parseval’s identity on the discrete torus, we can write the covariance of the
Gaussian field (η(x))x∈Zd

n
as

E [η(x)η(y)] = (2d)−2 ∑
z∈Zd

n

g(z, x)g(z, y) = (2d)−2nd ∑
z∈Zd

n

ĝx(z)ĝy(z)

Now we split the above sum over Zd
n into contributions from 0 and from other sites. First observe that

using the description of g(x, y) in terms of the simple random walk (Sm)m≥0 on Zd
n we derive

ĝx(0) = n−d ∑
y∈Zd

n

gx(y) = n−2d ∑
y∈Zd

n

∑
z∈Zd

n

∑
m≥0

Px(Sm = y, m < τz)

= n−2d ∑
z∈Zd

n

∑
y∈Zd

n\{z}
∑

m≥0
Px(Sm = y, m < τz)

= n−2d ∑
z∈Zd

n

∑
m≥0

Px(τz > m) = n−2d ∑
z∈Zd

n

Ex[τz]. (3.1)

One can notice that ĝx(0) is independent of x: since the random walk on the torus is irreducible, one can
apply the Random Target Lemma (Levin et al., 2009, Lemma 10.1) to the right-hand side of (3.1). Hence
we get that the first term is, by (3.1), L = n−2d ∑q∈Zd

n
Ex[τq]. As for the contribution from other sites,

(2d)−2nd ∑
z∈Zd

n\{0}
ĝx(z)ĝy(z) (2.2)= n−d ∑

z∈Zd
n\{0}

exp (−2πιx · z/n) exp (2πιy · z/n)
|λz|2

.

Define a centered Gaussian process (χx)x∈Zd
n

with covariance given by

H(x, y) =
n−d

16 ∑
z∈Zd

n\{0}

exp(2πι(y− x) · z/n)(
∑d

i=1 sin2 (π zi
n
))2 . (3.2)
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The field associated to H is well-defined and in fact H is positive definite. To see this, given a function
c : Zd

n → C one has that ∑x,y∈Zd
n

H(x, y)c(x)c(y) ≥ 0. Indeed,

∑
x,y∈Zd

n

H(x, y)c(x)c(y) =
n−d

16 ∑
x,y∈Zd

n

∑
z∈Zd

n\{0}

exp(2π(y− x) · z/n)(
∑d

i=1 sin2 (π zi
n
))2 c(x)c(y)

=
n−d

16 ∑
z∈Zd

n\{0}
d(z)d(z) ≥ 0,

where d(z) := ∑x∈Zd
n

exp(−2πιx · z/n)
(

∑d
i=1 sin2(πzi/n)

)−1
c(x). Hence it turns out that (η(x))x∈Zd

n

has the same distribution as (Y + χx)x∈Zd
n

where Y is a Gaussian random variable with mean zero and

variance (2d)−2ndL2 independent of the field χ. To conclude, note that the odometer function satisfies

en(x) d= η(x)−minz∈Zd
n

η(z) d= χx −minz∈Zd
n

χz. �

4. PROOF OF THEOREM 1.1

We recall that it will suffice to prove the two properties (P1) and (P2) to achieve the Theorem. We first
use to our advantage the fact that the test functions we consider have mean zero, hence we can get rid
of the minimum term which appears in the definition of the odometer. Let us recall the field in (1.3)

Ξn(·) = 4π2 ∑
z∈Td

n

n
d−4

2 en(nz) 1B(z, 1/2n)(·).

We define a linear functional on C∞(Td) by setting

〈Ξn, u〉 :=
∫

Td

4π2n
d−4

2 ∑
z∈Td

n

1B(z, 1/2n)(x)en(nz)

 u(x)dx.

However using Proposition 2.1, and the fact that u has zero mean, one sees that

〈Ξn, u〉 = 4π2 ∑
z∈Td

n

n
d−4

2 χnz

∫
B(z,1/2n)

u(x)dx− 4π2 ∑
z∈Td

n

n
d−4

2

(
min
w∈Zd

n

χw

) ∫
B(z,1/2n)

u(x)dx

= 4π2 ∑
z∈Td

n

n
d−4

2 χnz

∫
B(z,1/2n)

u(x)dx =
〈
Ξ′n, u

〉
letting

Ξ′n(·) := 4π2 ∑
z∈Td

n

n
d−4

2 χnz 1B(z, 1/2n)(·)

By the theory of Gaussian Hilbert spaces of Subsection 2.2, Ξn = Ξ′n in distribution. Hence in the sequel
we will, with a slight abuse of notation, consider Ξ′n but denote it simply as Ξn, since the law of the two
processes is the same. We are now ready to begin with (P2).

4.1. Proof of (P2).
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Overview of the proof. We have just seen that

〈Ξn, u〉 = 4π2 ∑
z∈Td

n

n
d−4

2 χnz

∫
B(z,1/2n)

u(x)dx.

We now replace the integral over the ball above by the value at its center and gather the remaining error
term. More precisely we get

4π2 ∑
z∈Td

n

n
d−4

2 χnz

∫
B(z,1/2n)

u(x)dx = 4π2 ∑
z∈Td

n

n
d−4

2 χnzn−d
∫

B(z,1/2n)
ndu(x)dx

= 4π2 ∑
z∈Td

n

n
d−4

2 χnzn−du(z) + 4π2 ∑
z∈Td

n

n
d−4

2 χnzn−d
(∫

B(z,1/2n)
ndu(x)dx− u(z)

)
= 4π2n−

d+4
2 ∑

z∈Td
n

χnzu(z) + Rn(u).

Here the remainder Rn(u) is defined by

Rn(u) := 4π2 ∑
z∈Td

n

n
d−4

2 χnzn−d
(∫

B(z, 1/2n)
ndu(x)dx− u(z)

)
= 4π2n−

d+4
2 ∑

z∈Td
n

χnzKn(z)

(4.1)
where using that the volume of B(z, 1/2n) is n−d we have

Kn(z) :=
∫

B(z, 1/2n)
ndu(x)dx− u(z) = nd

[∫
B(z, 1/2n)

(u(x)− u(z)) dx
]

. (4.2)

We observe that using the above decomposition one can split the variance of 〈Ξn, u〉 as

E
[
〈Ξn, u〉2

]
= 16π4n−(d+4) ∑

z, z′∈Td
n

u(z)u(z′)E[χnzχnz′ ] + E
[

Rn(u)2
]

+ 4π2E

n−
d+4

2 ∑
z∈Td

n

u(z)χnzRn(u)

 .

To deal with the convergence of the above terms we need two propositions. The first one shows that the
first term yields the required limiting variance.

Proposition 4.1. In the notation of this Section,

16π4 lim
n→+∞

n−(d+4) ∑
z, z′∈Td

n

u(z)u(z′)E[χnzχnz′ ] = 16π4 lim
n→+∞

n−(d+4) ∑
z, z′∈Td

n

u(z)u(z′)H
(
nz, nz′

)
= ‖u‖2

−1.

The second Proposition says the remainder term is small (and although we will use only L2 convergence,
we have also almost sure one).

Proposition 4.2. In the notations of this Section, limn→+∞ Rn(u) = 0 in L2 and almost surely.

Then an application of the Cauchy-Schwarz inequality will allow us to deduce that

lim
n→+∞

E
[
〈Ξn, u〉2

]
= ‖u‖2

−1
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and the condition (P2) will be ensured. We give the proof of Proposition 4.1, which is the core of our
argument, in Subsection 4.1.1 and of Proposition 4.2 in Subsection 4.1.2.

4.1.1. Proof of Proposition 4.1. Before we begin our proof we would like to prove a bound which would
be crucial in estimating the eigenvalues of the Laplacian on the discrete torus. This lemma will be used
later for other parts of the proof too.

Lemma 4.3. Let n ∈N. Then there exists c > 0 such that for w ∈ Zd
n \ {0} we have

1
‖πw‖4 ≤ n−4

(
d

∑
i=1

sin2
(πwi

n

))−2

≤
(

1
‖πw‖2 +

c
n2

)2

. (4.3)

Proof. We consider

d

∑
i=1

n2 sin2
(πwi

n

)
=

d

∑
i=1

w2
i π2

(
sin
(
θn

i
)

θn
i

)2

with θn
i := πwi/n ∈ [−π/2, π/2] \ {0}. This gives the left-hand side of (4.3). Moreover

‖πw‖2 −
d

∑
i=1

n2 sin2
(πwi

n

)
=

d

∑
i=1

w2
i π2

1−
(

sin
(
θn

i
)

θn
i

)2
 ≤ C‖w‖4n−2

because 0 ≤ 1− sin2(x)/x2 ≤ C x−2 for some C > 0. In this way

1

∑d
i=1 n2 sin2 (πwi

n
) − 1
‖πw‖2 =

‖πw‖2 −∑d
i=1 n2 sin2 (πwi

n
)

∑d
i=1 n2 sin2 (πwi

n
)
‖πw‖2

≤ C‖w‖4n−2

∑d
i=1 n2 sin2 (πwi

n
)
‖πw‖2

. (4.4)

Considering that, for x ∈ [−π/2, π/2], sin2(x)/x2 ∈ [4/π2, 1], one gets that

d

∑
i=1

n2 sin2
(πwi

n

)
≥ 4‖w‖2 (4.5)

which plugged into (4.4) gives that

1

∑d
i=1 n2 sin2 (πwi

n
) − 1
‖πw‖2 ≤ Cn−2

for C > 0, thus (4.3) is proven. �

Remark 4.4. The equation (4.5) is not enough to obtain sharp asymptotics for the quantity ∑d
i=1 n2 sin2 (πwi/n).

On the other hand, we will use it in the sequel while looking for a uniform lower bound for the same quan-
tity for all w 6= 0.
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We begin with the proof of Proposition 4.1. Let u : Td → R be a smooth function with zero mean.
Define un : Zd

n → R as un(z) := u(z/n). Note that

16π4n−2dnd−4 ∑
z, z′∈Td

n

u(z)u(z′)E[χnzχnz′ ] = 16π4n−2dnd−4 ∑
z, z′∈Zd

n

u(z)u(z′)H(nz, nz′)

= π4n−2dn−4 ∑
z, z′∈Td

n

u(z)u(z′) ∑
w∈Zd

n\{0}

exp(2πι(z− z′) · w)(
∑d

i=1 sin2 (πwi
n
))2 . (4.6)

To show the above expression converges it is enough to consider the convergence of

n−2d ∑
z, z′∈Td

n

u(z)u(z′) ∑
w∈Zd

n\{0}

exp(2πι(z− z′) · w)
‖w‖4 . (4.7)

This can be justified by showing that (4.6) can be bounded above and below appropriately by (4.7). Now
observing that

n−2d ∑
z, z′∈Td

n

u(z)u(z′) exp(2πι(z− z′) · w) = |ûn(w)|2 ≥ 0 (4.8)

the lower bound of (4.3) immediately gives

π4n−2d−4 ∑
z, z′∈Td

n

u(z)u(z′) ∑
w∈Zd

n\{0}

exp(2πι(z− z′) · w)(
∑d

i=1 sin2 (πwi
n
))2

≥ n−2d ∑
z, z′∈Td

n

u(z)u(z′) ∑
w∈Zd

n\{0}

exp(2πι(z− z′) · w)
‖w‖4 .

For the upper bound, using the bound in (4.3) we get

π4n−2d−4 ∑
z, z′∈Td

n

u(z)u(z′) ∑
w∈Zd

n\{0}

exp(2πι(z− z′) · w)(
∑d

i=1 sin2 (πwi
n
))2

≤ π4n−2d ∑
z, z′∈Td

n

u(z)u(z′) ∑
w∈Zd

n\{0}
exp(2πι(z− z′) · w)

(
1

‖πw‖2 +
c

n2

)2

.

Now we expand the square: the first term gives the correct upper bound as in (4.7) and the other two
terms are negligible. In fact we show firstly that

lim
n→+∞

cn−2dn−2 ∑
z, z′∈Td

n

u(z)u(z′) ∑
w∈Zd

n\{0}

exp(2πι(z− z′) · w)
‖w‖2 = 0.



13

Using (4.8) and Parseval’s identity we get

cn−2dn−2 ∑
z, z′∈Td

n

u(z)u(z′) ∑
w∈Zd

n\{0}

exp(2πι(z− z′) · w)
‖w‖2 = cn−2 ∑

w∈Zd
n\{0}

1
‖w‖2 |ûn(w)|2

‖w‖≥1
≤ cn−2 ∑

w∈Zd
n\{0}

|ûn(w)|2 ≤ cn−2 ∑
w∈Zd

n

|ûn(w)|2

= cn−2n−d ∑
w∈Zd

n

∣∣∣u (w
n

)∣∣∣2 = cn−2

n−d ∑
w∈Td

n

|u(w)|2
 .

Since n−d ∑w∈Td
n
|u(w)|2 →

∫
Td |u(w)|2dw < +∞ we get that the second term converges to zero.

Note that the same computation shows

n−2dn−4 ∑
z, z′∈Td

n

u(z)u(z′) ∑
w∈Zd

n\{0}
exp(2πι(z− z′) · w) = n−4

n−d ∑
w∈Td

n

|u(w)|2
 ,

which again goes to zero as n→ +∞. So this shows that we can from now on concentrate on showing
the convergence of (4.7). We split now our proof, according to whether d ≤ 3 or d ≥ 4.

The case d ≤ 3. In the first case, the argument is more straightforward: we rewrite

(4.7) = ∑
w∈Zd\{0}

‖w‖−4
1w∈Zd

n ∑
z∈Td

n

n−du(z) exp(2πιz · w) ∑
z′∈Td

n

n−du(z′) exp(−2πιz′ · w).

Since ∑z∈Td
n

n−du(z) exp(2πιz · w) is bounded above uniformly in n, and ∑w∈Zd\{0} ‖w‖−4 <

+∞ in d < 4, we can apply the dominated converge theorem and obtain

lim
n→+∞

(4.7) = ∑
w∈Zd\{0}

‖w‖−4 |û(w)|2 = ‖u‖2
−1

which concludes the proof of (P1) for d ≤ 3.

The case d ≥ 4. Here it is necessary to think of another strategy since ∑w∈Zd ‖w‖−4 is not finite. Let

φ ∈ S(Rd), the Schwartz space, be a mollifier supported on [−1/2, 1/2)d with
∫

Rd φ(x)dx = 1 and

let φκ(x) := κ−dφ(x/κ) for κ > 0. It is a classical result (Rudin, 1962, Theorem 7.22) that there exist
A, δ > 0 such that ∣∣φ̂κ(w)

∣∣ ≤ A (1 + ‖w‖)−d−δ . (4.9)

Now to show the convergence of (4.7) is equivalent to considering

lim
κ→0

lim
n→+∞

n−2d ∑
z, z′∈Td

n

u(z)u(z′) ∑
w∈Zd

n\{0}
φ̂κ(w)

exp(2πι(z− z′) · w)
‖w‖4

since we claim that

lim
κ→0

lim sup
n→+∞

n−2d ∑
z, z′∈Td

n

u(z)u(z′) ∑
w∈Zd

n\{0}

(
φ̂κ(w)− 1

) exp(2πι(z− z′) · w)
‖w‖4 = 0. (4.10)

Indeed, using the fact that
∫

Rd φκ(x)dx = 1 we have∣∣φ̂κ(w)− 1
∣∣ ≤ ∫

Rd
φκ(y)

∣∣∣e2πιy·w − 1
∣∣∣dy.



14

Exploiting the fact that | exp(2πιx)− 1|2 = 4 sin2(πx) and | sin(x)| ≤ |x| we obtain∣∣φ̂κ(w)− 1
∣∣ ≤ Cκ‖w‖

∫
Rd
‖y‖φ(y)dy ≤ Cκ‖w‖ (4.11)

due to the fact that φ is supported on [−1/2, 1/2)d. Recalling un(z) = u(z/n) and plugging the estimate
(4.11) in (4.10) we get that∣∣∣∣∣∣n−2d ∑

w∈Zd
n\{0}

φ̂κ(w)− 1
‖w‖4 ∑

z, z′∈Td
n

u(z)u(z′) exp(2πι(z− z′) · w)

∣∣∣∣∣∣
≤ Cκ ∑

w∈Zd
n\{0}

‖w‖−3 |ûn(w)|2 . (4.12)

Using ‖w‖ ≥ 1 we have

∑
w∈Zd

n\{0}
‖w‖−3 |ûn(w)|2 ≤ ∑

w∈Zd
n\{0}

|ûn(w)|2 ≤ ∑
w∈Zd

n

|ûn(w)|2

= n−d ∑
w∈Zd

n

∣∣∣u (w
n

)∣∣∣2 = n−d ∑
w∈Td

n

|u(w)|2

where we have used Parseval’s identity. We observe then that

lim sup
n→+∞

∣∣∣∣∣∣n−2d ∑
w∈Zd

n\{0}

φ̂κ(w)− 1
‖w‖4 ∑

z, z′∈Td
n

u(z)u(z′) exp(2πι(z− z′) · w)

∣∣∣∣∣∣
≤ Cκ‖u‖2

L2(Td) < +∞.

Taking the limit κ → 0 in the previous expression we deduce the claim (4.10). Now we have to derive the
limit of the following expression:

n−2d ∑
z, z′∈Td

n

u(z)u(z′) ∑
w∈Zd

n\{0}
φ̂κ(w)

exp(2πι(z− z′) · w)
‖w‖4 . (4.13)

Since φ̂κ has a fast decay at infinity, and

lim
n→+∞

n−d ∑
z∈Td

n

u(z) exp(2πιz · w) = û(w)

we can apply the dominated convergence theorem to obtain

lim
n→+∞

n−2d ∑
z, z′∈Td

n

u(z)u(z′) ∑
w∈Zd

n\{0}
φ̂κ(w)

exp(2πι(z− z′) · w)
‖w‖4 = ∑

w∈Zd\{0}
φ̂κ(w)

|û(w)|2

‖w‖4 .

The Fourier inversion theorem for C∞(Td) (Roe, 1998, Theorem 5.4) can be used to obtain a bound
uniform in κ on the right-hand side of the above expression: consequently we apply the dominated con-
vergence letting κ → 0 to achieve

lim
κ→0

lim
n→+∞

n−2d ∑
z, z′∈Td

n

u(z)u(z′) ∑
w∈Zd

n\{0}
φ̂κ(w)

exp(2πι(z− z′) · w)
‖w‖4 = ∑

w∈Zd\{0}

|û(w)|2

‖w‖4 = ‖u‖2
−1.

This concludes the proof of Proposition 4.1.
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4.1.2. Proof on the remainder: Proposition 4.2. We owe the reader now the last proofs on Rn (see (4.1)).
First we state the following

Lemma 4.5. There exists a constant C > 0 such that supz∈Td |Kn(z)| ≤ Cn−1 and hence, ‖Kn‖L1(Td) ≤
Cn−1 (recall (4.2)).

Proof. Using the mean value theorem as u ∈ C∞(Td) we get that, for some c ∈ (0, 1),

|Kn(z)| ≤ nd
∫

B(z, 1
2n)
|u(x)− u(z)|dx ≤ nd

∫
B(z, 1

2n)
‖∇u(cx + (1− c)z)‖ ‖z− x‖dx

≤ C
nd

2n

∫
B(z, 1

2n)
‖∇u(cx + (1− c)z)‖dx ≤ C

‖∇u‖L∞(Td)

n
.

Since ‖∇u‖L∞(Td) < +∞ the claim follows. �

We reprise now the proof on the limit of Rn(u).

Proof of Proposition 4.2. We first compute E
[
Rn(u)2] obtaining

E
[

Rn(u)2
]

= 16π4n−2d ∑
z, z′∈Td

n

nd−4H
(
nz, nz′

)
Kn(z)Kn

(
z′
)

(4.5)
≤ n−2d ∑

z, z′∈Td
n

∑
w∈Zd

n\{0}

exp(2πι(z− z′) · w)
‖w‖4 Kn(z)Kn

(
z′
)

≤ n−2d ∑
z, z′∈Td

n

∑
w∈Zd

n\{0}
exp(2πι(z− z′) · w)Kn(z)Kn

(
z′
)

since ‖w‖ ≥ 1. Letting K′n(x) := K(x/n), thanks to Lemma 4.5 we have that the previous expression
is equal to

∑
w∈Zd

n\{0}
K̂′n(w)K̂′n(w) ≤ ∑

w∈Zd
n

K̂′n(w)K̂′n(w)

= n−d ∑
w∈Zd

n

K′n(w)K′n(w) ≤ ||Kn||2L∞(Td) ≤ Cn−2.

This shows immediately that Rn(u) converges in L2 to 0. Also note that for every δ > 0

∑
n≥1

P(|Rn(u)| > δ) ≤ ∑
n≥1

δ−2E
[

Rn(u)2
]
≤ Cδ−2 ∑

n≥1
n−2 < +∞.

Hence by Borel-Cantelli, it follows that P(|Rn(u)| > δ infinitely often) = 0 and so the almost sure
convergence follows. �

We are then done with the proof of (P2) on page 7.

Remark 4.6. From the proofs of Propositions 4.1 and 4.2 it follows that, in d ≥ 4 and for a fixed κ > 0,

lim
n→+∞

E
[
〈Ξn, u〉2

]
= ∑

w∈Zd\{0}
φ̂κ(w)

|û(w)|2

‖w‖4 .
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We analyse this expression for d ≥ 5 in the limit κ → 0 in Section 6. In dimension 4 we can use the
definition of Fourier transform and interchange sum and integrals to obtain

∑
w∈Zd\{0}

φ̂κ(w)
|û(w)|2

‖w‖4 =
∫∫

Td×Td
u(z)u(z′)

 ∑
w∈Zd\{0}

φ̂κ(w)
e2πι(z−z′)·w

‖w‖4

dzdz′.

This expression provides the kernel discussed in Remark 1.4.

4.2. Tightness: proof of (P1). We proceed to prove tightness. Before that, we must introduce a funda-
mental result: Rellich’s theorem.

Theorem 4.7 (Rellich’s theorem). If k1 < k2 the inclusion operator Hk2(Td) ↪→ Hk1(Td) is a compact

linear operator. In particular for any radius R > 0, the closed ball BH−ε/2(0, R) is compact inH−ε.

Sketch of the proof. The proof is readily adapted from the one in Roe (1998, Theorem 5.8). Let ω > 0
be arbitrarily small. Let B be the unit ball of Hk2(Td). We quotient then the space Hk2(Td) by the

subspace Z :=
{

f : f̂ (ν) = 0 for ‖ν‖ > N
}

with N = N(ω) large enough so that ‖ f ‖k1 < ω for

f ∈ B∩ Z. The unitary ball in Hk2/Z is then compact and thus can be covered by finitely many ω-balls,
giving a finite 2ω-covering of balls for B in the Hk1-norm as well. This shows the inclusion operator is
compact.

We take k1 := −ε and k2 := −ε/2. By the definitions in Subsection 2.2, there is a Hilbert space
isomorphism between Ha(Td) andHa(Td). Applying the above observation, we get the result. �

Proof of tightness. Choose −ε < −d/2. Observe that

‖Ξn‖2
L2(Td) = 16π4nd−4 ∑

x, y∈Td
n

(
χnx − min

w∈Zd
n

χw

)(
χny − min

w∈Zd
n

χw

)
is a. s. finite, for fixed n, being a finite combination of Gaussian variables and their minimum. Hence Ξn ∈
L2(Td) ⊂ H−ε(Td) a. s. By Rellich’s theorem it will suffice to find, for all δ > 0, a R = R(δ) > 0
such that

sup
n∈N

P
(
‖Ξn‖H−ε/2 ≥ R

)
≤ δ.

A consequence of Markov’s inequality is that such an R(δ) can be found as long as we show that for
some C > 0

sup
n∈N

E
[
‖Ξn‖2

H−ε/2

]
≤ C.

Since Ξn ∈ L2, it admits a Fourier series representation Ξn(ϑ) = ∑ν∈Zd Ξ̂n(ν)eν(ϑ) with Ξ̂n(ν) =
(Ξn, eν)L2(Td). Thus we can express

‖Ξn‖2
H−ε/2

= ∑
ν∈Zd\{0}

‖ν‖−2ε
∣∣∣Ξ̂n(ν)

∣∣∣2 .

Observe that

Ξ̂n(ν) =
∫

Td
Ξn(ϑ)eν(ϑ)dϑ = 4π2 ∑

x∈Td
n

n
d−4

2 χnx

∫
B(x, 1/2n)

eν(ϑ)dϑ.
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This gives

E
[
‖Ξn‖2

H−ε/2

]
= 16π4 ∑

ν∈Zd\{0}
∑

x, y∈Td
n

‖ν‖−2εnd−4E
[
χnxχny

] ∫
B(x, 1/2n)

eν(ϑ)dϑ
∫

B(y, 1/2n)
eν(ϑ)dϑ

= 16π4 ∑
ν∈Zd\{0}

∑
x, y∈Td

n

‖ν‖−2εnd−4H(nx, ny)
∫

B(x, 1/2n)
eν(ϑ)dϑ

∫
B(y, 1/2n)

eν(ϑ)dϑ.

(4.14)

Let us denote by Fn, ν : Td
n → R the function Fn, ν(x) :=

∫
B(x, 1/2n) eν(ϑ)dϑ. Since eν ∈ L2(Td),

the Cauchy-Schwarz inequality implies that Fn ∈ L1(Td).

We observe that the variance H(x, x) is uniformly bounded in x and n.

Lemma 4.8. There exists C(d) ∈ (0, +∞) such that

sup
n∈N

sup
x∈Zd

n

H(x, x) ≤ C(d).

Proof. This is an immediate consequence of the inequality (4.3). To see that, we rely on the Euler-
MacLaurin formula (Apostol, 1999, Theorem 2) and show

H(x, x) =
n−d

16 ∑
z∈Zd

n\{0}

1(
∑d

i=1 sin2 (π zi
n
))2 ≤

n−d+4

16 ∑
z∈Zd

n\{0}

(
1

‖πz‖2 +
c

n2

)2

≤ Cn−d+4
n

∑
k=1

kd−4−1 + Cn−d+2
n

∑
k=1

kd−2−1 + c

≤ Cn−d+4
∫ n

1
xd−5dx + n−d+2

∫ n

1
xd−3dx + c ≤ C(d).

Although we will not use it in the sequel, observe that the other side of (4.3) yields a corresponding lower
bound. Both bounds are uniform in n. �

Assume we can prove

Claim 1. There exists C′ > 0 such that

sup
ν∈Zd

sup
n∈N

∑
x 6=y∈Td

n

nd−4H(nx, ny)Fn, ν(x)Fn, ν(y) ≤ C′. (4.15)

Using the above Claim, Lemma 4.8 and −ε < −d/2, from (4.14) we get

E
[
‖Ξn‖2

H−ε/2

]
= 16π4 ∑

ν∈Zd\{0}
∑

x∈Td
n

‖ν‖−2εnd−4H(nx, nx)‖eν‖2
L∞(Td)n

−2d

+ 16π4 ∑
ν∈Zd\{0}

‖ν‖−2ε ∑
x 6=y∈Td

n

nd−4H(nx, ny)Fn, ν(x)Fn, ν(y)

≤ Cn−4 ∑
k≥1

kd−1−2ε + C ∑
k≥1

kd−1−2ε ≤ C.

This concludes the proof, assuming Claim 1. �

We are then left to show the claim we have made:
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Proof of Claim 1. First we use the bound (4.5) and the fact that

∑
x, y∈Td

n

exp(2πι(x− y) · w)Fn, ν(x)Fn, ν(y) =
∣∣∣F̂n, ν(w)

∣∣∣2 n2d ≥ 0

to obtain

∑
x 6=y∈Td

n

nd−4H(nx, ny)Fn, ν(x)Fn, ν(y)

= ∑
x 6=y∈Td

n

nd−4n−d

16 ∑
w∈Zd

n\{0}

exp(2πι(x− y) · w)(
∑d

i=1 sin2 (π wi
n
))2 Fn, ν(x)Fn, ν(y)

(4.5)
≤ C ∑

x 6=y∈Td
n

∑
w∈Zd

n\{0}

exp(2πι(x− y) · w)
‖w‖4 Fn, ν(x)Fn, ν(y) (4.16)

Choose a mollifier φκ as in the previous considerations (see below (6.1)). We rewrite the expression in
the right-hand side of (4.16) accordingly as

C ∑
x 6=y∈Td

n

∑
w∈Zd

n\{0}
φ̂κ(w)

exp(2πι(x− y) · w)
‖w‖4 Fn, ν(x)Fn, ν(y)

+ C ∑
x 6=y∈Td

n

∑
w∈Zd

n\{0}

(
1− φ̂κ(w)

) exp(2πι(x− y) · w)
‖w‖4 Fn, ν(x)Fn, ν(y). (4.17)

First we get a bound for the second term. Denote as Gn, ν : Zd
n → R the rescaled function Gn, ν(z) :=

Fn, ν(z/n). Now we have

C ∑
x 6=y∈Td

n

∑
w∈Zd

n\{0}

(
1− φ̂κ(w)

) exp(2πι(x− y) · w)
‖w‖4 Fn, ν(x)Fn, ν(y)

= C ∑
w∈Zd

n\{0}

1− φ̂κ(w)
‖w‖4 ∑

x 6=y∈Zd
n

Fn, ν(x/n)Fn, ν(y/n) exp
(

2πι(x− y) · w
n

)
= Cn2d ∑

w∈Zd
n\{0}

1− φ̂κ(w)
‖w‖4 Ĝn, ν(w)Ĝn, ν(w)

(4.11)
≤ Cκn2d ∑

w∈Zd
n

∣∣∣Ĝn, ν(w)
∣∣∣2

where in the last inequality we have used that ‖w‖ ≥ 1 and
∣∣∣Ĝn, ν(0)

∣∣∣2 ≥ 0. The description of Gn, ν,

the fact that |Fn, ν(w)| ≤ n−d and Parseval give

∑
w∈Zd

n

∣∣∣Ĝn, ν(w)
∣∣∣2 = n−d ∑

w∈Zd
n

Gn, ν(w)Gn, ν(w) = n−d ∑
w∈Td

n

Fn, ν(w)Fn, ν(w)

≤ n−2d ∑
w∈Td

n

∫
B(w, 1/2n)

|eν(ϑ)|dϑ = n−2d
∫

Td
|eν(ϑ)|dϑ

≤ n−2d‖eν‖L1(Td) ≤ Cn−2d. (4.18)
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By means of (4.18) we get that

C ∑
x 6=y∈Td

n

∑
w∈Zd

n\{0}

(
1− φ̂κ(w)

) exp(2πι(x− y) · w)
‖w‖4 Fn, ν(x)Fn, ν(y) ≤ Cκ. (4.19)

We are back to bounding the first term in (4.17).

C ∑
x 6=y∈Td

n

∑
w∈Zd

n\{0}
φ̂κ(w)

exp(2πι(x− y) · w)
‖w‖4 Fn, ν(x)Fn, ν(y)

= C ∑
x 6=y∈Td

n

∑
w∈Zd\{0}

φ̂κ(w)
exp(2πι(x− y) · w)

‖w‖4 Fn, ν(x)Fn, ν(y)

− C ∑
x 6=y∈Td

n

∑
w∈Zd : ‖w‖∞>n

φ̂κ(w)
exp(2πι(x− y) · w)

‖w‖4 Fn, ν(x)Fn, ν(y).

Using (4.9) we obtain a bound on the second term as

∑
x 6=y∈Td

n

∑
w∈Zd : ‖w‖∞>n

φ̂κ(w)
exp(2πι(x− y) · w)

‖w‖4 Fn, ν(x)Fn, ν(y)

≤ C ∑
x 6=y∈Td

n

∑
w∈Zd : ‖w‖∞>n

n−4 ∣∣φ̂κ(w)
∣∣ ∣∣∣Fn, ν(x)Fn, ν(y)

∣∣∣
≤ C ∑

w∈Zd : ‖w‖∞>n

∣∣φ̂κ(w)
∣∣  ∑

x∈Td
n

|Fn, ν(x)|

2

≤ C ∑
w∈Zd : ‖w‖∞>n

‖eν‖2
L1(Td)

(1 + ‖w‖)d+δ
≤ C.

(4.20)

Finally (4.9) tells us that

∑
x 6=y∈Td

n

∑
w∈Zd\{0}

φ̂κ(w)
exp(2πι(x− y) · w)

‖w‖4 Fn, ν(x)Fn, ν(y)

≤ C ∑
x 6=y∈Td

n

∑
w∈Zd

1
(1 + ‖w‖)d+δ

∣∣∣Fn, ν(x)Fn, ν(y)
∣∣∣ ≤ C ∑

w∈Zd

1

(1 + ‖w‖)d+δ
‖eν‖2

L1(Td) ≤ C.

(4.21)

Plugging in (4.15) the expressions (4.19), (4.20) and (4.21) we can draw the required conclusion. �

This gives a proof of (P1) on page 7 and completes the proof of Theorem 1.1.

5. PROOF OF THEOREM 1.2

Strategy of the proof. We will argue as in Theorem 1.1 and need thus to show both (P1) and (P2). While
(P2) will follow almost in the same way as in the Gaussian case, (P1) will require a different approach.
Firstly, we will need to remove constants in defining en so that we will end up working with a field de-
pending only on linear combinations of (σ(x))x∈Zd

n
. Secondly, we will show in Subsection 5.1 that, for σ

bounded a. s., the convergence to the bilaplacian field is ensured via the moment method. Lastly, we will
truncate the weights σ at a levelR > 0 and show that the truncated field approximates the original one.
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Reduction to a binding field. We first recall some facts from Levine et al. (2015). Note that odometer en
satisfies {

∆gen(x) = 1− s(x),
minz∈Zd

n
en(z) = 0.

Also if one defines

vn(y) =
1

2d ∑
x∈Zd

n

g(x, y)(s(x)− 1), (5.1)

then ∆g(en − vn)(z) = 0. Since a bounded harmonic function is constant, it follows from the proof of
Proposition 1.3 of Levine et al. (2015) that the odometer has the following representation also in the case
where the weights are non-Gaussian:

en(x) d= vn(x)− min
z∈Zd

n

vn(z). (5.2)

Let us define the following functional: for any function hn : Zd
n → R set

Ξhn(x) := 4π2 ∑
z∈Td

n

n
d−4

2 hn(nz) 1B(z, 1/2n)(x), x ∈ Td.

Note that for u ∈ C∞(Td) such that
∫

Td u(x)dx = 0 it follows immediately that

〈Ξen , u〉 = 〈Ξvn , u〉 .

Observe that

s(x)− 1 = σ(x)− 1
nd ∑

y∈Zd
n

σ(y)

and hence we have from (5.1)

vn(y) =
1

2d ∑
x∈Zd

n

g(x, y)σ(x)− 1
2dnd ∑

x∈Zd
n

g(x, y) ∑
z∈Zd

n

σ(z).

By (3.1) it follows that (2d)−1 ∑x∈Zd
n

g(x, y) = (2d)−1n−3d ∑w∈Zd
n
Ey[τw] which is independent of

y. We can then say that

vn(y) =
1

2d ∑
x∈Zd

n

g(x, y)σ(x)− Cn−3d ∑
z∈Zd

n

σ(z).

If we call

wn(y) := (2d)−1 ∑
x∈Zd

n

g(x, y)σ(x),

by the mean-zero property of the test functions it follows that 〈Ξvn , u〉 = 〈Ξwn , u〉 . Therefore we shall
reduce ourselves to study the convergence of the field Ξwn . To determine its limit, we will first prove that
all moments of Ξwn converge to those of Ξ; via characteristic functions, we will show that the limit is
uniquely determined by moments.
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5.1. Scaling limit with bounded weights. The goal of this Subsection is to determine the scaling limit
for bounded weights, namely to prove

Theorem 5.1 (Scaling limit for bounded weights). Assume (σ(x))x∈Zd
n

is a collection of i.i.d. variables

with E [σ] = 0 and E
[
σ2] = 1. Moreover assume there exists K < +∞ such that |σ| ≤ K almost

surely. Let d ≥ 1 and en(·) be the corresponding odometer. Then if we define the formal field Ξn as in
(1.3) for such i.i.d. weights, then it converges in law as n → +∞ to the bilaplacian field Ξ on Td. The
convergence holds in the same fashion of Theorem 1.1.

Before showing this result, we must prove an auxiliary Lemma. It gives us a uniform estimate in n on the
Fourier series of the mean of u in a small ball.

Lemma 5.2. Fix u ∈ C∞(Td) with mean zero. If we define

Tn : Td → R

z 7→
∫

B(z, 1/2n)
u(y)dy

and Tn : Zd
n → R is defined as Tn(z) := Tn (z/n) , then for n large enough we can find a constant

M :=M(d, u) < +∞ such that

nd ∑
z∈Zd

n

∣∣∣T̂n(z)
∣∣∣ ≤M.

Proof. For z ∈ Zd
n we can write

T̂n(z) = 〈Tn, ψz〉 =
1
nd ∑

y∈Zd
n

Tn(y)ψ−z(y)

=
1
nd ∑

y∈Zd
n

Tn

( y
n

)
exp

(
−2πιz · y

n

)
=

1
nd ∑

y∈Td
n

Tn(y) exp(−2πιz · y). (5.3)

Since u ∈ C∞(Td), one can take derive under the integral sign and get that Tn ∈ C∞(Td), so

∑z∈Zd

∣∣∣T̂n(z)
∣∣∣ < +∞. Hence by the Fourier inversion theorem we have the following inversion formula

to be valid for every y ∈ Td:

Tn(y) = ∑
w∈Zd

T̂n(w) exp (2πιy · w) .

First we split the sum above according to the norm of w and plug it in (5.3). Namely we get

T̂n(z) =
1
nd ∑

y∈Td
n

Tn(y) exp(−2πιz · y) =
1
nd ∑

y∈Td
n

∑
w∈Zd

n

T̂n(w) exp(2πιw · y) exp(−2πιz · y)

+
1
nd ∑

y∈Td
n

∑
w∈Zd : ‖w‖∞>n

T̂n(w) exp(2πιw · y) exp(−2πιz · y). (5.4)
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Let us look at the first summation: using the orthogonality of the characters of L2(Zd
n) we can write

1
nd ∑

y∈Td
n

∑
w∈Zd

n

T̂n(w) exp(2πιw · y) exp(−2πιz · y)

=
1
nd ∑

w∈Zd
n

T̂n(w) ∑
y∈Zd

n

exp
(

2πιw · y
n

)
exp

(
−2πιz · y

n

)
=

1
nd ∑

w∈Zd
n

T̂n(w)nd
1w=z = T̂n(z).

Noting that

T̂n(0) =
1
nd ∑

y∈Td
n

Tn(y) =
1
nd ∑

y∈Td
n

∫
B(y, 1

2n)
u(x)dx =

1
nd

∫
Td

u(x)dx = 0,

this means we need to show that ∑z∈Zd
n\{0}

∣∣∣T̂n(z)
∣∣∣ ≤ C(d)n−d. We follow the proof of Stein and

Weiss (1971, Corollary 1.9, Chapter VII). For a multi-index α = (α1, . . . , αd) ∈ Nd and a point
x = (x1, . . . , xd) ∈ Rd we set

xα :=
d

∏
j=1

x
αj
j

and adopt the convention 00 = 1. We choose now a smoothness parameter k0 > d. For any α with
|α| := α1 + · · ·+ αd ≤ k0 we can find a constant c = c(k0, d) such that

∑
α: |α|=k0

4π2z2α ≥ c‖z‖2k0 .

Note that

∑
z∈Zd

n\{0}

∣∣∣T̂n(z)
∣∣∣ ≤ ∑

z∈Zd
n\{0}

∣∣∣T̂n(z)
∣∣∣
 ∑

α: |α|=k0

4π2z2α

1/2

‖z‖−k0c−1/2

≤

 ∑
z∈Zd

n\{0}

∣∣∣T̂n(z)
∣∣∣2 ∑

α: |α|=k0

4π2z2α

1/2 ∑
z∈Zd

n\{0}
‖z‖−2k0

1/2

c−1/2.

Here we have used the Cauchy-Schwarz inequality in the last step. Now since ∑z∈Zd
n\{0} ‖z‖

−2k0 <

+∞ we can compute a constant C such that

∑
z∈Zd

n\{0}

∣∣∣T̂n(z)
∣∣∣ ≤ C

 ∑
z∈Zd

n\{0}

∣∣∣T̂n(z)
∣∣∣2 ∑

α: |α|=k0

4π2z2α

1/2

≤ C

 ∑
α: |α|=k0

∑
z∈Zd

∣∣∣T̂n(z)
∣∣∣2 4π2z2α

1/2

.

(5.5)
Let us call Dα the derivative with respect to α. Using the rule of derivation of Fourier transforms (Stein
and Weiss, 1971, Chapter I, Theorem 1.8) and Parseval we have that

∑
z∈Zd

∣∣∣T̂n(z)
∣∣∣2 4π2z2α =

∫
Td
|DαTn(x)|2 dx.
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By the smoothness of u we deduce that

|DαTn(x)| ≤ ‖Dαu‖L∞(Td)

∫
B(0,1/2n)

dw = ‖Dαu‖L∞(Td)(2n)−d. (5.6)

Plugging this estimate in (5.5) we get that

∑
z∈Zd

n\{0}

∣∣∣T̂n(z)
∣∣∣2 ≤ Cn−d

 ∑
α: |α|=k0

‖Dαu‖2
L∞(Td)

1/2

.

This finally gives that

∑
z∈Zd

n\{0}

∣∣∣T̂n(z)
∣∣∣ ≤ C(k0, d, u)n−d.

For the second summand of (5.4) observe that∫
Td

DαTn(w)e−2πιz·wdw = (2πιz)αT̂n(z), α ∈Nd.

The parameter α will be chosen later so that the second summand is of lower order than the first. By (5.4)
and (5.6) ∣∣∣T̂n(z)

∣∣∣ ≤ 2−d−1‖Dαu‖L∞(Td)

πnd |zα|
.

We use this estimate to get

1
nd ∑

y∈Td
n

∑
‖w‖∞>n

T̂n(w) exp(2πιw · y) exp(−2πιz · y) ≤ ∑
‖w‖∞>n

∣∣∣T̂n(w)
∣∣∣

≤ C(u, d, α)
nd

+∞

∑
`=n

`d−1

`|α|
≤ C(u, d, α)n−|α|

(
1 + o

(
n−1

))
.

Thus choosing α with |α| > d we find a constantM =M(d, u) such that

∑
z∈Zd

n

∣∣∣T̂n(z)
∣∣∣ ≤Mn−d

as we wanted to show. �

We can now start with the moment method, and we being with moment convergence.

Moment convergence. We now show that all moments converge to those of the required limiting distribu-
tion. This is explained in the following Proposition.

Proposition 5.3. Assume E [σ] = 0, E
[
σ2] = 1 and that there exists K < +∞ such that |σ| ≤ K

almost surely. Then for all m ≥ 1 and all u ∈ C∞(Td) with mean zero, the following limits hold:

lim
n→+∞

E
[
〈Ξwn , u〉m

]
=

{
(2m− 1)!!‖u‖m

−1, m ∈ 2N

0, m ∈ 2N + 1.
(5.7)

Proof. We will first show that the m = 2 case satisfies the claim.
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Case m = 2. We have the equality

E
[
wn(y)wn(y′)

]
= (2d)−2 ∑

x∈Zd
n

g(x, y) ∑
x′∈Zd

n

g(x′, y′)E[σ(x)σ(x′)].

The independence of the weights gives

E
[
〈Ξwn , u〉2

]
= 16π4 nd−4

4d2 ∑
x∈Zd

n

 ∑
z∈Td

n

g(x, nz)Tn(z)

2

.

With the same argument of the proof of Proposition 2.1 one has

(2d)−2 ∑
x∈Zd

n

g(x, y)g(x, y′) = ndL2 + H(y, y′) (5.8)

so that, using that test functions have mean zero,

E
[
〈Ξwn , u〉2

]
= 16π4 nd−4

4d2 ∑
x∈Zd

n

 ∑
z∈Td

n

g(x, nz)Tn(z)

2

= 16π4nd−4 ∑
z, z′∈Td

n

H(nz, nz′)Tn(z)Tn(z′)

= 16π4nd−4 ∑
z, z′∈Td

n

H(nz, nz′)
∫

B(z, 1/2n)
u(x)dx

∫
B(z′, 1/2n)

u(x′)dx′.

Now we break the above sum into the following 3 sums (recall Kn(u) from (4.2)):

E
[
〈Ξwn , u〉2

]
= 16π4nd−4 ∑

z, z′∈Td
n

n−2dH(nz, nz′)u(z)u(z′)

+ 16π4nd−4 ∑
z, z′∈Td

n

n−2dH(nz, nz′)Kn(z)Kn(z′)

+ 32π4nd−4 ∑
z, z′∈Td

n

n−2dH(nz, nz′)Kn(z)u(z′).

A combination of Proposition 4.1 and Proposition 4.2 with the Cauchy-Schwarz inequality shows that the
first term converges to ‖u‖2

−1 in the limit n→ +∞ and the other two go to zero.

Having concluded the case m = 2, we would like to see what the higher moments look like. Let us take
for example m = 3, in which case

E
[
〈Ξwn , u〉3

]
=

(
4π2n

d−4
2

2d

)3

∑
z1, z2, z3∈Td

n

E [w(nz1)w(nz2)w(nz3)] Tn(z1)Tn(z2)Tn(z3)

=

(
2π2n

d−4
2

d

)3

∑
z1, z2, z3∈Td

n

∑
x1, x2, x3∈Zd

n

E

[
3

∏
j=1

σ(xj)

]
3

∏
j=1

g(xj, nzj)Tn(zj).

More generally, let us call P(n) the set of partitions of {1, . . . , n} and as P2(n) ⊂P(n) the set of
pair partitions. We denote as Π a generic block of a partition P and as |Π| its cardinality (for example,
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Π = {1, 2, 3} is a block of cardinality 3 of P = {{1, 2, 3}, {4}} ∈P(4)). Observe that

E
[
〈Ξwn , u〉m

]
=

(
2π2n

d−4
2

d

)m

∑
z1, ..., zm∈Td

n

E

[
m

∏
j=1

wn(nzj)

]
m

∏
j=1

Tn(zj)

=

(
2π2n

d−4
2

d

)m

∑
P∈P(m)

∏
Π∈P

E
[
σ|Π|

] ∑
x∈Zd

n

∏
zj : j∈Π

g(x, nzj)Tn(zj)


= ∑

P∈P(m)
∏

Π∈P

(
2π2n

d−4
2

d

)|Π|
E
[
σ|Π|

] ∑
x∈Zd

n

∏
zj : j∈Π

g(x, nzj)Tn(zj)

 . (5.9)

For a fixed P, let us consider in the product over Π ∈ P any term corresponding to a block Π with |Π| =
1: this will give no contribution because σ is centered. Consider instead Π ∈ P with ` := |Π| > 2. We
see that (

2π2n
d−4

2

d

)`

E
[
σ`
]

∑
x∈Zd

n

 ∏
zj : j∈Π

g(x, nzj)Tn(zj)


=

(
2π2n

d−4
2

d

)`

E
[
σ`
]

∑
x∈Zd

n

 ∑
z∈Zd

n

g(x, z)Tn(z)

`

.

Applying Parseval the above expression equals(
2π2n

d−4
2

d

)`

E
[
σ`
]

∑
x∈Zd

n

nd ∑
z∈Zd

n

ĝx(z)T̂n(z)

`

(2.2)=
(

4π2n
d−4

2

)`
E
[
σ`
]

∑
x∈Zd

n

 ∑
z∈Zd

n\{0}

ψ−z(x)
−λz

T̂n(z)

`

. (5.10)

Here we have used that T̂n(0) = 0. Thanks to the fact that−λz ≥ Cn−2 uniformly over z ∈ Zd
n \ {0}

(see (4.5)) we obtain(
2π2n

d−4
2

d

)`

E
[
σ`
]

∑
x∈Zd

n

 ∏
zj : j∈Π

g(x, nzj)Tn(zj)

 ≤ CE
[
σ`
]

n
`d
2 +1

 ∑
z∈Zd

n\{0}

∣∣∣T̂n(z)
∣∣∣
`

.

(5.11)

Since σ is almost surely bounded, by Lemma 5.2 we can conclude that each term in (5.9) corresponding
to a block of cardinality ` > 2 has order at most n`d/2−(`−1)d = o (1). Hence in (5.9) only pair partitions
of m will give a contribution of order unity to the sum. Since, for m := 2m′ + 1, there are no pair

partitions, E
[
〈Ξwn , u〉2m′+1

]
will converge to zero. Otherwise, for m := 2m′ we can rewrite

E
[
〈Ξwn , u〉2m′

]
= ∑

P∈P2(2m′)

4π4nd−4

d2 ∑
x∈Zd

n

 ∑
z∈Zd

n

g(x, z)Tn(z)

2


m′

+ o (1) .
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Since |P2(m)| = (2m− 1)!! and the term in the bracket above converges to ‖u‖2
−1 we can conclude

the proof of Proposition 5.3. �

Uniqueness of the limit. We will exploit characteristic functions. Note that

E
[
eι〈Ξwn ,u〉

]
= ∑

`≥0

ι`E
[
〈Ξwn , u〉`

]
`!

. (5.12)

Now (5.11) is telling us that∣∣∣E [〈Ξwn , u〉`
]∣∣∣ ≤ C ∑

P∈P(`)
∏

Π∈P
E
[∣∣∣σ|Π|∣∣∣]M|Π|

where C does not depend on ` and m. Now it is possible to use Hölder’s inequality and get that

∏
Π∈P

E
[∣∣∣σ|Π|∣∣∣]M|Π| ≤

(
E
[∣∣∣σ`

∣∣∣]M`
)∑Π∈P

|Π|
` = E

[
|σ|`

]
M`.

Recalling that |P(`)| = B`, the `-th Bell number, the previous estimates let us deduce from (5.12) that

∣∣∣E [eι〈Ξwn ,u〉
]∣∣∣ ≤ C ∑

`≥0

B`E
[
|σ|`

]
M`

`!
≤ C exp

(
eMK − 1

)
using the exponential generating function of the Bell numbers

∑
`≥0

B`

`!
x` = eex−1.

This shows the uniqueness of the limit.

Tightness. The proof of tightness is, not suprisingly, a re-run of that in the Gaussian case. In fact tightness
depends on the covariance structure of the field we are examining; since both the Gaussian functional
Ξn and wn share the same covariance, we can recover mostly of the results already calculated. First we
notice that

‖Ξwn‖2
L2(Td) =

16π4

(2d)2 nd−4 ∑
x, y∈Zd

n

g(x, y)σ(x) ∑
x′, y′∈Zd

n

g(x′, y′)σ(x′)

is finite with probability one, since σ is bounded. One can then go along the lines of the proof of (P1) in
Subsection 4.2 and get to (4.14) which will become, in our new setting,

16π4

(2d)2 ∑
ν∈Zd\{0}

∑
x, y∈Td

n

‖ν‖−2εnd−4E [wn(nx)wn(ny)]
∫

B(x, 1/2n)
eν(ϑ)dϑ

∫
B(y, 1/2n)

eν(ϑ)dϑ

(5.8)= 16π4 ∑
ν∈Zd\{0}

∑
x, y∈Td

n

‖ν‖−2εnd−4
(

ndL2 + H(nx, ny)
) ∫

B(x, 1/2n)
eν(ϑ)dϑ

∫
B(y, 1/2n)

eν(ϑ)dϑ.

Since
∫

Td eν(ϑ)dϑ = 0, the previous expression reduces to

16π4 ∑
ν∈Zd\{0}

∑
x, y∈Td

n

‖ν‖−2εnd−4H(nx, ny)
∫

B(x, 1/2n)
eν(ϑ)dϑ

∫
B(y, 1/2n)

eν(ϑ)dϑ.

From this point onwards, the computations of the proof of (P1) can be repeated in a one-to-one fashion.
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5.2. Truncation method. At the moment we are able to determine the scaling limit when the weights are
bounded almost surely. To lift this condition to zero mean and finite variance only, we begin by defining a
truncated field and show it will determine the scaling limit of the global field. Fix an arbitrarily large (but
finite) constantR > 0. Set

w<R
n (x) :=

1
2d ∑

y∈Zd
n

g(x, y)σ(y) 1{|σ(y)|<R},

w≥Rn (x) :=
1

2d ∑
y∈Zd

n

g(x, y)σ(y) 1{|σ(y)|≥R} .

Clearly wn(·) = w<R
n (·) + w≥Rn (·). To prove our result, we will use

Theorem 5.4 (Billingsley (1968, Theorem 4.2)). Let S be a metric space with metric ρ. Suppose that
(Xun, Xn) are elements of S× S. If

lim
u→+∞

lim sup
n→+∞

P (ρ(Xnu, Xn) ≥ τ) = 0

for all τ > 0, and Xnu ⇒n Zu ⇒u X, where “ ⇒′′x indicates convergence in law as x → +∞, then
Xn ⇒n X.

Following this Theorem, we need to show two steps:

(S1) limR→+∞ lim supn→+∞ P

(∥∥∥Ξwn − Ξw<R
n

∥∥∥
H−ε

≥ τ

)
= 0 for all τ > 0.

(S2) For a constant vR > 0, we have Ξw<R
n
⇒n
√

vR Ξ⇒R Ξ in the topology ofH−ε.

As a consequence we will obtain that Ξwn converges to Ξ in law in the topology ofH−ε.

5.2.1. Proof of (S1). We notice that∥∥∥Ξwn − Ξw<R
n

∥∥∥
H−ε

=
∥∥∥Ξw≥Rn

∥∥∥
H−ε

by definition, for every realization of (σ(x))x∈Zd
n
. Since, for every τ > 0,

P

(∥∥∥Ξw≥Rn

∥∥∥
H−ε

≥ τ

)
≤

E

[∥∥∥Ξw≥Rn

∥∥∥2

H−ε

]
τ2

it will suffice to show that the numerator on the right-hand side goes to zero to show (S1). But

E

[∥∥∥Ξw≥Rn

∥∥∥2

H−ε

]
= 16π4 ∑

ν∈Zd\{0}
∑

x, y∈Td
n

‖ν‖−4εnd−4E
[
w≥Rn (xn)w≥Rn (ny)

] ∫
B(x, 1/2n)

eν(ϑ)dϑ
∫

B(y, 1/2n)
eν(ϑ)dϑ

(5.8)= 16π4E
[
σ2
1{|σ|≥R}

]
∑

ν∈Zd\{0}
‖ν‖−4εnd−4 ∑

x, y∈Td
n

H(nx, ny)Fn, ν(x)Fn, ν(y)
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using that eν has mean zero. We have at hand (4.15), which we can use to upper-bound the previous
expression with

C′16π4E
[
σ2
1{|σ|≥R}

]
∑

ν∈Zd\{0}
‖ν‖−4ε.

The sum over ν is finite as long as ε > d/4, and E
[
σ2
1{|σ|≥R}

]
is going to zero as R → +∞ (note

that σ has finite variance). Hence we have shown (S1).

5.2.2. Proof of (S2). Our idea is to use the computations we did for the case in which σ is bounded a. s.
since we are imposing that |σ| < R. However we have to pay attention to the fact that σ 1{|σ|<R}
is not centered anymore, but has mean mR := E[σ 1{|σ|<R}], nor has variance 1, but vR :=
Var[σ 1{|σ|<R}]. However we can circumvent this by using our previous results. If we set

σR(x) := σ(x) 1{|σ(x)|<R}−mR
we can consider the field

Ξn,R(x) :=
4π2

2d
n

d−4
2 ∑

z∈Td
n

∑
w∈Zd

n

g(w, nz)σR(w) 1B(z, 1/2n)(x), x ∈ Td.

Since (2d)−1 ∑y∈Zd
n

g(·, y) is a constant function on Zd
n it follows that

〈Ξn,R, u〉 =
〈

Ξw<R
n

, u
〉

for all smooth functions u with mean zero. Hence the field Ξn,R has the same law of Ξw<R
n

. If we multiply

and divide the former by
√

vR, we obtain

Ξn,R =
√

vR
4π2

2d
n

d−4
2 ∑

z∈Td
n

∑
w∈Zd

n

g(w, nz)
σR(w)√

vR
1B(z, 1/2n)(x), x ∈ Td.

Since now the weights σR(w)(vR)−1/2 satisfy the assumptions of Theorem 1.2, we know that the
above field will converge to

√
vR Ξ in law. Using the covariance structure of the limiting field, the fact

that the field is Gaussian, and limR→+∞
√

vR = 1, a straightforward computation shows that
√

vR Ξ
converges in law to Ξ in the topology ofH−ε. With Theorem 5.4 we can conclude.

6. PROOF OF THEOREM 1.3

Preliminaries. We must conclude with the proof of Theorem 1.3 and begin by introducing some notation.
We take ζ, an (arbitrary) smooth radial function on Rd, such that{

ζ(x) = 1 ‖x‖ ≥ 1/2,
ζ(x) = 0 ‖x‖ ≤ 1/4.

(6.1)

Let us call
G(x) := ζ(x)‖x‖−4 = ‖x‖−4 + (ζ(x)− 1)‖x‖−4

and let Gd be its Fourier transform (in the sense of distributions)

Gd(x) := Ĝ(x).
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Since (ζ(·) − 1)‖ · ‖−4 is a compactly supported distribution, its Fourier transform will be a smooth

function which we call hd. Using the results on ‖̂ · ‖−4 contained in Example 2.4.9 of Grafakos (2008),
we have the explicit description of Gd in (1.5). In particular Gd decays faster than the reciprocal of any

polynomial function at infinity. To see this, recall that D̂αG(x) = (2πιx)|α| Gd(x), for any multi-index α.
If the order of the derivative is large enough (precisely |α| > d− 4), then DαG(x) ∈ L1(Rd); in this

case, (2πιx)|α| Gd(x) is bounded on Rd and hence |Gd(x)| ≤ C‖x‖−N for every positive integer N
as ‖x‖ → +∞. One has further that Ĝd(·) = ζ(·)‖ · ‖−4. Let us denote by fκ := Gd ∗ φκ and note
that

f̂κ(·) = Ĝd(·)φ̂κ(·) = ζ(·)‖ · ‖−4φ̂κ(·). (6.2)

It follows that for some C, δ > 0 ∣∣∣ f̂κ(·)
∣∣∣ ≤ C(1 + ‖ · ‖)−d−δ. (6.3)

Moreover
| fκ(·)| ≤ C (1 + ‖ · ‖)−d−δ (6.4)

near infinity thanks to the rapid decay of Gd at infinity; furthermore Gd is bounded near zero as ‖x‖4−d

is integrable near the origin in d ≥ 5. Hence fκ is C∞(Rd) and also in L1(Rd). Using fκ = Gd ∗ φκ

and the definition of ζ we have that

(4.13) = n−2d ∑
z, z′∈Td

n

u(z)u(z′) ∑
w∈Zd

n

φ̂κ(w)ζ(w)
exp(2πι(z− z′) · w)

‖w‖4

= n−2d ∑
z, z′∈Td

n

u(z)u(z′) ∑
w∈Zd

n

f̂κ(w)exp(2πι(z− z′) · w). (6.5)

Now we can rewrite this term as

n−2d ∑
z, z′∈Td

n

u(z)u(z′) ∑
w∈Zd

f̂κ(w)exp(2πι(z− z′) · w)

− n−2d ∑
z, z′∈Td

n

u(z)u(z′) ∑
w∈Zd : ‖w‖∞>n

f̂κ(w)exp(2πι(z− z′) · w). (6.6)

First we show the second term above is negligible in the following Lemma.

Lemma 6.1.

lim
n→+∞

n−2d ∑
z, z′∈Td

n

u(z)u(z′) ∑
w∈Zd : ‖w‖∞>n

f̂κ(w) exp(2πι(z− z′) · w) = 0.

Proof. Note that

n−2d

∣∣∣∣∣∣ ∑
z, z′∈Td

n

u(z)u(z′) ∑
w∈Zd : ‖w‖∞>n

f̂κ(w) exp(2πι(z− z′) · w)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ ∑
w∈Zd : ‖w‖∞>n

f̂κ(w)

n−d ∑
z∈Td

n

u(z) exp(2πιz · w)

n−d ∑
z′∈Td

n

u(z′) exp(−2πιz′ · w)

∣∣∣∣∣∣
≤ ‖u‖2

L∞(Td) ∑
w∈Zd : ‖w‖∞>n

∣∣∣ f̂κ(w)
∣∣∣ ≤ C‖u‖2

L∞(Td) ∑
w∈Zd : ‖w‖∞>n

1
(1 + ‖w‖)d+δ

≤ C‖u‖2
L∞(Td)n

−δ
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thanks to (6.3) and the Euler-MacLaurin formula (Apostol, 1999, Theorem 1). This shows Lemma 6.1. �

Therefore, rather than working on (6.5), we will concentrate on the first term of (6.6).

Proof of Theorem 1.3. Following the proof of Proposition 4.1, it is enough to prove the convergence of the
first term of (6.6) to the right-hand side of (1.4). Since fκ and f̂κ satisfy the assumptions of the Poisson
summation formula (Stein and Weiss, 1971, Corollary 2.6, Chapter VII), we apply it to (6.5) and obtain

lim
n→+∞

n−2d ∑
z, z′∈Td

n

u(z)u(z′) ∑
w∈Zd

f̂κ(w) exp(2πι(z− z′) · w)

= lim
n→+∞

n−2d ∑
z, z′∈Td

n

u(z)u(z′) ∑
w∈Zd

fκ((z− z′) + w)

= lim
n→+∞ ∑

w∈Zd

n−2d ∑
z, z′∈Td

n

u(z)u(z′) fκ((z− z′) + w). (6.7)

We would then like to exchange sum and limit and thus we shall justify the use of the dominated conver-
gence theorem. To this purpose we need to observe that ‖z− z′‖ ≤

√
d so that |‖z− z′ + w‖ − ‖w‖| ≤

2
√

d. Therefore∣∣∣∣∣∣ ∑
w∈Zd

n−2d ∑
z, z′∈Td

n

u(z)u(z′) fκ((z− z′) + w)

∣∣∣∣∣∣
(6.4)
≤ Cn−2d‖u‖2

L∞(Td) ∑
w∈Zd : ‖w‖∞>

√
d

∑
z, z′∈Td

n

1
(1 + ‖z− z′ + w‖)d+δ

+ Cn−2d‖u‖2
L∞(Td) ∑

w∈Zd : ‖w‖∞≤
√

d
∑

z, z′∈Td
n

1
(1 + ‖z− z′ + w‖)d+δ

. (6.8)

The second term can be directly bounded by a constant independent of n, being a finite sum. As for the
first term in (6.8) we have by the Euler-MacLaurin formula

Cn−2d‖u‖2
L∞(Td) ∑

w∈Zd : ‖w‖∞>
√

d
∑

z, z′∈Td
n

1
(1 + ‖z− z′ + w‖)d+δ

≤ Cn−2d‖u‖2
L∞(Td) ∑

w∈Zd : ‖w‖∞>
√

d
∑

z, z′∈Td
n

1

(1− 2
√

d + ‖w‖)d+δ

≤ C

(∫ +∞
√

d−1

ρd−1

(1− 2
√

d + ρ)d+δ
dρ + c

)
≤ c (6.9)

where C, c are independent of n in each occurence above. These inequalities plugged into (6.8) give
the desired bound which allows us to switch summation and limit in (6.7). Going on and using also the
smothness of fκ we compute

lim
n→+∞ ∑

w∈Zd

n−2d ∑
z, z′∈Td

n

u(z)u(z′) fκ((z− z′) + w)

= ∑
w∈Zd

∫∫
Td×Td

u(z)u(z′) fκ((z− z′) + w)dzdz′.
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The fast decay of Gd and hence of fκ at infinity enables us to apply the dominated convergence again to
finally arrive at

lim
κ→0

∑
w∈Zd

∫∫
Td×Td

u(z)u(z′) fκ((z− z′) + w)dzdz′

= ∑
w∈Zd

∫∫
Td×Td

u(z)u(z′)Gd((z− z′) + w)dzdz′.

Due to polynomial decay of Gd at infinity it is immediate to exchange sum and integrals to derive (1.4). �
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