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ABSTRACT

We study the stochastic and periodic homogenization 1-homogeneous convex
functionals. We proof some convergence results with respect to stochastic two-
scale convergence, which are related to classical I'-convergence results. The main
result is a general liminf-estimate for a sequence of 1-homogeneous function-
als and a two-scale stability result for sequences of convex sets. We apply our
results to the homogenization of rate-independent systems with 1-homogeneous
dissipation potentials and quadratic energies. In these applications, both the
energy and the dissipation potential have an underlying stochastic microscopic
structure. We study the particular homogenization problems of Prandlt-Reuss
plasticity, Coulomb friction on a macroscopic surface and Coulomb friction on
microscopic fissures.

1 Introduction

We study (stochastic) homogenization problems of the form
0€ 0V (0u®) + DE(t,u®), (1.1)

where & : [0,T] x AB. — R is a proper, quadratic functional and U, : %, — R is proper and
1-homogeneous and . is an e-dependent Banach space. As usual in homogenization, the
index € > 0 is a smallnes parameter and (in general) relates to the scale of the underlying
geometry of the pysical system, such as crystaline structure, microscopic cracks etc.. We
work with quadratic energies on Hilbert spaces although our ideas also apply to more general
settings.

Systems of the form (1.1) arise in various applications, among which we focus on Prandtl-
Reuss plasticity and Coulomb-friction. The concept of rate-independent systems can be
formulated in a more general way than (1.1) and we refer the reader to the recent monograph
by Mielke and Rubicek [20], but also to [18].

We are interested in the limit € — 0, where we expect that u® % in the two-scale sense,
which will be specified below. The limit function u usually lies in a different Banach space

2% than the sequence uf. Nevertheless,we expect that u is the solution of a new equation on
% of the form
0 €0V () + DE(u), (1.2)

where again £ : [0,T] x # — R is a proper, quadratic functional and ¥ : % — R is proper
and 1-homogeneous.

In this work, we focus on the 1-homogeneous functional ¥., as the homogenization of
quadratic functionals is well understood (see |32, 33| and references therein). More pre-
cisely, we consider the case of a (stationary, ergodic) random measure p,, and set ug (A) :=
e"u,(e7tA). Let Q c R be a bounded domain and let (2, B(w),P) be a probability space
with an ergodic dynamical system 7. Taking a family C(x,w) c¢ R? of closed and convex
subsets of R, where (z,w) € Q x €, we introduce the convex sets

6, (Q,w) = {ue LP(Q; pi;RP) : u(z) e C(z,Tew) for pg-ae. xe Q}. for we 2,
6(Q % Q) = {u e L2(Q5 IP( ipi RD)) ¢ ula,w) € C(a,w) for £x prp-ave. (w,0)}
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and the functions
Y(x,u)= sup o-u.

oeC(x,Tzw)

We then consider the family of functionals

U, ,(u):= sup u(x)o(x)dus,(x) and W(u):= sup ffu-adupdx.
765 (Q.w) Q 0t (QxQ) Y Q JQ

The major issues that will be studied in Section 5 are the following: consider u¢ € 0¥, (0) =
%:(Q,w) for € » 0 that weakly two-scale converges to u. By Theorem 5.6 it then follows
that u € O¥(0) = 6,(Q x ). This can be considered as a kind of stability result for the
sequence 65(Q,w). Lemmas 5.8-5.10 show that

lim ionf U, ,(v%) > ¥(v) whenever v° = v. (1.3)

Theorem 5.6 then yields equality in (1.3) for v® 2 strongly in the two-scale sense. In
Sections 6-9, we provide three applications of Lemmas 5.8-5.10, namely in case of Prandtl-
Reuss plasticity and Coulomb-friction on a macroscopic and on a microscopic level.

The results obtained in this paper are linked to the theory of evolutionary I'-convergence,
which could be applied in the periodic setting. Using evolutionary ['-convergence, most of
the results obtained in this paper could be proved easily in the periodic setting, in particular
Theorem 5.6. The theory of evolutionary I'-convergence has its roots in a work by Sandier and
Serfaty |24] and has been applied quite successfull to the homogenization of rate-independent
systems within the periodic setting, compare e.g. [8]. A summary on the applications of
evolutionary I'-convergence can be found in a recent work by Mielke [19].

In the periodic setting, one benefits from the existence of the so called unfolding operator:
Given a periodic measure pf(A) := e"ug(e 1 A), the unfolding operators 7. are uniformly
bounded linear opertors from L?(Q; 1) onto L2(QxY; Lx ). Thus, the sequence of solutions
u € L2(Q; uf) can be interpreted as a sequence of functions in Tuf € 7 = L2(Q xY'; L x ug),
a spacethat is independent of €. One equally might consider £. and W, as functionals on JZ.
Given the assumption that & — £ and ¥, - ¥ on 7 in the Mosco-sense, one easily obtains
that the limit function w is an energetic solution to (2, &, ¥). Note that Mosco-convergence
of U, - ¥ implies that the limit (1.3) automatically holds.

In the stochastic setting, the unfolding operator can formally be defined as the adjoint of
the mapping f(x,w) ~ f(z,7=w), but this operator in general is no more continuous. Since
the stochastic setting lacks of a continuous unfolding operator, bounded sequences in 7 are
no longer bounded in 7. this makes it impossible to consider Mosco-convergence of U.. We
are thus pushed to develop other methods, where we exploit the characterization of convex
sets by linear functionals.

An example from plasticity theory As an example for applications of the theory devel-
oped below, we mention here the Prandtl-Reuss equations of plasticity on a bounded domain
Q cR" and on a time interval [0,7]:

-V-o=f, of =0 tef,

0.T]1xQ. 1.4
Vous + Vupi, =€ +p°, Op° € OYZ(0° - Bep®) ,} on l0.7]<Q (14)
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Here, C. is the elasticity modul from Hook’s law, B. is the hardening parameter and ). is
the flow rule function. All these parameters strongly depend on the underlying material.

We assume for the moment, that C. and B, are scalar functions and thus isotropic. Given
C:R*"->R, B: R* - R and ¢ : R* x R”" —» R, we define for £ > 0 the scaled quantities
Cu(a) = C(2), B.(x) = B(2) and v.(z,u) = ¥ (2, ).

The limit € - 0 of system (1.4) was recently studied in the periodic setting, starting from
a work by Alber [1] and continued by Visintin |28, 29|, Alber and Nesenenko |2, 21|, Schweizer
and Veneroni |25| and others (see 11| for more references). A result on the stochastic ho-
mogenization of (1.4) was obtained in [12]. Under the assumption of an averaging property,
it was shown there, that u® — wu strongly in L2(0,7;L?(Q)) as € — 0, where u solves the
limit system

—V-S(Vou) = f (1.5)

for some hysteresis operator ¥ : H!(0,7;R>") - H(0,T;R>"), which depends on the
“unscaled” parameters C', B and . It was shown in [11] that the stochastic setting satisfies
this averaging property.

In spite of our expectations, equation (1.5) does not have the form (1.2). On the other
hand, the structure of equation (1.5) is not surprising since the concept of hysteresis was
introduced to deal with (macroscopic) rate independent memory effects that arise from hidden
(microscopic or fast) material variables. In this work, the limit problem of (1.4) will first
have the form (1.2) but we will see that it can be rewritten in the form (1.5).

The difference between the result in [11] and in the current work are two-fold. First, the
results in [11] apply to arbitrary convex functions ), while the present work is focused on
1-homogeneous 1. Second, the present work allows for a dependence of the parameters B,
C' and ¢ on the macroscopic variable x € @, which is not the case in [11].

Structure of the article The structure of the article is as follows. In the next section, we
introduce basic concepts that are needed throughout the rest of this work, i.e. we introduce
some notations for function spaces and concepts like energetic solutions to rate independent
systems, ergodicity and random closed sets. In Section 3, we introduce some geometric
examples to which we can apply the theory outlined in Sections 4 and 5. We introduce
the concept of stochastic two-scale convergence in Section 4 while we introduce the central
concept of this work, namely the weak two-scale convergence of convex sets, in Section 5. In
Sections 6-9, we apply the theory of Sections 4 and 5 to Prandtl-Reuss plasticity, Coulomb
friction on the surface of an elastic body and Coulomb friction on microscopic fissures.

2 Notations and Preliminaries

2.1 General notations

Given a Radon-measure p on a Borel-measurable set U c R”, we write LP(U;RP; ), 1 <p<
oo for the set of measurable RP-valued functions such that [, |f|Pdp exists. If = L is the



Lebesgue-measure, we omit p and simply write LP(U;RP). If D = 1, we write LP(U; 1) and
similarly, we write LP(U) if no confusion occurs.

For any Banach space # with norm |-| . we denote by LP(U;%), 1 < p < oo, the usual
Bochner space of functions f: U — Z such that [, | f[?, dL exists. By L>=(U; %), we denote
the space of functions, that are bounded almost everywhere. We say that f e Wir(0,7T; )
for 1 < p < oo, if f,0,f € LP(0,T;%). We denote by Wtr(0,7; %) the space of functions
we LP(0,7T; %) such that also dyu e LP(0,T; A).

Given a vector space V, we call £ (V, V') the space of all linear mappings from V' to V.

Given a functional £: [0,T] x Z - R we define

DE(t))={uePB : |E(t,u)| < o0} .

2.2 Rate-independent systems

We collect some results on existence and uniqueness of solutions for rate-independent systems
of the form

0 € () + DE(t,u(t)) (2.1)

on a Banach space 4. In particular, we consider the case of a 1-homogeneous convex func-
tional ¥ : & - R,, ie. U(Iv) = AU(v) for all A > 0 and of a quadratic energy £. It is
well known that under these conditions (2.1) has the following reformulation (see [20] or [18]
Sections 2 and 4).

Definition 2.1. Let % be a Banach space, £ : [0,T]x% — R be lower semicontinuous and W :
% — R be convex, lower semicontinuous and 1-homogeneous. We say that u € Ct?(0,T; B)
is an energetic solution to (%A,E,V), resp. (2.1), if the following two conditions hold for
every t € [0,T]:

E(t,u(t)) < E(, ) + W(a-u(t)) Ve, (2.2)
5(t,u(t))+/0 \If(atu)zg((),u(()))+f0 . (s, u(s)) ds . (2.3)

Condition (2.2) is called stability condition and equation (2.3) is called global energy-
balance. Condition (2.2) can be reformulated [18, Section 2| into

U*(-DE(t,u(t))) =0  or - DE(t,u(t)) € DT(0). (2.4)

The following lemma states that we can weaken (2.3). It is proved for example in [18], Step
5 of the proof of Theorem 2.1.

Lemma 2.2. Let uw e Ctr(0,T;A) satisfy (2.2) or (2.4). Furthermore, let

8(t,u(t))+f0t\11(8tu)SE(O,U(O))+f0t888(s,u(s))ds vte[0,T].  (2.)

Then, u is an energetic solution to (B,E, V).

The following existence result will be sufficient for our applications.



Theorem 2.3. Let 7, 3 be Hilbert spaces such that S — 5 continuously, i.e. |ul ,, <
Cia |u] . Let

E:[0,T] x5 >R with E(t,u):%Hu”iﬁJrK(u)vL(l(t),u)%+f(t),

where K : 5 - (—00,+00] is a convex functional, | € H(0,T;.74) and f € WH(0,T). Let
U : 765 — R be a proper conver 1-homogeneous functional. Finally, let ug € 4 such that
(2.2) or (2.4) holds for t =0 and u(t = 0) = ug. Then, there erists a unique energetic solution
to (A5,E,9) with u(0) = ug, satisfying the apriori estimates

E(t,u(t)) + [Ot\I/(s,(')su(s))ds =&£(0,u(0)) + [Otasé'(s,u(s))ds, (2.6)

lullcrinorym) + 19e] 1= o,r7,0) < C(Crzs U o 7,m)) (E(0,w(0)) +1) . (2.7)

where C(Cha, |U] g1 o7.m)) depends only on Cha, |l g1 7.4y Furthermore, ue C([0,T]; )
depends Lipschitz-continuously on l € L*(0,T; 76) and on ug € 4.

Proof. By our assumptions, the functional £(t,-) is a-convex for all ¢ in the sence of [18§],
Section 3.5. From [18] Theorems 3.4 and 5.2 we get existence of an energetic solution u €
C%1([0,T]; #4). The estimate (2.7) follows from the proof of Theorem 3.4 in [18] on noting
that we obtain for Ay := |l g1 7.y > 0

1 C t
S 18 = () < 2 1y(t) =) % < o [ 1y(®) = y(r) |y

t
<ChM [y = y() ] dr (28)
The Lipschitz-continuous dependence of u € C([0,T];54) on l € L'(0,T; 74) and on ug € 54
follows from (2.8). O

2.3 Ergodic dynamical systems

Throughout this paper, we follow the setting of Papanicolaou and Varadhan [23] and make
the following assumptions.

Assumption 2.4. Let (2, Bq,P) be a probability space with countably generated o-algebra
Bq. Further, we assume we are given a family (7,)zcrn of measurable bijective mappings
T+ Q — Q, having the properties of a dynamical system on (Q,Bq,P), i.e. they satisfy
(1)-(iii):

(i) Tp o Ty ="Tysy , To =1d (Group property)

(ii)) P(r_.B)=P(B) VxeR" BeBq (Measure preserving)
(iii)) A: R"xQ - Q (z,w) = T,w is measurable (Measurablility of evaluation)

We finally assume that the system (7, )zern 48 ergodic. This means that for every measurable
function f: < - R there holds

[f(w) = f(rpw) VT e R"  a.e. weQ] = [f(w) = const for P—a.c. we]. (2.9)



Remark. 1. An equivalent characterization of ergodicity is the following: For every Bg-
measurable set B c 2 holds

[P((ro(B)uB)\(1:(B)nB))=0VzeR"] = [P(B) € {0,1}]. (2.10)

2. In some application, the notion of ergodic dynamical system is given for (7;),.;.. This
definition is analogous to the above definitions with R” replaced by Z".

From [5] Theorem 4.13 we get that LP({2) is separable for every 1 < p < oco. For a set
X, a function f:Q - X and w € §, the function f, : R > X, f,(z) = f(7,w) is called a
realization (or the w-realization) of f. The following ergodic theorem states that almost all
realizations of integrable functions are integrable. The first part up to (2.11) is standard and
(to the author’s knowledge) due to Tempel’'man [26]. It can also be found e.g. in [7, 33]. The
second part is an immediate consequence.

Theorem 2.5 (Ergodic Theorem [33|). Let Assumption 2.4 hold for (0, Bq,p, 7). Let f €
LY(Q). Then, for almost all w € Q it holds: f(rzw) € L, (R") for all ¢ > 0 and for all
bounded open sets Q c R™ it holds

nmef(T:w)d;U:mefw(g)dx:ﬁ(Q)fo(w)du(w). (2.11)

e—0

Furthermore, for all f € LP(2), 1 <p < o0 and a.e. w e holds f(r,w) € LY
1<p<oo holds f(Tew) —~ [ f weakly in L], (R™) as e — 0.

loc

We say that the realization f,is ergodic if (2.11) holds.

(R™) and for

2.4 Stationary random measures

Let (€2, Bq,P,7) be a probability space with dynamical system satisfying Assumption 2.4
and let M(IR™) be the set of Radon measures on R" equipped with the Vague topology.

Definition 2.6. A random measure is a mapping p, : Q@ - M(R"), w ~ p, such that
w 11, (A) is measurable for all Borel sets A ¢ R™. This is equivalent with the measurability
of 11e with respect to the Vague topology on M(R"). A random measure is called stationary,
if g1, (A) = uo,(A + 2) for all Borel sets A c R™. The intensity A\(u,) is defined by:

M) = [ [ o (re, 2)dpa) diu(e) = e (©). (2.12)

Theorem 2.7 (Mecke [17, 7|: Existence of Palm measure). Let w ~ p, be a stationary
random measure. Then there exists a unique measure up on ) such that

[Q_/Rnf(xv”w)dﬂw(x)dp(w)Zén_/gf(%w)d,up(w)dx

for all L x pp-measurable non negative functions and all L x up- integrable functions f.
Furthermore for all Ac Q, ue L'(Q, up) there holds

pe(A) = [ [ gs)alrw)dna(s)aP (213)
LU(W)de = LA;H g(s)u(rsw)dp,(s)dP (2.14)
for an arbitrary g € LY(R", L) with [z, g(x)dz =1 and pp is o-finite.
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A few properties of the Palm measure and its underlying o-algebra seem to be noteworthy:

Remark 2.8. a) Setting g(s) := x[0,11»(s), the Palm measure can equally be defined through
(2.13).

b) For the constant measure w ~ L, we simply find pup = u, the original probability
measure. This is a direct consequence of (2.13), Fubini’s theorem and Assumption 2.4.

¢) For a random measure w ~ i, we may assume that 2 ¢ M(R") and pp is a measure
with respect to the Borel-algebra on € (see |9], Section 3). Then, 2 is a separable metric
space.

d) By comment c), it follows from [4] Theorems 67.2 and 68.1 (see also |9]) for all 1 < p < oo
and all k£ € N that the spaces LP(Q, up) and Cp,(2) are separable and that Cp,(Q2) = LP(Q, up)
densely ([5] Theorem 4.13).

2.5 The Ergodic Theorem

Let Assumption 2.4 hold for (2, Bg, P, 7). Given a stationary random measure i, we intro-
duce the scaled measure ;¢ through

pe (A) = e, (et A). (2.15)
We cite the following generalization of Theorem 2.5:

Theorem 2.9 (Ergodic Theorem [7]). Let Assumption 2.4 hold for (2, Bq,P, 7). Let
be a stationary random measure with finite intensity and Palm measure pp. Then, for all
g€ LY(Q, up) there holds P almost surely

tim [ g(rzw)dns (0) = 14| [ g()dpp () (2.16)
for all bounded Borel sets A.

At this point, we note that in [7] this theorem is provided only for A being a convex
set containing an open ball around 0. However, the theorem can be generalized to arbitrary
Borel sets by first considering simplices A. Such simplices can be extended to convex sets
containing an open ball around zero. The statement then follows from the linearity of (2.16)
in the characteristic function of A. The ergodic theorem only holds for function on €.
Nevertheless, it motivates the following generalization of the concept of ergodicity:

Definition 2.10. Let f € LP(Q; LP(2, up) for some 1 < p < co. We say that f is a p-ergodic
function if for a.e. w € Q it holds that f(x) := f(x,7zw) is measurable for all £ >0 and

ti [ f(rrew)dps(e) = [ [ 7.0 dup(@) dor

e—0

tiy [ | o)l du@) = [ [ 1@6)F dup(@)da

e—0

(2.17)

We call w, resp. f,, an ergodic realization of f, if (2.17) holds.

The rest of this section deals with the identification of a suitably large class of ergodic
functions.



Lemma 2.11. Let Assumption 2.4 hold for (2, Bq,P,7). Let Q c R™ be a bounded domain
and let A c Q x$ be a Bg x Bo-measurable set. Then, the characteristic function xa(z,w)
satisfies

hm[ Xa(@, Tew) dpg, () = //XA(JU W) dup(0)dr  for a.e. wed. (2.18)

Proof. Due to Theorem 2.5, the statement is evident for A = Ay x Ag, where Ag € Bg and
Agq € Bg are measurable sets. In general, A has the form

A=|JA; with 4;= A; g x A;q for i € N, where A; o € Bg and A; € By (2.19)

€N

are measurable sets. After countably many operations, we can assume that A4, n A; = @ and
A;ognAjq= for all i # j. Note that (2.18) then holds for y 4, for all i e N.

Smce Uien Aig © @ and since this union is disjoint, we ﬁnd lime Xi2y L(Aig) = 0.
Thus, for each n € N, there exists J, € N such that £(4, o) <L with A, o =UZ; A;o. We

set A UJn 1 A; and obtain for a set Q,, c Q of full P-measure such that for all w € €,
f f X4 (2,@)dpp(@) dx = limf X4 (@, Tzw) dp,(z) < limsupf xa(z, Tew) dpd,(x)
QJa " e>0Jg " N e—0 Q ©
<limsup (/ X4 (@, Tzw) dp, (z) + f d,uf;)
Q n € An,Q

e—=0

<tim [, (0,720 dii (o) + £( A, )pim(€)
- 5 1
= [ [ xa @ 8) dup(@)de s (@),

Since n € N was arbitrary and x 4/ x4 pointwise, we obtain

ALXAZJLTOL[ZX%:161_1)%/;)(14(1:,7':00)61#2(33)

for all w € Q with Q := Npewy Q. Since P(Q) = 1, the statement follows. ]

Lemma 2.12. Let Assumption 2.4 hold for (2, Bq,P,7). Let Q c R™ be a bounded domain
and let f e LP(QxQ; LOup)NL>(QxQ LOUp), 1 <p<oo. Then, f has a BoxBo-measurable
representative which is an ergodic function.

Proof. The function f has a Borel-measurable representative. Furthermore, we can assume
that this representative is bounded. The statement now follows from the fact that for every
§ > 0 we find piecewise constant Borel-measurable functions f7, fJ such that fJ < f < f9 and

supgua I - 1] < 4. =

2.6 A particular probability space

We provide a construction of a probability space which will be used below. We therefore
consider {2y a separable (or compact) metric space with a probability measure Py. Then, we



consider () := Qg’ and write w = (w;)ey for all w € Q. If dy denotes the metric on g, we define
the metric on 2 through

= do(wri,way)
d(wi,we) = > 27 = i
( ! 2) ; 1+d0(wl,iaw2,i)

This topology is generated by the open sets A x Q) where for some n >0, A c Q7 is an open
set. In case (g is separable (compact), the space 2 is separable (compact), too (see |15]).

In a next step, note that the sets of the form AxQY = AxQ together with their ‘complements
form an algebra in €2, which we denote R. For any set A c Q2 of the form A = A x O, where
Ac (2§ is measurable for some 0 <n < oo, we define

P(A) = Py(A), where P§ denotes the classical product measure on Q.

We make the observation that P is additive, positive and P(&) = 0. Next, let (A; )JeN

an 1ncreasmg sequence of sets in R such that A :=; A; € R. Then, there exists 0 <n < oo
and A; c Qr such that A x A=A cAyc--c AcOp xQ) = Q. Furthermore, for every
7 > 1, there exists A such that A, A X QN and there exists A c f such that A = A x Q.
Since A; is an increasing sequence, also A must be increasing and A= U, A Therefore

P(A;) = Po(A;) - Py(A) = P(A). We have thus shown that P : R — [0,1] can be extended
to a measure on the Borel-o-Algebra on 2 (See [4] Theorem 6-2).

The same considerations hold, if we consider 2 := QZ". We write w = (w; ).z for w e Q
and define for x € Z™ the mapping

Te: 1> Q, W T,w, where w; — wi,, .

Then, (7). form a dynamlcal system on €2 with respect to Z". We set Y := [O 1[™ with
Q:= Y xQ and write (y,w) € Qif y € Y and w € Q. As a measure on €, we consider P := LxP.
For x € R™ we use the unique decomposition z = |z | + xy, where |x| € Z" and xy € Y. Then,
for x € R™, we define the mapping

7,:Q0-0, O 7w,  where w; b Wiy and y > y+ -y + ).
The most important result of this subsection is the following.
Lemma 2.13. The family 7 is ergodic.

Proof. 1t is known that the family 7 is ergodic on €. Now, let A c Q) be invariant, i.e.
P((AuT,A)\(An7,A)) =0 for all x € R*. This is equivalent with

L [Q Xa(y,w) + X2, 4y, w) = 2xa(y, w)x2,4(y,w)dP(w)dy = 0. (2.20)

For fixed y € Y we obtain

fQ xa(y,w) + xa(y, ww) = 2xa(y,w)xa(y, Taw)dP(w) =0 YweZ"

Since 7 is ergodic on (), it follows by (2.9) and positivity of the integrand that xa(y,-) is
constant in ) for a.e. y € Y. More precisely, we obtain xa(y, .w) = xa(y,w) almost surely
for all x € Z". But then, (2.20) yields

0<xa(y,w) +xa(y+z,w) - 2xa(y,w)xa(y +z,w) =0 VreR”
for a.e. (y,w) €. This implies P(A) € {0,1}. O



3 Examples for stochastic geometries and random mea-
sures

In this section, we give some concrete examples of stationary ergodic measures in order to
demonstrate the large range of geometric settings that are captured by Assumption 2.4.
We start with the periodic case, as this is the case most familiar to the homogenization
community and also the easiest setting from the point of view of description. We then go on
with general stochastic geometries and finally discuss the case of a random checkerboard.

3.1 The periodic case

In [31], Zhikov introduced two-scale convergence for periodic measures. This work was a
straight generalization of Allaire’s definition in [3] and is (to the author’s knowledge) the
most general definition of periodic two-scale convergence up to now. The notation and the
formulation of the results show a significant similarity with the notation used in the definition
of stochastic two-scale convergence in [33|. Of course, one expects that the case of a periodic
measure should be a special case of a stochastic measure. In fact, shifting a Y-periodic
measure by y € Y =[0,1[", we can consider Y as a probability space.

To be more specific, let 1o be a Z™-periodic measure in R™ which is a measure satisfying
po(+) = po(- + ) for all x € Z". We consider Y = [0, 1[" equiped with the Euclidean topology
on the torus. Consider the family of mappings 7, : y ~ [(y+2) mod Z"] for every z € R" and
note that 7, : Y - Y satisfies the Assumptions 2.4(i)-(iii). Defining

0 Y = MR,y =y ()= po( +y),
we can prove the following lemma.
Lemma 3.1. /9, Lemma 3.5/The mapping ¢ is a homeomorphism.

Thus, setting Q := [0, 1[™ with the topology of the torus, Bg = B 1» and P = £ with 7 as
above, we note that (2, Bo, P, 7) satisfies Assumption 2.4. Furthermore, y = p, is a station-
ary random measure with pp = pg|fo,1i». Denoting C% (Y') the set of k-times differentiable
functions on Y which are Y-periodic, we note that C*(Q) = CF(Q2) = Ck, (V).

Without giving a proof, we state that the concept of two-scale convergence introduced
below in Definition 4.2 is equivalent with the following definition from [31].

Definition 3.2. Let 1 <p < oo. Let o be a periodic Radon measure on R and set p(A) :=
e"pp(e7tA). Let u € LP(Q; ) for all € > 0. We say that (u®) converges (weakly) in two

scales to u € LP(Q; LP(Y, j19)) and write uf % if for all ¢ € Co(Q; Cper(Y')) there holds

tim [ (@) Ddpt = [ [ ulen)ote.y) dpoy) da.

Choosing o = L, Definition 3.2 is equivalent with the original definition of two-scale
convergence by Allaire [3].
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3.2 The random checkerboard

We study the checker board construction of i.i.d. random variables, since this is a commonly
used example for an ergodic stochastic setting in homogenization.

Defining Y := [0, 1[?, we consider R™ to be partitioned into unit cubes C, := z +Y for
z € Z". Like in Section 3.1, we equip Y with the topology of the torus. We then consider the
sets

Q= {ueL®(R") |ule. = c., with ¢, €[0,1] for every z e Z"} (3.1)
Qi={ueL*(R")|I eV st u(.-&) eQ} . (3.2)

For u € Q2 we denote the (unique) ¢ from (3.2) as &(u).

Since L'(IR™) is separable, we infer from |5|, Theorem II1.28, that L>(R"™) with the weakx-
topology is metrizable. Given a countable and dense subset (¢;), of L!(IR"), a metric d on
L>(R") is given by
o1 [u-v,6)
21+ (u-v,¢)

It is straight forward to verify that  with the metric d is isomorph with [0, 1["x[0,1]%".
Thus, by Section 2.6 (Q, Bo, P, ), with P = L|jg1)» ® (L‘|[0,1])Zn, satisfies Assumption 2.4.

d(u,v) :=

3.3 Stochastic geometries

In this section, we describe how random measures in the sense of Definition 2.6 can be derived
from random sets. Let F(R™) denote the set of all closed sets in R”. We write

JTVZ
FK.

{FeF(R") | FnV+#g} if VcR"™ isan open set, (3.3)
{FeF(R") | FnK=g} if KcR" isa compact set. (3.4)

The topology on created by the sets Fy,, FX is the Fell-topology Tr and (F(R™), Tx) is com-
pact, Hausdorff and separable[16]. The Matheron-o-field ox is the Borel-o-algebra created
by the Fell-topology.

Definition 3.3. a) Let (2,0, P) be a probability space. Then a Random Closed Set (RACS)
is a measurable mapping

A:(Q,0,P) — (F,o8)

b) A random closed set is called stationary if its characteristic functions x4, are sta-
tionary, i.e. they satisfy xa(w)(2) = Xa(rw)(0) for almost every w € Q for almost all = € R™.

¢) A random closed set M : (2,0, P) — (F,07) ww~ M(w) is called a Random closed
C*-Manifold if M(w) is a piecewise C*-manifold for P almost every w.

For more information, the reader is referred to [16]. The importance of the concept of
random geometries stems from the following Lemma by Zihle. It states that every ran-
dom closed set induces a random measure. Thus, every stationary ergodic RACS induces a
stationary ergodic random measure.
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Lemma 3.4 (|30] Theorem 2.1.3 resp. Corollary 2.1.5). Let F,,, ¢ F be the space of closed
m-dimensional sub manifolds of R" such that the corresponding Hausdorff measure is locally
finite. Then, the o-algebra or N F,, is the smallest such that

Mp:F,->R M~H"(MnDB)
s measurable for every measurable and bounded B c R™.

This means that
Mgn : Fpy > M(R") M- H™(Mn")

is measurable with respect to the o-algebra created by the Vague topology on M(RR"™). Hence
a random closed set always induces a random measure. Based on Lemma 3.4 and on Palm-
theory, the following usefull result was obtained in [9] (See Lemma 2.14 and Section 3.1
therein).

Theorem 3.5. Let (2,0, P) be a probability space with an ergodic dynamical system 7. Let
A:(Q,0,P) — (F,0x) be a stationary random closed m-dimensional C*-Manifold.

a) There exists a separable metric space Q with an ergodic dynamical system T and a
mapping A : (Q,BQ,’P) - (F,o7) such that A and A have the same law and such that A still
is stationary. Furthermore, (x,w) = T,w is continuous. We identify Q= Q, A=Aand 7 =r.

b) The mapping

ot Qo MR, w s i) = HP (M )

15 a stationary random measure on R™ and there exists a corresponding Palm-measure pup if
and only if pe has finite intensity.

c¢) There exists a measurable set A cQ, called the prototype of A, such that XAw)(x) =
X i(mew) for L+ p,-almost every x and P-almost surely. The Palm-measure pip of i, con-
centrates on A, i.e. up(Q\A) = 0.

d) If A is a random closed m-dimensional C*-manifold, then P(A) = 0.

4 'Two-scale convergence

4.1 Time independent case

Let Assumption 2.4 hold for (2, Bg,P,7) and let w — pu, be a stationary random measure
with £, and pp defined through (2.15) and (2.13). The product o-algebra Bo®B, is countably
generated and therefore, the space LP(Q x Q2) is separable (|5] Theorem 4.13). In particular,
for every 1 < p < oo, there exists a countable dense subset of finite step-functions in LP(Qx2).

Remark 4.1. For 1 <p < oo let @, := (¢;),y be a countable dense subset of LP(Q; LP(2, 1p))
such that every ¢ € @, is a finite By ® Bg -step-function. By Lemma 2.11, every ¢ € ®,, is
an ergodic function. Since the countable union of P-null-sets is a P-null set, there exists a
set Qg, c  with P(Qg,) = 1 such that all ¢ € ®, satisfy (2.17) (i.e. they admit ergodic
realizations) for all w € Qg .
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The choice of the family ®, is closely related to Allaire’s problem |3| of identifying the
class of “admissible” functions in L2(@Qx[0,1]"). Note that even in the periodic setting, given
¢peL2(Q xY), it is by no means clear whether

ti [ 6. D)= [ [ 6wy dyds.

Indeed, it is not even clear, whether ¢(z, %) is measurable (See [3] the discussion after Defi-
nition 1.4 and Proposition 5.8).

Definition 4.2. Let 1 < p,q < oo with £ + 2 = 1. Let ®, be the set of Remark 4.1 and let
weNg,. Let uf e L1(Q; ) for all € > 0. We say that (u®) converges (weakly) in two scales to

we L1(Q; L1, up)) and write u® 2w if for all ¢ € @, there holds with @, () = ¢(x, Tzw)

lim [ wSy dp, = f f e dpip dL .
e-0JQ QJQ

Furthermore, we say that u® converges strongly in two scales to u, written u® % u, if for
all weakly two-scale converging sequences v¢ € LP(Q; ug,) with v¢ Zye Lr(Q; LP(QQ, up)) as

€ — 0 there holds
lim [ wvdp, = / /uv dpp dL .
=0 JQ QJa

Remark 4.3. a) Note that ¢, . 3 ¢ strongly in two scales by definition.
b) If feLP(QxQ;L®pup)is a p-ergodic function and f, is an ergodic realization of f
and all (fy)_ are ergodic realizations of fp, ¢ € ®,, then

lim [ f du, = f f wf dyp dL
Q QJQ

e—=0

for all u¢ 2 u. This means we can always extend our class of test-functions by countably
many functions, losing only a set of {2 with P-measure 0.

The definition of strong two-scale convergence makes sense in view of classical strong
convergence. The proof of part 1. is very similar to |33]|. Part 2. is easy to prove.

Lemma 4.4. 1. Let weQ, 1 <p<oo and u® € LP(Q; s, be a sequence of functions such
that HUEHLP(Q;;ﬁ) < C for some C > 0 independent of €. Then there exists a subsequence of

(u=")erso and uw e LP(Q; LP(Q, up)) such that us' % u and

||u||Lp(Q;LP(Q#P)) < lim inf HUE/HLP(Q;HZ') : (4.1)

e’'-0

2. Let ug, = L for all € >0 and let u¢ € LP(Q) such that u® - u € LP(Q) strongly. Then

2s
ut - u.

Proof. 1. Let (¢x), be an enumeration of ®,. For fixed k € N, we obtain that

lim sup

e—0

SClimsup(—/Q (¢k(x,7§w))qdu‘;(:v));

e—0

[Qu%xm(mgw)duz(m

=C ”¢k ”L‘I(Qxﬂ;£®up) :
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Therefore, we can use Cantor’s diagonalization argument to construct a subsequence u¢ of
uf such that

f u () o (x, T2w)dps, (x) = Ly, as € -0
Q 1>

and Ly is linear in ¢, € ®,. Therefore, there exists u € LP(Q; LP(£2; up)) such that

Lk,j:fC?[)u(:r,oD)gbk(x,@)dup(@)dx VkeN.

Since @, is dense in L4(Q; L1(€2; pup)), the function u is unique.
2. This follows from the fact that every weakly converging sequence v¢ € L?(Q) with
ve — v converges weakly in two scales to the same function v. O

Lemma 4.5. Let ue LP(Q; LP(Q2; up)). Then, for almost every w €S2, there exists a sequence
uf € LP(Q; ug,) such that uf 2w ase—0.

A similar result by Allaire (see |3]) states that every u e L2(Q; L?([0,1[™)) is obtained as
a (periodic) two-scale limit.

Proof. Let u € LP(Q; LP(S); up)). For p and ¢ = ’%1 let ®, and ®, be the family of functions

with Qg, and g, from Remark 4.1. For Q:= Qp, NNy, and w € Q, we create the sequence
uf by the following algorithm.

1. Chose ug € ®, and gy > 0 arbitrarily.

2. Let n € N and assume u,_; is chosen. There exists u, € ®, with |u—-u,|, < %, and
en > 0 with €, <&, such that for all ¢; € &, with 1< j <n there holds
. 1
[ U (Tzw) @, (Tzw)dps, (z) - [ungbjdup < — Ve<e,.
Q € e Q n
3. Finally, set u*(x) = uy-1(72w) for €,-1 2> &,
4. Continue with 2.
The constructed sequence u® has the property that u® 2 O]

Lemma 4.6. Let N € N and let A € L>(Q; L>=(; L (RN, RY))) be symmetric and assume
A is Bg ® B -measurable. We furthermore assume the existence of a constant o > 0 such
that

alef < EA(z,w)E < é €7 V¢ eR™ and for L x pp-a.e. (x,w)eQ x€. (4.2)

Then, for almost all w € Q there holds: For all sequences uf € L*(Q;us; RN) with weak
two-scale limit w e L*Q x L*(%; up; RN)) there holds with A () := A(z, T2w)

liminf[ ue-(Ag,wua)d,ui,zffu-(Au)dup.
=0 Jq QJa
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Proof. Let ®, be the family of functions with {2¢, from Remark 4.1. Since A is symmetric and
strictly positive definite, there exists Az € L*(Q; L= (Q;.Z (RN, RV))) such that A2TAz = A
and such that A is By ® By -measurable. Then, A2d, is a family of ergodic functions, i.e.
lim [ 0 (430) dus,= f [ wAdddupdl Ve,
e=>0JQ w,e QJQ

~ ~ S . . 1 S
by Remark 4.3. Thus, there exists 2 c 2 with P(€) = 1 such that u® % u implies A2 uf %
Azy for all w e Q. Using (4.1) from Lemma 4.4, this concludes the proof. ]

4.2 Weak two-scale convergence for time-dependent functions

We are also interested in the convergence behavior of functions u® : [0,7] - LP(Q, 115,). More
precisely, we make the following definition:

Definition 4.7. Let 1 <7, 7', p, g < co with p+— =1 and +— =1. Let &, be the set of Remark
4.1 and let w € Qg,. Let u® e L7(0,T; Lr(Q; 5,)) for all e>0. We say that (u®) converges

(weakly) in two scales to w € L"(0,T; LP(Q; LP(2, up))) and write we 2y if for all continuous
and piecewise affine functions ¢ : [0,77] » R®, there holds with ¢, c(t,7) := ¢(t, 2, Tew)

T T
lim f f UG oy, dt = f f f we dpip da di
e~0 Jo Q 0 QJQ

Notation 4.8. Throuout this subsection, we frequently write %, = LP(Q; LP(S2, up)) with
By = LU(Q; L, pup)) and A, = LP(Q;ps) with By, = L1(Q;pus). We denote by
(u,v) g goand (v, v%) 5 4., the corresponding dual pairings and by (’B;wqﬁ) (7) = ¢(z, T2w0)
the natural mapping from %, to %.,. If no confusion occurs, we drop the index w.

Lemma 4.9. Let 1 <p,r < oo and T >0. Then, every sequence (u® € L"(0,T; LP(Q; 1E)))) 50
satisfying |us HLT(OTLP(QM y < C for some C'> 0 independent from € has a weakly two-scale
convergent subsequence with limit function u € L7(0,T; LP(Q; LP(Q, up))). Furthermore, if
| Opus ||LT(OTL,,(Q ey < C uniformly for 1< p < oo, then also ||8tuHLT(OTLp(Q Lrupy)) S C and

Opus X dyu in the sense of Definition 4.7 a) as well as u(t) % u(t) for all t €[0,T].

Proof. We make use of the notation 4.8. We may assume that ®, is a Q-vectorspace. Given
T > 0, we fix the timesteps 7;; = &7 for i € N and 0 < k < 2/ Then, L"'(0,7;%;) (where
14 % =1) has a countable dense subset of piecewise constant functions of the form

P
2i-1

=D Xirprir)Vk  for some i € N and some (vg),_o i € % - (4.3)
jry

We set Uy, = f“ ' uf and observe that Us, = Us,| o, + Uf,| 1,y By induction over i € N and

the Cantor-argument, we can extract a subsequense of u® as € — 0 such that U7, k4 Ui, for
all i eN, k=0,...,2¢ - 1. This sequence then satisfies U; j = Ujs1 2k + Uis1,25+1. For every ¢ of
the form (4.3) we find

21-1

[OT(UE,%M); e 1(0) = Z( Uik V) 5,50+ (4.4)

k=0

15



and [ is linear. Furthermore, since fOT(uS,%;qb)t@E“@; < CB29| 1 o7,m:), We infer from
the ergodic theorem that |I(@)[ < C' @]+ o 7.5+). Since I is linear, it can be extended to a
bounded linear functional on L' (0,T;%*) by the Hahn-Banach extension theorem. Thus,
there exists w € L"(0,T; %), such that I(¢) = fOT(u,ng)%%. Since the set of functions ¢

having the form (4.3) is dense in L™ (0,T; %), this u is unique and we conclude u® % .
Finally, we can approximate any piecewise affine and continuous function ¢ : [0,7] - R®,
uniformly by piecewise constant functions. Therefore, we get

T
[ w8200~ 10)

for all such piecewise affine functions ¢.

‘NOW, let |0 pr o1y < C uniformly f(?r 1 < p < oo. Then, also [u|coryzy € C
uniformly. By the above calculations, there exists u, € L"(0,7; %) and a further subsequence
of ue, such that dyus = uy, us(0) % u(0) and us(T) % u(T) as € = 0. Chosing an arbitrary
piecewise affine and continuous function ¢ : [0,7] - R®,, we obtain

T T T T
/(; (w,9) g, < /0‘ (0", B2d) 5, 50 = (05, BLP) g, 32 — /(; (U, BLOr) . 5+

T
_]0‘ (uaat¢>ﬂ,£* )

T
0

- (u7¢>%,3§*
where we used (4.4) for uf(-). Thus, we find that dyu = u;.
Finally, we get for every 7€ (0,7
w(r) =)+ [ 0w Zu(0)+ [ ow=u(r).
0 0
]
1

Lemma 4.10. Let 1 <p < oo and let ¢, and Qy,, 5+ é =1, be given by Remark 4.1. Given

w e Qg,, let us e CVP(0,T; LP(Q; g,)) for all € > 0 such that [u| Lo 1.1o(Queyy < C for
some C independent from € > 0. Then, there exists u € C¥P(0,T; LP(Q; LP(Q, up))) and a
subsequence u¢' of u¢ such that u (t) N u(t) for all t €[0,T].

Proof. By the uniform Lipschitz bound, we find that [0;u| .o 7.10(@uue)) < C for all € > 0.
By Lemmas 4.9 and 4.4, we obtain a subsequence u¢" and u € C'(0,T; LP(Q; LP(, pip))) such
that u (t) = u(t) for all t € [0,T]. We observe

[u(ts) = u(t2) | Lo(@uLr @ up)) < SUP [ (11) = U (t2) | (i) < Cltr — tal
&€

and therefore u e CP([0,T]; LP(Q; LP(Q2, pp))). O

5 Weakly two-scale converging convex sets

5.1 The main result on weakly converging convex sets

Let Q c R™ be a bounded domain with the Borel-o-algebra Bg and let Assumption 2.4
hold for (€2, Bq,P,7) and let w ~ u, be a stationary random measure with pg and pp
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defined through (2.15) and (2.13). Let furthermore D ¢ N. We provide a class of convex sets
Gs c LP(Q; g, RP) with a convex set 6, ¢ LP(Q; LP(; up; RP)) such that &% 2 %, in the
following sense.

Definition 5.1. Let 1 < p < co. For each € > 0 let G5 c LP(Q; ui; RP) be a closed and
convex set and let &, c LP(Q; LP(€; p; RP)) be closed and convex. We say that ¢ weakly

two-scale converges to 6, written 65 N ©), if for every weakly two-scale converging sequence
(u6 € %pﬁ)po with us 2 u e LP(Q; LP(2; up; RP)) there follows u € 6.

As a special case, we introduce weak convergence of convex sets.

Definition 5.2. Let 1 < p < co. For each € > 0 let ¢ c LP(Q;RP) be a closed and convex set
and let %, c LP(Q;RP) be closed and convex. We say that ¢ weakly converges to %, written

G5 — ©p, if for every weakly converging sequence (uE € Cﬁ;)oo with u® —~ u e LP(Q;RP) there
follows u € 6,,.

We will prove a weak two-scale convergence result for convex sets within the following
setting.

Assumption 5.3. For Lx jup-almost every (z,w) € QxQ let C(x,w) c RP be a closed convex
set in RP with 0 € C(x,w) for all x,w and define

Xo: QxQUxRP - R, (z,w,u)+ dist (u,C(z,w)) .
For all uw e RP, the function Xe(-,-,u) is Bg ® Bo-measurable on Q x €.

Assumption 5.4. Let Assumption 5.3 hold. We additionaly assume there are functions
O:QxQ—->RP andr: QxQ - R, such that B,(;.)(O(z,w)) c C(x,w) for L x up-almost
every (z,w) € Q x Q. Assume further that for all finite step-functions ¢, the product Op is a
1-ergodic function. We furthermore make the following reqularity assumptions: The function
R: (z,w) = r(z,w) is Bo®Bg-measurable and an element of L1(Q; L1(Q2, pp)) for %+% =1.

Introducing the sets

6, (Q,w) = {u € LP(Q; 1 RP) = u(x) € C(z, T2w) for pi-ae. e Q}, for we ),

6,(QxQ) = {u € LP(Q; LP (% pp; RP)) = u(w,w) € C(w,w) for L x pp-a.e. (a:,w)},
(5.1)
we note that these sets are closed in the respective Banach spaces. Given a convex set C ¢ RP
containing an open ball around B,.(0) for some r > 0, the vector

a(u,C) := argmin {dist (a,u) : a€C} (5.2)
is uniquely defined for all u € RP. We first observe the following:

Lemma 5.5. Let Assumption 5.8 hold and let a(u,C) be defined through (5.2). Let ¢ €
Lr(Q; LP(Q, up)) be a finite step function and let a(p)(x,w) = a(p(z,w),C(z,w)). Then,
for all 1 < p < oo it holds that a(p) € €,(QxQ) and admits a Bo®Bo-measurable and p-ergodic
representative. The set O := a(®,) is dense in 6,(Q x Q) and all ¢ € S are p-ergodic.
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We shift the proof of Lemma 5.5 to Section 5.4. The main result of this section is the
following theorem, which is proved in Section 5.3.

Theorem 5.6. Let Assumption 5.4 hold and let €,(Q x Q) and 65(Q,w) be given through
(5.1). Then, there exists a set Q c Q with P(Q) =1 such that 6:(Q,w) % ©,(Q x Q) for all
w e .

Corollary 5.7. Let Assumption 5.4 hold, let p, = £ for all w € Q and let €,(Q x Q) and
%:(Q,w) be given through (5.1). Let

%,(Q) =l Q) {u €elP(Q): et (Q*xN) :u= /ﬂvd,u} : (5.3)

Then there exists a set Q c Q with P(Q) = 1 such that 6:(Q,w) =~ €,(Q) in the sense of
Definition 5.2 for all w € Q.

Proof. Note that €5 (Q,w) % %,(Q x Q) according to Theorem 5.6. Furthermore, u® =y
weakly in two scales implies u® ~ w:= [, @ dp weakly in LP(Q;RP) with u € 6,(Q). ]

5.2 Convergence of 1-homogeneous functionals

Given a reflexive Banach spaces %, the closed convex subsets containing 0 can be identified
with 1-homogeneous functionals on the dual space. We make the following two observations:

Lemma 5.8. Let Assumption 5.3 hold and let 6,(Q x Q) and €:(Q,w) be given through
(5.1). Let 110 + % =1l and V. : LP(Q; 15;RP) > R and ¥ : LP(Q x ;L x pup; RP) - R be given
through

U, (u):= sup w-odus, , U(u):= sup //u-od,updﬁ. (5.4)
765 (Quw) Q e, (QxQ) Y Q JQ

Then, for every sequence u® € LP(Q; us,; RP) such that uf Rue Lr(Q; LP(QY; up; RP)) there
holds
lim i(}’lf U, o(u) > U(u).

Furthermore, if Assumption 5.4 holds and if u® Boue LP(Q; Lr(Q), up; RP)) strongly in two
scales, we find
hn& U, ,(u®) =U(u).

The proof is similar to the proof of the following more general, time dependent result.

Lemma 5.9. Let Assumption 5.3 hold and let €,(Qx2) and €5 (Q,w) be given through (5.1).
Let 1—1)+ % =1, 1<p,g<oo, and V. : LP(Q; ue;RP) > R and ¥: LP(Q x 4 L x up; RP) - R
be given through (5.4). Then, for every sequence a® € LP(0,T; LP(Q; us; RP)) such that
af 2 ae Lp(0,T; LP(Q; LP(Q, pp; RP))) there holds
T T
lim inf U.(a%) > f U(a).
0 0

e—=0
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Furthermore, if Assumption 5.4 holds and a® Bac Lr(0,T; LP(Q; LP(Q2, up))) strongly in
two scales, we find

lim : \Daw(a):foT\D(a).

e=0
Proof. We write € := 6,(Q x ) and 6. = 6:(Q,w). Let ®, be the countable dense subset
of L9(Q; L4(2, up)) announced in Remark 4.1. By Lemma 5.5, we may assume that &, n %
is dense in €. We denote by PL(0,T;®,,€¢) the piecewise linear functions over (0,7") with
values in (R®,) n €. By density of PL(0,T;®,,%) in LP(0,T;%) and

T
f U(a)= sup [ [ /av dppdl,
0 veL1(0,T5%)

we choose for every ¢ > 0 a function vs € PL(0,T'; ®,, ¢’ such that fo U(a) < fOT (a,v5) 5 g+ +0.
Since vy is piecewise linear with values in R®,, we find that vi(¢,z) := v(;(t,x,wa) satisfies
v§ € L9(0,T;%.) and

lim inf \If (a®) = hmlnf( sup f f a vd,uw)
=0 Jo veLd(0,T;%%)

Zhrgllonffo [av[;duw
T T

:/ ffavgdupd£>f U(a)-9.
o JoJa 0

As ¢ was arbitrary, this concludes the proof of the first part.
Let a¢ 2 a. For every € > 0 let v® € L9(0,T;%.) be defined through

T
Ve = argmax{/ / a‘vdug, : v e Lq(O,T;‘KE)} .
0 Q

Then, there exists v € L1(0,T; L1(Q; L4(£2, up))) such that v° Xy weakly in two scales with
ve Li(0,T;%) due to Theorem 5.6. We obtain

T
iy | ety =i [ )
T
=[ /fcwd,updﬁsf U(a).
o JagJa 0
]

Lemma 5.10. Let Assumption 5.3 hold and let 6,(Q) and €5(Q,w) be given through (5.1)
and (5.1). Let %+% =1, 1<p,g<oo, and V. : LI(Q;15;RP) > R and ¥ : LI(Q x Q, L x
pup; RP) >R be given through

U, ,(u):= sup u-odl, U(u):= sup u-odLl. (5.5)
oets(Qu) Y Q €% (Q)

Then, for every u® € LI(Q; us,; RP) such that u® — u strongly in LI(Q) there holds

lir% U, o(u®) =U(u).
Proof. The statement follows from Corollary 5.7, the definition of 6,(Q) in (5.3) and Lemma
5.8. ]
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5.3 Proof of Theorem 5.6

Note the similarities between the statement of Theorem 5.6 and Mazur’s Lemma. The proof
of Mazur’s Lemma ist based on the Hyperplane Separation Theorem and the idea that every
convex set C in a Banach space 4 is fully characterized by the set of all hyperplanes that
do not intersect with C. In particular, it is possible to characterize a convex set in 4 by a
family ® ¢ #* of bounded affine functionals. In our case, B = LP(Q; LP(Q; up; RP).

For technical reasons we will only provide a countable set CIDS of hyperplanes in #*. We
will then show that the limit of any weakly two-scale converging sequence u® € 5(Q,w) lies
on the “correct side” of each of these hyperplanes. Finally, note that we cannot use the linear
functionals used in the proof of the Hyperplane-separation Theorem (which are based on the
Minkowsky functional), since we do not know whether these would be ergodic. Instead, we
will use a different construction.

Proof of Theorem 5.6. We assume, that O(xz,w) = 0. The statement for general O follows
from a consideration of the shifts C(z,w) ~ C(z,w) - O(z,w) and u®(x) ~ u(z) - O(z, T=zw).

Step 1: Recall the definition of a(u,C) from (5.2). We define the set C¢:= {u e RP : usyé C}
and study the case u € C¢. Since C is convex and 0 € C, the angle between a(u,C) and
(u=a(u,C)) lies in the interval (-5, %) and thus |a(u,C)|, < |u|, and (uv-a(u,C))-a(u,C) > 0.
Therefore, the function

u—a(u,C)

(I(U, C) ’ (’LL - &(U,C))

is well defined on C¢. By definition of ¢, we find

(u-a(u,C))? dist (u,C) dist (u,C)
(0-a(C) —a(0)) > T Ta@ Ol = T

LlclUl—)Llc(u)Z:

Ue(u) -u=1+ (5.6)
Furthermore, ¢ (u) - a(u,C) = 1. Since the hyperplane through a(w,C) with outer normal
e (w) is tangential to the convex set C we find

So(u)-w < e(u)-a(u,C) =1 for all weC, implying |8l (u)] < % (5.7)

Note that the second inequality follows from the fact that B,(0) c C, i.e. r|te| < |tef” < 1.
Step 2: We set Ye(u) =0 and a(u) =u if ueC. Let f e ®,. By Lemma 5.5, the function
a(f) is measurable and p-ergodic. Since f is piecewise constant, Assumption 5.4 guaranties
that
Xy(z,w) = Xe(z,w, f(z,w)), Af= X7 (R\{0})
and
0 if Xp(z,w)=0

1 else

i

XAy (:L’,(U) = {

are Bg ® Bo-measurable, where x4, = 1 if and only if (7,w, f(7,w)) € C¢(Q x Q). Defining
the function

Uezw)(f(z,w)) if (2w, f(z,w)) eC(Q xQ) |

) (5.8)
0 otherwise

U (z,w) = {
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we see that $(f) is measurable. Furthermore, [tI(f)| < R for all f due to (5.7) (with R given
in Assumption 5.4) and

”u(f)HLQ(Q;LQ(Q,M;)) <K= ”R”Lq(Q;Lq(Q,W)) for all f. (5.9)

Step 4: For any f € LP(Q; LP(Q2, up; RP)), estimate (5.6) yields the following pointwise
inequality:
flz,w) U(f)(z,w) 2 xa, (2,w) + (2,w)  V(z,w), (5.10)

where

dist (f (z,w),C(z.w))
(z,w)=] W@k for f(z,w) #0
0 f(z,w)=0

We find I;(z,w) <1 for all (z,w) € Q x Q. Since C(x,w) is convex, we find that Xc(z,w,-) is
lower semicontinuous for fixed (x,w). Since convergence in LP implies pointwise convergence
along a subsequence, we find that also

Le: LP(Q; LP(Q, up; RP)) - R, [ L= [Q/Qlfd,updﬁ is Ls.c. . (5.11)

For functions g € 6,(Q x ), ie. g(z,w) € C(x,w) for L x up almost all (z,w), we find by

(5.7) and (5.8)
foggu(f)d“PdcszfQXAf' (5.12)

Step 5: We assume u ¢ 6,(Q x ). Then (by a contradiction argument) we find that
L, > 0. Furthermore, for every 6 > 0 we find ¢5 € ®, satistying |¢s —u|,, < 0. Using the
above results, we conclude:

./Q/Qu(%)UdMPdﬁz[g[)u(¢6)¢§dupdﬁ+f(9[2ﬂ(¢5) (u— &) dupdl

(5.10)
> (foQXAMdupd/J+L¢5)—K5.

with K independent from § by (5.9). Since liminfs,o L4, > L, > 0 by (5.11), there exists

¢s € ¢, such that
[ [ swudupics> [ [ xa,, dupdc.
QJQ QJQ

Step 6: Let f e ®,. It is our aim to use U(f) as a testfunction for two-scale convergence.
However, since $( f) probably is unbounded, we define

fQa,w) if JU(f)(z,w)| € [n-1,n)

0 else

fa(w,w) = {

Since U(f) is Bg ® Bo-measurable, f,, is a finite step function for all n e Nand f =}, f, and
U(f) = X, U(fn). Finally, note that for all w €  such that the realizations $4(f,)., and x4,,
are measurable for all n, and for all ¢g° € €5(Q,w), i.e. g°(x) € C(x,7zw), we find again by

(5.7) and (5.8)
J,F @U@ (@) < [ vy, (2720 di (). (5.13)
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Let uf € LP(Q, pg,) with uf € 65(Q, w) for all € > 0 be a sequence of functions that weakly
two-scale converges to u € LP(Q; LP(§2, up)). We find that for all ¢ € ®,

fQ fgﬂ(cbn)udupdc:lg% /Q W(n) (w, T2w)ut (w)dpis, ()

(5.9)-(5.11) __ .
< lim [ () dps (2)

= [ s, dundc (5.14)

| fu@udppacs [ [ . dupac

and by Step 5, we obtain u € 6,(Q x (2). O

This implies

5.4 Proof of Lemma 5.5

We use the theory of set valued measurable mappings from [27].

Definition 5.11 (|27| Definition III.10). Let (U, F) be a measurable space and let X be a
separable metric space. Let I be a set-valued map from U onto the closed subsets of X.
Then, T is called measurable if u — dist (z,I'(u)) is measurable for all z € X.

Theorem 5.12 ([27] Theorem II1.9 and Proposition I11.13). Let (U, F) be a measurable space
and let X be a separable metric space. Let T' be a measurable set-valued map from U onto

the closed subsets of X. Then the following holds:
1. There exists a measurable function o: U - X with o(u) € I'(u) for all u e U.

2. The graph Gr(T") := {(u,z) e U x X : x €e'(u)} is measurable with respect to F ® Bx,
where Bx is the Borel-algebra on X.

The following result is an inverse statement of Theorem 5.12.

Theorem 5.13 (|27| Theorem I11.30). Let (U, F, i) be a complete measure space (that is F is
complete w.r.t. ) with o-finite pn and let X be a separable metric space. Let T" be a set-valued
map from U onto the closed subsets of X. If the graph Gr(T') := {(u,x) e U x X : x e T'(u)}
15 measurable with respect to F @ Bx, then I' is measurable.

We will prove Lemma 5.5 using Theorems 5.12 and 5.13.
To this aim, let ¢ be a finite step function. Then, the map (x,w) — dist (¢(z,w),C(z,w))
is measurable by Assumption 5.4. For every (z,w), we define the set

B(z,w) = {ueR? : |u-p(z,w)| < dist (¢(z,w),C(z,w))} .
The graph of B is measurable since

dist (@, B(z,w)) = max { |t — ¢(z,w)| - dist (¢(z,w),C(x,w)) , 0}
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is measurable for all @ € RP”. Therefore, by Theorem 5.12, the graphs of I' and B are
measurable and thus

Gr(I) nGr(B) = { (z,w,a(p(z,w))) } c (Q xQ) xRP

is measurable. Theorem 5.13 now states that function (z,w) ~ a(¢(z,w)) is measurable
with respect to the completion of By ® B in L ® pip.

It remains to prove the existence of @g. For this aim, given any ¢ € ®,, let a(¢) €
LP(Q; LP(2, up)) be given through a(¢)(z,w) = a(d(x,w),C(x,w)). By the above consider-
ations, we find that a(¢) is ergodic. Let u € 6, and ¢ € ®, with |u— ¢ 1, .10 up)) < 0- ,
as u(z,w) € C(z,w) for almost all (z,w), we find |u(z,w) - ¢(z,w)| > |u(z,w) — a(¢)(x,w)|
and thus |u - a(®) | 1o (@.crup)) € 14— Bl Lr(@.Lr(upy) < 9- Thus, we set OF := a(®,).

6 The Prandtl-Reuss plasticity equations
We study the stochastic homogenization problem of the Prandtl-Reuss plasticity equations:

£ _ e _ -1 _¢
e e py | DTIEQ D)
Vou® + Viup. =€+ p°, Oyp° € (o — Bp®),
Here, we look for u¢ having boundary values u¢|sqg = 0. Therefore, up;. prescribes the boudary
values of u® + up;.. Problem (6.1) consists of a force balance equation for o¢, Hooke’s law
o¢ « e, the decomposition of the strain V¢ (u® + up;.) into a plastic part p° and an elastic
part e as well as the flow rule for 0;p°. Here, V* denotes the symmetric part of the gradient.
Note that (6.1) has only two independent variables: u® and p¢.
We want to study the homogenization of (6.1) with help of the concepts developed in
Sections 4 and 5. Let Assumption 2.4 hold for (Q2,Bq,P,7). As a random measure, we
consider w — L, i.e. we assume that P = up by Remark 2.8 a).

6.1 Function spaces and preliminaries

In what follows, we will study suitable subspaces of L2(2). Most of these spaces have been
introduced in [11]. We denote by L? (R";R™") the set of measurable functions f : R?* - Rm»
such that f|y € L2(U;R™™) for every bounded set U and we define

L2, (R"):= {u e L? (R™;R™") | YU bounded domain, 3p € H'(U;R") : u = VQO} ,

pot,loc loc

DR = fue L2 (RAR™) | [ uevp=0vpeCHRY) .
b Rn
We can then define similar spaces on €2 through

L2,(Q) = {ue L2 (UR™™) : u, e L2

pot,loc

L2,(9) :={ue L*(Q;R™™) : u, € L2

sol,loc

Voo () = {u eL?,(Q): ‘/Qud'P = O} :

(R") for P —a.e. weQ},
(R") for P —a.e. weQ}, (6.2)
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From [32|, we know that the above spaces are closed and that L2(;R") =V, () ® L2 ,(Q).
For a € R™™ we write a® := $(a + ™). For sufficiently smooth functions u we write V*u :=
s(Vu+vul).

We will need the following Korn inequality on L2,,(€2;R") from [11].

Lemma 6.1. For all v e V3, (Q;R") holds

[Vl 12(@mneny € 2107 p2gommnxny - (6.3)

The following Lemma is well known in the periodic case [3] but also in the stochastic
setting [33]. Howver, since the proof in [33] heavily uses topological assumptions which we
do not have in our setting, we provide a new proof.

Lemma 6.2. If u¢ € H(Q;R") for all € with |Vuf|2q) < C for C independent from
e > 0 then there erists a subsequence denoted by uf and functions u € Hi(Q;R") and v €
L2(Q; L2, (4 R™)) such that

2s 2s
ut=>u and Vut=>Vu+v ase—>0.

Proof. Step 1: From Lemma 4.4 we obtain that u¢ e L?(Q; L?(Q2)) along a subsequence.
We first show that u does not depend on the {2-coordinate using ergodicity (2.9). To this
aim, consider a set A c Q and the characteristic function ¢(w) = xa(w). For any ¢ € C=(Q)

we find that Yus 22 . Thus, for any a € R® it holds
I, [ i m) —uCe.w)yi@)o(w) dP(w) d
= [ pa @) (0(r-) - 6(w) dP(w) d
=t [t (@)0(e) (6(rse0) - 0(7w) ) di
- lim fQ (uf ( + 2a)p(x + a) - u? (2)b(x)) G(Tew) da

Due to the apriori bounds, the family ufy is compact in L2(Q). Therefore, the Riesz-
characterization of compact sets in L?(Q) yields that

lim
e—0

[Q (uf (z + ca)u(x + ) - v (2) () B(T2w) da

<sup [ (u) (- +2a) = (1) Ol (g [6(r)] 2q) = 0-

Since a was arbitray, it follows for all z € R™ that u(x,-) = const.

Step 2: From Lemma 4.4 we obtain that Vu® Zye L2(Q; L?(92)) along a subsequence.

Let we consider a countable set @z, ¢ L2, (2) which is dense in L2 (). Then, for all b € Oy
and all ¢ € C>(Q), we find

[Q (6 (2) Vs (2) + u () V() - b(rew) da = fQ V (u (2)0(x)) - b(rew) da = 0.
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We take the limit ¢ — 0 on the left hand side and obtain
[Q (W(@)0(,@) + uvi(z)) - b(&) dP(&) da = 0.
After integration by parts, this implies

[wa) (Va(z) - o(z,&)) - b(@) dP(@) dz = 0.

As e C(Q) and b € ®,, were arbitrary and since @, ¢ L2 () is dense, the last equation

sol

implies that Vu(z) - v(x,-) € V() for almost all z € Q. O

Lemma 6.3 (Existence of small potentials, see [11]). Let v e V2 (2). Then, almost every
w € €2 it holds that for every e > 0 there exists ¢, € H'(Q) such that Vo, e o(7) = v(T2W0)
and | Gueoll 2y > 0 as e~ 0.

Finally, we will need the following simple result.

Corollary 6.4. Let uf € L2(Q;R™") and u € L?>(Q x Q) such that u® % wase—oco. Then

also (uf)* 2w,

6.2 The homogenization result
For the formulation of the homogenization result, we make the following assumptions.

1. Let (z,w) » C(z,w) c R¥™ for (z,w) € QxS be a family of closed convex sets satisfying
Assumption 5.4. We define the functionals

wewn=1" P e s v
too v fC(z,w) veC(ww)
and 7, (2,0) =" (2, T2w,0), Vew(T,2) =P(2, T2, 2).

2. We assume that C, B € L*(Q; L>(; Z(R»", R™"))) are symmetric C, B are is By ®
Bo-measurable. We further assume the existence of a constants 7, 5 > 0 such that

VIR < €C(a,w)E < ¢
f{ V¢ e R and for a.e. (z,w) e @ x Q. (6.4)
BIEP < €B(x,w)E < 3 ¢I?

Given w € Q and £ > 0, we set C. () := C(z,72w) and B ,(2) := B(z, Tew).
3. We denote by % two-scale convergence with respect to the random measure w ~ L,
pp =P and p = 2. With regard to Theorem 5.6, we consider a set {2 c  of full measure,

such that for all wc

(a) Remark 4.1 holds for a countable dense set @5 ¢ L2(Q; L?(2)). Note that &Y is
dense in L2(Q; L*(Q2;RY)) for all N eN.
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(b) Lemmas 4.10 and 6.2 are applicable and Lemma 4.6 holds for C' and B. Further-
more, we claim that the realizations C; ., (z) = C(z, 72w) and B, o, (z) = B(z, Tzw)
are ergodic.

(¢) €:(Q,w) and € (Q x Q) defined in (5.1) satisfy €5(Q,w) = % (Q x Q).

4. Let p§ € L2(Q;R™") be such that pf % po € L2(Q %) strongly in two scales and satisfy
the following: If for £ > 0, u§ € H}(Q) is the solution of the elliptic problem

-V - (Vou§ + Vup,-(0) = pg) = f(0)

then there holds (Veuf+ Viup;(0) —pf) — Bep§ € €5 for all ¢ > 0. Furthermore,

there holds Vu§ ki Vug + v strongly in two scales for some uy € Hj(Q) and vy €

L2(Q: 12,,(2)).
Remark. Condition 4. is satisfied by p§ = 0 for all € > 0.
Theorem 6.5. Let 1.-4. hold. There exists a unique solution

(u,0,p) € H'(0,T5 H'(Q) x Vyou (U R") x LA RY™) )
to the problem
—V-_/QadP:f on [0,T] xQ
Vou+ Vupy =Co+p-v°, 0Oyped*(o— Bp) on [0,T]xQ xQ

(6.5)

with p(0,-) = po(+). Furthermore, for every w € ) it holds: For each ¢ > 0 there exists a unique
solution (uf,p?) € HY(0,T; Hy(Q) x L*(Q) ) with p=(0,x) :po(xﬂ'%w) to (6.1) and ase -0
it holds that

W) Zu(t), vur®) Zvu) +u(t) and p(t) Zp(t) Vte[0,T].

We follow [11] and decouple (6.5) into macro- and microscopic processes. As announced in
the introduction, the macroscopic behavior is discribed by a hysteresis operator.

Theorem 6.6. For x € Q define the operator
S(z,): H'(0,T3RY™) — HY(0, T3 RY™)
¢ [ oeap
where o¢ € H'(0,T; L% ,(;R™)), pe € HY(0,T; L2(Q;R™™)) and ve € HY(0,T; L2, (S, R™))

sol pot
solve
{=Cog+pe—v, OpeedV™(oc-Bpe), pe(0,7) =po(a,-). (6.6)
Then, for all x € Q, X(x,-) is well defined on
{€e H'(0,T;RY™) : 0¢(0) ~ Bpe(0) € 9¥(0) }
and continuous with respect to the weak topology on H'(0,T;R™™). Furthermore, for u €

H}(Q) the following two statements are equivalent:
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1. There exists (v,p) € H'(0,T; L2, (;R™) x L2(; R™™) ) such that (u,v,p) solves (6.5)
with p(0,-) = po(-).

2. u solves
-V -3(VPu+ Vup;) = f

in the weak sense.

6.3 Proof of Teorem 6.5
We set

Ay = L(Q) x L*(Q; Vo (U R™)) x L*(Q; LA RY™))
H = Hy (Q) x L*(Q; Vi (4 R™)) x LA(Q; LA (4 RY™)),

and
S = Q) x L(Q:RI™) and 5 = L(Q) x LA(Q;RI™) Ve >0.

We note that for the functionals ¥ and ¥, ,, defined in (5.4) satisfy

vp)= [ [ v(wpew). Vo) = [ euler @) (67)
We now define the family of functionals
Eut 0TI =R (tup) g [ (0 (Bp) + 01 (Couo) =2/ (63)
where C. , 0 := Vu+ Vup;(t) — p. The expression

I(u, )| = /C; (p: (Bewp) + (V= p) : (Cow (Vi —p)))

defines a norm on J#°. This norm is equivalent with H-HH(%(Q)XLQ(Q), since convergence with
respect to ||, implies convergence with respect to H-||H5(Q)XL2(Q) and vice versa. Since up;, €

HY(0,T; HY(Q)) it holds that fQ IVupi|* € WH1(0,T). Therefore, we can apply Theorem 2.3
to get existence of a unique energetic solution (uf,pf) € CLP(0,T;.7F) to (A5, €y, Ver)-
The derivative DE. , = (D€, Di&. ) can be easily obtained to be

D, E(us,p") =~f(t) - V- [Ca_,gu (Vu® + Vup(t) _pa)] ) nga,w(usaps) =B.,p"-0°.

With regard to Section 2.2, we see that (ug, p,) is a solution to (6.1),, if and only if (ug, pg)

satisfy
00V, , (0w, (t)) + DE (¢, u,(t),p5(t)) forae. te[0,T].

From Theorem 2.3, we obtain an estimate
“(U57p8)||cbip([o,T];%f) + ||(atua>atp€)||L°°([0,T];,%q€) <C,

where C' only depends on |[f] 2y [wpirl i rmi () and 10Gl12q) = IPollL2(gua) and
is thus independent from e. By Theorem 4.10 and Lemma 6.2, there exists (u,v,p) €
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Whe([0,T];74) and o € Whe([0,T]; L?>(Q x 2)) and a subsequence, still denote (u?,p?),
such that for all ¢ € [0,T]

u(t) = u(t) strongly in L*(Q), 0uf(t) = dwu(t) weakly in L?(Q),
(1) Zp(t) vuE(t) 2 vu(t) +v(t) o°(t) X o(t)  weakly in two scales,
(6.9)

O (t) % Op(t)  OyVus(t) % O vu(t) + du(t) 0o°(t) % Oy (t) weakly in two scales,
Next, we define the functional
e 0T >R, (tupo)eg [ ] @i (Bro:(Co 20w, (610)

where C'o = V* (u+up;) + v$ —p. The derivative DE = (D,E,D,E,D,E) can be easily
obtained to be

aﬁ:—ﬂw—v La, (6.11)
D€ =Py (C7H (VS (u+upir(t)) +v*=p)) and D,E=Bp-o. (6.12)

Here, Ppo : L2(Q; L2( R ™)) — LA(Q; V2, (4 R™)#) is the orthogonal projection. From
the convergences (6.9) and Lemma 4.6, we obtain

1iIgLi()nf E(t,us(t),p(t)) 2 E(t,u(t),v(t),p(t)) .
From Assumption 4. of the initial conditions, we obtain
lim £.(0,47(0).p7(0)) = £(0,u(0), v(0). p(0)).
Due to linearity, it is easy to verify that
lai_r)%fotat&(s,ua(s),p‘f(s))ds: fotatg(s,u(s),v(s),p(s))ds.

Furthermore, from Lemma 5.9 and the convergence (6.9) we obtain

t t
my[www[mw)mmn
e~ 0 0

Using the fact that (u®,p®) is an energetic solution of (7%, &, V. ) and the last four conver-
gence results, we obtain for all t € [0,7']

¢ ¢
€(t,u(t),v(t),p(t))+f0 \I}(atp) SE(O,U(O),U(O),p(O))—A atg(s,u(s),v(s),p(s))ds
It only remains to show that (u,v,p) satisfies (2.4) for all ¢ € [0,T] with £ and ¥ defined

above. Then, from Lemma 2.2, we get that (u,v,p) is an energetic solution of (74, V).
From (6.11)-(6.12) we then obtain that (u,v,p) solves (6.5).
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We chose test functions ¢ € V2, (€2) with small potentials ¢, .y as in Lemma 6.3 and
©1,2 € C3(Q). For all t €[0,7] we find

S F@-er=tim [ 1) (o1 patey) = lim [ o*(1): (V1 + patha(a/e) + Gy Vi)

:fQ[Qa(t):(wlwngw%

We conclude -V [, o(t) = f(t) and o(t) € L2(Q; L% ,(2)) for a.e. t € [0, T] which is equivalent
with
D E(t,u(t),v(t),p(t)) =0, Du&(tu(t),v(t),p(t)) =0.

Furthermore, B.p®-o°¢ 2 Bp-o. Since (pf,uf) are energetic solutions, there holds B.p®—o° €
¢5(Q,w) and from Theorem 5.6 we conclude that

D,E(t,u(t),v(t),p(t)) € 62(Q x Q) =9,V(0).

Therefore, we obtain that U*((u,v,p)(t)) =0 for all t € [0,T']. Lemma 2.2 yields that (u,v,p)
is an energetic solution to (6.5). This concludes the proof.

6.4 Proof of Theorem 6.6

Like in the proof of Theorem 6.5, we can prove the following: for fixed x € Q and £ €
HY(0,7;R™") it holds that o¢ € L2(0,T; L% ,(;R")), pe € L2(0,T; L2(Q;R™™)) and v €
L2(0,T; V2, (S R™)) solve (6.6) if and only if (pe,v¢) is the unique energetic solution to
= A E TR < V2 (G RY),

oc(Ome) = [ 0o, 0me) dur
1
Enc(tmev) =5 [ [ (e (B Ipe) +oc: (Ol )o0))
where C(z,-) o = &+ vg = pe. Furthermore, Theorem 2.3 yields the continuity of Y(x,-) with

respect to the weak topologies. The equivalence of the formulations 1. and 2. is easy to
verify.

7 Coulomb-friction on a rough surface

7.1 Formulation of the problem and homogenization result

In this section, we investigate homogenization of the following problem: We define
Q:=[-1,1]"1tx[0,1] c R" with 'y := [-1,1]"' x {0} and T'p := 0Q\I'y

and denote v the outer normal of I'yy. We then consider the following elasticity problem with
mixed boundary-conditions

-V-(AVu)=f on Q, —v-AV*u € 0Y(du) on Iy, u=up; onlp. (7.1)
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We denote by H; ,(Q) the space of all functions u € H*(Q) such that ulr, = 0 and set
HuHHéD(Q) = | Vul 2y A function we H(0,T; Hy 1 (@Q)) is called a weak solution to (7.1)

if and only if

Jov@wes [ v (vurun))= [ fro VoeHin(@),

where up; € HY(0,7; HY(Q)) with up;(t)[r, = 0 for all . Like in the previous section,
A: Q - R will be a spatially heterogeneous coefficient matrix. Furthermore, ¢ will also
be spatially heterogeneous.

More precisely, let Assumption 2.4 hold both for (Q, Bo,P,7) and for (Q,, Ba., Py, 7),
where 7, is a n - 1-dimensional ergodic dynamical system on §2,. We consider the random
measures w - L"q on  and w, » L7 on Q. with Palm measures P = pup and P, = 1, p
respectively (see Remark 2.8 a) ).

For the formulation of the homogenization result, we make the following assumptions.

1. Let A e L*(Q; L>(Q; Z(R¥", R™™))) be symmetric a.e. and Bg ® Bo-measurable.
Assume the existence of a constant a > 0 such that

alé) < €Az, w)E < é|€|2 V¢ eR" and for a.e. (z,w)e @ xQ. (7.2)

Given w € 2 and £ >0, we set A. (7)== A(7, Tzw).

2. Let C: T'x 2, —» 28" be a family of closed convex sets satisfying Assumption 5.4 with
R” replaced by R*", @ replaced by I' and  replaced by €2,. We define

Te(x) = {v eR™: Jue L'(Q,)s.t.v= fm udP, and u(w) € C(z,w) a.s.} (7.3)

and the functions

Y(x,z):= sup v-z, Vew (,2) = sup v-z.
veZe(z) veC(z,T,Y,%w,y)

Recalling the definition of U and W, in (5.5) with @ replaced by I', we then find

U(u):= sup ua:—/Fz/)(-,u), U (u):= sup _/FUUZ/F‘%M('W)

aeta(T) JT 0€6s (Tyw)

Theorem 7.1. Let 1.-3. hold. For almost all w € ) and Wy € 527 the following holds:
For every f. e H'(0,T; L*(Q)) and every uj € H(Q) satisfying

-V (A wVug) = f2(0), -v-A. ,Vug e 6 (I w,y). (7.4)

there exists a unique weak solution u® € H*(0,T; H*()) to the problem
-V-(A. V') = f. on Q, —v- A VU €0y, 4 (Ou®)  on Dy, u® =up,; onlp,
(7.5)

satisfying the initial condition u®(0) = ug.
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Furthermore, if fo = f in HY(0,T;L*(Q)) and uf - uy in H(Q) as € - 0, then there
exists u e H'(0,T; H'(Q)) such that u* -~ u weakly in H'(0,T; H'(Q)) as € - 0 and u is the
unique weak solution of

-V (ApomVu) = f on Q, v+ ApomVu € 0Y(dyu)  on Ty, w=up; onlp. (7.6)

Here, Apon, is defined through

(Apom)ij = min fQ(’Ui +e;)A(vj +€), (7.7)

vwel2 ) (9)

where v; is the unique minimizer of [(v+e;)A(v+e;).

7.2 Proof of Theorem 7.1

We consider the following function spaces: Let L?(I'y) be the space of square-integrable
functions with respect to the Lebesgue measure on I'y. Furthermore, let H2(I'y) be the
trace space of Hj ,(Q) on I'y. Then, the operator

1 .
H2(FN)_> (%,D(Q)) u’y'_)u’y;
were i, solves
_A,&’y:oa on Q7 ﬁ”y'FN = Uy, a”Y|FD :07

is well defined.

Lemma 7.2. Foru ¢ H&D(Q) set uy = ulp, and u, = u—i.,. Then , the mapping u — (U, u,)
is an isomorphism H} ,(Q) -~ H'?(T'y) ® H}(Q) and becomes an isometry with respect to
the norms

[l @) = 1Vulzgy  and [(uy u) gy omiq) = IV (ta + ) L2(q) -

Proof. Let u € H} ,(Q). Then u, € H'/*(Ty) and u, € Hj(Q). For (u,,u,) € HY*(Ty) ®
Hg(Q), we note that u, + 1, € Hj ,(Q). O

Thus, for u e H} ,(Q) we equally write (u,,u,) and identify @, ~ u, if this will not cause
confusion.
For simplicity of notation, we write:

L = L3(Q) x LX(T), My = A x L(Q: V2, (")) and 5 = L(Q) x L*(Iy) for all
e>0.

2. A = HH(Q) x H'2(T'x) x L2(Q; V2,,(Q:R")) and 7 = H(Q) x HV2(Ty)
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Existence of solutions for the s-problem We define the family of functionals
Eew i [0, T x5 - R, (7.8)
(1 g, 0) = 5 [ (Ao (@ 20 0) - [ f(wrupn(®), (79)
From Lemma 7.2, we obtain that
Jul = fQ V(g + i)t (Ao ¥ (g + @) = fQ Vou: (Ao Vou)
is an equivalent norm on JZ°. We find
Dy,Ecs =V (AcoV° (ug + upir(t) +0y)) = fe, D, E=-v-A. ,V° (ug+upip(t) + i) .

Furthermore, due to our assumptions, u§ satisfies (2.4) for every ¢ > 0. Therefore, Theorem
2.3 yields existence of a unique energetic solution u¢ e CL?([0,T']; 7F) to

0¢ a\Ifg,w(atui) + DE. ,(t,u).

The solution uf also solves (7.5),,.

Passage to the limit ¢ >0 From Theorem 2.3, we get uniform bounds [u|| ¢ (o 71,7 <
C. From Lemma 6.2 and Lemma 4.10, we find a subsequence, still labeled u¢, and functions

ueClr(0,T; Hy ,(Q)), ve CHP(0,T; V5, (€;R™)) such that us(t) — u(t) weakly in H'(Q)
and Vus(t) e Vu(t)+v(t) for every t € [0,T]. By Rellich’s embedding theorem, ug(t) — u,(t)
strongly in L2(T"y) for every ¢ € [0,T].

We define the functional

E:[0,T]|x# >R, (7.10)
(t g, v, 1) > %fQ[Q (50 + 07 [A (V° (u+ 2upin(£)) + 0°)] - fo(ume(t)) ,
(7.11)

and note that the above convergences of u¢ imply (by Lemma 4.6) that
lirgionf E(t,us(t)) > E(t,u(t),v(t)),
as well as (by Lemmas 5.9 and 5.10)
hriionffotxlze(atué) > fotqf(atu) vt e[0,T].
Furthermore, for ¢ = 0 we obtain due to (7.4) that
g €0, (0)) = £(0.(0), (0)).

The last three convergence results imply

E(tu(t), v(t)) + /Ot WD) < £(0,u(0), v(0)) + fotate(s,u(s), o(s)) ds. (7.12)
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Stability Now, let ¢; € H&D(Q), ¢ € CH(Q), ¥ e L2,(2) with a potential ¢, from
Lemma 6.3 and set ¢.(x) := p(2)¢enp. By the strong convergences . — 0, u¢ - u and
Lemma 5.9 we then obtain

E(t,u(t),v(t)) < lirgLiOnf E(t,us(t)) < lirgionf E(t, b1+ ) + U (1 + . —u(t))
= £(t7 ¢17¢) + \Ij(qsl - ’U,(t)) :

Since V¢ for ¢ € Cy(€;R") are dense in L2 ,(Q2;R"), we obtain that for all ¢ € Hj ,(Q),
we L2(Q; L2, (§;R™)) there holds

E(tu(t),v(t)) < E(t, ¢, w) + U(d—u(t)). (7.13)

Thus, by Lemma 2.2, (u,v) is an energetic solution to (J43,E, V).

Macroscopic model The derivative DE = (D€, D€, D,,€) can be easily obtained to be

Dy =-f(t) -V -[A(V’ (ug +upir(t) +uy) +0°)] , (7.14)
DyE =Ppot (A(V? (ug + upir(t) + uy) +v%))  and (7.15)
Duwg =-v-A (vs (uq + uDi?"(t) + u’Y) + US) (716)

Here, Py, : L2(Q; L2(SL, R ™)) — L2(Q; V25, (Q2; R™)#) is the orthogonal projection.
From D,€ =0, we obtain that

v =0 (uq+upir(t) +uy) ¢;,
=1
where ¢; € L2(Q; V2, (€;R™)) is the unique minimizer of

&0)=3 [ [+ 01114 (6 4.0)].

Pluging this information into (7.12)-(7.13), we find that u € C**([0,T7]; H; ,(Q)) is an
energetic solution to (2, &, W), where

5 1

Etu) = 2 [Q [2 [V° (g + upip (1) +uy) ] [Apom V° (ug + upir(t) +uy)] - L fu,
and Apop, is defined through (7.7).
8 Random Fissures

In this section, we will provide the theory that is necessary to formulate and to prove the
results of Section 9.
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8.1 Geometric construction

As a special case of stochastic geometries, we introduce random fissures. Let Assumption 2.4
hold for (€2, B, P, 7).
Let 0 <7< 3, B, := B,(0) and B := B%(O). Let T, ={0} x D for D = {2/ e R*1 : |z/| <r}.

Assume there exists a set of parameters U ¢ RN, N €N, and a function f: B xU — B such
that U is a bounded domain and such that

1. f is continuous

2. For every y € U, the mapping f(-,y) lies in C2(B) and

sup [ f(+, y) | 2y < o0
yeU
3. For every y € U, the function

f(?y) : R™ _)Rna
T else

I’_){f(x,y) if reB

lies in C2(R").

We introduce the sets A := {0,1} x U and Q := [0,1["xAZ" and write every w € Q in the
form w = (y,a) with y € [0,1[", a € AZ". Given j € Z", we refer to the j-th coordinate of a
by a; = (aj1,a,2) with a;; € {0,1}, a;2 € U. Given any probability measure P4 on A and
the Lebesgue measure £, we define the measure P := L ® @jczn P4 on Q. Given w € (2 we
introduce the set

MNw)=y+ H f(Ty,a52).

JezLm Zajyl:1

8.2 Sobolev spaces

We now focus on Sobolev spaces on random fisures. The construction of such spaces goes
back to |[14], where it was used in context of random tessellations, and was later used in [9, 10|
in a similar setting. Since random fissures also share all properties of random tessallations
that where needed in |9, 13| and results proved there also hold in the current setting. Given
a random fissure I' = I'(w) with G := R"\I', we define the following spaces:

CHG)={u:R"->R ‘ ulg e CY(G)}, Ci(QNnG):={ueC(Q) ‘ ulag = 0} .
Using vr we define the trace operators:

+: O(G)->C(Ty), ug(x) = l}fgu(a: ttvp(x)) for x ey,

where I',s = I'\7y denotes the non-singular part of I'. On noting that the operator [u] := u,—u_
is well defined for u € C}(G), we define the norm

waney= ( [ordcs [ vapacs [Tupanet)’
fulimancy = ( [ w?de+ [ vupdc+ [l
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and define H'(Q nG) and H}(Q n G) as the closure of C}(G) and C}(Q nG) with respect
to | - [ a1 (@ne)- Note in this context that [-] extends to an operator

[]: H'(G) > H2(T).

For every ¢ € H'(G) and ¢ € C}(R™;R") there holds:

qusv-de:—fG(w)-de—fF[[qﬂ]w-ypd%n—l (8.1)

Writing pr(B) := H"1(I'n B), we then find the following trivial fact:

HY(QnG)= {u e L*(Q) | 3Du e L*(Q. Ll + pr)" :
/C;UV ~pdL = L ¢-Dud(L|g+pur) Vo e C’(‘]"’(Q)”}. (8.2)

This motivates the following definitions:

LQ(Qv Gvr)n = LQ(Q7£|G + ,UF)n,
L2,(Q,G.T)={¢ e L*(Q,G,I)" | Jue H(QNG) : Du=g},

L2,(Q,GT):= {¢EL2(Q,G,F)” Vue H(QNG) : /C;ﬁng-Vud£+/;¢-[[u}]ypd,up:O}.

for a bounded and open @ c R™. Moreover, we define

LIQOC(Gv )" :={¢ | ¢ € L2(U, Llg + pr)" V¥ open and bounded U c R"},
L?oc,pot(Gvr) ={¢pe L] (GT)" | (0X3 Lfmt(U,G,F) ¥ open and bounded U c R"}

loc

L} w(G. D) :={¢pe L} (G.I)"| ¢ e L2,(UG,T) Vopen and bounded U c R"}

loc sol

Lemma 8.1 (Orthogonal decomposition Lemma [9, Lemma 4.10]). Let Q c R™ be a bounded
domain. Then

L2(Q7 G7 F) = L;l?)ot(Q7 G7 F) ® Lgol(QJ G7 F)
and for every ¢ € L2 (Q,G(w),T'(w)) holds V-¢ =0 on G(w) in the sense of distribution.

Sobolev spaces on I',  We denote OT', := {0} x D and HO%(F*) ={[u] : we HY(B\I',)}.

1
As a norm on H; (I',) we chose

lull s

HE () = inf{Hﬂ'HHl(B\F*) [a] = “} . (8.3)

1
We note in this context that C}(I') := {g € CY(T',) : glor, =0}, is dense in HZ(T',) since
1
CY(B\I',) n HY(B\I',) is dense in H!(B\I'.). However, we still have to show that Hg(T.)

is a Hilbert space.
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1
Lemma 8.2. The linear operator H3 (I',) - HY(B\I'.), g = u, given through

-Au,=0 on B\I'.,

Uglop =0
1
is continuous and the space Hj (I'y) with norm (8.3) is a Hilbert space. Furthermore, it holds

ITull oy + IVl 2,y < ClIV Ul 2pyr,) - (8:4)

Proof. Let g € HY(B\I',) be a minimizer of HgH 2y There exists a continuous operator

g~ g€ H'(B) such that glos = glop and ] g5y < C'| gl g1(p\p,)- We now solve the problem

-At,=-A(-g+§) on B\I',,

ﬂglaB = 07

which has a unique solution. Setting u, = i, + g — g the operator g = u, is continuous by

construction. The space HO%(I‘*) is complete since for any Cauchy sequence (g,),,, also
(ug, ), is @ Cauchy sequence.

We introduce Zp := [-3, 3]xD. In order to prove (8.4), assume there exists a sequence u,, €
HY(B\I'.) such that |[u, ]| 20,y + | Vtn | 2 p\p,y = 1 for all n € N but with [Vou,| 12(p\p,) = 0.
Without loss of generality, we may assume that | B\zp Un = 0. From classical Korn’s inequality,
we can deduce that Vu, — 0in L2(B\U) for all open sets ', c U c B. By Sobolev’s inequality,
we obtain that u, — w in L2(B\U) and that w is constant. In particular, we obtain wu, — 0
in HY(B\Zp). Furthermore, we find

lwnlr2(pazy) < C (vun | 12(Bnzp) + lUn ||H1/2(BmazD)) < C(“VSUnHLz(BnZD) + HunHHl(B\ZD)) :

Therefore, u, - u in L?(B) and Vu, -0 in L2>(B\I'.). This implies |[u, ]| >(r,) = 0, which
is a contradiction to the initial assumptions. ]

Random fissures Let I'(w) be a random fissure. Then, according to Lemma 3.4, (. =
H"1(I'(w) n-) is a random measures with corresponding Palm measure . By Theorem
3.5, there exists a prototype I’ c 2 of I'(w) such that pp p concentrates on [. Weset G := Q\F
and G(w) := R?\I'(w). The measures p,(B) := L(BnG(w)) also define a stationary random
measure with p, = £|¢ and Palm measure p := P|s (see Theorem 3.5).

We set L2(G,T") := L2(§2, o + pir p)™ and

(Q,G,T) = {u e L2(Qp+prp)" | u(rw) e L, (G(w),['(w)) for prae. w}, (8.5)

pot

L%,(9Q,G,T) = {u € L2(Q,p+ prp)" | u(ryw) € L

,pot

loc,sol

(G(w),T(w)) for prae. w).  (8.6)

From Section 4 of [9], we know that both L?,(G,I') and L2 (G,T") are nonempty. Unfortu-
nately, there exists no orthogonal decomposition result similar to Lemma 8.1. However, we
can get the following result:

Lemma 8.3. /9, Lemma 4.13/L2 (G ,T) and L2,,(G,T) are closed subspaces of L*(G,T") and

(G,I)*c L?

pot

(G.T).

sol
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8.3 Two-scale convergence

Given any random hyperface I'(w) with G(w) := R"\I'(w) and any € > 0, we set G®(w) :=
eG(w) and I'*(w) := eI'(w). We then define

po,(B) = e"u,(e'B),
[rwy(B) = &"ure) (e B) =eH" (I*(w) n B).

We aim for a two-scale-convergence result in the spirit of Lemma 6.2 for functions with jumps.
To this aim, we need some Poincaré inequalities and some Rellich-type embedding results for
spaces HY(Q n G¢(w)).

Lemma 8.4. Let I'(w) be given by the construction in Section 8.1.
1.There exists 0 < M < oo such that for almost every w € ) there holds

#{T(w) N (t,t+5)} < M for almost all t € R™ and s € S"!, (8.7)

where (xz,y) is the line segment between xz,y € R™ and # is the cardinality of a set.
2. There exists a constant C >0 such that for alle >0, allw € Q and all u e H(Q\I'*(w)),

there holds 1
- [u]

+|Vu <o S C [ Viu (W) -
ey 17l < C T s

3. The space HY(Q\I'*(w)) is isomorph to H'(Q) x HO%(F‘S(UJ)). For uw e H'(Q\I'*(w)),
we equally write u = (uq, uy) with u, € HY(Q) and [u,] € HO%(FE(w)).

Proof. The first statement is evident. Concerning the proof of 2. and 3. note that this
follows from Lemma 8.2 in combination with a simple scaling argument. O]

The following two results were proved for so called random tessellations, a special case
of random hyperfaces. However, the original proof does not require I' to be a tessellation,
but only that I' is a hyperface that satisfies Condition (8.7). A further generalization, going
beyond Condition (8.7), can be found in [10].

Proposition 8.5 (Compactness property [14]). Let Q be a bounded domain in R™. A fissure

I satisfying Condition (8.7) has the following compactness property: For any s €]0, 5[ ezists
a constant Cy independent on e such that for every € >0 and every ¢° € H{(Q n G®):
e12 £12 -1 T2 n-1
6 i < Ce( [, IvoPdc et [ o P ). 85)
Furthermore, for every ¢¢ € H'(Q n G¢) there holds
2
Py <Gl [ Pacet [ [oPan ([ %w) . 8.9
T 5O [, IvoPac e [ opane ([ o 89

The last Proposition implies the following important consequence:

Lemma 8.6. Let v € L2, (G,T) and let Q c R" a bounded domain and w € Q such that v,
has the ergodicity property. Then, for every e > 0 there exists ¢. € H'(Q n G*(w)) such that
Do-(z) = w(rzw) and |¢e 2y = 0 as € - oo.
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Proof. By definition of L?,(G,I"), we obtain a sequence ¢. € H'(Q n G*(w)) such that
Voo (x) = v|a(t2w) and [¢.](2) = ev|p(Tzw) and [, ¢ = 0. Thus, by (8.8) we find

2 . £|2 -1 72 n-1
Hs(Q) < Chl’?_)soup(/c;nce |v¢ | dL+¢e »/QHFE[[QS ]] dH )

< C'limsup ([ v (Tew)dL + € [ UQ(Tzw)d,Hn_l)
QnGe € Qnre €

e—0

lim sup ]
e—0

2
=C ||U||L2(G,r) )

such that ¢, is precompact in L2(Q). For any ¢ € H}(Q)" n C,(Q)™ we obtain

Jyov-v=tim fovptim [ veou- [ v
=lim v(Tzw)Y(z) - ev(Tew)vpe - ()

e=0 JQnGe(w)

e o

where we used that constants are in L? (G,I"). Thus, ¢. — 0 in L2(Q) which implies ¢. - 0
as € » 0 due to precompactness of ¢.. O

QNIe(w)

From Proposition 8.5, we also obtain the following two-scale convergence result.

Proposition 8.7. [9] For a random tessellation (G(w),T'(w)) that fulfills the compactness
property 8.5 in R™ with Q c R™ bounded and open and fized w € Q let u® € H}(Q n G5(w))
with

€ 1 g
[Vu H2L2(Qme(w)) + g” [u ﬂ“%Q(QmI‘g(w)) <C
Then there are u € Hy(Q) and uy € L*(Q, L; L2, (G,T")) such that as e - 0:
v ou o in LX(Q)),
2s
VUt = Vu+ |, (8.10)

1 € 2s
gﬂu IIVFE(UJ) - ul‘F .

9 Coulomb-friction on a microstructure

We study the stochastic homogenization of a problem of elasticity with cracks and friction.
A more general problem has been studied in the periodic setting, refer to |6, 22|.

Let T': Q - F(R") be the random fissure constructed in Section 8.1 with normal field
Ur(w)- We then consider the following problem:

-V (AVus) = f on Q\I'*(w), (9.1)
(v (AV7)) € éaqu ([0°]) on T*(w). (9.2)
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We additionally prescribe the boundary values through uflsg = upirlag and demand that
[uf]y = [uf] - vre 2 0 and up;(0) = 0. In order to formulate (9.1)-(9.2) in a weak sense, we
define G(w) := R"\I'(w) and recall the definition of H'(QnG) in (8.2). The weak formulation
of our problem then reads as follows: Find u¢ € Hj(QnG#(w)) such that [u¢], := [uf]-vre 20
holds almost everywhere and such that

o AT @ up) v [ 20w (0D el = [ Fo Vo e HYQnGW)). (03

Let piry(B) = H" ' (BnI'(w)) be the Hausdorff-measure on I'(w) with the scaled measure
115y (B) i= €"ur(w) (7' B) and prp the Palm measure for yir(,) defined through (2.13).

9.1 Formulation of the homogenization result

For the formulation of the homogenization result, we make the following assumptions.

1. Let A e L*(Q; L>(Q; Z(R¥", R™™))) be symmetric a.e. and Bg ® Bo-measurable.
Assume the existence of a constant a > 0 such that

alé) < EA(z,w)E < 1 ) V¢ e R™ and for a.e. (z,w)e@Q x . (9.4)
a
Given w € Q and € > 0, we set A ,(7) = A(z, T2w).

2. Let C: Qx I - 2R be a family of closed convex sets satisfying Assumption 5.4, where
I' c Q is the prototype of I'(w). We define the functions

Y(r,w,2z):= sup v-z, Yew(z,2)= sup wv-z.

veC(z,w) ’UEC(I,T%&))

Recalling the definition of ¥, W, in (5.5), we then find

U(u):= sup f [uad,updw, U_(u):= sup uodpg .y -
oet,(Qx) Y Q JT ’ oets (Quw) JT*(w) e

3. For simplicity, we assume that u§ € H}(Q) solves
~V - (A (u§ +upir(0))) = f on Q\I'*(w).
Thus, we assume there are initially no jumps of u® accross I'*(w).

Theorem 9.1. Let 1.-3. hold. There exists a unique solution u € Ct([0,T]; H(Q)) and
veClr([0,T]; L*(Q; L2,,(Q,G,T))) with v(0) =0 to

pot

_V'fQ(A(VU"‘VUDir+’U))=f on Q= [0,T],
AT—/QL(VU+V'LLDir+U)AW+‘AT‘/Q£8w(8tU)W:O
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for all we L*(0,T; L*(Q; L2,,(Q,G,T))) with v|p-vr 20 a.e. on Q x .

Furthermore, for almost all w € ) it holds: For every ¢ > 0 there exists a weak solution
uf € CLP(HI(Q nG*(w))) to (9.8) such that [uf], = [uf] - vre > 0 holds almost everywhere
and such that u¢(0) = ug. As e — 0, it holds that for all t € [0,T]:

w(t) > u(t)  in L(Q)),
v (t) 2 vu(t) + v(t)],, (9.5)

é[[ug(t)}]ype(w) 2 0(1)]...

9.2 Proof of homogenization result

The proof is very similar to Sections 6.3 and 7.2, and we only provide a short skech. With
the definition of L2 ,(Q,G,T") in (8.5), we consider the following function spaces:

L. 6 =1L%(Q) x L2,,(Q,G,T) and ;7 = L2(Q) x L2(F5(w);u§(w)) for all € > 0.
2. A = Hy(Q) x L*(Q: L, (. G.T)) and 457 = HY(Q) x Hy*(I*(w))
With the notation from Lemma 8.4, we define the functional
£:[0,T]x 5 >R

1
(t,ug,uy) = B _/Q(VUq + Vb + Vupir (1)) Ac w (Vg + Vi, + Vup(t) = 2£(t))
K - Upe
+ /F.E(Q) ([us] - vre))

where K(u) =0if u >0 and K(u) = oo if uw < 0. Then, Theorem 2.3 yields the existence of
a unique energetic solution u® € CO1([0,T]; ) to (J45,E.,¥.). A calculation similar to
Section 7.2 shows that u® is a weak solution to (9.3). The apriori estimates from Theorem
2.3 Lemma 8.4, Proposition 8.7 and Lemma 4.10 provide a subsequence of u¢ = (ug,ui) and
functions u e C" ([0, T]; Hy(Q)), v € C"([0,T]; L2,,(Q2,G,T)) such that for all ¢ € [0,T'] the
limit (9.5) holds.

It remains to verify that (u,v) is the unique energetic solution to an apropriate limit

problem (74,&,¥). The natural canditate for the energy functional is
E:[0, T x5 —-R

(t,u,v)»—>%fQ/Q(Vu+v+VuDiT(t))A(Vu+v+VuDir(t)—2f(t))

+/Q[FK(U~UF).

The passage to the limit in the energy inequality follows along the lines of the proof of
Theorem 7.1. Here, we additionally use Lemma 5.8 to obtain

0= lim K([[ui]]-ups(w))=lir€ILi(]rlf/F€(Q)K([[ufy]]-Vps(w))2/Q/IZK(U-VF)ZO.

=0 Jre(@)
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In order to pass to the limit in the stability condition, we use the form (2.4) and observe that
this is equivalent with

V- (Aew(Vug + Vs, + Vupir (1)) = £(t),

(9.6)
a® = (Ae (VU + VUS + Vup (1)) - vre() € 9V(0) .

As € - 0, we obtain for almost all ¢ € [0,7T] that a®(t) % 4, for some a; L2(Q; L2(T; up)).
Given @1, 00 € C2(Q) and 0 € L7 ,(Q, G, T'), we use o () := p1(2) + @2(7) de w,0(7) as a test
function in (9.6), where ¢, ; is the potential from Lemma 8.6, and obtain

[ (Vug + Vus + Vupir(t))Ae w(Vo1 + e Vipa + <02(at)®(7§w))
- a®po(z)0(Tew)d s :fprex .
_/Ff(w) 2( ) ( € ) I'(w) Q ( )

In the limit € — 0, the last equation separates into
Vu+v+ Vup;(t)) AV =[f- x),
K o)AV = [ f-o1(2)
/f(Vu+v+VuDir(t))Aﬁg02—[ [atapgﬁdupz().
QJQ QJr

From the second equation, we infer that for almost every x € @ it holds (Vu(x) + v(x,-) +
Vupi(t,x)) € L2 (2, G,T) with a;(z,-) = (Vu(z) + v(z,-) + Vup;(t,z)) - vr. Furthermore,
we find by (9.6) and Theorem 5.6 that a; € 0¥ (0). We infer D,E(t,u(t),v(t)) e 0¥ (0) and
the limit (u,v) satisfies the stability condition for (J7,&, V).
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