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Abstract

We study the stochastic and periodic homogenization 1-homogeneous convex
functionals. We proof some convergence results with respect to stochastic two-
scale convergence, which are related to classical Γ-convergence results. The main
result is a general lim inf-estimate for a sequence of 1-homogeneous function-
als and a two-scale stability result for sequences of convex sets. We apply our
results to the homogenization of rate-independent systems with 1-homogeneous
dissipation potentials and quadratic energies. In these applications, both the
energy and the dissipation potential have an underlying stochastic microscopic
structure. We study the particular homogenization problems of Prandlt-Reuss
plasticity, Coulomb friction on a macroscopic surface and Coulomb friction on
microscopic �ssures.

1 Introduction

We study (stochastic) homogenization problems of the form

0 ∈ ∂Ψε(∂tuε) +DEε(t, uε) , (1.1)

where Eε ∶ [0, T ] ×Bε → R is a proper, quadratic functional and Ψε ∶ Bε → R is proper and
1-homogeneous and Bε is an ε-dependent Banach space. As usual in homogenization, the
index ε > 0 is a smallnes parameter and (in general) relates to the scale of the underlying
geometry of the pysical system, such as crystaline structure, microscopic cracks etc.. We
work with quadratic energies on Hilbert spaces although our ideas also apply to more general
settings.

Systems of the form (1.1) arise in various applications, among which we focus on Prandtl-
Reuss plasticity and Coulomb-friction. The concept of rate-independent systems can be
formulated in a more general way than (1.1) and we refer the reader to the recent monograph
by Mielke and Rubicek [20], but also to [18].

We are interested in the limit ε→ 0, where we expect that uε
2s⇀ u in the two-scale sense,

which will be speci�ed below. The limit function u usually lies in a di�erent Banach space
B than the sequence uε. Nevertheless,we expect that u is the solution of a new equation on
B of the form

0 ∈ ∂Ψ(∂tu) +DE(u) , (1.2)

where again E ∶ [0, T ] ×B → R is a proper, quadratic functional and Ψ ∶ B → R is proper
and 1-homogeneous.

In this work, we focus on the 1-homogeneous functional Ψε, as the homogenization of
quadratic functionals is well understood (see [32, 33] and references therein). More pre-
cisely, we consider the case of a (stationary, ergodic) random measure µω and set µεω(A) ∶=
εnµω(ε−1A). Let Q ⊂ Rn be a bounded domain and let (Ω,B(ω),P) be a probability space
with an ergodic dynamical system τ . Taking a family C(x,ω) ⊂ RD of closed and convex
subsets of RD, where (x,ω) ∈Q ×Ω, we introduce the convex sets

C ε
p (Q, ω) ∶= {u ∈ Lp(Q;µεω;RD) ∶ u(x) ∈ C(x, τx

ε
ω) for µεω-a.e. x ∈Q} , for ω ∈ Ω ,

Cp(Q ×Ω) ∶= {u ∈ Lp(Q;Lp(Ω;µP ;RD)) ∶ u(x,ω) ∈ C(x,ω) for L × µP-a.e. (x,ω)} ,
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and the functions
ψε(x,u) = sup

σ∈C(x,τx
ε
ω)σ ⋅ u .

We then consider the family of functionals

Ψε,ω(u) ∶= sup
σ∈C εp (Q,ω)∫Q

u(x)σ(x)dµεω(x) and Ψ(u) ∶= sup
σ∈C (Q×Ω)∫Q

∫
Ω
u ⋅ σ dµPdx .

The major issues that will be studied in Section 5 are the following: consider uε ∈ ∂Ψε,ω(0) =
C ε
p (Q, ω) for ε → 0 that weakly two-scale converges to u. By Theorem 5.6 it then follows

that u ∈ ∂Ψ(0) = Cp(Q × Ω). This can be considered as a kind of stability result for the
sequence C ε

p (Q, ω). Lemmas 5.8�5.10 show that

lim inf
ε→0

Ψε,ω(vε) ≥ Ψ(v) whenever vε
2s⇀ v . (1.3)

Theorem 5.6 then yields equality in (1.3) for vε
2s→ v strongly in the two-scale sense. In

Sections 6�9, we provide three applications of Lemmas 5.8�5.10, namely in case of Prandtl-
Reuss plasticity and Coulomb-friction on a macroscopic and on a microscopic level.

The results obtained in this paper are linked to the theory of evolutionary Γ-convergence,
which could be applied in the periodic setting. Using evolutionary Γ-convergence, most of
the results obtained in this paper could be proved easily in the periodic setting, in particular
Theorem 5.6. The theory of evolutionary Γ-convergence has its roots in a work by Sandier and
Serfaty [24] and has been applied quite successfull to the homogenization of rate-independent
systems within the periodic setting, compare e.g. [8]. A summary on the applications of
evolutionary Γ-convergence can be found in a recent work by Mielke [19].

In the periodic setting, one bene�ts from the existence of the so called unfolding operator:
Given a periodic measure µε(A) ∶= εnµ0(ε−1A), the unfolding operators Tε are uniformly
bounded linear opertors from L2(Q;µε) onto L2(Q×Y ;L×µ0). Thus, the sequence of solutions
uε ∈ L2(Q;µε) can be interpreted as a sequence of functions in Tεuε ∈ H ∶= L2(Q×Y ;L×µ0),
a spacethat is independent of ε. One equally might consider Eε and Ψε as functionals on H .
Given the assumption that Eε → E and Ψε → Ψ on H in the Mosco-sense, one easily obtains
that the limit function u is an energetic solution to (H ,E ,Ψ). Note that Mosco-convergence
of Ψε → Ψ implies that the limit (1.3) automatically holds.

In the stochastic setting, the unfolding operator can formally be de�ned as the adjoint of
the mapping f(x,ω) ↦ f(x, τx

ε
ω), but this operator in general is no more continuous. Since

the stochastic setting lacks of a continuous unfolding operator, bounded sequences in Hε are
no longer bounded in H . this makes it impossible to consider Mosco-convergence of Ψε. We
are thus pushed to develop other methods, where we exploit the characterization of convex
sets by linear functionals.

An example from plasticity theory As an example for applications of the theory devel-
oped below, we mention here the Prandtl-Reuss equations of plasticity on a bounded domain
Q ⊂ Rn and on a time interval [0, T ]:

−∇ ⋅ σε = f , σε = C−1
ε e

ε ,∇suε +∇suDir = eε + pε , ∂tp
ε ∈ ∂ψ∗ε (σε −Bεp

ε) ,} on [0, T ] ×Q . (1.4)
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Here, Cε is the elasticity modul from Hook's law, Bε is the hardening parameter and ψε is
the �ow rule function. All these parameters strongly depend on the underlying material.

We assume for the moment, that Cε and Bε are scalar functions and thus isotropic. Given
C ∶ Rn → R, B ∶ Rn → R and ψ ∶ Rn × Rn×n

s → R, we de�ne for ε > 0 the scaled quantities
Cε(x) = C(xε ), Bε(x) = B(xε ) and ψε(x,u) = ψ(xε , u).

The limit ε→ 0 of system (1.4) was recently studied in the periodic setting, starting from
a work by Alber [1] and continued by Visintin [28, 29], Alber and Nesenenko [2, 21], Schweizer
and Veneroni [25] and others (see [11] for more references). A result on the stochastic ho-
mogenization of (1.4) was obtained in [12]. Under the assumption of an averaging property,
it was shown there, that uε → u strongly in L2(0, T ;L2(Q)) as ε → 0, where u solves the
limit system −∇ ⋅Σ(∇su) = f (1.5)

for some hysteresis operator Σ ∶ H1(0, T ;Rn×n
s ) → H1(0, T ;Rn×n

s ), which depends on the
�unscaled� parameters C, B and ψ. It was shown in [11] that the stochastic setting satis�es
this averaging property.

In spite of our expectations, equation (1.5) does not have the form (1.2). On the other
hand, the structure of equation (1.5) is not surprising since the concept of hysteresis was
introduced to deal with (macroscopic) rate independent memory e�ects that arise from hidden
(microscopic or fast) material variables. In this work, the limit problem of (1.4) will �rst
have the form (1.2) but we will see that it can be rewritten in the form (1.5).

The di�erence between the result in [11] and in the current work are two-fold. First, the
results in [11] apply to arbitrary convex functions ψ, while the present work is focused on
1-homogeneous ψ. Second, the present work allows for a dependence of the parameters B,
C and ψ on the macroscopic variable x ∈Q, which is not the case in [11].

Structure of the article The structure of the article is as follows. In the next section, we
introduce basic concepts that are needed throughout the rest of this work, i.e. we introduce
some notations for function spaces and concepts like energetic solutions to rate independent
systems, ergodicity and random closed sets. In Section 3, we introduce some geometric
examples to which we can apply the theory outlined in Sections 4 and 5. We introduce
the concept of stochastic two-scale convergence in Section 4 while we introduce the central
concept of this work, namely the weak two-scale convergence of convex sets, in Section 5. In
Sections 6�9, we apply the theory of Sections 4 and 5 to Prandtl-Reuss plasticity, Coulomb
friction on the surface of an elastic body and Coulomb friction on microscopic �ssures.

2 Notations and Preliminaries

2.1 General notations

Given a Radon-measure µ on a Borel-measurable set U ⊂ Rn, we write Lp(U ;RD;µ), 1 ≤ p <∞ for the set of measurable RD-valued functions such that ∫U ∣f ∣pdµ exists. If µ = L is the
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Lebesgue-measure, we omit µ and simply write Lp(U ;RD). If D = 1, we write Lp(U ;µ) and
similarly, we write Lp(U) if no confusion occurs.

For any Banach space B with norm ∥⋅∥B, we denote by L
p(U ;B), 1 ≤ p < ∞, the usual

Bochner space of functions f ∶ U →B such that ∫U ∥f∥pB dL exists. By L∞(U ;B), we denote
the space of functions, that are bounded almost everywhere. We say that f ∈W 1,p(0, T ;B)
for 1 ≤ p ≤ ∞, if f, ∂tf ∈ Lp(0, T ;B). We denote by W 1,p(0, T ;B) the space of functions
u ∈ Lp(0, T ;B) such that also ∂tu ∈ Lp(0, T ;B).

Given a vector space V , we call L (V,V ) the space of all linear mappings from V to V .
Given a functional E ∶ [0, T ] ×B → R we de�ne

D(E(t)) ∶= {u ∈ B ∶ ∣E(t, u)∣ < ∞} .
2.2 Rate-independent systems

We collect some results on existence and uniqueness of solutions for rate-independent systems
of the form

0 ∈ ∂Ψ(∂tu) +DE(t, u(t)) (2.1)

on a Banach space B. In particular, we consider the case of a 1-homogeneous convex func-
tional Ψ ∶ B → R+, i.e. Ψ(λv) = λΨ(v) for all λ ≥ 0 and of a quadratic energy E . It is
well known that under these conditions (2.1) has the following reformulation (see [20] or [18]
Sections 2 and 4).

De�nition 2.1. Let B be a Banach space, E ∶ [0, T ]×B → R be lower semicontinuous and Ψ ∶
B → R be convex, lower semicontinuous and 1-homogeneous. We say that u ∈ CLip(0, T ;B)
is an energetic solution to (B,E ,Ψ), resp. (2.1), if the following two conditions hold for
every t ∈ [0, T ]:

E(t, u(t)) ≤ E(t, û) +Ψ(û − u(t)) ∀û ∈ B , (2.2)

E(t, u(t)) + ∫ t

0
Ψ(∂tu) = E(0, u(0)) + ∫ t

0
∂sE(s, u(s))ds . (2.3)

Condition (2.2) is called stability condition and equation (2.3) is called global energy-
balance. Condition (2.2) can be reformulated [18, Section 2] into

Ψ∗(−DE(t, u(t))) = 0 or −DE(t, u(t)) ∈ ∂Ψ(0) . (2.4)

The following lemma states that we can weaken (2.3). It is proved for example in [18], Step
5 of the proof of Theorem 2.1.

Lemma 2.2. Let u ∈ CLip(0, T ;B) satisfy (2.2) or (2.4). Furthermore, let

E(t, u(t)) + ∫ t

0
Ψ(∂tu) ≤ E(0, u(0)) + ∫ t

0
∂sE(s, u(s))ds ∀t ∈ [0, T ] . (2.5)

Then, u is an energetic solution to (B,E ,Ψ).
The following existence result will be su�cient for our applications.
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Theorem 2.3. Let H1, H2 be Hilbert spaces such that H1 ↪H2 continuously, i.e. ∥u∥H2
≤

C12 ∥u∥H1
. Let

E ∶ [0, T ] ×H2 → R with E(t, u) = 1

2
∥u∥2

H1
+K(u) + ⟨l(t), u⟩H1

+ f(t) ,
where K ∶ H2 → (−∞,+∞] is a convex functional, l ∈ H1(0, T ;H1) and f ∈W 1,1(0, T ). Let
Ψ ∶ H2 → R be a proper convex 1-homogeneous functional. Finally, let u0 ∈ H1 such that
(2.2) or (2.4) holds for t = 0 and u(t = 0) = u0. Then, there exists a unique energetic solution
to (H2,E ,Ψ) with u(0) = u0, satisfying the apriori estimates

E(t, u(t)) + ∫ t

0
Ψ(s, ∂su(s))ds = E(0, u(0)) + ∫ t

0
∂sE(s, u(s))ds , (2.6)

∥u∥CLip([0,T ];H1) + ∥∂tu∥L∞([0,T ];H1) ≤ C(C12, ∥l∥H1(0,T ;H1)) (E(0, u(0)) + 1) , (2.7)

where C(C12, ∥l∥H1(0,T ;H1)) depends only on C12, ∥l∥H1(0,T ;H1). Furthermore, u ∈ C([0, T ];H2)
depends Lipschitz-continuously on l ∈ L1(0, T ;H2) and on u0 ∈ H1.

Proof. By our assumptions, the functional E(t, ⋅) is α-convex for all t in the sence of [18],
Section 3.5. From [18] Theorems 3.4 and 5.2 we get existence of an energetic solution u ∈
C0,1([0, T ];H2). The estimate (2.7) follows from the proof of Theorem 3.4 in [18] on noting
that we obtain for Λ1 ∶= ∥l∥H1(0,T ;H1) > 0

1

2
∥y(t) − y(s)∥2

H2
≤ C12

2
∥y(t) − y(s)∥2

H1
≤ C12Λ1∫ t

s
∥y(t) − y(τ)∥H2

dτ

≤ C2
12Λ1∫ t

s
∥y(t) − y(τ)∥H1

dτ . (2.8)

The Lipschitz-continuous dependence of u ∈ C([0, T ];H1) on l ∈ L1(0, T ;H2) and on u0 ∈ H1

follows from (2.8).

2.3 Ergodic dynamical systems

Throughout this paper, we follow the setting of Papanicolaou and Varadhan [23] and make
the following assumptions.

Assumption 2.4. Let (Ω,BΩ,P) be a probability space with countably generated σ-algebraBΩ. Further, we assume we are given a family (τx)x∈Rn of measurable bijective mappings
τx ∶ Ω ↦ Ω, having the properties of a dynamical system on (Ω,BΩ,P), i.e. they satisfy
(i)-(iii):

(i) τx ○ τy = τx+y , τ0 = id (Group property)

(ii) P(τ−xB) = P(B) ∀x ∈ Rn, B ∈ BΩ (Measure preserving)

(iii) A ∶ Rn ×Ω→ Ω (x,ω) ↦ τxω is measurable (Measurablility of evaluation)

We �nally assume that the system (τx)x∈Rn is ergodic. This means that for every measurable
function f ∶ Ω→ R there holds

[f(ω) = f(τxω) ∀x ∈ Rn , a.e. ω ∈ Ω] ⇒ [f(ω) = const for P − a.e. ω ∈ Ω] . (2.9)
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Remark. 1. An equivalent characterization of ergodicity is the following: For every BΩ-
measurable set B ⊂ Ω holds

[P ((τx(B) ∪B)/(τx(B) ∩B)) = 0 ∀x ∈ Rn] ⇒ [P(B) ∈ {0,1}] . (2.10)

2. In some application, the notion of ergodic dynamical system is given for (τx)x∈Zn . This
de�nition is analogous to the above de�nitions with Rn replaced by Zn.

From [5] Theorem 4.13 we get that Lp(Ω) is separable for every 1 ≤ p < ∞. For a set
X, a function f ∶ Ω → X and ω ∈ Ω, the function fω ∶ Rd → X, fω(x) ∶= f(τxω) is called a
realization (or the ω-realization) of f . The following ergodic theorem states that almost all
realizations of integrable functions are integrable. The �rst part up to (2.11) is standard and
(to the author's knowledge) due to Tempel'man [26]. It can also be found e.g. in [7, 33]. The
second part is an immediate consequence.

Theorem 2.5 (Ergodic Theorem [33]). Let Assumption 2.4 hold for (Ω,BΩ, µ, τ). Let f ∈
L1(Ω). Then, for almost all ω ∈ Ω it holds: f(τx

ε
ω) ∈ L1

loc(Rn) for all ε > 0 and for all
bounded open sets Q ⊂ Rn it holds

lim
ε→0
∫
Q
f(τx

ε
ω)dx = lim

ε→0
∫
Q
fω(x

ε
)dx = L(Q)∫

Ω
f(ω)dµ(ω) . (2.11)

Furthermore, for all f ∈ Lp(Ω), 1 ≤ p ≤ ∞ and a.e. ω ∈ Ω holds f(τxω) ∈ Lploc(Rn) and for
1 ≤ p < ∞ holds f(τx

ε
ω) ⇀ ∫Ω f weakly in Lploc(Rn) as ε→ 0.

We say that the realization fωis ergodic if (2.11) holds.

2.4 Stationary random measures

Let (Ω,BΩ,P, τ) be a probability space with dynamical system satisfying Assumption 2.4
and letM(Rn) be the set of Radon measures on Rn equipped with the Vague topology.

De�nition 2.6. A random measure is a mapping µ● ∶ Ω → M(Rn), ω ↦ µω such that
ω ↦ µω(A) is measurable for all Borel sets A ⊂ Rn. This is equivalent with the measurability
of µ● with respect to the Vague topology onM(Rn). A random measure is called stationary,
if µτxω(A) = µω(A + x) for all Borel sets A ⊂ Rn. The intensity λ(µω) is de�ned by:

λ(µω) ∶= ∫
Ω
∫
Rn
χ[0,1]n(τxω,x)dµω(x)dµ(ω) = µP(Ω) . (2.12)

Theorem 2.7 (Mecke [17, 7]: Existence of Palm measure). Let ω ↦ µω be a stationary
random measure. Then there exists a unique measure µP on Ω such that

∫
Ω
∫
Rn
f(x, τxω)dµω(x)dP(ω) = ∫

Rn
∫

Ω
f(x,ω)dµP(ω)dx

for all L × µP-measurable non negative functions and all L × µP- integrable functions f .
Furthermore for all A ⊂ Ω, u ∈ L1(Ω, µP) there holds

µP(A) = ∫
Ω
∫
Rn
g(s)χA(τsω)dµω(s)dP (2.13)

∫
Ω
u(ω)dµP = ∫

Ω
∫
Rn
g(s)u(τsω)dµω(s)dP (2.14)

for an arbitrary g ∈ L1(Rn,L) with ∫Rn g(x)dx = 1 and µP is σ-�nite.
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A few properties of the Palm measure and its underlying σ-algebra seem to be noteworthy:

Remark 2.8. a) Setting g(s) ∶= χ[0,1]n(s), the Palm measure can equally be de�ned through
(2.13).

b) For the constant measure ω ↦ L, we simply �nd µP = µ, the original probability
measure. This is a direct consequence of (2.13), Fubini's theorem and Assumption 2.4.

c) For a random measure ω ↦ µω, we may assume that Ω ⊂M(Rn) and µP is a measure
with respect to the Borel-algebra on Ω (see [9], Section 3). Then, Ω is a separable metric
space.

d) By comment c), it follows from [4] Theorems 67.2 and 68.1 (see also [9]) for all 1 ≤ p < ∞
and all k ∈ N that the spaces Lp(Ω, µP) and Cb(Ω) are separable and that Cb(Ω) ↪ Lp(Ω, µP)
densely ([5] Theorem 4.13).

2.5 The Ergodic Theorem

Let Assumption 2.4 hold for (Ω,BΩ,P, τ). Given a stationary random measure µω, we intro-
duce the scaled measure µεω through

µεω(A) ∶= εnµω(ε−1A) . (2.15)

We cite the following generalization of Theorem 2.5:

Theorem 2.9 (Ergodic Theorem [7]). Let Assumption 2.4 hold for (Ω,BΩ,P, τ). Let µω
be a stationary random measure with �nite intensity and Palm measure µP . Then, for all
g ∈ L1(Ω, µP) there holds P almost surely

lim
ε→0
∫
A
g(τx

ε
ω)dµεω(x) = ∣A∣ ∫

Ω
g(ω)dµP(ω) (2.16)

for all bounded Borel sets A.

At this point, we note that in [7] this theorem is provided only for A being a convex
set containing an open ball around 0. However, the theorem can be generalized to arbitrary
Borel sets by �rst considering simplices A. Such simplices can be extended to convex sets
containing an open ball around zero. The statement then follows from the linearity of (2.16)
in the characteristic function of A. The ergodic theorem only holds for function on Ω.
Nevertheless, it motivates the following generalization of the concept of ergodicity:

De�nition 2.10. Let f ∈ Lp(Q;Lp(Ω, µP) for some 1 ≤ p < ∞. We say that f is a p-ergodic
function if for a.e. ω ∈ Ω it holds that f εω(x) ∶= f(x, τxεω) is measurable for all ε > 0 and

lim
ε→0
∫
Q
f(x, τx

ε
ω)dµεω(x) = ∫

Q
∫

Ω
f(x, ω̃)dµP(ω̃)dx ,

lim
ε→0
∫
Q
∣f(x, τx

ε
ω)∣p dµεω(x) = ∫

Q
∫

Ω
∣f(x, ω̃)∣p dµP(ω̃)dx . (2.17)

We call ω, resp. fω, an ergodic realization of f , if (2.17) holds.

The rest of this section deals with the identi�cation of a suitably large class of ergodic
functions.
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Lemma 2.11. Let Assumption 2.4 hold for (Ω,BΩ,P, τ). Let Q ⊂ Rn be a bounded domain
and let A ⊂ Q × Ω be a BQ × BΩ-measurable set. Then, the characteristic function χA(x,ω)
satis�es

lim
ε→0
∫
Q
χA(x, τx

ε
ω)dµεω(x) = ∫

Q
∫

Ω
χA(x, ω̃)dµP(ω̃)dx for a.e. ω ∈ Ω . (2.18)

Proof. Due to Theorem 2.5, the statement is evident for A = AQ ×AΩ, where AQ ∈ BQ and
AΩ ∈ BΩ are measurable sets. In general, A has the form

A = ⋃
i∈NAi with Ai = Ai,Q ×Ai,Ω for i ∈ N, where Ai,Q ∈ BQ and Ai,Ω ∈ BΩ (2.19)

are measurable sets. After countably many operations, we can assume that Ai ∩Aj = ∅ and
Ai,Q ∩Aj,Q = ∅ for all i /= j. Note that (2.18) then holds for χAi for all i ∈ N.

Since ⋃i∈NAi,Q ⊂ Q and since this union is disjoint, we �nd limJ→∞∑∞
i=J L(Ai,Q) = 0.

Thus, for each n ∈ N, there exists Jn ∈ N such that L(Ãn,Q) < 1
n with Ãn,Q = ⋃∞

i=Jn Ai,Q. We

set Ân ∶= ⋃Jn−1
i=1 Ai and obtain for a set Ωn ⊂ Ω of full P-measure such that for all ω ∈ Ωn

∫
Q
∫

Ω
χÂn(x, ω̃)dµP(ω̃)dx = lim

ε→0
∫
Q
χÂn(x, τxεω)dµεω(x) ≤ lim sup

ε→0
∫
Q
χA(x, τx

ε
ω)dµεω(x)

≤ lim sup
ε→0

(∫
Q
χÂn(x, τxεω)dµεω(x) + ∫Ãn,Q dµεω)

≤ lim
ε→0
∫
Q
χÂn(x, τxεω)dµεω(x) + L(Ãn,Q)µP(Ω)

= ∫
Q
∫

Ω
χÂn(x, ω̃)dµP(ω̃)dx + 1

n
µP(Ω) .

Since n ∈ N was arbitrary and χÂn ↗ χA pointwise, we obtain

∫
Q
∫

Ω
χA = lim

n→∞∫Q∫Ω
χÂn = lim

ε→0
∫
Q
χA(x, τx

ε
ω)dµεω(x)

for all ω ∈ Ω̃ with Ω̃ ∶= ⋂n∈N Ωn. Since P(Ω̃) = 1, the statement follows.

Lemma 2.12. Let Assumption 2.4 hold for (Ω,BΩ,P, τ). Let Q ⊂ Rn be a bounded domain
and let f ∈ Lp(Q×Ω;L⊗µP)∩L∞(Q×Ω;L⊗µP), 1 ≤ p < ∞. Then, f has a BQ×BΩ-measurable
representative which is an ergodic function.

Proof. The function f has a Borel-measurable representative. Furthermore, we can assume
that this representative is bounded. The statement now follows from the fact that for every
δ > 0 we �nd piecewise constant Borel-measurable functions f δ1 , f

δ
2 such that f δ1 ≤ f ≤ f δ2 and

supQ×Ω ∣f δ1 − f δ2 ∣ < δ.
2.6 A particular probability space

We provide a construction of a probability space which will be used below. We therefore
consider Ω0 a separable (or compact) metric space with a probability measure P0. Then, we
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consider Ω ∶= ΩN
0 and write ω = (ωi)i∈N for all ω ∈ Ω. If d0 denotes the metric on Ω0, we de�ne

the metric on Ω through

d(ω1, ω2) = ∞∑
i=1

2−i d0(ω1,i, ω2,i)
1 + d0(ω1,i, ω2,i) .

This topology is generated by the open sets A×ΩN
0 , where for some n > 0, A ⊂ Ωn

0 is an open
set. In case Ω0 is separable (compact), the space Ω is separable (compact), too (see [15]).

In a next step, note that the sets of the formA×ΩN
0 = A×Ω together with their complements

form an algebra in Ω, which we denote R. For any set A ⊂ Ω of the form A = Ã ×ΩN
0 , where

Ã ⊂ Ωn
0 is measurable for some 0 < n < ∞, we de�ne

P(A) = Pn0 (Ã) , where Pn0 denotes the classical product measure on Ωn
0 .

We make the observation that P is additive, positive and P(∅) = 0. Next, let (Aj)j∈N be
an increasing sequence of sets in R such that A ∶= ⋃j Aj ∈ R. Then, there exists 0 < n < ∞
and Ã1 ⊂ Ωn

0 such that Ã1 × ΩN
0 = A1 ⊂ A2 ⊂ ⋅ ⋅ ⋅ ⊂ A ⊂ Ωn

0 × ΩN
0 = Ω. Furthermore, for every

j > 1, there exists Ãj such that Aj = Ãj ×ΩN
0 and there exists Ã ⊂ Ωn

0 such that A = Ã ×ΩN
0 .

Since Aj is an increasing sequence, also Ãj must be increasing and Ã = ⋃j Ãj. Therefore,P(Aj) = P0(Ãj) → P0(Ã) = P(A). We have thus shown that P ∶ R → [0,1] can be extended
to a measure on the Borel-σ-Algebra on Ω (See [4] Theorem 6-2).

The same considerations hold, if we consider Ω ∶= ΩZn
0 . We write ω = (ωi)i∈Zn for ω ∈ Ω

and de�ne for x ∈ Zn the mapping

τx ∶ Ω→ Ω , ω ↦ τxω , where ωi ↦ ωi+x .
Then, (τx)x∈Zn form a dynamical system on Ω with respect to Zn. We set Y ∶= [0,1[n with

Ω̂ ∶= Y ×Ω and write (y,ω) ∈ Ω̂ if y ∈ Y and ω ∈ Ω. As a measure on Ω̂, we consider P̂ ∶= L×P .
For x ∈ Rn we use the unique decomposition x = ⌊x⌋ + xY , where ⌊x⌋ ∈ Zn and xY ∈ Y . Then,
for x ∈ Rn, we de�ne the mapping

τ̂x ∶ Ω̂→ Ω̂ , ω̂ ↦ τxω̂ , where ωi ↦ ωi+⌊y+x⌋ and y ↦ y + x − ⌊y + x⌋ .
The most important result of this subsection is the following.

Lemma 2.13. The family τ̂ is ergodic.

Proof. It is known that the family τ is ergodic on Ω. Now, let A ⊂ Ω̂ be invariant, i.e.P ((A ∪ τ̂xA) / (A ∩ τ̂xA)) = 0 for all x ∈ Rn. This is equivalent with

∫
Y
∫

Ω
χA(y,ω) + χτ̂xA(y,ω) − 2χA(y,ω)χτ̂xA(y,ω)dP(ω)dy = 0 . (2.20)

For �xed y ∈ Y we obtain

∫
Ω
χA(y,ω) + χA(y, τxω) − 2χA(y,ω)χA(y, τxω)dP(ω) = 0 ∀x ∈ Zn

Since τ is ergodic on Ω, it follows by (2.9) and positivity of the integrand that χA(y, ⋅) is
constant in Ω for a.e. y ∈ Y . More precisely, we obtain χA(y, τxω) = χA(y,ω) almost surely
for all x ∈ Zn. But then, (2.20) yields

0 ≤ χA(y,ω) + χA(y + x,ω) − 2χA(y,ω)χA(y + x,ω) = 0 ∀x ∈ Rn

for a.e. (y,ω) ∈ Ω̂. This implies P(A) ∈ {0,1}.
9



3 Examples for stochastic geometries and random mea-

sures

In this section, we give some concrete examples of stationary ergodic measures in order to
demonstrate the large range of geometric settings that are captured by Assumption 2.4.
We start with the periodic case, as this is the case most familiar to the homogenization
community and also the easiest setting from the point of view of description. We then go on
with general stochastic geometries and �nally discuss the case of a random checkerboard.

3.1 The periodic case

In [31], Zhikov introduced two-scale convergence for periodic measures. This work was a
straight generalization of Allaire's de�nition in [3] and is (to the author's knowledge) the
most general de�nition of periodic two-scale convergence up to now. The notation and the
formulation of the results show a signi�cant similarity with the notation used in the de�nition
of stochastic two-scale convergence in [33]. Of course, one expects that the case of a periodic
measure should be a special case of a stochastic measure. In fact, shifting a Y -periodic
measure by y ∈ Y = [0,1[n, we can consider Y as a probability space.

To be more speci�c, let µ0 be a Zn-periodic measure in Rn which is a measure satisfying
µ0(⋅) = µ0(⋅ + x) for all x ∈ Zn. We consider Y = [0,1[n equiped with the Euclidean topology
on the torus. Consider the family of mappings τx ∶ y ↦ [(y+x) mod Zn] for every x ∈ Rn and
note that τx ∶ Y → Y satis�es the Assumptions 2.4(i)-(iii). De�ning

ι ∶ Y →M(Rn) , y ↦ µy(⋅) ∶= µ0(⋅ + y) ,
we can prove the following lemma.

Lemma 3.1. [9, Lemma 3.5]The mapping ι is a homeomorphism.

Thus, setting Ω ∶= [0,1[n with the topology of the torus, BΩ ∶= B[0,1[n and P = L with τ as
above, we note that (Ω,BΩ,P, τ) satis�es Assumption 2.4. Furthermore, y ↦ µy is a station-
ary random measure with µP = µ0∣[0,1[n . Denoting Ck

per(Y ) the set of k-times di�erentiable
functions on Y which are Y -periodic, we note that Ck(Ω) = Ck

b (Ω) = Ck
per(Y ).

Without giving a proof, we state that the concept of two-scale convergence introduced
below in De�nition 4.2 is equivalent with the following de�nition from [31].

De�nition 3.2. Let 1 < p < ∞. Let µ0 be a periodic Radon measure on Rn and set µε(A) ∶=
εnµ0(ε−1A). Let uε ∈ Lp(Q;µε) for all ε > 0. We say that (uε) converges (weakly) in two

scales to u ∈ Lp(Q;Lp(Y,µ0)) and write uε
2s⇀ u if for all φ ∈ C0(Q;Cper(Y )) there holds

lim
ε→0
∫
Q
uε(x)φ(x, x

ε
)dµε = ∫

Q
∫

Ω
u(x, y)φ(x, y)dµ0(y)dx .

Choosing µ0 = L, De�nition 3.2 is equivalent with the original de�nition of two-scale
convergence by Allaire [3].
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3.2 The random checkerboard

We study the checker board construction of i.i.d. random variables, since this is a commonly
used example for an ergodic stochastic setting in homogenization.

De�ning Y ∶= [0,1[n, we consider Rn to be partitioned into unit cubes Cz ∶= z + Y for
z ∈ Zn. Like in Section 3.1, we equip Y with the topology of the torus. We then consider the
sets

Ω̃ ∶= {u ∈ L∞(Rn) ∣u∣Cz ≡ cz , with cz ∈ [0,1] for every z ∈ Zn} (3.1)

Ω ∶= {u ∈ L∞(Rn) ∣ ∃ξ ∈ Y s.t. u(. − ξ) ∈ Ω̃} . (3.2)

For u ∈ Ω we denote the (unique) ξ from (3.2) as ξ(u).
Since L1(Rn) is separable, we infer from [5], Theorem III.28, that L∞(Rn) with the weak∗-

topology is metrizable. Given a countable and dense subset (φi)i∈N of L1(Rn), a metric d on
L∞(Rn) is given by

d(u, v) ∶= ∞∑
i=1

1

2i
∣⟨u − v, φi⟩∣

1 + ∣⟨u − v, φi⟩∣ .
It is straight forward to verify that Ω with the metric d is isomorph with [0,1[n×[0,1]Zn .
Thus, by Section 2.6 (Ω,BΩ,P, τ), with P = L∣[0,1]n ⊗ (L∣[0,1])Zn , satis�es Assumption 2.4.

3.3 Stochastic geometries

In this section, we describe how random measures in the sense of De�nition 2.6 can be derived
from random sets. Let F(Rn) denote the set of all closed sets in Rn. We write

FV ∶= {F ∈ F(Rn) ∣ F ∩ V /= ∅} if V ⊂ Rn is an open set , (3.3)FK ∶= {F ∈ F(Rn) ∣ F ∩K = ∅} if K ⊂ Rn is a compact set . (3.4)

The topology on created by the sets FV , FK is the Fell-topology TF and (F(Rn),TF) is com-
pact, Hausdor� and separable[16]. The Matheron-σ-�eld σF is the Borel-σ-algebra created
by the Fell-topology.

De�nition 3.3. a) Let (Ω, σ,P) be a probability space. Then a Random Closed Set (RACS)
is a measurable mapping

A ∶ (Ω, σ,P) Ð→ (F , σF)
b) A random closed set is called stationary if its characteristic functions χA(ω) are sta-

tionary, i.e. they satisfy χA(ω)(x) = χA(τxω)(0) for almost every ω ∈ Ω for almost all x ∈ Rn.
c) A random closed set M ∶ (Ω, σ,P ) Ð→ (F , σF) ω ↦M(ω) is called a Random closed

Ck-Manifold if M(ω) is a piecewise Ck-manifold for P almost every ω.

For more information, the reader is referred to [16]. The importance of the concept of
random geometries stems from the following Lemma by Zähle. It states that every ran-
dom closed set induces a random measure. Thus, every stationary ergodic RACS induces a
stationary ergodic random measure.
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Lemma 3.4 ([30] Theorem 2.1.3 resp. Corollary 2.1.5). Let Fm ⊂ F be the space of closed
m-dimensional sub manifolds of Rn such that the corresponding Hausdor� measure is locally
�nite. Then, the σ-algebra σF ∩ Fm is the smallest such that

MB ∶ Fm → R M ↦Hm(M ∩B)
is measurable for every measurable and bounded B ⊂ Rn.

This means that
MRn ∶ Fm →M(Rn) M ↦Hm(M ∩ ⋅)

is measurable with respect to the σ-algebra created by the Vague topology onM(Rn). Hence
a random closed set always induces a random measure. Based on Lemma 3.4 and on Palm-
theory, the following usefull result was obtained in [9] (See Lemma 2.14 and Section 3.1
therein).

Theorem 3.5. Let (Ω, σ,P ) be a probability space with an ergodic dynamical system τ . Let
A ∶ (Ω, σ,P ) Ð→ (F , σF) be a stationary random closed m-dimensional Ck-Manifold.

a) There exists a separable metric space Ω̃ with an ergodic dynamical system τ̃ and a
mapping Ã ∶ (Ω̃,BΩ̃,P) → (F , σF) such that A and Ã have the same law and such that Ã still
is stationary. Furthermore, (x,ω) ↦ τxω is continuous. We identify Ω̃ = Ω, Ã = A and τ̃ = τ .

b) The mapping
µ● ∶ Ω→M(Rn) , ω ↦ µω(⋅) ∶= Hm(M ∩ ⋅)

is a stationary random measure on Rn and there exists a corresponding Palm-measure µP if
and only if µ● has �nite intensity.

c) There exists a measurable set Â ⊂ Ω, called the prototype of A, such that χA(ω)(x) =
χÂ(τxω) for L + µω-almost every x and P-almost surely. The Palm-measure µP of µω con-
centrates on Â, i.e. µP(Ω/Â) = 0.

d) If A is a random closed m-dimensional Ck-manifold, then P(Â) = 0.

4 Two-scale convergence

4.1 Time independent case

Let Assumption 2.4 hold for (Ω,BΩ,P, τ) and let ω ↦ µω be a stationary random measure
with µεω and µP de�ned through (2.15) and (2.13). The product σ-algebra BQ⊗BΩ is countably
generated and therefore, the space Lp(Q×Ω) is separable ([5] Theorem 4.13). In particular,
for every 1 ≤ p < ∞, there exists a countable dense subset of �nite step-functions in Lp(Q×Ω).
Remark 4.1. For 1 ≤ p < ∞ let Φp ∶= (φi)i∈N be a countable dense subset of Lp(Q;Lp(Ω, µP))
such that every φ ∈ Φp is a �nite BQ ⊗ BΩ -step-function. By Lemma 2.11, every φ ∈ Φp is
an ergodic function. Since the countable union of P-null-sets is a P-null set, there exists a
set ΩΦp ⊂ Ω with P(ΩΦp) = 1 such that all φ ∈ Φp satisfy (2.17) (i.e. they admit ergodic
realizations) for all ω ∈ ΩΦp .
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The choice of the family Φp is closely related to Allaire's problem [3] of identifying the
class of �admissible� functions in L2(Q×[0,1]n). Note that even in the periodic setting, given
φ ∈ L2(Q × Y ), it is by no means clear whether

lim
ε→0
∫
Q
φ2(x, x

ε
)dx = ∫

Q
∫
Y
φ2(x, y)dy dx .

Indeed, it is not even clear, whether φ(x, xε ) is measurable (See [3] the discussion after De�-
nition 1.4 and Proposition 5.8).

De�nition 4.2. Let 1 < p, q < ∞ with 1
p + 1

q = 1. Let Φp be the set of Remark 4.1 and let

ω ∈ ΩΦp . Let u
ε ∈ Lq(Q;µεω) for all ε > 0. We say that (uε) converges (weakly) in two scales to

u ∈ Lq(Q;Lq(Ω, µP)) and write uε
2s⇀ u if for all φ ∈ Φp there holds with φω,ε(x) ∶= φ(x, τx

ε
ω)

lim
ε→0
∫
Q
uεφω,εdµ

ε
ω = ∫

Q
∫

Ω
uφdµP dL .

Furthermore, we say that uε converges strongly in two scales to u, written uε
2s→ u, if for

all weakly two-scale converging sequences vε ∈ Lp(Q;µεω) with vε
2s⇀ v ∈ Lp(Q;Lp(Ω, µP)) as

ε→ 0 there holds
lim
ε→0
∫
Q
uεvεdµεω = ∫

Q
∫

Ω
uv dµP dL .

Remark 4.3. a) Note that φω,ε
2s→ φ strongly in two scales by de�nition.

b) If f ∈ Lp(Q × Ω;L ⊗ µP) is a p-ergodic function and fω is an ergodic realization of f
and all (fϕ)ω are ergodic realizations of fϕ, ϕ ∈ Φp, then

lim
ε→0
∫
Q
uεfω,εdµ

ε
ω = ∫

Q
∫

Ω
uf dµP dL

for all uε
2s⇀ u. This means we can always extend our class of test-functions by countably

many functions, losing only a set of Ω with P-measure 0.

The de�nition of strong two-scale convergence makes sense in view of classical strong
convergence. The proof of part 1. is very similar to [33]. Part 2. is easy to prove.

Lemma 4.4. 1. Let ω ∈ Ω, 1 < p < ∞ and uε ∈ Lp(Q;µεω) be a sequence of functions such
that ∥uε∥Lp(Q;µεω) ≤ C for some C > 0 independent of ε. Then there exists a subsequence of

(uε′)ε′→0 and u ∈ Lp(Q;Lp(Ω, µP)) such that uε′ 2s⇀ u and

∥u∥Lp(Q;Lp(Ω,µP)) ≤ lim inf
ε′→0

∥uε′∥
Lp(Q;µε′ω ) . (4.1)

2. Let µεω = L for all ε > 0 and let uε ∈ Lp(Q) such that uε → u ∈ Lp(Q) strongly. Then

uε
2s→ u.

Proof. 1. Let (φk)k∈N be an enumeration of Φq. For �xed k ∈ N, we obtain that

lim sup
ε→0

∣∫
Q
uε(x)φk(x, τx

ε
ω)dµεω(x)∣ ≤ C lim sup

ε→0
(∫

Q
(φk(x, τx

ε
ω))q dµεω(x))

1
q

= C ∥φk∥Lq(Q×Ω;L⊗µP) .
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Therefore, we can use Cantor's diagonalization argument to construct a subsequence uε
′
of

uε such that ∫
Q
uε

′(x)φk(x, τx
ε
ω)dµε′ω (x) → Lk as ε′ → 0

and Lk is linear in φk ∈ Φq. Therefore, there exists u ∈ Lp(Q;Lp(Ω;µP)) such that

Lk,j = ∫
Q
∫

Ω
u(x, ω̃)φk(x, ω̃)dµP(ω̃)dx ∀k ∈ N .

Since Φq is dense in Lq(Q;Lq(Ω;µP)), the function u is unique.
2. This follows from the fact that every weakly converging sequence vε ∈ L2(Q) with

vε ⇀ v converges weakly in two scales to the same function v.

Lemma 4.5. Let u ∈ Lp(Q;Lp(Ω;µP)). Then, for almost every ω ∈ Ω, there exists a sequence

uε ∈ Lp(Q;µεω) such that uε
2s⇀ u as ε→ 0.

A similar result by Allaire (see [3]) states that every u ∈ L2(Q;L2([0,1[n)) is obtained as
a (periodic) two-scale limit.

Proof. Let u ∈ Lp(Q;Lp(Ω;µP)). For p and q = p−1
p let Φp and Φq be the family of functions

with ΩΦp and ΩΦq from Remark 4.1. For Ω̃ ∶= ΩΦp ∩ΩΦq and ω ∈ Ω̃, we create the sequence
uε by the following algorithm.

1. Chose u0 ∈ Φp and ε0 > 0 arbitrarily.

2. Let n ∈ N and assume un−1 is chosen. There exists un ∈ Φp with ∥u − un∥B ≤ 1
n , and

εn > 0 with εn ≤ εn−1 such that for all φj ∈ Φq with 1 ≤ j ≤ n there holds

∣∫
Q
un(τx

ε
ω)φj(τx

ε
ω)dµεω(x) − ∫

Ω
unφjdµP ∣ ≤ 1

n
∀ε < εn .

3. Finally, set uε(x) = un−1(τx
ε
ω) for εn−1 ≥ ε > εn.

4. Continue with 2.

The constructed sequence uε has the property that uε
2s⇀ u.

Lemma 4.6. Let N ∈ N and let A ∈ L∞(Q;L∞(Ω;L (RN ,RN))) be symmetric and assume
A is BQ ⊗ BΩ -measurable. We furthermore assume the existence of a constant α > 0 such
that

α ∣ξ∣2 ≤ ξA(x,ω)ξ ≤ 1

α
∣ξ∣2 ∀ξ ∈ Rn and for L × µP-a.e. (x,ω) ∈Q ×Ω . (4.2)

Then, for almost all ω ∈ Ω there holds: For all sequences uε ∈ L2(Q;µεω;RN) with weak
two-scale limit u ∈ L2Q ×L2(Ω;µP ;RN)) there holds with Aε,ω(x) ∶= A(x, τ s

x
ω)

lim inf
ε→0

∫
Q
uε ⋅ (Aε,ωuε)dµεω ≥ ∫

Q
∫

Ω
u ⋅ (Au)dµP .
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Proof. Let Φ2 be the family of functions with ΩΦ2 from Remark 4.1. Since A is symmetric and

strictly positive de�nite, there exists A
1
2 ∈ L∞(Q;L∞(Ω;L (RN ,RN))) such that A

1
2
TA

1
2 = A

and such that A is BQ ⊗BΩ -measurable. Then, A
1
2 Φ2 is a family of ergodic functions, i.e.

lim
ε→0
∫
Q
uε (A 1

2φ)
ω,ε
dµεω = ∫

Q
∫

Ω
uA

1
2φdµP dL ∀φ ∈ Φ2

by Remark 4.3. Thus, there exists Ω̃ ⊂ Ω with P(Ω̃) = 1 such that uε
2s⇀ u implies A

1
2
ε,ωuε

2s⇀
A

1
2u for all ω ∈ Ω̃. Using (4.1) from Lemma 4.4, this concludes the proof.

4.2 Weak two-scale convergence for time-dependent functions

We are also interested in the convergence behavior of functions uε ∶ [0, T ] → Lp(Q, µεω). More
precisely, we make the following de�nition:

De�nition 4.7. Let 1 < r, r′, p, q < ∞ with 1
p+ 1

q = 1 and 1
r′ + 1

r = 1. Let Φq be the set of Remark

4.1 and let ω ∈ ΩΦq . Let uε ∈ Lr(0, T ;Lp(Q;µεω)) for all ε > 0. We say that (uε) converges

(weakly) in two scales to u ∈ Lr(0, T ;Lp(Q;Lp(Ω, µP))) and write uε
2s⇀ u if for all continuous

and piecewise a�ne functions φ ∶ [0, T ] → RΦq there holds with φω,ε(t, x) ∶= φ(t, x, τx
ε
ω)

lim
ε→0
∫ T

0
∫
Q
uεφω,εdµ

ε
ωdt = ∫ T

0
∫
Q
∫

Ω
uφdµP dx .dt

Notation 4.8. Throuout this subsection, we frequently write B0 = Lp(Q;Lp(Ω, µP)) with
B∗

0 = Lq(Q;Lq(Ω, µP)) and Bε,ω = Lp(Q;µεω) with B∗
ε,ω = Lq(Q;µεω). We denote by⟨u, v⟩B,B∗and ⟨uε, vε⟩Bε,B∗

ε ,ω
the corresponding dual pairings and by (B∗

ε,ωφ) (x) ∶= φ(x, τxεω)
the natural mapping from B0 to Bε,ω. If no confusion occurs, we drop the index ω.

Lemma 4.9. Let 1 < p, r < ∞ and T > 0. Then, every sequence (uε ∈ Lr(0, T ;Lp(Q;µεω)))ε>0

satisfying ∥uε∥Lr(0,T ;Lp(Q;µεω)) ≤ C for some C > 0 independent from ε has a weakly two-scale
convergent subsequence with limit function u ∈ Lr(0, T ;Lp(Q;Lp(Ω, µP))). Furthermore, if∥∂tuε∥Lr(0,T ;Lp(Q;µεω)) ≤ C uniformly for 1 < p ≤ ∞, then also ∥∂tu∥Lr(0,T ;Lp(Q;Lp(Ω,µP))) ≤ C and

∂tuε
2s⇀ ∂tu in the sense of De�nition 4.7 a) as well as uε(t) 2s⇀ u(t) for all t ∈ [0, T ].

Proof. We make use of the notation 4.8. We may assume that Φq is a Q-vectorspace. Given
T > 0, we �x the timesteps τi,k = k

2i
T for i ∈ N and 0 ≤ k ≤ 2i. Then, Lr

′(0, T ;B∗
0) (where

1
p + 1

q = 1) has a countable dense subset of piecewise constant functions of the form

φ = 2i−1∑
k=0

χ[τi,k,τi,k+1)vk for some i ∈ N and some (vk)k=0,...,2i−1 ⊂ B∗
0 . (4.3)

We set U ε
i,k = ∫ τi,k+1τi,k

uε and observe that U ε
i,k = U ε

i+1,2k +U ε
i+1,2k+1. By induction over i ∈ N and

the Cantor-argument, we can extract a subsequense of uε as ε → 0 such that U ε
i,k

2s⇀ Ui,k for
all i ∈ N, k = 0, . . . ,2i − 1. This sequence then satis�es Ui,k = Ui+1,2k +Ui+1,2k+1. For every φ of
the form (4.3) we �nd

∫ T

0
⟨uε,B∗

εφ⟩Bε,B∗
ε
→ l(φ) ∶= 2i−1∑

k=0

⟨Ui,k, vk⟩B,B∗ , (4.4)
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and l is linear. Furthermore, since ∫ T0 ⟨uε,B∗
εφ⟩Bε,B∗

ε
≤ C ∥B∗

εφ∥Lr′(0,T ;B∗
ε ), we infer from

the ergodic theorem that ∣l(φ)∣ ≤ C ∥φ∥Lr′(0,T ;B∗). Since l is linear, it can be extended to a

bounded linear functional on Lr
′(0, T ;B∗) by the Hahn-Banach extension theorem. Thus,

there exists u ∈ Lr(0, T ;B0), such that l(φ) = ∫ T0 ⟨u,φ⟩B,B∗ . Since the set of functions φ

having the form (4.3) is dense in Lr
′(0, T ;B∗

0), this u is unique and we conclude uε
2s⇀ u.

Finally, we can approximate any piecewise a�ne and continuous function φ ∶ [0, T ] → RΦp

uniformly by piecewise constant functions. Therefore, we get

∫ T

0
⟨uε,B∗

εφ⟩Bε,B∗
ε
→ l(φ)

for all such piecewise a�ne functions φ.
Now, let ∥∂tuε∥Lr(0,T ;Bε) ≤ C uniformly for 1 < p ≤ ∞. Then, also ∥uε∥C([0,T ];Bε) ≤ C

uniformly. By the above calculations, there exists ut ∈ Lr(0, T ;B) and a further subsequence

of uε, such that ∂tuε
2s⇀ ut, uε(0) 2s⇀ u(0) and uε(T ) 2s⇀ u(T ) as ε → 0. Chosing an arbitrary

piecewise a�ne and continuous function φ ∶ [0, T ] → RΦp, we obtain

∫ T

0
⟨ut, φ⟩B,B∗ ← ∫ T

0
⟨∂tuε,B∗

εφ⟩Bε,B∗
ε
= ⟨uε,B∗

εφ⟩Bε,B∗
ε
∣T
0
− ∫ T

0
⟨uε,B∗

ε∂tφ⟩Bε,B∗
ε

→ ⟨u,φ⟩B,B∗ ∣T
0
− ∫ T

0
⟨u, ∂tφ⟩B,B∗ ,

where we used (4.4) for uε(⋅). Thus, we �nd that ∂tu = ut.
Finally, we get for every τ ∈ (0, T ]:

uε(τ) = uε(0) + ∫ τ

0
∂tu

ε 2s⇀ u(0) + ∫ τ

0
∂tu = u(τ) .

Lemma 4.10. Let 1 < p < ∞ and let φq and Ωφq ,
1
p + 1

q = 1, be given by Remark 4.1. Given
ω ∈ ΩΦq , let uε ∈ CLip(0, T ;Lp(Q;µεω)) for all ε > 0 such that ∥uε∥CLip(0,T ;Lp(Q;µεω)) ≤ C for
some C independent from ε > 0. Then, there exists u ∈ CLip(0, T ;Lp(Q;Lp(Ω, µP))) and a

subsequence uε′ of uε such that uε′(t) 2s⇀ u(t) for all t ∈ [0, T ].
Proof. By the uniform Lipschitz bound, we �nd that ∥∂tuε∥Lp(0,T ;Lp(Q;µεω)) ≤ C for all ε > 0.

By Lemmas 4.9 and 4.4, we obtain a subsequence uε
′
and u ∈ C(0, T ;Lp(Q;Lp(Ω, µP))) such

that uε
′(t) 2s⇀ u(t) for all t ∈ [0, T ]. We observe

∥u(t1) − u(t2)∥Lp(Q;Lp(Ω,µP)) ≤ sup
ε>0

∥uε(t1) − uε(t2)∥Lp(Q;µεω) ≤ C ∣t1 − t2∣ ,
and therefore u ∈ CLip([0, T ];Lp(Q;Lp(Ω, µP))).
5 Weakly two-scale converging convex sets

5.1 The main result on weakly converging convex sets

Let Q ⊂ Rn be a bounded domain with the Borel-σ-algebra BQ and let Assumption 2.4
hold for (Ω,BΩ,P, τ) and let ω ↦ µω be a stationary random measure with µεω and µP
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de�ned through (2.15) and (2.13). Let furthermore D ∈ N. We provide a class of convex sets

C ε
p ⊂ Lp(Q;µεω;RD) with a convex set Cp ⊂ Lp(Q;Lp(Ω;µP ;RD)) such that C ε

p

2s⇀ Cp in the
following sense.

De�nition 5.1. Let 1 < p < ∞. For each ε > 0 let C ε
p ⊂ Lp(Q;µεω;RD) be a closed and

convex set and let Cp ⊂ Lp(Q;Lp(Ω;µP ;RD)) be closed and convex. We say that C ε
p weakly

two-scale converges to Cp, written C ε
p

2s⇀ Cp, if for every weakly two-scale converging sequence(uε ∈ C ε
p )ε>0

with uε
2s⇀ u ∈ Lp(Q;Lp(Ω;µP ;RD)) there follows u ∈ Cp.

As a special case, we introduce weak convergence of convex sets.

De�nition 5.2. Let 1 < p < ∞. For each ε > 0 let C ε
p ⊂ Lp(Q;RD) be a closed and convex set

and let Cp ⊂ Lp(Q;RD) be closed and convex. We say that C ε
p weakly converges to Cp, written

C ε
p ⇀ Cp, if for every weakly converging sequence (uε ∈ C ε

p )ε>0
with uε ⇀ u ∈ Lp(Q;RD) there

follows u ∈ Cp.

We will prove a weak two-scale convergence result for convex sets within the following
setting.

Assumption 5.3. For L×µP-almost every (x,ω) ∈Q×Ω let C(x,ω) ⊂ RD be a closed convex
set in RD with 0 ∈ C(x,ω) for all x,ω and de�ne

XC ∶ Q ×Ω ×RD → R , (x,ω, u) ↦ dist (u,C(x,ω)) .
For all u ∈ RD, the function XC(⋅, ⋅, u) is BQ ⊗BΩ-measurable on Q ×Ω.

Assumption 5.4. Let Assumption 5.3 hold. We additionaly assume there are functions
O ∶ Q ×Ω → RD and r ∶ Q ×Ω → R+ such that Br(x,ω)(O(x,ω)) ⊂ C(x,ω) for L × µP-almost
every (x,ω) ∈Q×Ω. Assume further that for all �nite step-functions ϕ, the product Oϕ is a
1-ergodic function. We furthermore make the following regularity assumptions: The function
R ∶ (x,ω) ↦ r(x,ω)−1 is BQ⊗BΩ-measurable and an element of Lq(Q;Lq(Ω, µP)) for 1

p+ 1
q = 1.

Introducing the sets

C ε
p (Q, ω) ∶= {u ∈ Lp(Q;µεω;RD) ∶ u(x) ∈ C(x, τx

ε
ω) for µεω-a.e. x ∈Q} , for ω ∈ Ω ,

Cp(Q ×Ω) ∶= {u ∈ Lp(Q;Lp(Ω;µP ;RD)) ∶ u(x,ω) ∈ C(x,ω) for L × µP-a.e. (x,ω)} ,
(5.1)

we note that these sets are closed in the respective Banach spaces. Given a convex set C ⊂ RD

containing an open ball around Br(0) for some r > 0, the vector

a(u,C) ∶= argmin{dist (a, u) ∶ a ∈ C} (5.2)

is uniquely de�ned for all u ∈ RD. We �rst observe the following:

Lemma 5.5. Let Assumption 5.3 hold and let a(u,C) be de�ned through (5.2). Let ϕ ∈
Lp(Q;Lp(Ω, µP)) be a �nite step function and let a(ϕ)(x,ω) = a(ϕ(x,ω),C(x,ω)). Then,
for all 1 ≤ p < ∞ it holds that a(ϕ) ∈ Cp(Q×Ω) and admits a BQ⊗BΩ-measurable and p-ergodic
representative. The set ΦCp ∶= a(Φp) is dense in Cp(Q ×Ω) and all φ ∈ ΦCp are p-ergodic.
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We shift the proof of Lemma 5.5 to Section 5.4. The main result of this section is the
following theorem, which is proved in Section 5.3.

Theorem 5.6. Let Assumption 5.4 hold and let Cp(Q ×Ω) and C ε
p (Q, ω) be given through

(5.1). Then, there exists a set Ω̃ ⊂ Ω with P(Ω̃) = 1 such that C ε
p (Q, ω) 2s⇀ Cp(Q ×Ω) for all

ω ∈ Ω̃.

Corollary 5.7. Let Assumption 5.4 hold, let µω = L for all ω ∈ Ω and let Cp(Q × Ω) and
C ε
p (Q, ω) be given through (5.1). Let

Cp(Q) ∶= clL2(Q) {u ∈ Lp(Q) ∶ ∃v ∈ Cp(Q ×Ω) ∶ u = ∫
Ω
v dµ} . (5.3)

Then there exists a set Ω̃ ⊂ Ω with P(Ω̃) = 1 such that C ε
p (Q, ω) ⇀ Cp(Q) in the sense of

De�nition 5.2 for all ω ∈ Ω̃.

Proof. Note that C ε
p (Q, ω) 2s⇀ Cp(Q × Ω) according to Theorem 5.6. Furthermore, uε

2s⇀ ũ
weakly in two scales implies uε ⇀ u ∶= ∫Ω ũ dµ weakly in Lp(Q;RD) with u ∈ Cp(Q).
5.2 Convergence of 1-homogeneous functionals

Given a re�exive Banach spaces B, the closed convex subsets containing 0 can be identi�ed
with 1-homogeneous functionals on the dual space. We make the following two observations:

Lemma 5.8. Let Assumption 5.3 hold and let Cq(Q × Ω) and C ε
q (Q, ω) be given through

(5.1). Let 1
p + 1

q = 1 and Ψε ∶ Lp(Q;µεω;RD) → R and Ψ ∶ Lp(Q×Ω;L×µP ;RD) → R be given
through

Ψε,ω(u) ∶= sup
σ∈C εp (Q,ω)∫Q

u ⋅ σdµεω , Ψ(u) ∶= sup
σ∈Cp(Q×Ω)∫Q

∫
Ω
u ⋅ σdµPdL . (5.4)

Then, for every sequence uε ∈ Lp(Q;µεω;RD) such that uε
2s⇀ u ∈ Lp(Q;Lp(Ω;µP ;RD)) there

holds
lim inf
ε→0

Ψε,ω(uε) ≥ Ψ(u) .
Furthermore, if Assumption 5.4 holds and if uε

2s→ u ∈ Lp(Q;Lp(Ω, µP ;RD)) strongly in two
scales, we �nd

lim
ε→0

Ψε,ω(uε) = Ψ(u) .
The proof is similar to the proof of the following more general, time dependent result.

Lemma 5.9. Let Assumption 5.3 hold and let Cq(Q×Ω) and C ε
q (Q, ω) be given through (5.1).

Let 1
p + 1

q = 1, 1 < p, q < ∞, and Ψε ∶ Lp(Q;µεω;RD) → R and Ψ ∶ Lp(Q ×Ω;L × µP ;RD) → R
be given through (5.4). Then, for every sequence aε ∈ Lp(0, T ;Lp(Q;µεω;RD)) such that

aε
2s⇀ a ∈ Lp(0, T ;Lp(Q;Lp(Ω, µP ;RD))) there holds

lim inf
ε→0

∫ T

0
Ψε(aε) ≥ ∫ T

0
Ψ(a) .

18



Furthermore, if Assumption 5.4 holds and aε
2s→ a ∈ Lp(0, T ;Lp(Q;Lp(Ω, µP))) strongly in

two scales, we �nd

lim
ε→0
∫ T

0
Ψε,ω(aε) = ∫ T

0
Ψ(a) .

Proof. We write C ∶= Cq(Q ×Ω) and Cε ∶= C ε
q (Q, ω). Let Φq be the countable dense subset

of Lq(Q;Lq(Ω, µP)) announced in Remark 4.1. By Lemma 5.5, we may assume that Φq ∩C
is dense in C . We denote by PL(0, T ; Φq,C ) the piecewise linear functions over (0, T ) with
values in (RΦq) ∩C . By density of PL(0, T ; Φq,C ) in Lp(0, T ;C ) and

∫ T

0
Ψ(a) = sup

υ∈Lq(0,T ;C )∫
T

0
∫
Q
∫

Ω
av dµPdL ,

we choose for every δ > 0 a function vδ ∈ PL(0, T ; Φq,C ) such that ∫ T0 Ψ(a) < ∫ T0 ⟨a, vδ⟩B,B∗+δ.
Since vδ is piecewise linear with values in RΦq, we �nd that vεδ(t, x) ∶= vδ(t, x, τxεω) satis�es
vεδ ∈ Lq(0, T ;Cε) and

lim inf
ε→0

∫ T

0
Ψε(aε) = lim inf

ε→0
( sup
v∈Lq(0,T ;Cε)∫

T

0
∫
Q
aεv dµεω)

≥ lim inf
ε→0

∫ T

0
∫
Q
aεvεδ dµ

ε
ω

= ∫ T

0
∫
Q
∫

Ω
avδ dµPdL > ∫ T

0
Ψ(a) − δ .

As δ was arbitrary, this concludes the proof of the �rst part.

Let aε
2s→ a. For every ε > 0 let vε ∈ Lq(0, T ;Cε) be de�ned through

vε = argmax{∫ T

0
∫
Q
aεv dµεω ∶ v ∈ Lq(0, T ;Cε)} .

Then, there exists v ∈ Lq(0, T ;Lq(Q;Lq(Ω, µP))) such that vε
2s⇀ v weakly in two scales with

v ∈ Lq(0, T ;C ) due to Theorem 5.6. We obtain

lim
ε→0
∫ T

0
Ψε,ω(aε) = lim

ε→0
(∫ T

0
∫
Q
aεvε dµεω)

= ∫ T

0
∫
Q
∫

Ω
av dµPdL ≤ ∫ T

0
Ψ(a) .

Lemma 5.10. Let Assumption 5.3 hold and let Cp(Q) and C ε
p (Q, ω) be given through (5.1)

and (5.1). Let 1
p + 1

q = 1, 1 < p, q < ∞, and Ψε ∶ Lq(Q;µεω;RD) → R and Ψ ∶ Lq(Q × Ω,L ×
µP ;RD) → R be given through

Ψε,ω(u) ∶= sup
σ∈C εp (Q,ω)∫Q

u ⋅ σdL , Ψ(u) ∶= sup
σ∈Cp(Q)∫Q

u ⋅ σdL . (5.5)

Then, for every uε ∈ Lq(Q;µεω;RD) such that uε → u strongly in Lq(Q) there holds

lim
ε→0

Ψε,ω(uε) = Ψ(u) .
Proof. The statement follows from Corollary 5.7, the de�nition of Cp(Q) in (5.3) and Lemma
5.8.
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5.3 Proof of Theorem 5.6

Note the similarities between the statement of Theorem 5.6 and Mazur's Lemma. The proof
of Mazur's Lemma ist based on the Hyperplane Separation Theorem and the idea that every
convex set C in a Banach space B is fully characterized by the set of all hyperplanes that
do not intersect with C. In particular, it is possible to characterize a convex set in B by a
family Φ ⊂ B∗ of bounded a�ne functionals. In our case, B = Lp(Q;Lp(Ω;µP ;RD).

For technical reasons we will only provide a countable set ΦCp of hyperplanes in B∗. We
will then show that the limit of any weakly two-scale converging sequence uε ∈ C ε

p (Q, ω) lies
on the �correct side� of each of these hyperplanes. Finally, note that we cannot use the linear
functionals used in the proof of the Hyperplane-separation Theorem (which are based on the
Minkowsky functional), since we do not know whether these would be ergodic. Instead, we
will use a di�erent construction.

Proof of Theorem 5.6. We assume, that O(x,ω) ≡ 0. The statement for general O follows
from a consideration of the shifts C(x,ω) ↝ C(x,ω)−O(x,ω) and uε(x) ↝ uε(x)−O(x, τx

ε
ω).

Step 1: Recall the de�nition of a(u,C) from (5.2). We de�ne the set Cc ∶= {u ∈ RD ∶ u /∈ C}
and study the case u ∈ Cc. Since C is convex and 0 ∈ C, the angle between a(u,C) and(u−a(u,C)) lies in the interval (−π2 , π2 ) and thus ∣a(u,C)∣2 < ∣u∣2 and (u−a(u,C)) ⋅a(u,C) > 0.
Therefore, the function

UC ∶ u↦ UC(u) ∶= u − a(u,C)
a(u,C) ⋅ (u − a(u,C))

is well de�ned on Cc. By de�nition of UC, we �nd
UC(u) ⋅ u = 1 + (u − a(u,C))2

(u ⋅ a(u,C) − a(u,C)2) ≥ 1 + dist (u,C)∣a(u,C)∣2 ≥ 1 + dist (u,C)∣u∣2 . (5.6)

Furthermore, UC(u) ⋅ a(u,C) = 1. Since the hyperplane through a(u,C) with outer normal
UC(u) is tangential to the convex set C we �nd

UC(u) ⋅w ≤ UC(u) ⋅ a(u,C) = 1 for all w ∈ C , implying ∣UC(u)∣ ≤ 1

r
. (5.7)

Note that the second inequality follows from the fact that Br(0) ⊂ C, i.e. r ∣UC ∣ ≤ ∣UC ∣2 ≤ 1.
Step 2: We set UC(u) = 0 and a(u) = u if u ∈ C. Let f ∈ Φp. By Lemma 5.5, the function

a(f) is measurable and p-ergodic. Since f is piecewise constant, Assumption 5.4 guaranties
that Xf(x,ω) ∶= XC(x,ω, f(x,ω)) , Af ∶= X −1

f (R/{0})
and

χAf (x,ω) ∶= ⎧⎪⎪⎨⎪⎪⎩
0 if Xf(x,ω) = 0

1 else
,

are BQ ⊗ BΩ-measurable, where χAf = 1 if and only if (x,ω, f(x,ω)) ∈ Cc(Q × Ω). De�ning
the function

U(f)(x,ω) ∶= ⎧⎪⎪⎨⎪⎪⎩
UC(x,ω)(f(x,ω)) if (x,ω, f(x,ω)) ∈ Cc(Q ×Ω)
0 otherwise

, (5.8)
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we see that U(f) is measurable. Furthermore, ∣U(f)∣ ≤ R for all f due to (5.7) (with R given
in Assumption 5.4) and

∥U(f)∥Lq(Q;Lq(Ω,µP)) ≤K ∶= ∥R∥Lq(Q;Lq(Ω,µP)) for all f . (5.9)

Step 4: For any f ∈ Lp(Q;Lp(Ω, µP ;RD)), estimate (5.6) yields the following pointwise
inequality:

f(x,ω)U(f)(x,ω) ≥ χAf (x,ω) + lf(x,ω) ∀(x,ω) , (5.10)

where

lf(x,ω) ∶= ⎧⎪⎪⎨⎪⎪⎩
dist(f(x,ω),C(x,ω))∣f(x,ω)∣2 for f(x,ω) /= 0

0 f(x,ω) = 0
.

We �nd lf(x,ω) ≤ 1 for all (x,ω) ∈Q ×Ω. Since C(x,ω) is convex, we �nd that XC(x,ω, ⋅) is
lower semicontinuous for �xed (x,ω). Since convergence in Lp implies pointwise convergence
along a subsequence, we �nd that also

L● ∶ Lp(Q;Lp(Ω, µP ;RD)) → R , f ↦ Lf ∶= ∫
Q
∫

Ω
lfdµPdL is l.s.c. . (5.11)

For functions g ∈ Cp(Q × Ω), i.e. g(x,ω) ∈ C(x,ω) for L × µP almost all (x,ω), we �nd by
(5.7) and (5.8)

∫
Q
∫

Ω
gU(f)dµPdL ≤ ∫

Q
∫

Ω
χAf . (5.12)

Step 5: We assume u /∈ Cp(Q × Ω). Then (by a contradiction argument) we �nd that
Lu > 0. Furthermore, for every δ > 0 we �nd φδ ∈ Φp satisfying ∥φδ − u∥Lp ≤ δ. Using the
above results, we conclude:

∫
Q
∫

Ω
U(φδ)udµPdL = ∫

Q
∫

Ω
U(φδ)φδ dµPdL + ∫

Q
∫

Ω
U(φδ) (u − φδ) dµPdL

(5.10)≥ (∫
Q
∫

Ω
χAφδ dµPdL +Lφδ) −Kδ .

with K independent from δ by (5.9). Since lim infδ→0Lφδ ≥ Lu > 0 by (5.11), there exists
φδ ∈ Φp such that

∫
Q
∫

Ω
U(φδ)udµPdL > ∫

Q
∫

Ω
χAφδ dµPdL .

Step 6: Let f ∈ Φp. It is our aim to use U(f) as a testfunction for two-scale convergence.
However, since U(f) probably is unbounded, we de�ne

fn(x,ω) = ⎧⎪⎪⎨⎪⎪⎩
f(x,ω) if ∣U(f)(x,ω)∣ ∈ [n − 1, n)
0 else

Since U(f) is BQ⊗BΩ-measurable, fn is a �nite step function for all n ∈ N and f = ∑n fn and
U(f) = ∑nU(fn). Finally, note that for all ω ∈ Ω such that the realizations U(fn)ω and χAfn,ω
are measurable for all n, and for all gε ∈ C ε

p (Q, ω), i.e. gε(x) ∈ C(x, τxεω), we �nd again by
(5.7) and (5.8)

∫
Q
gε(x)U(fn)(x, τx

ε
ω)dµεω(x) ≤ ∫

Q
χAfn(x, τxεω)dµεω(x) . (5.13)

21



Let uε ∈ Lp(Q, µεω) with uε ∈ C ε
p (Q, ω) for all ε > 0 be a sequence of functions that weakly

two-scale converges to u ∈ Lp(Q;Lp(Ω, µP)). We �nd that for all φ ∈ Φp

∫
Q
∫

Ω
U(φn)udµPdL = lim

ε→0
∫
Q
U(φn)(x, τx

ε
ω)uε(x)dµεω(x)

(5.9)−(5.11)≤ lim
ε→0
∫
Q
χAφn(x, τxεω)dµεω(x)

= ∫
Q
∫

Ω
χAφn dµPdL (5.14)

This implies

∫
Q
∫

Ω
U(φ)udµPdL ≤ ∫

Q
∫

Ω
χAφ dµPdL

and by Step 5, we obtain u ∈ Cp(Q ×Ω).
5.4 Proof of Lemma 5.5

We use the theory of set valued measurable mappings from [27].

De�nition 5.11 ([27] De�nition III.10). Let (U,F) be a measurable space and let X be a
separable metric space. Let Γ be a set-valued map from U onto the closed subsets of X.
Then, Γ is called measurable if u↦ dist (x,Γ(u)) is measurable for all x ∈X.

Theorem 5.12 ([27] Theorem III.9 and Proposition III.13). Let (U,F) be a measurable space
and let X be a separable metric space. Let Γ be a measurable set-valued map from U onto
the closed subsets of X. Then the following holds:

1. There exists a measurable function σ ∶ U →X with σ(u) ∈ Γ(u) for all u ∈ U .
2. The graph Gr(Γ) ∶= {(u,x) ∈ U ×X ∶ x ∈ Γ(u)} is measurable with respect to F ⊗ BX ,

where BX is the Borel-algebra on X.

The following result is an inverse statement of Theorem 5.12.

Theorem 5.13 ([27] Theorem III.30). Let (U,F , µ) be a complete measure space (that is F is
complete w.r.t. µ) with σ-�nite µ and let X be a separable metric space. Let Γ be a set-valued
map from U onto the closed subsets of X. If the graph Gr(Γ) ∶= {(u,x) ∈ U ×X ∶ x ∈ Γ(u)}
is measurable with respect to F ⊗BX , then Γ is measurable.

We will prove Lemma 5.5 using Theorems 5.12 and 5.13.
To this aim, let ϕ be a �nite step function. Then, the map (x,ω) → dist (ϕ(x,ω),C(x,ω))

is measurable by Assumption 5.4. For every (x,ω), we de�ne the set
B(x,ω) ∶= {u ∈ RD ∶ ∣u − ϕ(x,ω)∣ ≤ dist (ϕ(x,ω),C(x,ω))} .

The graph of B is measurable since

dist (ũ,B(x,ω)) = max{ ∣ũ − ϕ(x,ω)∣ − dist (ϕ(x,ω),C(x,ω)) , 0}
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is measurable for all ũ ∈ RD. Therefore, by Theorem 5.12, the graphs of Γ and B are
measurable and thus

Gr(Γ) ∩Gr(B) = { (x,ω, a(ϕ(x,ω)) ) } ⊂ (Q ×Ω) ×RD

is measurable. Theorem 5.13 now states that function (x,ω) ↦ a(ϕ(x,ω)) is measurable
with respect to the completion of BQ ⊗BΩ in L⊗ µP .

It remains to prove the existence of ΦCp . For this aim, given any φ ∈ Φp, let a(φ) ∈
Lp(Q;Lp(Ω, µP)) be given through a(φ)(x,ω) = a(φ(x,ω),C(x,ω)). By the above consider-
ations, we �nd that a(φ) is ergodic. Let u ∈ Cp and φ ∈ Φp with ∥u − φ∥Lp(Q;Lp(Ω,µP)) ≤ δ. Then,
as u(x,ω) ∈ C(x,ω) for almost all (x,ω), we �nd ∣u(x,ω) − φ(x,ω)∣ ≥ ∣u(x,ω) − a(φ)(x,ω)∣
and thus ∥u − a(φ)∥Lp(Q;Lp(Ω,µP)) ≤ ∥u − φ∥Lp(Q;Lp(Ω,µP)) ≤ δ. Thus, we set ΦCp ∶= a(Φp).
6 The Prandtl-Reuss plasticity equations

We study the stochastic homogenization problem of the Prandtl-Reuss plasticity equations:

−∇ ⋅ σε = f , σε = C−1
ε e

ε ,∇suε +∇suDir = eε + pε , ∂tp
ε ∈ ∂ψ∗ε (σε −Bεp

ε) ,} on [0, T ] ×Q . (6.1)

Here, we look for uε having boundary values uε∣∂Q = 0. Therefore, uDir prescribes the boudary
values of uε + uDir. Problem (6.1) consists of a force balance equation for σε, Hooke's law
σε ∝ eε, the decomposition of the strain ∇s (uε + uDir) into a plastic part pε and an elastic
part eε as well as the �ow rule for ∂tpε. Here, ∇s denotes the symmetric part of the gradient.
Note that (6.1) has only two independent variables: uε and pε.

We want to study the homogenization of (6.1) with help of the concepts developed in
Sections 4 and 5. Let Assumption 2.4 hold for (Ω,BΩ,P, τ). As a random measure, we
consider ω ↦ L, i.e. we assume that P = µP by Remark 2.8 a).

6.1 Function spaces and preliminaries

In what follows, we will study suitable subspaces of L2(Ω). Most of these spaces have been
introduced in [11]. We denote by L2

loc(Rn;Rn×n) the set of measurable functions f ∶ Rn → Rn×n
such that f ∣U ∈ L2(U ;Rn×n) for every bounded set U and we de�ne

L2
pot,loc(Rn) ∶= {u ∈ L2

loc(Rn;Rn×n) ∣ ∀U bounded domain, ∃ϕ ∈H1(U ;Rn) ∶ u = ∇ϕ} ,
L2
sol,loc(Rn) ∶= {u ∈ L2

loc(Rn;Rn×n) ∣ ∫
Rn
u ⋅ ∇ϕ = 0 ∀ϕ ∈ C1

c (Rn)} .
We can then de�ne similar spaces on Ω through

L2
pot(Ω) ∶= {u ∈ L2(Ω;Rn×n) ∶ uω ∈ L2

pot,loc(Rn) for P − a.e. ω ∈ Ω} ,
L2
sol(Ω) ∶= {u ∈ L2(Ω;Rn×n) ∶ uω ∈ L2

sol,loc(Rn) for P − a.e. ω ∈ Ω} , (6.2)

V2
pot(Ω) ∶= {u ∈ L2

pot(Ω) ∶ ∫
Ω
udP = 0} ,
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From [32], we know that the above spaces are closed and that L2(Ω;Rn) = Vpot(Ω)⊕L2
sol(Ω).

For a ∈ Rn×n we write as ∶= 1
2(a + aT ). For su�ciently smooth functions u we write ∇su ∶=

1
2(∇u +∇uT ).

We will need the following Korn inequality on L2
pot(Ω;Rn) from [11].

Lemma 6.1. For all υ ∈ V2
pot(Ω;Rn) holds

∥υ∥L2(Ω;Rn×n) ≤ 2 ∥υs∥L2(Ω;Rn×n) . (6.3)

The following Lemma is well known in the periodic case [3] but also in the stochastic
setting [33]. Howver, since the proof in [33] heavily uses topological assumptions which we
do not have in our setting, we provide a new proof.

Lemma 6.2. If uε ∈ H1
0(Q;Rn) for all ε with ∥∇uε∥L2(Q) < C for C independent from

ε > 0 then there exists a subsequence denoted by uε and functions u ∈ H1
0(Q;Rn) and v ∈

L2(Q;L2
pot(Ω;Rn)) such that

uε
2s⇀ u and ∇uε 2s⇀ ∇u + v as ε→ 0 .

Proof. Step 1: From Lemma 4.4 we obtain that uε
2s⇀ u ∈ L2(Q;L2(Ω)) along a subsequence.

We �rst show that u does not depend on the Ω-coordinate using ergodicity (2.9). To this
aim, consider a set A ⊂ Ω and the characteristic function φ(ω) = χA(ω). For any ψ ∈ C∞

c (Q)
we �nd that ψuε

2s⇀ u. Thus, for any a ∈ Rn it holds

∫
Q
∫

Ω
(u(x, τaω) − u(x,ω))ψ(x)φ(ω)dP(ω)dx

= ∫
Q
∫

Ω
u(x,ω)ψ(x) (φ(τ−aω) − φ(ω)) dP(ω)dx

= lim
ε→0
∫
Q
uε(x)ψ(x) (φ(τ−εa+x

ε
ω) − φ(τx

ε
ω)) dx

= lim
ε→0
∫
Q
(uε(x + εa)ψ(x + εa) − uε(x)ψ(x))φ(τx

ε
ω)dx .

Due to the apriori bounds, the family uεψ is compact in L2(Q). Therefore, the Riesz-
characterization of compact sets in L2(Q) yields that

lim
ε→0

∣∫
Q
(uε(x + εa)ψ(x + εa) − uε(x)ψ(x))φ(τx

ε
ω)dx∣

≤ sup
ε→0

∥(uεψ) (⋅ + εa) − (uεψ) (⋅)∥L2(Q) ∥φ(τxεω)∥L2(Q) → 0 .

Since a was arbitray, it follows for all x ∈ Rn that u(x, ⋅) = const.
Step 2: From Lemma 4.4 we obtain that ∇uε 2s⇀ v ∈ L2(Q;L2(Ω)) along a subsequence.

Let we consider a countable set Φsol ⊂ L2
sol(Ω) which is dense in L2

sol(Ω). Then, for all b ∈ Φsol

and all ψ ∈ C∞
c (Q), we �nd

∫
Q
(ψ(x)∇uε(x) + uε(x)∇ψ(x)) ⋅ b(τx

ε
ω)dx = ∫

Q
∇(uε(x)ψ(x)) ⋅ b(τx

ε
ω)dx = 0 .
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We take the limit ε→ 0 on the left hand side and obtain

∫
Q
(ψ(x)v(x, ω̃) + u∇ψ(x)) ⋅ b(ω̃)dP(ω̃)dx = 0 .

After integration by parts, this implies

∫
Q
ψ(x) (∇u(x) − v(x, ω̃)) ⋅ b(ω̃)dP(ω̃)dx = 0 .

As ψ ∈ C∞
c (Q) and b ∈ Φsol were arbitrary and since Φsol ⊂ L2

sol(Ω) is dense, the last equation
implies that ∇u(x) − v(x, ⋅) ∈ Vpot(Ω) for almost all x ∈Q.

Lemma 6.3 (Existence of small potentials, see [11]). Let υ ∈ V2
pot(Ω). Then, almost every

ω ∈ Ω it holds that for every ε > 0 there exists φω,ε,υ ∈ H1(Q) such that ∇φω,ε,υ(x) = υ(τx
ε
ω)

and ∥φω,ε,υ∥L2(Q) → 0 as ε→ 0.

Finally, we will need the following simple result.

Corollary 6.4. Let uε ∈ L2(Q;Rn×n) and u ∈ L2(Q ×Ω) such that uε
2s⇀ u as ε → ∞. Then

also (uε)s 2s⇀ us.

6.2 The homogenization result

For the formulation of the homogenization result, we make the following assumptions.

1. Let (x,ω) → C(x,ω) ⊂ Rn×n
s for (x,ω) ∈Q×Ω be a family of closed convex sets satisfying

Assumption 5.4. We de�ne the functionals

ψ∗(x,ω, v) = ⎧⎪⎪⎨⎪⎪⎩
0 v ∈ C(x,ω)+∞ v /∈ C(x,ω) , ψ(x,ω, z) ∶= sup

v∈C(x,ω) v ⋅ z
and ψ∗ε,ω(x, v) = ψ∗(x, τxεω, v) , ψε,ω(x, z) = ψ(x, τx

ε
ω, z) .

2. We assume that C,B ∈ L∞(Q;L∞(Ω;L (Rn×n
s ,Rn×n

s ))) are symmetric C,B are is BQ⊗BΩ-measurable. We further assume the existence of a constants γ, β > 0 such that

γ ∣ξ∣2 ≤ ξC(x,ω)ξ ≤ 1

γ
∣ξ∣2

β ∣ξ∣2 ≤ ξB(x,ω)ξ ≤ 1

β
∣ξ∣2

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
∀ξ ∈ Rn and for a.e. (x,ω) ∈Q ×Ω . (6.4)

Given ω ∈ Ω and ε > 0, we set Cε,ω(x) ∶= C(x, τx
ε
ω) and Bε,ω(x) ∶= B(x, τx

ε
ω).

3. We denote by
2s⇀ two-scale convergence with respect to the random measure ω ↦ L,

µP = P and p = 2. With regard to Theorem 5.6, we consider a set Ω̃ ⊂ Ω of full measure,
such that for all ω ⊂ Ω̃

(a) Remark 4.1 holds for a countable dense set Φ2 ⊂ L2(Q;L2(Ω)). Note that ΦN
2 is

dense in L2(Q;L2(Ω;RN)) for all N ∈ N.
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(b) Lemmas 4.10 and 6.2 are applicable and Lemma 4.6 holds for C and B. Further-
more, we claim that the realizations Cε,ω(x) ∶= C(x, τx

ε
ω) and Bε,ω(x) ∶= B(x, τx

ε
ω)

are ergodic.

(c) C ε
2 (Q, ω) and C2(Q ×Ω) de�ned in (5.1) satisfy C ε

2 (Q, ω) 2s⇀ C2(Q ×Ω).
4. Let pε0 ∈ L2(Q;Rn×n

s ) be such that pε0
2s→ p0 ∈ L2(Q×Ω) strongly in two scales and satisfy

the following: If for ε > 0, uε0 ∈H1
0(Q) is the solution of the elliptic problem

−∇ ⋅ (∇suε0 +∇suDir(0) − pε0) = f(0)
then there holds (∇suε0 +∇suDir(0) − pε0) − Bεpε0 ∈ C ε

2 for all ε > 0. Furthermore,

there holds ∇uε0 2s→ ∇u0 + υ0 strongly in two scales for some u0 ∈ H1
0(Q) and υ0 ∈

L2(Q;L2
pot(Ω)).

Remark. Condition 4. is satis�ed by pε0 ≡ 0 for all ε > 0.

Theorem 6.5. Let 1.-4. hold. There exists a unique solution

(u, v, p) ∈H1(0, T ; H1(Q) × V2
pot(Ω;Rn) ×L2(Ω;Rn×n

s ) )
to the problem

−∇ ⋅ ∫
Ω
σ dP = f on [0, T ] ×Q

∇su +∇suDir = Cσ + p − vs , ∂tp ∈ ∂ψ∗(σ −Bp) on [0, T ] ×Q ×Ω
(6.5)

with p(0, ⋅) = p0(⋅). Furthermore, for every ω ∈ Ω̃ it holds: For each ε > 0 there exists a unique
solution (uε, pε) ∈H1(0, T ; H1

0(Q) ×L2(Q) ) with pε(0, x) = p0(x, τx
ε
ω) to (6.1) and as ε→ 0

it holds that

uε(t) 2s⇀ u(t) , ∇uε(t) 2s⇀ ∇u(t) + v(t) and pε(t) 2s⇀ p(t) ∀t ∈ [0, T ] .
We follow [11] and decouple (6.5) into macro- and microscopic processes. As announced in
the introduction, the macroscopic behavior is discribed by a hysteresis operator.

Theorem 6.6. For x ∈Q de�ne the operator

Σ(x, ⋅) ∶ H1(0, T ;Rn×n
s ) →H1(0, T ;Rn×n

s )
ξ ↦ ∫

Ω
σξ dP

where σξ ∈ H1(0, T ;L2
sol(Ω;Rn)), pξ ∈ H1(0, T ;L2(Ω;Rn×n

s )) and vξ ∈ H1(0, T ;L2
pot(Ω;Rn))

solve
ξ = Cσξ + pξ − vsξ , ∂tpξ ∈ ∂ψ∗(σξ −Bpξ) , pξ(0, ⋅) = p0(x, ⋅) . (6.6)

Then, for all x ∈Q, Σ(x, ⋅) is well de�ned on

{ξ ∈H1(0, T ;Rn×n
s ) ∶ σξ(0) −Bpξ(0) ∈ ∂Ψ(0)}

and continuous with respect to the weak topology on H1(0, T ;Rn×n
s ). Furthermore, for u ∈

H1
0(Q) the following two statements are equivalent:
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1. There exists (v, p) ∈H1(0, T ; L2
pot(Ω;Rn)×L2(Ω;Rn×n

s ) ) such that (u, v, p) solves (6.5)
with p(0, ⋅) = p0(⋅).

2. u solves −∇ ⋅Σ(∇su +∇suDir) = f
in the weak sense.

6.3 Proof of Teorem 6.5

We set

H2 = L2(Q) ×L2(Q;V2
pot(Ω;Rn)) ×L2(Q;L2(Ω;Rn×n

s )) ,
H1 =H1

0(Q) ×L2(Q;V2
pot(Ω;Rn)) ×L2(Q;L2(Ω;Rn×n

s )) ,
and

H ε
1 =H1

0(Q) ×L2(Q;Rn×n
s ) and H ε

2 = L2(Q) ×L2(Q;Rn×n
s ) ∀ε > 0 .

We note that for the functionals Ψ and Ψε,ω de�ned in (5.4) satisfy

Ψ(p) = ∫
Q
∫

Ω
ψ(x,ω, p(x,ω)) , Ψε,ω(pε) = ∫

Q
ψε,ω(x, pε(x)) . (6.7)

We now de�ne the family of functionals

Eε,ω ∶ [0, T ] ×H ε
2 → R , (t, u, p) ↦ 1

2 ∫Q
(p ∶ (Bε,ωp) + σ ∶ (Cε,ωσ) − 2f(t)u) , (6.8)

where Cε,ω σ ∶= ∇u +∇uDir(t) − p. The expression
∥(u, p)∥2

ε ∶= ∫
Q
(p ∶ (Bε,ωp) + (∇u − p) ∶ (Cε,ω (∇u − p)))

de�nes a norm on H ε
1 . This norm is equivalent with ∥⋅∥H1

0(Q)×L2(Q), since convergence with
respect to ∥⋅∥ε implies convergence with respect to ∥⋅∥H1

0(Q)×L2(Q) and vice versa. Since uDir ∈
H1(0, T ;H1(Q)) it holds that ∫Q ∣∇uDir∣2 ∈W 1,1(0, T ). Therefore, we can apply Theorem 2.3
to get existence of a unique energetic solution (uε, pε) ∈ CLip(0, T ;H ε

1 ) to (H ε
2 ,Eε,ω,Ψε,ω).

The derivative DEε,ω = (DpEε,ω,DuEε,ω) can be easily obtained to be

DuE(uε, pε) = −f(t) − ∇ ⋅ [C−1
ε,ω (∇uε +∇uDir(t) − pε)] , DpEε,ω(uε, pε) = Bε,ωp

ε − σε .
With regard to Section 2.2, we see that (uεω, pεω) is a solution to (6.1)ω if and only if (uεω, pεω)
satisfy

0 ∈ ∂Ψε,ω(∂tpεω(t)) +DEε,ω(t, uεω(t), pεω(t)) for a.e. t ∈ [0, T ] .
From Theorem 2.3, we obtain an estimate

∥(uε, pε)∥CLip([0,T ];H ε
1 ) + ∥(∂tuε, ∂tpε)∥L∞([0,T ];H ε

1 ) ≤ C ,
where C only depends on ∥f∥L2(Q), ∥uDir∥H1(0,T ;H1(Q)) and ∥pε0∥L2(Q) → ∥p0∥L2(Q×Ω) and

is thus independent from ε. By Theorem 4.10 and Lemma 6.2, there exists (u, v, p) ∈
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W 1,∞([0, T ];H1) and σ ∈ W 1,∞([0, T ];L2(Q × Ω)) and a subsequence, still denote (uε, pε),
such that for all t ∈ [0, T ]

uε(t) → u(t) strongly in L2(Q) , ∂tu
ε(t) ⇀ ∂tu(t) weakly in L2(Q) ,

pε(t) 2s⇀ p(t) ∇uε(t) 2s⇀ ∇u(t) + v(t) σε(t) 2s⇀ σ(t) weakly in two scales,
(6.9)

∂tp
ε(t) 2s⇀ ∂tp(t) ∂t∇uε(t) 2s⇀ ∂t∇u(t) + ∂tv(t) ∂tσ

ε(t) 2s⇀ ∂tσ(t) weakly in two scales,

Next, we de�ne the functional

E ∶ [0, T ] ×B → R , (t, u, p, υ) ↦ 1

2 ∫Q
∫

Ω
(p ∶ (Bp) + σ ∶ (Cσ) − 2f(t)u) , (6.10)

where C σ = ∇s (u + uDir) + υs − p. The derivative DE = (DuE ,DυE ,DpE) can be easily
obtained to be

DuE = −f(t) − ∇ ⋅ ∫
Ω
σ , (6.11)

DυE = Ppot (C−1 (∇s(u + uDir(t)) + υs − p)) and DpE = Bp − σ . (6.12)

Here, Ppot ∶ L2(Q;L2(Ω;Rn×n
s )) → L2(Q;V2

pot(Ω;Rn)s) is the orthogonal projection. From
the convergences (6.9) and Lemma 4.6, we obtain

lim inf
ε→0

Eε(t, uε(t), pε(t)) ≥ E(t, u(t), v(t), p(t)) .
From Assumption 4. of the initial conditions, we obtain

lim
ε→0
Eε(0, uε(0), pε(0)) = E(0, u(0), v(0), p(0)) .

Due to linearity, it is easy to verify that

lim
ε→0
∫ t

0
∂tEε(s, uε(s), pε(s))ds = ∫ t

0
∂tE(s, u(s), v(s), p(s))ds .

Furthermore, from Lemma 5.9 and the convergence (6.9) we obtain

lim inf
ε→0

∫ t

0
Ψε(∂tpε) ≥ ∫ t

0
Ψ(∂tp) ∀t ∈ [0, T ] .

Using the fact that (uε, pε) is an energetic solution of (H ε
1 ,Eε,Ψε) and the last four conver-

gence results, we obtain for all t ∈ [0, T ]
E(t, u(t), v(t), p(t)) + ∫ t

0
Ψ(∂tp) ≤ E(0, u(0), v(0), p(0)) − ∫ t

0
∂tE(s, u(s), v(s), p(s))ds .

It only remains to show that (u, v, p) satis�es (2.4) for all t ∈ [0, T ] with E and Ψ de�ned
above. Then, from Lemma 2.2, we get that (u, v, p) is an energetic solution of (H2,E ,Ψ).
From (6.11)�(6.12) we then obtain that (u, v, p) solves (6.5).
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We chose test functions ψ ∈ V2
pot(Ω) with small potentials φω,ε,ψ as in Lemma 6.3 and

ϕ1, ϕ2 ∈ C1
0(Q). For all t ∈ [0, T ] we �nd

∫
Q
f(t) ⋅ ϕ1 = lim

ε→0
∫
Q
f(t) ⋅ (ϕ1 + ϕ2φω,ε,ψ) = lim

ε→0
∫
Q
σε(t) ∶ (∇ϕ1 + ϕ2ψω(x/ε) + φω,ε,ψ∇ϕ2)

= ∫
Q
∫

Ω
σ(t) ∶ (∇ϕ1 + ϕ2∇ωψ) .

We conclude −∇⋅∫Ω σ(t) = f(t) and σ(t) ∈ L2(Q;L2
sol(Ω)) for a.e. t ∈ [0, T ] which is equivalent

with
DuE(t, u(t), v(t), p(t)) = 0 , DvE(t, u(t), v(t), p(t)) = 0 .

Furthermore, Bεpε−σε 2s⇀ Bp−σ. Since (pε, uε) are energetic solutions, there holds Bεpε−σε ∈
C ε

2 (Q,ω) and from Theorem 5.6 we conclude that

DpE(t, u(t), v(t), p(t)) ∈ C2(Q ×Ω) = ∂pΨ(0) .
Therefore, we obtain that Ψ∗((u, v, p)(t)) = 0 for all t ∈ [0, T ]. Lemma 2.2 yields that (u, v, p)
is an energetic solution to (6.5). This concludes the proof.

6.4 Proof of Theorem 6.6

Like in the proof of Theorem 6.5, we can prove the following: for �xed x ∈ Q and ξ ∈
H1(0, T ;Rn×n

s ) it holds that σξ ∈ L2(0, T ;L2
sol(Ω;Rn)), pξ ∈ L2(0, T ;L2(Ω;Rn×n

s )) and vξ ∈
L2(0, T ;V2

pot(Ω;Rn)) solve (6.6) if and only if (pξ, vξ) is the unique energetic solution to
H2 = H1 = L2(Ω;Rn×n

s ) × V2
pot(Ω;Rn),

Ψx,ξ(∂tpξ) = ∫
Ω
ψ(x, ⋅, ∂tpξ)dµP

Ex,ξ(t, pξ, vξ) = 1

2 ∫Q
∫

Ω
(pξ ∶ (B(x, ⋅)pξ) + σξ ∶ (C(x, ⋅)σξ)) ,

where C(x, ⋅)σξ = ξ + υsξ − pξ. Furthermore, Theorem 2.3 yields the continuity of Σ(x, ⋅) with
respect to the weak topologies. The equivalence of the formulations 1. and 2. is easy to
verify.

7 Coulomb-friction on a rough surface

7.1 Formulation of the problem and homogenization result

In this section, we investigate homogenization of the following problem: We de�ne

Q ∶= [−1,1]n−1 × [0,1] ⊂ Rn with ΓN ∶= [−1,1]n−1 × {0} and ΓD ∶= ∂Q/ΓN
and denote ν the outer normal of ΓN . We then consider the following elasticity problem with
mixed boundary-conditions

−∇ ⋅ (A∇su) = f on Q, −ν ⋅A∇su ∈ ∂ψ(∂tu) on ΓN , u = uDir on ΓD . (7.1)
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We denote by H1
0,D(Q) the space of all functions u ∈ H1(Q) such that u∣ΓD = 0 and set∥u∥H1

0,D(Q) ∶= ∥∇u∥L2(Q). A function u ∈ H1(0, T ;H1
0,D(Q)) is called a weak solution to (7.1)

if and only if

∫
ΓN
∂ψ(∂tu)ϕ + ∫

Q
∇sϕ ∶ (A∇s(u + uDir)) = ∫

Q
f ⋅ ϕ ∀ϕ ∈H1

0,D(Q) ,
where uDir ∈ H1(0, T ;H1(Q)) with uDir(t)∣ΓN ≡ 0 for all t. Like in the previous section,
A ∶ Q → Rn×n

s will be a spatially heterogeneous coe�cient matrix. Furthermore, ψ will also
be spatially heterogeneous.

More precisely, let Assumption 2.4 hold both for (Ω,BΩ,P, τ) and for (Ωγ,BΩ,γ,Pγ, τγ),
where τγ is a n − 1-dimensional ergodic dynamical system on Ωγ. We consider the random
measures ω ↦ Ln∣Q on Ω and ωγ ↦ Ln−1∣Γ on Ωγ with Palm measures P = µP and Pγ = µγ,P
respectively (see Remark 2.8 a) ).

For the formulation of the homogenization result, we make the following assumptions.

1. Let A ∈ L∞(Q;L∞(Ω;L (Rn×n
s ,Rn×n

s ))) be symmetric a.e. and BQ ⊗ BΩ-measurable.
Assume the existence of a constant α > 0 such that

α ∣ξ∣2 ≤ ξA(x,ω)ξ ≤ 1

α
∣ξ∣2 ∀ξ ∈ Rn and for a.e. (x,ω) ∈Q ×Ω . (7.2)

Given ω ∈ Ω and ε > 0, we set Aε,ω(x) ∶= A(x, τx
ε
ω).

2. Let C ∶ Γ ×Ωγ → 2Rn be a family of closed convex sets satisfying Assumption 5.4 with
Rn replaced by Rn−1, Q replaced by Γ and Ω replaced by Ωγ. We de�ne

IC(x) = {v ∈ Rn ∶ ∃u ∈ L1(Ωγ) s.t. v = ∫
Ωγ
udPγ and u(ω) ∈ C(x,ω) a.s.} (7.3)

and the functions

ψ(x, z) ∶= sup
v∈IC(x) v ⋅ z , ψε,ωγ(x, z) = sup

v∈C(x,τγ, xε ωγ)
v ⋅ z .

Recalling the de�nition of Ψ and Ψε in (5.5) with Q replaced by Γ, we then �nd

Ψ(u) ∶= sup
σ∈C2(Γ)∫Γ

uσ = ∫
Γ
ψ(⋅, u) , Ψε(u) ∶= sup

σ∈C ε2 (Γ,ωγ)∫Γ
uσ = ∫

Γ
ψε,ωγ(⋅, u) .

Theorem 7.1. Let 1.-3. hold. For almost all ω ∈ Ω̃ and ωγ ∈ Ω̃γ the following holds:
For every fε ∈H1(0, T ;L2(Q)) and every uε0 ∈H1(Q) satisfying

−∇ ⋅ (Aε,ω∇uε0) = fε(0) , −ν ⋅Aε,ω∇uε0 ∈ C ε
2 (Γ, ωγ) . (7.4)

there exists a unique weak solution uε ∈H1(0, T ;H1(Ω)) to the problem

−∇ ⋅ (Aε,ω∇uε) = fε on Q, −ν ⋅Aε,ω∇uε ∈ ∂ψε,ω,γ(∂tuε) on ΓN , uε = uDir on ΓD ,
(7.5)

satisfying the initial condition uε(0) = uε0.
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Furthermore, if fε ⇀ f in H1(0, T ;L2(Q)) and uε0 ⇀ u0 in H1(Q) as ε → 0, then there
exists u ∈H1(0, T ;H1(Ω)) such that uε ⇀ u weakly in H1(0, T ;H1(Ω)) as ε→ 0 and u is the
unique weak solution of

−∇ ⋅ (Ahom∇u) = f on Q, −ν ⋅Ahom∇u ∈ ∂ψ(∂tu) on ΓN , u = uDir on ΓD . (7.6)

Here, Ahom is de�ned through

(Ahom)ij = min
v,w∈L2

pot(Ω)∫Ω
(vi + ei)A(vj + ej) , (7.7)

where vi is the unique minimizer of ∫Ω(v + ei)A(v + ei).
7.2 Proof of Theorem 7.1

We consider the following function spaces: Let L2(ΓN) be the space of square-integrable

functions with respect to the Lebesgue measure on ΓN . Furthermore, let H
1
2 (ΓN) be the

trace space of H1
0,D(Q) on ΓN . Then, the operator

H
1
2 (ΓN) →H1

0,D(Q) , uγ ↦ ûγ ,

were ûγ solves −∆ûγ = 0 , on Q , ûγ ∣ΓN = uγ , ûγ ∣ΓD = 0 ,

is well de�ned.

Lemma 7.2. For u ∈H1
0,D(Q) set uγ ∶= u∣ΓN and uq ∶= u−ûγ. Then , the mapping u↦ (uγ, uq)

is an isomorphism H1
0,D(Q) → H1/2(ΓN) ⊗H1

0(Q) and becomes an isometry with respect to
the norms

∥u∥H1
0,D(Q) ∶= ∥∇u∥L2(Q) and ∥(uγ, uq)∥H1/2(ΓN )⊗H1

0(Q) ∶= ∥∇(uq + ûγ)∥L2(Q) .
Proof. Let u ∈ H1

0,D(Q). Then uγ ∈ H1/2(ΓN) and uq ∈ H1
0(Q). For (uγ, uq) ∈ H1/2(ΓN) ⊗

H1
0(Q), we note that uq + ûγ ∈H1

0,D(Q).
Thus, for u ∈H1

0,D(Q) we equally write (uq, uγ) and identify ûγ ≃ uγ if this will not cause
confusion.

For simplicity of notation, we write:

1. H̃ = L2(Q) ×L2(ΓN), H2 = H̃ ×L2(Q;V2
pot(Ω;Rn)) and H ε

2 = L2(Q) ×L2(ΓN) for all
ε > 0.

2. H1 =H1
0(Q) ×H1/2(ΓN) ×L2(Q;V2

pot(Ω;Rn)) and H ε
1 =H1

0(Q) ×H1/2(ΓN)
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Existence of solutions for the ε-problem We de�ne the family of functionals

Eε,ω ∶ [0, T ] ×H ε
2 → R , (7.8)

(t, uq, uγ) ↦ 1

2 ∫Q
∇su ∶ (Aε,ω∇s (u + 2uDir(t))) − ∫

Q
fε(u + uDir(t)) , (7.9)

From Lemma 7.2, we obtain that

∥u∥H ε
1
∶= ∫

Q
∇s (uq + ũγ) ∶ (Aε,ω∇s (uq + ũγ)) = ∫

Q
∇su ∶ (Aε,ω∇su)

is an equivalent norm on H ε
1 . We �nd

DuqEε,ω = ∇ ⋅ (Aε,ω∇s (uq + uDir(t) + ũγ)) − fε , DuγE = −ν ⋅Aε,ω∇s (uq + uDir(t) + ũγ) .
Furthermore, due to our assumptions, uε0 satis�es (2.4) for every ε > 0. Therefore, Theorem
2.3 yields existence of a unique energetic solution uε ∈ CLip([0, T ];H ε

1 ) to
0 ∈ ∂Ψε,ω(∂tuεγ) +DEε,ω(t, uε) .

The solution uε also solves (7.5)ω.

Passage to the limit ε→ 0 From Theorem 2.3, we get uniform bounds ∥uε∥CLip([0,T ];H ε
1 ) ≤

C. From Lemma 6.2 and Lemma 4.10, we �nd a subsequence, still labeled uε, and functions
u ∈ CLip(0, T ;H1

0,D(Q)), v ∈ CLip(0, T ;V2
pot(Ω;Rn)) such that uε(t) ⇀ u(t) weakly in H1(Q)

and ∇uε(t) 2s⇀ ∇u(t)+v(t) for every t ∈ [0, T ]. By Rellich's embedding theorem, uεγ(t) → uγ(t)
strongly in L2(ΓN) for every t ∈ [0, T ].

We de�ne the functional

E ∶ [0, T ] ×B → R , (7.10)

(t, uq, v, uγ) ↦ 1

2 ∫Q
∫

Ω
[∇su + vs] ∶ [A (∇s (u + 2uDir(t)) + vs)] − ∫

Q
f(u + uDir(t)) ,

(7.11)

and note that the above convergences of uε imply (by Lemma 4.6) that

lim inf
ε→0

Eε(t, uε(t)) ≥ E(t, u(t), v(t)) ,
as well as (by Lemmas 5.9 and 5.10)

lim inf
ε→0

∫ t

0
Ψε(∂tuε) ≥ ∫ t

0
Ψ(∂tu) ∀t ∈ [0, T ] .

Furthermore, for t = 0 we obtain due to (7.4) that

lim
ε→0
Eε(0, uε(0)) = E(0, u(0), v(0)) .

The last three convergence results imply

E(t, u(t), v(t)) + ∫ t

0
Ψ(∂tu) ≤ E(0, u(0), v(0)) + ∫ t

0
∂tE(s, u(s), v(s))ds . (7.12)
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Stability Now, let φ1 ∈ H1
0,D(Q), ϕ ∈ C1

0(Q), ψ ∈ L2
pot(Ω) with a potential φε,ω,ψ from

Lemma 6.3 and set ϕε(x) ∶= ϕ(x)φε,ω,ψ. By the strong convergences ϕε → 0, uε → u and
Lemma 5.9 we then obtain

E(t, u(t), v(t)) ≤ lim inf
ε→0

Eε(t, uε(t)) ≤ lim inf
ε→0

Eε(t, φ1 + ϕε) +Ψε(φ1 + ϕε − uε(t))
= E(t, φ1, ψ) +Ψ(φ1 − u(t)) .

Since ∇ωϕ for ϕ ∈ C1
b (Ω;Rn) are dense in L2

pot(Ω;Rn), we obtain that for all φ ∈ H1
0,D(Q),

w ∈ L2(Q;L2
pot(Ω;Rn)) there holds

E(t, u(t), v(t)) ≤ E(t, φ,w) +Ψ(φ − u(t)) . (7.13)

Thus, by Lemma 2.2, (u, v) is an energetic solution to (H2,E ,Ψ).
Macroscopic model The derivative DE = (DuqE ,DυE ,DuγE) can be easily obtained to be

DuqE = −f(t) − ∇ ⋅ [A (∇s (uq + uDir(t) + uγ) + vs)] , (7.14)

DυE = Ppot (A (∇s (uq + uDir(t) + uγ) + vs)) and (7.15)

DuγE = −ν ⋅A (∇s (uq + uDir(t) + uγ) + vs) (7.16)

Here, Ppot ∶ L2(Q;L2(Ω;Rn×n
s )) → L2(Q;V2

pot(Ω;Rn)s) is the orthogonal projection.
From DυE = 0, we obtain that

v = n∑
j=1

∂j (uq + uDir(t) + uγ)φj ,
where φj ∈ L2(Q;V2

pot(Ω;Rn)) is the unique minimizer of

Ej(φ) ∶= 1

2 ∫Q
∫

Ω
[ej + φs] ∶ [A (ej + φs)] .

Pluging this information into (7.12)�(7.13), we �nd that u ∈ CLip([0, T ];H1
0,D(Q)) is an

energetic solution to (H̃ , Ẽ ,Ψ), where
Ẽ(t, u) ∶=↦ 1

2 ∫Q
∫

Ω
[∇s (uq + uDir(t) + uγ)] ∶ [Ahom∇s (uq + uDir(t) + uγ)] − ∫

Q
fu ,

and Ahom is de�ned through (7.7).

8 Random Fissures

In this section, we will provide the theory that is necessary to formulate and to prove the
results of Section 9.
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8.1 Geometric construction

As a special case of stochastic geometries, we introduce random �ssures. Let Assumption 2.4
hold for (Ω,BΩ,P, τ).

Let 0 < r < 1
2 , Br ∶= Br(0) and B ∶= B 1

2
(0). Let Γ∗ = {0}×D for D = {x′ ∈ Rn−1 ∶ ∥x′∥ < r}.

Assume there exists a set of parameters U ⊂ RN , N ∈ N, and a function f ∶ B ×U → B such
that U is a bounded domain and such that

1. f is continuous

2. For every y ∈ U , the mapping f(⋅, y) lies in C2(B) and
sup
y∈U ∥f(⋅, y)∥C2(B) < ∞ .

3. For every y ∈ U , the function
f(⋅, y) ∶ Rn → Rn , x↦ ⎧⎪⎪⎨⎪⎪⎩

f(x, y) if x ∈ B
x else

lies in C2(Rn).
We introduce the sets A ∶= {0,1} × U and Ω ∶= [0,1[n×AZn and write every ω ∈ Ω in the
form ω = (y, a) with y ∈ [0,1[n, a ∈ AZn . Given j ∈ Zn, we refer to the j-th coordinate of a
by aj = (aj,1, aj,2) with aj,1 ∈ {0,1}, aj,2 ∈ U . Given any probability measure PA on A and
the Lebesgue measure L, we de�ne the measure P ∶= L ⊗ ⊗j∈Zn PA on Ω. Given ω ∈ Ω we
introduce the set

Γ(ω) ∶= y + ∏
j∈Zn ∶aj,1=1

f(Γ∗, aj,2) .
8.2 Sobolev spaces

We now focus on Sobolev spaces on random �sures. The construction of such spaces goes
back to [14], where it was used in context of random tessellations, and was later used in [9, 10]
in a similar setting. Since random �ssures also share all properties of random tessallations
that where needed in [9, 13] and results proved there also hold in the current setting. Given
a random �ssure Γ = Γ(ω) with G ∶= Rn/Γ, we de�ne the following spaces:

C1(G) ∶= {u ∶ Rn → R ∣ u∣G ∈ C1(G)} , C1
0(Q ∩G) ∶= {u ∈ C1(G) ∣ u∣∂Q = 0} .

Using νΓ we de�ne the trace operators :

± ∶ C(G) → C(Γns) , u±(x) ∶= lim
t↓0 u(x ± tνΓ(x)) for x ∈ Γns ,

where Γns = Γ/γ denotes the non-singular part of Γ. On noting that the operator ⟦u⟧ ∶= u+−u−
is well de�ned for u ∈ C1

b (G), we de�ne the norm
∥u∥H1(Q∩G) ∶= (∫

Q
u2 dL + ∫

Q∩G ∣∇u∣2 dL + ∫
Γ
⟦u⟧2dHn−1) 1

2
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and de�ne H1(Q ∩G) and H1
0(Q ∩G) as the closure of C1

b (G) and C1
0(Q ∩G) with respect

to ∥ ⋅ ∥H1(Q∩G). Note in this context that ⟦⋅⟧ extends to an operator

⟦⋅⟧ ∶ H1(G) →H
1
2 (Γ) .

For every φ ∈H1(G) and ψ ∈ C1
c (Rn;Rn) there holds:

∫
G
φ∇ ⋅ ψdL = −∫

G
(∇φ) ⋅ ψdL − ∫

Γ
⟦φ⟧ψ ⋅ νΓdHn−1 (8.1)

Writing µΓ(B) ∶= Hn−1(Γ ∩B), we then �nd the following trivial fact:

H1(Q ∩G) = {u ∈ L2(Q) ∣ ∃Du ∈ L2(Q,L∣G + µΓ)n ∶
∫
Q
u∇ ⋅ φdL = ∫

Q
φ ⋅Dud(L∣G + µΓ) ∀φ ∈ C∞

0 (Q)n} . (8.2)

This motivates the following de�nitions:

L2(Q,G,Γ)n ∶= L2(Q,L∣G + µΓ)n ,
L2
pot(Q,G,Γ) ∶= {φ ∈ L2(Q,G,Γ)n ∣ ∃u ∈H1(Q ∩G) ∶ Du = φ} ,
L2
sol(Q,G,Γ) ∶= {φ ∈ L2(Q,G,Γ)n ∣∀u ∈H1

0(Q ∩G) ∶ ∫
Q∩G φ ⋅ ∇udL + ∫Γ

φ ⋅ ⟦u⟧νΓdµΓ = 0} .
for a bounded and open Q ⊂ Rn. Moreover, we de�ne

L2
loc(G,Γ)n ∶= {φ ∣ φ ∈ L2(U,L∣G + µΓ)n∀ open and bounded U ⊂ Rn} ,

L2
loc,pot(G,Γ) ∶= {φ ∈ L2

loc(G,Γ)n ∣ φ ∈ L2
pot(U,G,Γ) ∀open and bounded U ⊂ Rn}

L2
loc,sol(G,Γ) ∶= {φ ∈ L2

loc(G,Γ)n ∣ φ ∈ L2
sol(U,G,Γ) ∀open and bounded U ⊂ Rn}

Lemma 8.1 (Orthogonal decomposition Lemma [9, Lemma 4.10]). Let Q ⊂ Rn be a bounded
domain. Then

L2(Q,G,Γ) = L2
pot(Q,G,Γ) ⊕L2

sol(Q,G,Γ)
and for every φ ∈ L2

sol(Q,G(ω),Γ(ω)) holds ∇ ⋅ φ = 0 on G(ω) in the sense of distribution.

Sobolev spaces on Γ∗ We denote ∂Γ∗ ∶= {0} × ∂D and H
1
2
0 (Γ∗) ∶= {⟦u⟧ ∶ u ∈H1(B/Γ∗)}.

As a norm on H
1
2
0 (Γ∗) we chose

∥u∥
H

1
2
0 (Γ∗) ∶= inf {∥ũ∥H1(B/Γ∗) ∶ ⟦ũ⟧ = u} . (8.3)

We note in this context that C1
0(Γ∗) ∶= {g ∈ C1(Γ∗) ∶ g∣∂Γ∗ = 0}, is dense in H

1
2
0 (Γ∗) since

C1(B/Γ∗) ∩H1(B/Γ∗) is dense in H1(B/Γ∗). However, we still have to show that H
1
2
0 (Γ∗)

is a Hilbert space.
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Lemma 8.2. The linear operator H
1
2
0 (Γ∗) →H1(B/Γ∗), g ↦ ug given through

−∆ug = 0 on B/Γ∗ , ⟦ug⟧∣Γ∗ = g , ug ∣∂B = 0

is continuous and the space H
1
2
0 (Γ∗) with norm (8.3) is a Hilbert space. Furthermore, it holds

∥⟦u⟧∥L2(Γ∗) + ∥∇u∥L2(B/Γ∗) ≤ C ∥∇su∥L2(B/Γ∗) . (8.4)

Proof. Let g̃ ∈ H1(B/Γ∗) be a minimizer of ∥g∥
H

1
2
0 (Γ∗). There exists a continuous operator

g̃ ↦ ĝ ∈H1(B) such that ĝ∣∂B = g̃∣∂B and ∥ĝ∥H1(B) ≤ C ∥g̃∥H1(B/Br). We now solve the problem

−∆ûg = −∆(−g̃ + ĝ) on B/Γ∗ , ⟦ûg⟧∣Γ∗ = 0 , ûg ∣∂B = 0 ,

which has a unique solution. Setting ug = ûg + g̃ − ĝ the operator g ↦ ug is continuous by

construction. The space H
1
2
0 (Γ∗) is complete since for any Cauchy sequence (gn)n∈N, also(ugn)n∈N is a Cauchy sequence.

We introduce ZD ∶= [−1
2 ,

1
2]×D. In order to prove (8.4), assume there exists a sequence un ∈

H1(B/Γ∗) such that ∥⟦un⟧∥L2(Γ∗)+∥∇un∥L2(B/Γ∗) = 1 for all n ∈ N but with ∥∇sun∥L2(B/Γ∗) → 0.

Without loss of generality, we may assume that ∫B/ZD un = 0. From classical Korn's inequality,

we can deduce that ∇un → 0 in L2(B/U) for all open sets Γ∗ ⊂ U ⊂ B. By Sobolev's inequality,
we obtain that un → u in L2(B/U) and that u is constant. In particular, we obtain un → 0
in H1(B/ZD). Furthermore, we �nd

∥un∥L2(B∩ZD) ≤ C (∥∇un∥L2(B∩ZD) + ∥un∥H1/2(B∩∂ZD)) ≤ C (∥∇sun∥L2(B∩ZD) + ∥un∥H1(B/ZD)) .
Therefore, un → u in L2(B) and ∇un → 0 in L2(B/Γ∗). This implies ∥⟦un⟧∥L2(Γ∗) → 0, which
is a contradiction to the initial assumptions.

Random �ssures Let Γ(ω) be a random �ssure. Then, according to Lemma 3.4, µΓ(ω) ∶=Hn−1(Γ(ω) ∩ ⋅) is a random measures with corresponding Palm measure µΓ,P . By Theorem
3.5, there exists a prototype Γ̃ ⊂ Ω of Γ(ω) such that µΓ,P concentrates on Γ̃. We set G̃ ∶= Ω/Γ̃
and G(ω) ∶= Rn/Γ(ω). The measures µω(B) ∶= L(B ∩G(ω)) also de�ne a stationary random
measure with µω = L∣G and Palm measure µ ∶= P∣G̃ (see Theorem 3.5).

We set L2(G,Γ) ∶= L2(Ω, µ + µΓ,P)n and

L2
pot(Ω,G,Γ) ∶= {u ∈ L2(Ω, µ + µΓ,P)n ∣ u(τxω) ∈ L2

loc,pot(G(ω),Γ(ω)) for µ-a.e. ω} , (8.5)

L2
sol(Ω,G,Γ) ∶= {u ∈ L2(Ω, µ + µΓ,P)n ∣ u(τxω) ∈ L2

loc,sol(G(ω),Γ(ω)) for µ-a.e. ω} . (8.6)

From Section 4 of [9], we know that both L2
pot(G,Γ) and L2

sol(G,Γ) are nonempty. Unfortu-
nately, there exists no orthogonal decomposition result similar to Lemma 8.1. However, we
can get the following result:

Lemma 8.3. [9, Lemma 4.13]L2
sol(G,Γ) and L2

pot(G,Γ) are closed subspaces of L2(G,Γ) and
L2
sol(G,Γ)� ⊂ L2

pot(G,Γ) .
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8.3 Two-scale convergence

Given any random hyperface Γ(ω) with G(ω) ∶= Rn/Γ(ω) and any ε > 0, we set Gε(ω) ∶=
εG(ω) and Γε(ω) ∶= εΓ(ω). We then de�ne

µεω(B) ∶= εnµω(ε−1B) ,
µεΓ(ω)(B) ∶= εnµΓ(ω)(ε−1B) = εHn−1(Γε(ω) ∩B) .

We aim for a two-scale-convergence result in the spirit of Lemma 6.2 for functions with jumps.
To this aim, we need some Poincaré inequalities and some Rellich-type embedding results for
spaces H1(Q ∩Gε(ω)).
Lemma 8.4. Let Γ(ω) be given by the construction in Section 8.1.

1.There exists 0 <M < ∞ such that for almost every ω ∈ Ω there holds

#{Γ(ω) ∩ (t, t + s)} ≤M for almost all t ∈ Rn and s ∈ Sn−1 , (8.7)

where (x, y) is the line segment between x, y ∈ Rn and # is the cardinality of a set.
2. There exists a constant C > 0 such that for all ε > 0, all ω ∈ Ω and all u ∈H1(Q/Γε(ω)),

there holds ∥1

ε
⟦u⟧∥

L2(Γε(ω)) + ∥∇u∥L2(Q/Γε(ω)) ≤ C ∥∇su∥L2(Q/Γε(ω)) .

3. The space H1(Q/Γε(ω)) is isomorph to H1(Q) ×H 1
2
0 (Γε(ω)). For u ∈ H1(Q/Γε(ω)),

we equally write u = (uq, uγ) with uq ∈H1(Q) and ⟦uγ⟧ ∈H 1
2
0 (Γε(ω)).

Proof. The �rst statement is evident. Concerning the proof of 2. and 3. note that this
follows from Lemma 8.2 in combination with a simple scaling argument.

The following two results were proved for so called random tessellations, a special case
of random hyperfaces. However, the original proof does not require Γ to be a tessellation,
but only that Γ is a hyperface that satis�es Condition (8.7). A further generalization, going
beyond Condition (8.7), can be found in [10].

Proposition 8.5 (Compactness property [14]). Let Q be a bounded domain in Rn. A �ssure
Γ satisfying Condition (8.7) has the following compactness property: For any s ∈]0, 1

2[ exists
a constant Cs independent on ε such that for every ε > 0 and every φε ∈H1

0(Q ∩Gε):
∥φε∥2

Hs
0(Q) ≤ Cs (∫

Q∩Gε ∣∇φε∣2dL + ε−1∫
Q∩Γε

⟦φε⟧2dHn−1) . (8.8)

Furthermore, for every φε ∈H1(Q ∩Gε) there holds

∥φε∥2
Hs(Q) ≤ Cs (∫

Q∩Gε ∣∇φε∣2dL + ε−1∫
Q∩Γε

⟦φε⟧2dHn−1 + (∫
Q∩Gε φ

εdL)2) . (8.9)

The last Proposition implies the following important consequence:

Lemma 8.6. Let v ∈ L2
pot(G,Γ) and let Q ⊂ Rn a bounded domain and ω ∈ Ω such that vω

has the ergodicity property. Then, for every ε > 0 there exists φε ∈ H1(Q ∩Gε(ω)) such that
Dφε(x) = w(τx

ε
ω) and ∥φε∥L2(Q) → 0 as ε→∞.
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Proof. By de�nition of L2
pot(G,Γ), we obtain a sequence φε ∈ H1(Q ∩ Gε(ω)) such that∇φε(x) = v∣G(τx

ε
ω) and ⟦φε⟧(x) = εv∣Γ(τx

ε
ω) and ∫Q φε = 0. Thus, by (8.8) we �nd

lim sup
ε→0

∥φε∥2
Hs(Q) ≤ C lim sup

ε→0
(∫

Q∩Gε ∣∇φε∣2dL + ε−1∫
Q∩Γε

⟦φε⟧2dHn−1)
≤ C lim sup

ε→0
(∫

Q∩Gε v
2(τx

ε
ω)dL + ε∫

Q∩Γε
v2(τx

ε
ω)dHn−1)

= C ∥v∥2
L2(G,Γ) ,

such that φε is precompact in L2(Q). For any ψ ∈H1
0(Q)n ∩Cb(Q)n we obtain

∫
Q
φ∇ ⋅ ψ = lim

ε→0
∫
Q
φε∇ ⋅ ψ = lim

ε→0
∫
Q∩Gε(ω)∇φε ⋅ ψ − ∫Q∩Γε(ω)⟦φε⟧νΓε ⋅ ψ

= lim
ε→0
∫
Q∩Gε(ω) v(τxεω)ψ(x) − ∫Q∩Γε(ω) εv(τxεω)νΓε ⋅ ψ(x)

= ∫
Q
(∫

G
v + ∫

Γ
v)ψ = 0 ,

where we used that constants are in L2
sol(G,Γ). Thus, φε ⇀ 0 in L2(Q) which implies φε → 0

as ε→ 0 due to precompactness of φε.

From Proposition 8.5, we also obtain the following two-scale convergence result.

Proposition 8.7. [9] For a random tessellation (G(ω),Γ(ω)) that ful�lls the compactness
property 8.5 in Rn with Q ⊂ Rn bounded and open and �xed ω ∈ Ω let uε ∈ H1

0(Q ∩Gε(ω))
with ∥∇uε∥2

L2(Q∩Gε(ω)) + 1

ε
∥⟦uε⟧∥2

L2(Q∩Γε(ω)) ≤ C
Then there are u ∈H1

0(Q) and u1 ∈ L2(Q,L;L2
pot(G,Γ)) such that as ε→ 0:

uε → u in L2(Q)) ,
∇uε 2s⇀ ∇u + u1∣G ,

1

ε
⟦uε⟧νΓε(ω) 2s⇀ u1∣Γ .

(8.10)

9 Coulomb-friction on a microstructure

We study the stochastic homogenization of a problem of elasticity with cracks and friction.
A more general problem has been studied in the periodic setting, refer to [6, 22].

Let Γ ∶ Ω → F(Rn) be the random �ssure constructed in Section 8.1 with normal �eld
νΓ(ω). We then consider the following problem:

−∇ ⋅ (Aε∇uε) = f on Q/Γε(ω) , (9.1)

(νΓε (Aε∇uε)) ∈ 1

ε
∂ψε (⟦∂tuε⟧) on Γε(ω) . (9.2)
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We additionally prescribe the boundary values through uε∣∂Q = uDir∣∂Q and demand that⟦uε⟧n = ⟦uε⟧ ⋅ νΓε ≥ 0 and uDir(0) = 0. In order to formulate (9.1)�(9.2) in a weak sense, we
de�ne G(ω) ∶= Rn/Γ(ω) and recall the de�nition of H1(Q∩G) in (8.2). The weak formulation
of our problem then reads as follows: Find uε ∈H1

0(Q∩Gε(ω)) such that ⟦uε⟧n ∶= ⟦uε⟧⋅νΓε ≥ 0
holds almost everywhere and such that

∫
Q/Γε (Aε∇(uε + uDir)) ∶ ∇ϕ+∫

Γε

1

ε
∂ψε (⟦∂tuε⟧)⋅⟦ϕ⟧ = ∫

Q
f ⋅ϕ ∀ϕ ∈H1

0(Q∩Gε(ω)) . (9.3)
Let µΓ(ω)(B) ∶= Hn−1(B ∩ Γ(ω)) be the Hausdor�-measure on Γ(ω) with the scaled measure
µε

Γ(ω)(B) ∶= εnµΓ(ω)(ε−1B) and µΓ,P the Palm measure for µΓ(ω) de�ned through (2.13).

9.1 Formulation of the homogenization result

For the formulation of the homogenization result, we make the following assumptions.

1. Let A ∈ L∞(Q;L∞(Ω;L (Rn×n
s ,Rn×n

s ))) be symmetric a.e. and BQ ⊗ BΩ-measurable.
Assume the existence of a constant α > 0 such that

α ∣ξ∣2 ≤ ξA(x,ω)ξ ≤ 1

α
∣ξ∣2 ∀ξ ∈ Rn and for a.e. (x,ω) ∈Q ×Ω . (9.4)

Given ω ∈ Ω and ε > 0, we set Aε,ω(x) ∶= A(x, τx
ε
ω).

2. Let C ∶ Q× Γ̃→ 2Rn be a family of closed convex sets satisfying Assumption 5.4, where
Γ̃ ⊂ Ω is the prototype of Γ(ω). We de�ne the functions

ψ(x,ω, z) ∶= sup
v∈C(x,ω) v ⋅ z , ψε,ω(x, z) = sup

v∈C(x,τx
ε
ω) v ⋅ z .

Recalling the de�nition of Ψ, Ψε in (5.5), we then �nd

Ψ(u) ∶= sup
σ∈C2(Q×Γ̃)∫Q

∫
Γ̃
uσdµPdx , Ψε(u) ∶= sup

σ∈C ε2 (Q,ω)∫Γε(ω) uσdµ
ε
Γ(ω) .

3. For simplicity, we assume that uε0 ∈H1
0(Q) solves

−∇ ⋅ (Aε∇(uε0 + uDir(0))) = f on Q/Γε(ω) .
Thus, we assume there are initially no jumps of uε accross Γε(ω).

Theorem 9.1. Let 1.�3. hold. There exists a unique solution u ∈ CLip([0, T ];H1
0(Q)) and

v ∈ CLip([0, T ];L2(Q;L2
pot(Ω,G,Γ))) with v(0) = 0 to

−∇ ⋅ ∫
Ω
(A (∇u +∇uDir + v)) = f on Q × [0, T ] ,

∫ T

0
∫
Q
∫

Ω
(∇u +∇uDir + v)Aw + ∫ T

0
∫
Q
∫

Γ
∂ψ (∂tv)w = 0

39



for all w ∈ L2(0, T ;L2(Q;L2
pot(Ω,G,Γ))) with v∣Γ ⋅ νΓ ≥ 0 a.e. on Q ×Ω.

Furthermore, for almost all ω ∈ Ω it holds: For every ε > 0 there exists a weak solution
uε ∈ CLip(H1

0(Q ∩Gε(ω))) to (9.3) such that ⟦uε⟧n = ⟦uε⟧ ⋅ νΓε ≥ 0 holds almost everywhere
and such that uε(0) = u0. As ε→ 0, it holds that for all t ∈ [0, T ]:

uε(t) → u(t) in L2(Q)) ,
∇uε(t) 2s⇀ ∇u(t) + v(t)∣

G
,

1

ε
⟦uε(t)⟧νΓε(ω) 2s⇀ v(t)∣

Γ
.

(9.5)

9.2 Proof of homogenization result

The proof is very similar to Sections 6.3 and 7.2, and we only provide a short skech. With
the de�nition of L2

pot(Ω,G,Γ) in (8.5), we consider the following function spaces:

1. H2 = L2(Q) ×L2
pot(Ω,G,Γ) and H ε

2 = L2(Q) ×L2(Γε(ω);µε
Γ(ω)) for all ε > 0.

2. H1 =H1
0(Q) ×L2(Q;L2

pot(Ω,G,Γ)) and H ε
1 =H1

0(Q) ×H1/2
0 (Γε(ω))

With the notation from Lemma 8.4, we de�ne the functional

Eε ∶ [0, T ] ×H ε
2 → R

(t, uq, uγ) ↦ 1

2 ∫Q
(∇uq +∇uγ +∇uDir(t))Aε,ω(∇uq +∇uγ +∇uDir(t) − 2f(t))

+ ∫
Γε(Ω)K(⟦uγ⟧ ⋅ νΓε(ω)) ,

where K(u) = 0 if u ≥ 0 and K(u) = ∞ if u < 0. Then, Theorem 2.3 yields the existence of
a unique energetic solution uε ∈ C0,1([0, T ];H ε

1 ) to (H ε
1 ,Eε,Ψε). A calculation similar to

Section 7.2 shows that uε is a weak solution to (9.3). The apriori estimates from Theorem
2.3 Lemma 8.4, Proposition 8.7 and Lemma 4.10 provide a subsequence of uε = (uεq, uεγ) and
functions u ∈ C lip([0, T ];H1

0(Q)), v ∈ C lip([0, T ];L2
pot(Ω,G,Γ)) such that for all t ∈ [0, T ] the

limit (9.5) holds.
It remains to verify that (u, v) is the unique energetic solution to an apropriate limit

problem (H1,E ,Ψ). The natural canditate for the energy functional is

E ∶ [0, T ] ×H2 → R

(t, u, v) ↦ 1

2 ∫Q
∫

Ω
(∇u + v +∇uDir(t))A(∇u + v +∇uDir(t) − 2f(t))

+ ∫
Q
∫

Γ
K(v ⋅ νΓ) .

The passage to the limit in the energy inequality follows along the lines of the proof of
Theorem 7.1. Here, we additionally use Lemma 5.8 to obtain

0 = lim
ε→0
∫

Γε(Ω)K(⟦uεγ⟧ ⋅ νΓε(ω)) = lim inf
ε→0

∫
Γε(Ω)K(⟦uεγ⟧ ⋅ νΓε(ω)) ≥ ∫

Q
∫

Γ
K(v ⋅ νΓ) ≥ 0 .
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In order to pass to the limit in the stability condition, we use the form (2.4) and observe that
this is equivalent with

−∇ ⋅ (Aε,ω(∇uεq +∇uεγ +∇uDir(t))) = f(t) ,
aε ∶= (Aε,ω(∇uεq +∇uεγ +∇uDir(t))) ⋅ νΓε(ω) ∈ ∂Ψε(0) . (9.6)

As ε → 0, we obtain for almost all t ∈ [0, T ] that aε(t) 2s⇀ at for some at ∈ L2(Q;L2(Γ;µP)).
Given ϕ1, ϕ2 ∈ C∞

c (Q) and v̂ ∈ L2
pot(Ω,G,Γ), we use ϕε(x) ∶= ϕ1(x) +ϕ2(x)φε,ω,v̂(x) as a test

function in (9.6), where φε,ω,v̂ is the potential from Lemma 8.6, and obtain

∫
Q
(∇uεq +∇uεγ +∇uDir(t))Aε,ω(∇ϕ1 + φε,ω,v̂∇ϕ2 + ϕ2(x)v̂(τx

ε
ω))

− ∫
Γε(ω) a

εϕ2(x)v̂(τx
ε
ω)dµεΓ(ω) = ∫

Q
f ⋅ ϕε(x) .

In the limit ε→ 0, the last equation separates into

∫
Q
∫

Ω
(∇u + v +∇uDir(t))A∇ϕ1 = ∫

Q
f ⋅ ϕ1(x) ,

∫
Q
∫

Ω
(∇u + v +∇uDir(t))Av̂ϕ2 − ∫

Q
∫

Γ
atϕ2v̂dµP = 0 .

From the second equation, we infer that for almost every x ∈ Q it holds (∇u(x) + v(x, ⋅) +∇uDir(t, x)) ∈ L2
sol(Ω,G,Γ) with at(x, ⋅) = (∇u(x) + v(x, ⋅) + ∇uDir(t, x)) ⋅ νΓ. Furthermore,

we �nd by (9.6) and Theorem 5.6 that at ∈ ∂Ψ(0). We infer DvE(t, u(t), v(t)) ∈ ∂Ψ(0) and
the limit (u, v) satis�es the stability condition for (H1,E ,Ψ).
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