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Abstract

In this study we revisit experiments by Sethuraman et al. [J. Power Sources, 195, 5062
(2010)] on the stress evolution during the lithiation/delithiation cycle of a thin film of amor-
phous silicon. Based on recent work that show a two-phase process of lithiation of amor-
phous silicon, we formulate a phase-field model coupled to elasticity in the framework of
Larché-Cahn. Using an adaptive nonlinear multigrid algorithm for the finite-volume dis-
cretization of this model, our two-dimensional numerical simulations show the formation of
a sharp phase boundary between the lithiated and the amorphous silicon that continues
to move as a front through the thin layer. We show that our model captures the non-
monotone stress loading curve and rate dependence, as observed in experiments and
connects characteristic features of the curve with the stucture formation within the layer.
We take advantage of the thin film geometry and study the corresponding one-dimensional
model to establish the dependence on the material parameters and obtain a comprehen-
sive picture of the behaviour of the system.

1 Introduction

In recent years, interest in Lithium-ion batteries has surged. Their high energy density and their
slow loss of charge make them ideal for applications ranging from portable electronics to electric
cars[31, 33]. Much research is being devoted to improving its characteristics, e.g. their capacity
or their charging time.

A particularly active area of research is the development of new electrodes. Typically, Li-ion bat-
teries consist of an anode of graphite and a cathode of a lithium compound, but other materials
are being proposed. In particular, silicon is heralded as a very promising alternative to graphite.
When charging, lithium is stored in the anode, and silicon electrodes can store as much as ten
times more lithium than their graphite counterparts[22].

Nevertheless, the use of silicon as an electrode material presents a number of challenges[22].
To begin with, its volume increases by about 300% when fully lithiated[1, 25], and hence the ma-
terial is subject to enormous stresses that cause the mechanical failure and the destruction of
the electrode after a small number of charge-discharge cycles. To overcome this difficulty, struc-
tures such as nanopillars[15] or nanowires[6] are being investigated, with promising results[10].

In order to optimize the geometry and nanopatterning of the electrodes, it is essential to under-
stand the material properties of silicon under heavy lithiation and this has been the subject of
extensive experimental and theoretical research in recent years. It seems to be well established
that after the first lithiation-delithiation cycle, crystalline silicon becomes amorphous[22], and
hence the relevant material to study is amorphous silicon. In that respect, it has been proven
that the first lithiation of crystalline as well as amorphous silicon occurs initially through a two-
phase mechanism[21, 32], but it is still controversial whether this two-phase mechanism is also
present for amorphous silicon in subsequent lithiations[19, 21]. A recent first-principles study[7]
relates the two-phase lithiation of amorphous silicon with a structural transition that would occur
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for a lithium molar fraction x ≈ 2. Experiments show that this two-phase lithiation is self-limiting
in nanowires [19], presumedly due to the high stresses generated.

Moreover, it has been found that amorphous silicon behaves plastically when lithiated[2, 26, 27],
which seems suprising for a material which also fractures in a brittle manner.

These unusual characteristics have sparked a minor controversy. The maximum stress mea-
sured in the experiments does not reach the predicted yield stress for amorphous silicon[28],
and this seems to forbid any plastic behaviour, against the experimental evidence. There have
been some attempts at explaining this. On the one hand, there is the idea of reactive flow[35],
by which lithiated silicon could flow plastically below the yield point. In accordance with this idea,
a phenomenological yield stress function that incorporates the effects of lithium concentration
has been proposed[35]. While this theory is able to reproduce approximately the hysteresis
loop for stress, it still has problems to accommodate the linear relationship observed between
the observed stress and the charging rate[26].

An alternative theory[17, 18] involves the dependency of the chemical potential on deviatoric
stresses. Using a generalized chemical potential, which changes discontinuously with the sign
of the rate of change of the lithium molar fraction, good agreement with the experimental curve
has been demonstrated, even though this comparison is obtained through a fit.

Additional problems arise when considering the modelling of plasticity. As of now, only simple
viscoplastic flow laws have been considered. These are based on power laws of stress and give
exponents ranging from 5 to 50 [2, 3], suggesting that a piece may be missing from the model.

In this article we revisit the experiments determining the plastic behaviour [26, 27] and study the
effect of the formation of a highly lithiated phase in amorphous silicon. Results in Refs. [7, 32]
suggest that strong gradients and even phase separation may be present in the experiments.
We thus discuss qualitatively the value of the average stress that would be found as a function
of concentration using our phase-field model that exhibit characteristic properties of the loading
curve that have been previously identified with yielding. Our approach also brings charging-rate
dependence into the problem, as well as hysteresis, as this is implicit in any phase-separation
phenomenon. This suggests that the inhomogeneity of the electrode might be the underlying
cause for many of the observed features.

We model the thin electrode of Ref. [27] as a thin layer attached to a fixed substrate. Our mod-
elling approach starts from the Cahn-Hilliard-Reaction equation[29] commonly used for lithium
intercalation dynamics, and includes linear elasticity, following the Larché-Cahn[14] prescrip-
tion. We note that while we have made this choice for simplicity, as it is one of the simplest
models that couples consistently phase separation dynamics with elasticity, it will allow only for
qualitative comparison with experimental results.

In Section 2 we introduce the model and the assumptions behind it, as well as the relevant non-
dimensional parameters. In Section 3 we give a detailed study of the dependency of the stress
loading curve on the different parameters, and in Section 4 we discuss the results and present
our conclusions.

2 The Model

We are interested in the dynamics of the system described in Ref. [27]; a schematic is shown in
Fig. 1. Lithium is absorbed from an electrolyte by a thin layer of amorphous silicon (a-Si) sitting
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Figure 1: Schematic of the system.

on a non-deformable substrate. When the lithium concentration is high enough, the layer sepa-
rates into a Li-rich phase (a-LixSi) and the a-Si phase with no or very low lithium concentration.
For the purpose of formulating the model equations, we assume that the layer is bounded in
the x direction, and we work within the plane strain approximation. The equations can therefore
be formulated effectively in a two-dimensional rectangular domain Ω, although later we will also
consider the one-dimensional case. Coordinates x ≡ x1, y ≡ x2, and z ≡ x3 are introduced
as indicated in the schematic, and t represents time. The indices of the tensors run from 1 to 3
and summation is implied over repeated indices.

We assume that lithium ions are slowly absorbed in an electrode held at constant temperature.
Lithium ions become neutral on a thin boundary layer, when entering the electrode from the
electrolyte. The insertion of lithium causes an isotropic stress-free strain ε0ij that will depend on
the concentration of lithium atoms c. We assume that the stress-free strain can be written as
ε0ij = αh(c/cmax)δij , where the constant α is the maximum stress-free strain and cmax is the
lithium concentration it the a-LixSi phase, and h interpolates between h(0) = 0 and h(1) = 1.
We will typically use a linear function for h.

The medium is considered to be amorphous, and hence assumed to be isotropic. We use linear
elasticity for simplicity, so that the elastic energy density has the form:

W =
1

2
Cijkl

Ä
εij − ε0ij

ä Ä
εkl − ε0kl

ä
, (1)

(summation implied) where Cijkl is the fourth-order elasticity tensor and εij is the strain tensor,
defined in terms of the deformation u as follows:

εij =
1

2
(∂jui + ∂iuj) . (2)

The previous elastic energy implies the following definition of stress:

σij = Cijkl
Ä
εkl − ε0kl

ä
, (3)

where the symmetries of the elasticity tensor have been used. Finally, we consider the plane
strain approximation, and hence εi3 = 0.

In order to model the coupled system, we include the elastic energy (1) in a free energy func-
tional of the following form:

F = NΩ

∫
Ω

Ç
1

2
γε |∇c|2 +

γ

ε
f(c) +W (εij, c)

å
dxdy, (4)

where the homogeneous free energy density f has a double well form (a specific choice will be
made later) and W (εij, c) is the elastic energy density as defined in Eq. (1). The constant γ
carries the dimensions of energy times length, NΩ is the (global) number of particles in Ω and
the parameter ε is related to the interface thickness.
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We introduce the chemical potential,

µ =
1

NΩ

δF
δc

= −γε∇2c+
γ

ε
f ′(c) + ∂cW (εij, c), (5)

and postulate the following evolution equation for the concentration:

∂tc = ∇ · (M(c)∇ (µ+ χε∂tc)) . (6)

The mobility function M(c) can in general be a function of the concentration, but here we will
only consider the case where it is a constant, M(c) ≡ M . The last term is the viscous term,
[see 24] and χ corresponds to a parameter with dimensions of viscosity. This term is associated
with the inclusion of non-local equilibrium interfacial kinetics[9, 12]. The scaling with ε of each
term has been chosen to make sure that we obtain the correct asymptotic sharp-interface limit,
see Ref. [23] for details.

Eqns. (5), (7), together with the mechanical equilibrium condition

∂jσij = 0, (7)

constitute the core of our model. They are supplemented with boundary conditions, which are no
deformation and no flux at the substrate and traction free and fixed flux (F ) boundary conditions
at the electrolyte. They will be formulated explicitly in non-dimensional form at the end of this
section.

Nondimensionalization

We adapt the nondimensionalization from Ref. [16]. For characteristic length scaleL0 we choose
the thickness of the amorphous silicon layer, concentrations are scaled by their maximum value
cmath, G0 = ESi/[2(1 + ν)] is the shear modulus of pure amorphous silicon and is used to
scale the shear modulus which is also assumed to depend on the concentration. The constants
andESi and ν are Young’s modulus for pure amorphous silicon and Poisson’s ratio. The scalings
are

µ→ µ̃γL−1
0 , x→ x̃L0, t→ t̃L3

0M
−1γ−1,

ε→ ε̃L0, ui → ũiL0α, Cijkl → C̃ijklG0, (8)

σij → σ̃ijG0, εij → ε̃ijα, c→ c̃cmax.

With these scalings, we obtain

∂tc = ∇2 (µ+ εX∂tc) , (9a)

µ = −ε∇2c+
1

ε
f ′(c) + Z∂cW (εij, c) , (9b)

∂jσij = 0. (9c)

in the bulk. The consitutive law for the stress takes the form,

σij = 2G(c)
Ä
εij − ε0ij

ä
+

2ν

1− 2ν
G(c)

Ä
εkk − ε0kk

ä
δij, (9d)

where
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Table 1:

ε0ij = h(c)δij, (9e)

G(c) = 1 + g(c)

Ç
ELixSi

ESi

− 1

å
. (9f)

The constant ELixSi is Young’s modulus for fully lithiated amorphous silicon and g(c) interpo-
lates between g(0) = 0 and g(1) = 1. In this paper, we specifically choose g to be linear. We
also have

u = 0, n · ∇c = 0, n · ∇µ = 0, (9g)

at the electrode-substrate boundary, and so-called variational boundary conditions[4] at the top
electrode-electrolyte boundary

σ · n = 0, n · ∇c = 0, n · ∇µ = Y, (9h)

with a constant, non-dimensional flux Y . In the present form we neglect the dependency of the
surface reptensionenergy on concentration.At the two lateral boundaries of the layer, we impose
the same conditions except that we set the flux to zero.

We have six dimensionless parameters, namely

X =
χM

L0

, Y =
FL2

0

Mγ
, Z =

L0ESiα
2

2(1 + ν)γ
,

the ratio of the Young moduli ELixSi/ESi, Poisson’s ratio ν, and the scaled interface thickness
ε.

3 Results

We numerically study the model described by Eqs. (9) in one and two dimensions via an adap-
tive nonlinear multigrid algorithm and the solver BSAM[34] . We use a Crank-Nicolson scheme
for the time stepping, and discretize the equations with a finite-volume scheme to enforce the
conservation of Li.

Approximate values for some of the parameters can be obtained from the literature. From
Ref. [28], we obtain ELixSi/ESi = 4/9 for the ratio of the Young moduli and ν = 0.25 for
Poisson’s ratio. We assume that we can neglect the dependency of ν on the lithium concen-
tration. The interface thickness is taken to be 1.25nm, which is in line with the sharp interface
observed in experiments[32]. For a layer thickness L0 = 250nm, we obtain ε = 0.005. By
assuming that the high concentration of Li during phase separation corresponds to a-Li2.5Si,
as it has been reported[32], we obtain a value of α = 0.62 following Ref. [2]. The remaining pa-
rameters are characteristic of this transition that remains mostly unknown, and hence we cannot
fix the values of X , Y and Z . For this reason, we study the effect of varying these parameters,
see Section 3 below.

Finally, we choose h(c) = g(c) = c and f(c) = c2(1 − c)2/4 for simplicity. Below we show
that the results will necessarily depend quantitatively on the form of f , but we expect to capture
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Figure 2: Initial loading process for Z = 0.1, X = 0.5, Y = 0.01 (color online). Loading
curve, with points (a) and (b) marked (see text). Insets: concentration field and σxx field at points
(a) and (b). The non-dimensional deformation has been exaggerated to help its visualization.

the qualitative behaviour. We discuss below the bounds of the non-dimensional numbers based
on this form of f .

To illustrate the behaviour of the system, we solved the equations for a layer with a moderate
aspect ratio. The results are displayed in Fig. 2.

The stress loading curve (referred to as loading curve from now on) shows the average σxx vs.
the average concentration on Ω as the electrode is loaded. At the beginning, the stress grows
linearly with the concentration (i.e. it becomes more negative, compressive), but at a certain
concentration, marked as point (a) the regime changes abruptly, until it reaches a maximum,
marked as point (b).

To understand this behaviour we display on the right hand side of Fig. 2 the concentration field
and the σxx field at the points (a) and (b). As we see, at point (a) phase separation is beginning,
starting from the sides (a two-dimensional effect), and negative stress is localized in the highly
lithiated phase. As the concentration is increased from point (a) to point (b), phase separation
is completed and we are left with two definite layers with an abrupt change of concentration
between them.

Notice that the loading curve has a marked minimum, but unlike in the experiments of Ref. [27],
this minimum does not correspond to the yield point of the material, but rather to simple stress
localization: As the system phase-separates, lithium and hence stress are concentrated in a thin
layer with a smaller value of Young’s modulus than a-Si. Hence, average stress becomes less
compressive, but in fact the stresses are much higher in this thin layer than they were before the
onset of phase separation.

This behaviour can be understood further by considering Fig. 3. In this figure we display the
average concentration and σxx on a cross section at x = 0. It shows that at an early stage,
when the average concentration is somewhat smaller than at (a), we have an almost flat curve,
with a slightly higher concentration at the interface with the electrolyte (at y = 1), and the stress
is almost constant. At point (a), the concentration increases much more rapidly neary = 1 than
in other parts of the layer, thus signalling the start of a phase-separation process. The stress
becomes very negative near y = 1, as the concentration is also localized there. Finally, phase-
separation is completed at point (b), and we can observe a very well-defined layer with high
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Figure 3: Concentration and stress in the cross section at x = 0, for different values of the
average concentration, same parameters as Fig. 2 (color online). In black (solid), a line for
c/cmax = 0.120, before point (a). The red (dashed) line corrsponds to the point (a) in Fig. 2,
and the blue (dash-dotted) to the point (b).

concentration and very large negative stress.

So far we have presented the results for a single set of parameters. In the following section
we turn to the one-dimensional case to investigate more easily if these features are generic or
depend strongly on the parameters.

Parameter study for the one-dimensional system

The layer of a-Si that acts as an electrode has a thickness of 250nm and the wafer has a
diameter of 3 inches (and the curvature is small enough, so we can consider it locally flat).
Hence, the problem is one-dimensional to very good approximation. In fact, this is true even for
the results in Fig. 3 despite the moderate aspect ratio used there. Also, the one-dimensional
formulation is more fundamental. It is independent of the specific model for the interaction with
the electrolyte, as the flux is imposed externally and has no lateral variations..

The model equations (9) can be reduced to their one-dimensional form by dropping all depen-
dencies on x and assuming that the lateral displacement ux = 0. This immediately leads to
σxy = 0. By using Eq. (9c) and boundary conditions (9h) we obtain σyy = 0, and

εyy =
1 + ν

1− ν
h(c), (10)

σxx = −2G(c)
1 + ν

1− ν
h(c), (11)

i.e. we can express all the elastic properties in terms of the concentration. Furthermore, using
h(c) = g(c) = c we can express the chemical potential as

µ = −ε∂2
yc+

1

ε
f ′(c) (12)

− 2Z
1 + ν

1− ν

ñ
3c2

Ç
1− ELixSi

ESi

å
− 2c

ô
.
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Figure 4: Effect of varying Z (color online), for X = 0.5, Y = 0.02. The solid lines represent
loading curves for different values of Z . The lower dashed line corresponds to a single phase
uniform system being lithiated. The upper dashed line corresponds to a two-phase lithiation
process where all of the stress is localized in the lithiated phase.

This equation shows that the dynamics of the concentration (e.g. the point at which the system
will phase separate) depends on the interaction of the last term with the double-well free energy,
as stated above.

The qualitative study of (12) shows that the effect of the coupling is to leave the energy of pure
a-Si unchanged, and raise the energy associated with the fully lithiated state. Hence we can
anticipate that the higher the value of Z , the higher the value of c at which phase separation
occurs will be. It is easy to compute the stability of a uniform profile of concentration in the
limiting case of low flux (see Appendix A). The main result of this stability analysis confirms
indeed that the coupling with elasticity delays phase separation, and there is a linear relation
between the concentration at the onset and Z for ε� 1 (see Eq. 17).

Fig. 4 displays several loading curves for different values of Z . For small values of the con-
centration, the curve follows very closely the curve that would be expected for a uniform layer,
Eq. (11). Nevertheless, at a certain point the system begins to phase-separate and goes into a
different regime. In this regime, phase separation is complete (cf. point (b) in Fig. 2). Then, since
most of the stress is located in the lithiated layer and it is approximately constant, the average
stress will be this value of stress times the ratio of the thickness of the lithiated layer over the
total thickness, i.e. the average concentration. The stress on the lithiated layer can be found
from Eq. (11) for c = 1, and the average stress is this value times the average concentration.
This relation is depicted in Fig. 4 as the upper dashed line.

For µ to remain physically meaningful, the value of Z cannot be too high, to ensure that the
term coming form the elastic energy remains small compared with f . Again, the particular value
of Z at which the results will not be meaningful will depend on the particular form of f . We
see in Fig. 4 that phase separation occurs at higher values of the concentration with increasing
Z , as expected from Eq. (17). We note that the curve for Z = 5 clearly behaves differently,
meaning that for this value the perturbation caused by elasticity to µ cannot be considered
small anymore. We also remark that the values of the remaining parameters in Fig. 4 are not
important to illustrate this dependence as it is observed for all values.
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Figure 5: Effect of varying the nondimensional flux Y (color online) for X = 0.5, Z = 1.0.
Solid lines correspond to different values of Y , dashed lines are limiting cases, as in Fig. 4. The
dotted vertical line corresponds to the concentration at the spinodal line, c = 0.2237.

Fig. 5 shows the variation of the loading curve with non-dimensional flux Y . Phase separation
occurs more abruptly and at a higher concentration as Y is decreased. For reference we show
in Fig. 5 the concentration at which a uniform concentration would be unstable and undergo
spinodal decomposition for Z = 1.0 (see Appendix A). Clearly, the smaller the flux is the
more uniform the concentration in the electrode will be, and therefore the closer the critical
concentration will be to the critical concentration for the uniform system. This is a form of rate
dependence of the loading curve, i.e. dependence on the rate of charge.

The parameter Y is the only one that in principle is controllable in experiments. For a small
enough value of the flux, we will observe the behaviour described in Fig. 5, as there is an
absolute limit of the concentration at which the uniform system is unstable, hence the behaviour
described is robust for at least an interval of values of Y . Also, if the flux is too high, the system
jumps immediately into the phase separated regime, which corresponds to a straight line. Again,
the qualitative outcome does not change if we vary the other parameters. Higher Z shifts the
value of the transition point towards higher concentrations, but the tendency will be the same.

To study the effect of the kinetic parameter X we also varied its value four orders of magnitude,
see Fig. 6. The overall effect of increasing X is to delay phase separation. When its value is
high enough, the extrema of the loading curve disappear (see the line for X = 10).

The delay of phase separation for increasing kinetic parameter values is to be expected. On the
one hand, the growth rate of the instability of the uniform case is reduced for larger values of
X (see Appendix A). On the other hand, the delay in the instability can be expected on more
general grounds. In order to grow in the presence of interface friction, which in this model comes
from the inclusion of the viscous term, a driving force is needed to counteract this process. This
is provided by the inequality of the chemical potentials of the diffusing species, and this implies
that the concentration of the growing phase has to be higher than it would be in local equilibrium
conditions[13]. This implies that a higher average concentration is needed for phase separation,
which will therefore be delayed.

The correct value of the kinetic parameter is unknown, as it is not directly accessible experi-
mentally. Nevertheless, like Z , its value should not be too high for the present model to be valid.
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Figure 6: Effect of varying the nondimensional kinetic parameter X (color online) for Y =
0.04, Z = 1.0. Solid lines correspond to loading curves with different values of X. Dashed
lines correspond to limiting cases (see Fig. 4).

We see in Fig. 6 already that for X = 10 we obtain an extreme change of behaviour, which
indicates again that for this value the viscous term is far from being a small perturbation.

4 Discussion

We have found that taking into account the possibility of phase-separation dynamics for a lithi-
ated electrode introduces new phenomena that could help explain some of the puzzling features
found in experiments. Some of the consequences of two-phase lithiation of a-Si have indeed
been found in experiments[21, 32].

Our model is a valuable tool to study the effect of phase separation in our system qualitatively.
We see that it can lead to a non-monotone behaviour of the loading curve without requiring
plasticity, to a dependency on the rate of lithiation and to a hysteresis cycle.

For illustration purposes, we depict in Fig. 7 a hysteresis loop, which is present, as expected, in
the phase separating system. The electrode is charged with a positive value of the flux (Y =
0.02) until it phase-separates. Then the flux is reversed, and the stress curve goes parallel to
the upper dashed line, which corresponds to a fully phase-separated electrode. Before reaching
concentration zero the system becomes nearly homogeneous again, thus closing the loop.

Our one-dimensional parameter study shows that phase separation is almost always present,
except perhaps for very high values of Z or X (see Figs. 4 and 6). These high values would
require in any case a more accurate model for f and the kinetics in any case.

In addition, the large volume changes, estimated to be about 280%[25], are beyond the limit of
applicability of linear elasticity and finite strain effects need to be taken into account . Neverthe-
less, our results on stress localization, even if not quantitative, should still be valid.

Moreover, it is important to point out that we cannot discard plasticity as an important effect in
this system. On the contrary, stress localization would indeed produce very large compressive
stresses that could reach the yield point of the material. The challenge is to explain the fact that
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Figure 7: Hysteresis loop for X = 0.05, Y = ±0.02, Z = 1.0. When the maximum charge
desired is reached, the flux is reversed. See Fig. 4 for the upper and lower dashed lines.

the value of the yield stress from Ref. [27] is significantly lower than the one expected[17], and
large gradients and two-phase lithiation may have to be taken into account to understand this
problem.

The phase-field model in this paper is does not attempt to be quantitatively correct and capture
all the physical effects. The quantitative results depend, for example, on the precise form of the
free energy f . We have, however, taken care so that we remain consistent with the correct sharp
interace limit[23], and have focused on results and trends that are robust and do not depend on
the form of f or similar details. In particular, if phase separation is indeed present in the lithi-
ation/delithiation process, stress localization would be a necessary consequence, independent
of the detailed phase separation model. Regarding phase separation, while experiments do not
show it explicitly, they show indeed two-phase lithiation[21, 32] and theoretical calculations show
an abrupt change in material properties as lithium concentration is increased[7]. Hence, even in
the absence of phase separation dynamics, two-phase lithiation and the corresponding stress
localization should be taken into account in the interpretation of the experiment of Ref. [27].
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Finally, we consider phase separation between amorphous phases, such as the ones found in
amorphous silicon for high pressure[8] or in bulk metallic glasses[20] The results for our model
(9) predict that the coupling with elasticity hinders phase separation (see Appendix A). This
observation is a natural result of how a coherency strain (i.e. a strain due to the deformation
of the lattice) is developed in a solid solution for a crystalline material[5]. Nevertheless, it is not
clear that this effect of the strain on the phase separation is necessarily present in amorphous
systems[30], where the picture is more complicated. This topic will be left to future research.

In summary, we make the case that phase-separation dynamics and two-phase lithiation could
play an important role in the interpretation of the discussed experiments. In order to have a
more realistic representation of the experiments, we are presently implementing a model that
incorporates nonlinear elasticity, plasticity and a more detailed electrochemical modeling.

A Linear Stability of the One-Dimensional Model

In order to help the discussion, we develop in this appendix a linear stability analysis of the
one-dimensional problem, which is defined by Eq. (9a) with the chemical potential given by
Eq. (12). Here we reproduce the classic result by Cahn[5] for spinodal decomposition of a solid
solution, slightly augmented with the effect of kinetics. For a review on spinodal decomposition
and first-order phase transitions see Ref. [11].

We consider a constant solution of Eq. (12), c = c0. This solution is in principle attainable in the
limit of zero flux. With this solution, Eq. (12) can be easily linearized about it:

∂tc = ∇2

®
1

ε
f ′′(c0)c− ε∇2c+ εX∂tc (13)

−2Z
1 + ν

1− ν

ñ
6c0

Ç
1− ELixSi

ESi

å
− 2

ô
c

´
,

where we have removed the terms that are immediately zero.

For an ansatz of the form
c(y, t) = eλt cos(ky), (14)

we obtain the following dispersion relation:

λ =
−k2

1 + εXk2

®
1

ε
f ′′(c0) + εk2 (15)

−2Z
1 + ν

1− ν

ñ
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Ç
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å
− 2

ô´
.

We see already thatX will decrease the growth rate. The critical concentration does not depend
on X but will depend on the particular form of the potential. Clearly, for Z = 0 we obtain the
standard result that the instability occurs for f ′′(c0) < 0, beginning with high wavelengths.
Setting λ = 0 in Eq. (15), using f(c) = c2(1− c)2/4, and taking k = π (lowest lying mode for
the Neumann problem in [0, 1]) we obtain the following value for the critical concentration:

c0,c =
1

2
− 2εabZ (16)

± 1

6

»
3 + 24εbZ (6a2bZε− 3a− 2)− 12π2ε2,

12



where a = (ELixSi/ESi−1) and b = (1+ν)/(1−ν). The previous equation gives two points
on the so-called strain or coherent spinodal[5] for this problem. We can prove easily for small
values of ε that the coupling with elasticity hinders phase separation, as expected. If we take
the smallest value in Eq. (16) (corresponding to the minus sign) and expand it in powers of ε we
obtain:

c0,c =
1

6

Ä
3−
√

3
ä

(17)

+
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î
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ä
.

The first term of this equation corresponds to the lower concentration at which f ′′(c) = 0. We
can write down the first order term as a function of the original parameters:[

2
Ä√

3− 1
ä ELixSi

ESi

− 2
√

3

3
+ 2

]
1 + ν

1− ν
εZ, (18)

and it is indeed greater than zero, as expected. This means that spinodal decomposition will
develop at higher values of the concentration.
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