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Abstract

Consider the time-harmonic acoustic scattering from a bounded penetrable obstacle imbedded

in an isotropic homogeneous medium. The obstacle is supposed to possess a circular conic point

or an edge point on the boundary in three dimensions and a planar corner point in two dimensions.

The opening angles of cones and edges are allowed to be non-convex. We prove that such an

obstacle scatters any incoming wave non-trivially (i.e., the far field patterns cannot vanish identically),

leading to the absence of real non-scattering wavenumbers. Local and global uniqueness results for

the inverse problem of recovering the shape of a penetrable scatterers are also obtained using a

single incoming wave. Our approach relies on the singularity analysis of the inhomogeneous Laplace

equation in a cone.

1 Introduction

Consider a time-harmonic acoustic wave incident onto a bounded penetrable scatterer D ⊂ R
n (n =

2, 3) embedded in a homogeneous isotropic medium. The incident field uin is supposed to satisfy the

Helmholtz equation

∆w + k2w = 0 in R
n, (1.1)

with the wavenumber k > 0. Throughout the paper we suppose that uin does not vanish identically and

that the complement De := R
n\D of D is connected. The acoustic properties of the scatterer can be

described by the refractive index function q ∈ L∞(Rn) such that q ≡ 1 in De. Hence, the contrast

function 1 − q is supported in D. The wave propagation is then governed by the Helmholtz equation

∆u+ k2q u = 0 in R
n. (1.2)

In (1.2), u = uin + usc denotes the total wave where usc is the scattered field satisfying the Sommerfeld

radiation condition

lim
|x|→∞

|x|n−1

2

{

∂usc

∂|x| − ikusc

}

= 0. (1.3)

Across the interface ∂D, we assume the continuity of the total field and its normal derivative,

u+ = u−, ∂νu
+ = ∂νu

−
on ∂D. (1.4)

Here the superscripts (·)± stand for the limits taken from outside and inside, respectively, and ν ∈
S

n−1 := {x ∈ R
n : |x| = 1} is the unit normal on ∂D pointing into De. The unique solvability of the

scattering problem (1.2), (1.3) and (1.4) inH2
loc(R

n) is well known (see e.g., [6, Chapter 8]). In particular,

the Sommerfeld radiation condition (1.3) leads to the asymptotic expansion

usc(x) =
eik|x|

|x|(n−1)/2
u∞(x̂) + O

(

1

|x|n/2

)

, |x| → +∞, (1.5)
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uniformly in all directions x̂ := x/|x|, x ∈ R
n. The function u∞(x̂) is an analytic function defined on

S
n−1 and is referred to as the far-field pattern or the scattering amplitude. The vector x̂ ∈ S

n−1 is called

the observation direction of the far field. The classical inverse medium scattering problem consists of the

recovery of the refractive contrast 1 − q or the boundary ∂D of its support from the far-field patterns

corresponding to one or several incident plane waves. This paper is concerned with the following two

questions:

(i) Does a penetrable obstacle scatter any incident wave trivially (that is, usc ≡ 0) ?

(ii) Does the far-field pattern of a single plane wave uniquely determine the shape of a penetrable obsta-

cle ?

A negative answer to the first question means that acoustic cloaking cannot be achieved using isotropic

materials, while a positive answer to the second one implies uniqueness in inverse medium scattering

with a single plane wave. It is widely believed that these assertions are true for a large class of scatterers;

however, little progress has been made so far. If D trivially scatters any Herglotz wave function of the

form

uin(x) =

∫

Sn−1

exp(ikx · d) g(d) ds(d), g ∈ L2(Sn−1),

then λ = k2 is called non-scattering energy, or equivalently, k is called non-scattering wavenumber ;

see [2]. A negative answer to the first question obviously leads to the absence of non-scattering energies.

Moreover, it implies that the relative scattering operator (or the so-called far-field operator [6]) has a trivial

kernel and cokernel at every real wavenumber, which is required by a number of numerical methods in

inverse scattering. Recall that k > 0 is called an interior transmission eigenvalue associated with the

potential q in D if the coupling problem

{

∆w + k2w = 0, ∆u+ k2qu = 0 in D,
w = u, ∂νw = ∂νu on ∂D.

(1.6)

has at least one non-trivial solution (w, u) ∈ H1(D) × H1(D) such that w − u ∈ H2
0 (D); see

e.g., [4, 7, 8, 38]. A non-scattering wavenumber must be an interior transmission eigenvalue associated

with the given potential, but not vice versa. An interior transmission eigenvalue k is a non-scattering

wavenumber only if the eigenfunction that satisfies the Helmholtz equation (1.1) in D can be analytically

extended as an incident wave into the whole space. We remark that the second question is more difficult

than the first one. In fact,D cannot scatter any incident wave trivially ifD could be uniquely determined by

a single far-field pattern of any incoming wave. However, we do not know whether the reverse statement

holds (see Theorem 2.1 and Remark 3.2 (i)).

The answer to the uniqueness question provides an insight into whether or not the measurement data

are sufficient to determine the unknowns, playing an important role in numerics (e.g., using optimization-

based iterative schemes). The shape identification problem in inverse scattering with a single far-field

pattern is usually difficult and challenging, because it is a formally determined inverse problem, that is,

the dimensions of the data and the unknowns are the same. For sound-soft obstacles, local uniqueness

results were proved in [9,16,37]. Global uniqueness results have been obtained within the class of poly-

hedral or polygonal sound-soft and sound-hard scatterers (e.g., [1, 5, 11, 20, 30]), using the reflection

principle for the Helmholtz equation under the Dirichlet and Neumann boundary conditions. However, the
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proofs of these local and global uniqueness results do not apply to penetrable scatterers. See also [25,29]

for the proof with infinitely many plane waves based on ideas of Schiffer and Isakov. Earlier uniqueness

results in inverse medium scattering were derived by sending plane waves with distinct directions at a

fixed frequency (see e.g., [13,22,25]), which results in overdetermined inverse problems. Intensive efforts

have also been devoted to the unique determination of the variable contrast 1 − q from knowledge of

the far-field patterns of all incident plane waves or by measuring the Dirichlet-to-Neumann map of the

Helmholtz equation. We refer to [32, 36] and [6, Chapter 10.2] for the uniqueness in 3D and to recent

results [3,21] in 2D with certain regularity assumptions on the potential.

The study of non-scattering energies dates back to [28] in the case of a convex corner domain, with the

main emphasis placed upon the exploration of the notion of scattering support for an inhomogeneous

medium. In the recent paper [2], it was shown that a penetrable scatterer having C∞-potentials with a

rectangular corner scatters every incident wave non-trivially. The argument there is based on the use of

complex geometric optics (CGO) solutions, and the approach was later extended to the cases of a convex

corner in R
2 and a circular conic corner in R

3 whose opening angle is outside of a countable subset of

(0, π) (see [35]). In the authors’ previous work [12], any corner in R
2 and any edge in R

3 are shown

to be capable of scattering every incident wave non-trivially if the potential is real-analytic. In addition,

the shape of a convex penetrable obstacle of polygonal or polyhedral type can be uniquely determined

by a single far-field pattern. The approach of [12] relies on the expansion of solutions to the Helmholtz

equation with real-analytic potentials. The CGO-solution methods of [2, 35] also lead to uniqueness in

shape identification but are confined so far to convex polygons in R
2 and rectangular boxes in R

3 with

Hölder continuous potentials (see [19]).

The aim of this paper is to verify uniqueness and the absence of real non-scattering wavenumbers in

a more general setting. We shall consider curvilinear polygons in R
2, and curvilinear polyhedra and

circular cones in R
3 (see Section 2 for a precise definition) with an arbitrary piecewise Hölder continuous

potential. We present a novel approach that relies heavily on the corner singularity analysis of solutions

to the inhomogeneous Laplace equation in weighted Hölder spaces. If a penetrable obstacle scatters an

incoming wave trivially or two distinct penetrable obstacles generate the same far-field pattern, one can

always find a solution to the Helmholtz equation (1.1) in the exterior of an obstacle D which extends

analytically across a sub-boundary of D. However, we prove that in conic and wedge domains non-trivial

solutions to the Helmholtz equation with certain boundary data cannot be analytically extended into a full

neighborhood of the corner and edge points because of both the interface singularity and the medium

discontinuity; see Lemmas 3.1, 4.1, 5.1 and 6.1. Our approach is different from those in [12, 35] and

extends the results of [2,12,19,35] to a large class of potential functions and corner domains. Moreover,

we obtain a local uniqueness result for the inverse scattering problem with a single incoming wave and the

global uniqueness within the class of convex polygons and polyhedra with flat surfaces; see Theorem 2.2

and Corollary 2.1. It should be remarked that our arguments are applicable to the case of more general

incident fields (see Remark 3.1), because only local properties of the Helmholtz equation are needed in

our case of penetrable obstacles with singular boundary points. However, the far-field behaviour of the

total field seems to be necessary in the unique determination of a general impenetrable scatterer.

The paper is organized as follows. Our results will be presented and verified in the subsequent Sections

2 and 3. The proofs can be reduced to the analysis of a coupling problem between Helmholtz equations

with different potentials near a boundary corner point; see Lemma 3.1. We first carry out the proof of

Lemma 3.1 for polygons in Section 4.2 and then generalize the arguments to polyhedra in Section 5 by

applying the partial Fourier transform. The techniques will be adapted to handle curvilinear polygons and

polyhedra, and circular cones in Sections 6 and 7. In Sections 4.1 and 7.1, we shall state the auxiliary
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solvability results for the Laplace equation in weighted Sobolev and Hölder spaces for two and three

dimensional cones, respectively. The proofs of several propositions that are used in Sections 4-7 will be

carried out in the appendix.

2 Main results

We introduce several notations before stating the main results. For j ∈ N0 := {0} ∪ N, ∇j
x stands for

the vector of all partial derivatives of order j with respect to x = (x1, x2, · · · , xn) ∈ R
n, i.e.,

∇j
xu =

{

∂j1
x1
∂j2

x2
· · · ∂jn

xn
u(x) : j1, j2, · · · , jn ∈ N0, j1 + j2 + · · · + jn = j

}

.

In the particular case j = 1, the notation ∇1
xu = ∇xu means the gradient of u. If j = 0, we have

∇0
xu = u. The spatial variable x will be dropped when ∇j is clearly understood from the context. Denote

by O the origin in R
n. Let (r, θ) be the polar coordinates of x = (x1, x2) ∈ R

2. Define K = Kω :=
{(r, θ) : r > 0, 0 < θ < ω}, a sector in R

2 with the opening angle ω ∈ (0, 2π) at the origin. Denote

by Ba(P ) := {x ∈ R
n : |x − P | < a} the ball centered at P with radius a > 0, and by I the n-by-n

identity matrix in R
n×n. For simplicity we write Ba(O) = Ba.

We first introduce the concepts of (planar) corner points in R
2, and edge and circular conic points in R

3;

see Figure 1 for illustration of planar corners of a curvilinear polygon.

Definition 2.1. (see e.g., [31, Chapter 1.3.7]) Let D be a bounded open set of R
2. The point P ∈ ∂D is

called corner point if there exist a neighbourhood V of P , a diffeomorphism Ψ of class C 2 and an angle

ω = ω(P ) ∈ (0, 2π)\{π} such that

∇Ψ(P ) = I ∈ R
2×2, Ψ(P ) = O, Ψ(V ∩D) = Kω ∩B1. (2.1)

We shall say that D is a curvilinear polygon, if for every P ∈ ∂D, (2.1) holds with ω(P ) ∈ (0, 2π).

Definition 2.2. Let D ⊂ R
3 be a bounded open set. The point P ∈ ∂D is called a vertex if there exist

a neighbourhood of V of P , a diffeomorphism Ψ of class C 2 and a polyhedral cone Π with the vertex at

O such that ∇Ψ(P ) = I ∈ R
3×3, Ψ(P ) = O and Ψ maps V ∩D onto a neighbourhood of O in Π. P

is called an edge point of D if

Ψ(V ∩D) = (Kω ∩B1) × (−1, 1) (2.2)

for some ω(P ) ∈ (0, 2π)\{π}. We shall say that D is a curvilinear polyhedron if, for every point P ∈
∂D, either (2.2) applies with ω(P ) ∈ (0, 2π) or P ∈ ∂D is a vertex.

A curvilinear polygon resp. polyhedron allows both curved and flat surfaces near a corner resp. edge

point (see Figures 1 and 2). The conditions (2.1) and (2.2) exclude peaks at O (for which the opening

angle of the planar sector is 0 or 2π).

Let (r, θ, ϕ) be the spherical coordinates of x = (x1, x2, x3) ∈ R
3. Let C = Cω be an infinite circular

cone in R
3 defined as (see Figure 2)

C := {(r, θ, ϕ) : r > 0, 0 < θ < ω, 0 ≤ ϕ < 2π} (2.3)

for some ω ∈ (0, π)\{π/2}. Clearly, the vertex of C is located at the origin and the opening angle of C
is 2ω ∈ (0, 2π)\{π}. The cone Cω is identical with the half space x3 > 0 if ω = π/2.
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Figure 1: P ∈ ∂D is a corner of the curvilinear polygon D, whereas P ′ is not a corner.

Definition 2.3. We say that a bounded open setD ⊂ R
3 has a circular conic pointP ∈ ∂D ifD∩Ba(P )

coincides with C ∩ Ba for some a > 0 up to a coordinate translation or rotation. D is called a circular

conical domain if it has at least one circular conic point.

Let D be a bounded penetrable obstacle in R
n, with O ∈ ∂D being a planar corner point in R

2, and an

edge or circular conic point in R
3. Denote by W κ,p and Hκ = W κ,2 the standard Sobolev spaces. We

make the following assumption on q in a neighborhood of O.

Assumption (a): There exist l ∈ N0, s ∈ (0, 1), ε > 0 such that

q ∈ C l,s(D ∩Bε) ∩W l,∞(Bε), ∇l (q − 1) 6= 0 at O. (2.4)

Note that the potential has been normalized to be one for x ∈ De due to the homogeneity of the back-

ground medium, and that for l ≥ 1 the relation ∇l (q − 1) 6= 0 at O means that at least one component

of the vector ∇l q(O) does not vanish.

By the assumption (a), q is required to be C l,s continuous up to the boundary only in a neighborhood of

O. The relation (2.4) with l = 0 means the discontinuity of q atO, i.e., q(O) 6= 1, and has been assumed

in [2, 12, 19, 35] in combination with other smoothness conditions on q|D near O. A piecewise constant

potential such that q|D ≡ q0 6= 1 fulfills the assumption (a) with l = 0. When l ≥ 1, it follows from the

Sobolev imbedding relation W l,∞(Bε) ⊂ C l−1(Bε) that the function q is C l−1-smooth in Bε, implying

that q(x) = 1 + O(|x|l) as |x| → 0 in D. Physically, this means a lower contrast of the material on

D ∩Bε compared to the background medium.

The main results of this paper are stated as follows.

Theorem 2.1. Under the assumption (a), a penetrable obstacle with a planar corner point in R
2, and with

an edge or a circular conic point in R
3 scatters every incident wave non-trivially.

Theorem 2.1 implies the absence of real non-scattering wavenumbers in curvilinear polygonal and poly-

hedral domains as well as in circular conic domains. To answer the second question mentioned in Section
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Figure 2: Illustration of a curvilinear polyhedron (left) and a circular cone Cω with the opening angle

2ω ∈ (0, 2π)\{π} (right).

1, we present our uniqueness results in the following theorem and corollary (see Figure 3 for geometrical

illustration).

Theorem 2.2. Let Dj (j = 1, 2) be two penetrable obstacles in R
n (n = 2, 3). Suppose that the

potentials qj associated to Dj fulfill the assumption (a) for each corner, edge and circular conic point.

If ∂D2 differs from ∂D1 in the presence of a corner, edge or circular conic point lying on the boundary

of the unbounded component of R
n\(D1 ∪D2), then the far-field patterns corresponding to Dj and qj

incited by any incoming wave cannot coincide.

Clearly, the geometrical assumptions in Theorem 2.2 are fulfilled if D1 and D2 are convex curvilinear

polygons or polyhedra whose singular boundary points do not coincide. In particular, the latter always

holds ifD1 andD2 are two distinct convex polygons and polyhedra with piecewise flat boundaries. Hence,

we obtain the following global uniqueness results for the inverse scattering problem.

Corollary 2.1. If the potential fulfills the assumption (a) near each corner resp. vertex, then the shape

of a convex penetrable polygon resp. polyhedron with flat sides can be uniquely determined by a single

far-field pattern.

3 Proofs of Theorems 2.1 and 2.2

We first show the regularity of the total field in Hölder spaces depending on the smoothness of the

potential.

Proposition 3.1. Let u ∈ H2
loc(R

n) be a solution to the Helmholtz equation (∆ + q)u = 0 in R
n,

n = 2, 3, and let Ω ⊂ R
n be a bounded Lipschitz domain. Assume l ∈ N0. If ∇jq ∈ L∞(Rn) for all

j = 0, 1, · · · , l, then u ∈ C l+1,α(Ω) ∩H l+2(Ω) for all α ∈ [0, 1).

Proof. By Sobolev’s imbedding theorem (see e.g., [15]), we know that u ∈ C(Rn) for n = 2, 3. There-

fore qu ∈ Lp
loc(R

n) for all p ≥ 2, and by elliptic regularity u ∈ W 2,p
loc (Rn). Moreover, again applying
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Figure 3: D1 and D2 cannot generate the same far-field pattern due to the presence of the corner point

O ∈ (∂D2\∂D1) ∩ ∂Ω, where Ω is the unbounded component of R
2\(D1 ∪D2). The corner point P

lies on ∂D2\∂D1, but P /∈ ∂Ω.

Sobolev’s imbedding theorem (see [15, Theorem 7.26]) yieldsW 2,p(Ω) ⊂ C1,α(Ω) for α = 2−n/p−1.

This implies the assertion with l = 0 by choosing the index p ≥ 2 arbitrarily large. In the general case of

l ≥ 1, one can prove by induction that qu ∈ W l,p
loc(R

n) for all p ≥ 2, giving rise to u ∈ W l+2,p
loc (Rn) and

u ∈ C l+1,α(Ω) for all α ∈ [0, 1).

The proofs of our results essentially rely on the following lemma.

Lemma 3.1. Let D ⊂ R
n (n = 2, 3) be a bounded domain. Assume that q ∈ L∞(D) satisfies the

assumption (a) near the boundary point O ∈ ∂D and that q ≡ 1 in R
n\D. It is supposed that one of the

following cases holds:

(i) O is a planar corner point if D ⊂ R
2 is a curvilinear polygon;

(ii) O is an edge point if D ⊂ R
3 is a curvilinear polyhedron;

(iii) O is the vertex of some circular cone if D ⊂ R
3 is a circular conic domain.

For ε > 0 sufficiently small, let Γε = ∂D ∩ Bε be a sub-boundary of ∂D containing O. If the solution

pair uj ∈ H2(Bε) (j = 1, 2) solves the coupling problem

∆u1 + k2u1 = 0, ∆u2 + k2q u2 = 0 in Bε,

∂j
ν(u1 − u2) = 0 on Γε, j = 0, 1, 2, · · · , l + 1,

(3.1)

then u1 = u2 ≡ 0 in Bε. Here the number l ∈ N0 is specified by the regularity of q in the assumption

(a).

Note that when l = 0, the transmission conditions in (3.1) are reduced to the classical TE transmission

conditions:

u1 = u2, ∂νu1 = ∂νu2 on Γε.
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Lemma 3.1 with l = 0 can be interpreted as follows: The Cauchy data of non-trivial solutions to the two

Helmholtz equations in (3.1) do not coincide on the boundary Γε if the values of the potentials involved

are not identical at O ∈ Γε. In other words, there are non-trivial solutions to the Helmholtz equation

∆u1 + k2u1 = 0 in De ∩ Bε that cannot be analytically extended into a full neighborhood of O due

to both the interface singularity at O ∈ Γε and the discontinuity of q at O. For l ≥ 1, the transmission

conditions in (3.1) are well defined by Proposition 3.1. Below we shall prove our results by applying

Lemma 3.1.

Proof of Theorem 2.1. Consider the scattering problem (1.1)-(1.5) for the penetrable obstacle D ⊂ R
n.

Denote by O ∈ ∂D the planar corner point in R
2, the edge point or the circular conic point in R

3. By

Proposition 3.1, the total field u has the regularity

u ∈ C l+1,α(D ∩Bε) ∩H l+2(D ∩Bε) for all α ∈ [0, 1)

under the assumption (a). Hence, if the scattered field vanishes identically, there hold the transmission

conditions

∂j
ν u = ∂j

ν u
in on Γε, j = 0, 1, · · · , l + 1,

where Γε ⊂ ∂D contains O. Now, applying Lemma 3.1 to u1 = uin and u2 = u gives uin ≡ 0 in Bε.

By unique continuation, uin ≡ 0 in R
n, which is a contradiction. �

Proof of Theorem 2.2. Denote by (Dj, qj) (j = 1, 2) the two penetrable obstacles and the associated

potentials. If the far-field patterns incited by some incoming wave corresponding to (D1, q1) and (D2, q2)
coincide, then by Rellich’s lemma the scattered fields must also coincide in the unbounded component Ω
of R

n\(D1 ∪D2). Suppose without loss of generality that there exists a corner O ∈ ∂D2 ∩ ∂Ω such

thatO /∈ ∂D1 (see Figure 3). Then, one can find a small ε > 0 such thatD1∩Bε = ∅. Applying Lemma

3.1 to the domain D := D2 ∩ Bε with uj being the total fields corresponding to (Dj, qj), j = 1, 2, we

finally get u1 ≡ 0 in D and thus u1 ≡ 0 in R
n. This implies that the scattered field usc

1 := u1 − uin can

be extended to the whole space as a solution to the Helmholtz equation with the wavenumber k2. Hence,

usc
1 ≡ 0 and thus uin ≡ 0 in R

n. This contradiction implies that (D1, q1) and (D2, q2) cannot generate

identical far-field patterns. �

Remark 3.1. The proofs of our results carry over to all non-vanishing incident fields that satisfy the

Helmholtz equation (1.1) in a neighborhood of D, including the incident point source waves of the form

uin(x; y) =

{

i
4
H

(1)
0 (k|x− y|), n = 2,

eik|x−y|

4π|x−y|
, n = 3,

x 6= y, y ∈ De.

Here H
(1)
0 denotes the Hankel function of the first kind of order zero.

Remark 3.2. It is not straightforward to generalize the global uniqueness result of Corollary 2.1 to the

class of all curvilinear polygons and polyhedra, because in general one cannot always find a singular

boundary point in a neighbourhood of which the wave field is analytic; see the proof of Theorem 2.2. Due

to the same reason, our approach for proving Corollary 2.1 does not apply to non-convex polygons and

polyhedra. For a non-convex scatterer, the unique determination of its convex hull follows from the proof

of Theorem 2.2. We refer to [1, 5, 11, 20, 30] where non-convex impenetrable polygons and polyhedra

were treated, relying on reflection principles for the Helmholtz equation in combination with properties of

incident plane or point source waves.
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Remark 3.3. Lemma 3.1 does not hold in the absence of interface singularities on Γε, for instance, if Γε

is an analytic surface. To see this, we let l = 0, q|D ≡ q0 6= 1, and suppose that Γε = {−ε < x1 <
ε} ⊂ R

2 is a line segment. Then it is easy to check that

u1 = e−ikx2 +
1 − q0
1 + q0

eikx2 , u2 =
2

1 + q0
e−ikq0x2 ,

are non-trivial solutions to (3.1). In fact, u1 and u2 denote respectively the unique total and transmitted

fields in the upper and lower half spaces incited by the incoming wave exp(−ikx2) incident onto x2 = 0
from above.

The rest of this paper is devoted to the proof of Lemma 3.1 for curvilinear polygons and polyhedra in

Sections 4-6, and for circular cones in Section 7. In the case of l = 0 and a real-analytic refractive

index q on D ∩Bε, an alternative and more straightforward proof was presented in [12] for polygons and

polyhedra with flat surfaces.

4 Corners in 2D always scatter

This section is concerned with the acoustic scattering from a penetrable polygon with a piecewise linear

boundary in R
2. The curvilinear polygons will be treated later in Section 6. Our approach relies on the

singularity analysis of the inhomogeneous Laplace equation in a sector. We refer to the fundamental

paper [26] and the monographs [17, 31, 33] for a general regularity theory of elliptic boundary value

problems in domains with non-smooth boundaries.

4.1 Solvability of the Laplace equation in a sector

We introduce two classes of weighted spaces on the sector K introduced in Section 2. For κ ∈ N0 and

β ∈ R, the weighted Sobolev spaces V κ
β (K) are defined as the completion of C∞

0 (K) with respect to

the norm

||u||V κ
β (K) =

{

∑

j∈N0,j≤κ

∫

K

r2(β−κ+j) |∇j
x u(x)|2 dx

}1/2

.

Denote by Λκ,α
β (K) the weighted Hölder spaces endowed with the norm

||u||Λκ,α
β (K) = sup

x,y∈K
|x− y|−α

∣

∣|x|β∇κ
x u(x) − |y|β∇κ

y u(y)
∣

∣

+ sup
x∈K

∑

j∈N0,j≤κ

|x|β−α−κ+j |∇j
xu(x)|

for α ∈ (0, 1). If u ∈ Λκ,α
β (K), then ∇ju ∈ Λκ−j, α

β (K) for all j = 0, 1, · · · , κ. In addition, the inclusion

Λκ,α
β (K) ⊂ Λκ,α

β+1(K) holds for functions with a compact support in K.

Let ∆D resp. ∆N be the operator of the Dirichlet resp. Neumann problem corresponding to the inho-

mogeneous Laplace equation with the homogeneous boundary condition on ∂K. In this subsection the

9



operators ∆D and ∆N will act on the spaces

Λκ,α
β,D(K) :=

{

u ∈ Λκ,α
β (K) : u = 0 on ∂K

}

,

V κ
β,D(K) :=

{

u ∈ V κ
β (K) : u = 0 on ∂K

}

,

and

Λκ,α
β,N(K) :=

{

u ∈ Λκ,α
β (K) : ∂νu = 0 on ∂K

}

,

V κ
β,N(K) :=

{

u ∈ V κ
β (K) : ∂νu = 0 on ∂K

}

respectively. In the following we state solvability results for the Laplace equation in the weighted spaces

V 2
β (K) and Λ2,α

β (K).

Proposition 4.1. ( [33, Chapter 2, Proposition 2.5])

(i) The operator ∆D : V 2
β,D(K) → V 0

β (K) is an isomorphism if 1 − β 6= jπ/ω for all j ∈ Z\{0}.

(ii) The operator ∆N : V 2
β,N(K) → V 0

β (K) is an isomorphism if 1 − β 6= jπ/ω for all j ∈ Z.

Proposition 4.2. ( [33, Chapter 3, Theorem 6.11])

(i) The operator ∆D : Λ2,α
β,D(K) → Λ0,α

β (K) is an isomorphism if 2+α−β 6= jπ/ω for all j ∈ Z\{0}.

(ii) The operator ∆N : Λ2,α
β,N(K) → Λ0,α

β (K) is an isomorphism if 2 + α− β 6= jπ/ω for all j ∈ Z.

Proposition 4.3. ( [33, Chapter 2, Proposition 2.12]) Let γ1 < γ ≤ 2 and assume 2 + α − β 6= jπ/ω
for β = γ, γ1 and for all j ∈ N. Moreover, let f ∈ Λ0,α

γ (K)
⋂

Λ0,α
γ1

(K) and denote by vβ the unique

solution of the Dirichlet problem ∆Dv = f ∈ Λ0,α
β (K) in Λ2,α

β,D(K). Then we have the relation

vγ1
= vγ +

∑

j

Cj r
jπ/ω sin[(jπ/ω)θ], Cj ∈ C, (4.1)

where the sum is taken over all j ∈ N such that jπ/ω ∈ (2 + α − γ, 2 + α − γ1). For the Neumann

problem, the sin functions in (4.1) should be replaced by the cos functions.

Let Pκ be the set of homogeneous polynomials of degree κ ∈ N0 in R
n. Below we present a special

solution to the two-dimensional Laplace equation when the right hand side is a homogeneous polynomial;

see [33, Section 2.3.4].

Proposition 4.4. Consider the inhomogeneous Dirichlet problem ∆Dv = pκ ∈ Pκ in K ∈ R
2. There

exists a special solution of the form

v = qκ+2 if (κ+ 2)ω/π /∈ N,

v = qκ+2 + CD r
κ+2 {ln r sin(κ+ 2)θ + θ cos(κ+ 2)θ} if (κ+ 2)ω/π ∈ N

(4.2)

for some CD ∈ C and qκ+2 ∈ Pκ+2 satisfying ∆qκ+2 = pκ.

For the Neumann problem ∆Nv = pκ ∈ Pκ, a special solution takes the same form as (4.2) when

(κ+ 2)ω/π /∈ N, but with

v = qκ+2 + CN r
κ+2 {ln r cos(κ+ 2)θ − θ sin(κ+ 2)θ} , CN ∈ C,

if (κ+ 2)ω/π ∈ N.
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4.2 Proof of Lemma 3.1 for polygons

Let K ⊂ R
2 be an infinite sector with the angle ω ∈ (0, 2π)\{π}. Recall thatB1 is the unit disk centered

at the origin O. Assume q ∈ C l,s(K ∩B1) for some l ∈ N0, s ∈ (0, 1) satisfying q ≡ 1 in B1\K.

Consider the coupling problem between the Helmholtz equations

∆u1 + k2u1 = 0, ∆u2 + k2qu2 = 0 in B1,

∂j
ν(u1 − u2) = 0 on ∂K ∩B1, j = 1, 2, · · · , l + 1,

(4.3)

where ∂j
ν denotes the normal derivative of order j at ∂K and ν is the unit normal pointing into the exterior

of K. The proof of Lemma 3.1 for a polygon with piecewise linear boundary follows straightforwardly from

the lemma below, which implies that corners in 2D always scatter.

Lemma 4.1. Let u1, u2 ∈ H2(B1) be solutions to (4.3), and suppose that q satisfies the assumption (a)

near the corner O with D := K ∩B1. Then u1 = u2 ≡ 0 in B1.

Lemma 4.1 will be proved by applying the solvability results of the Laplace equation in the weighted

spaces introduced in Section 4.1. For simplicity we write Λκ,α
β = Λκ,α

β (K) and V κ
β = V κ

β (K) to drop

the dependence on the sector K in this subsection.

Proof. Obviously, u1 is real-analytic in B1 and by Proposition 3.1,

u2 ∈ C l+1,α(B1) ∩H l+2(B1) for all α ∈ [0, 1).

Hence, the traces of u1 and u2 on ∂K ∩ B1 occurring in (4.3) are all well defined. For clarity we shall

divide the proof into five steps.

Step 1. Setting u := u1 − u2, we have

∆u+ k2qu = k2(1 − q)u1 in K ∩B1,

∂j
νu = 0 on ∂K ∩B1, j = 1, 2, · · · , l + 1.

Let ṽ = ∇lu. Then ṽ ∈ C1,α(K ∩B1) ∩ H2(K ∩ B1) solves the following Cauchy problem for the

Laplace equation with an inhomogeneous right hand side

∆ṽ = −k2∇l(qu) + k2∇l(hu1) in K ∩B1, ṽ = ∂ν ṽ = 0 on ∂K ∩B1,

where h := 1−q. Here and in the following a scalar differential operator is assumed to act componentwise

on a vector function.

We shall analyze the singularity of ṽ near the corner O. Since the solvability results in Propositions 4.1-

4.3 refer to the case of an infinite cone, we will introduce a new boundary value problem defined over K.

For this purpose, we choose a cut-off function χ ∈ C∞
0 (K) such that χ ≡ 1 in K ∩ B1/2 and χ ≡ 0 in

K ∩Be
1. Define a new function v as

v :=

{

χ ṽ in K ∩B1,
0 in K ∩Be

1.

Introduce the commutator in K ∩B1:

[∆, χ]ṽ := ∆(χṽ) − χ∆ṽ = ṽ∆χ+ 2∇ṽ · ∇χ

11



and extend [∆, χ]ṽ, q, h, u and u1 by zero to K ∩Be
1. Simple calculations show that

∆v = −k2χ∇l(qu) + k2χ∇l(hu1) − [∆, χ]ṽ =: f in K,
v = ∂νv = 0 on ∂K. (4.4)

We shall study the boundary value problem (4.4) in the weighted Hölder spaces Λ2,α
β (K) (β ≤ 1)

introduced in Section 4.1 where the weight β will be improved step by step. The inhomogeneous term f
in (4.4) belongs to C 0,α(K) and thus to Λ 0,α

1 for all α ≤ s, while v ∈ C1,α(K) ∩H2(K). Recall that s
is the Hölder exponent of q.

Step 2. We show that v ∈ Λ2,α
1,D ∩ Λ2,α

1,N if the Hölder exponent 0 < α < s is sufficiently small.

First it holds that v ∈ V 2
0 , since v has compact support, v ∈ H2(K) and by the vanishing Cauchy data,

r−2|v| + r−1|∇v| = O(rα−1) as r → 0.

Hence, by Proposition 4.1 with β = 0, v is the unique solution of (4.4) in the weighted Sobolev space

V 2
0,D ∩ V 2

0,N ; note that 1 6= jπ/ω for all j ∈ N0 since the opening angle ω ∈ (0, 2π)\{π}. On the

other hand, since f ∈ Λ0,α
β for all β ≥ 1, by Propositions 4.2 and 4.3 there are unique solutions vD/N

of the first equation in (4.4) satisfying vD ∈ Λ2,α
β,D and vN ∈ Λ2,α

β,N for all β ≥ 1 sufficiently close to 1
and α > 0 sufficiently small. Note that, for those α and β, 2 + α − β 6= jπ/ω for all j ∈ N. Moreover,

vD/N ∈ Λ2,α
1 implies that χvD/N ∈ V 2

0 . Since also vD/N ∈ Λ2,α
β for some β > 1, it is easy to check

that (1−χ)vD/N ∈ V 2
0 . Therefore, we obtain vD/N ∈ V 2

0 , implying that v = vD = vN and the required

regularity of v in this step.

Step 3. We show that f ∈ Λ 0,α
0 , v ∈ Λ2,α

0 for α > 0 sufficiently small, and u1(O) = 0.

From the regularity assumption on q it follows that

∇jh(O) = 0, j = 0, 1, · · · , l − 1, ∇lh(O) 6= 0. (4.5)

The last relation means that ∂l1
x1
∂l1

x2
h(O) 6= 0 for some l1, l2 ∈ N0 such that l1 + l2 = l. Using (4.5)

and the fact that v ∈ Λ2,α
1 we get

χ∇l(qu) ∈ Λ2,α
1 ⊂ Λ0,α

0 , k2χ [∇l(hu1) −∇lh(O) u1(O)] ∈ Λ0,α
0 .

Hence, the right hand side of (4.4) takes the form

f = χp0 + f0, p0 := k2 ∇lh(O)u1(O), f0 := f − χp0 ∈ Λ0,α
0 , (4.6)

that is, χp0 is the only part of f ∈ Λ0,α
1 that does not belong to Λ0,α

0 . Therefore, it suffices to verify the

vanishing of the constant vector p0 in this step.

Consider the boundary value problems

∆Dv0 = p0, ∆Nv0 = p0 on K. (4.7)

Applying Proposition 4.4 with κ = 0 yields special solutions v0,D, v0,N to (4.7) of the form

v0,D = q2,D + cD r
2 {ln r sin 2θ + θ cos 2θ} ,

v0,N = q2,N + cN r
2 {ln r cos 2θ − θ sin 2θ} , (4.8)
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where q2,D/N ∈ P2, cD/N ∈ C satisfy

∆q2,D/N = p0, cD/N = 0 if 2ω/π /∈ N.

For the (unique) solution v ∈ Λ2,α
1,D ∩ Λ2,α

1,N of the problem (4.4), we set

w0,D/N := v − χ v0,D/N ∈ Λ2,α
1 .

Using (4.6), one can readily check that

∆w0,D = f0 − [∆, χ] v0,D =: g0,D ∈ Λ0,α
0 ∩ Λ0,α

1 ,

∆w0,N = f0 − [∆, χ] v0,N =: g0,N ∈ Λ0,α
0 ∩ Λ0,α

1 .

We apply Proposition 4.3 with γ1 = 0 and γ = 1 to the previous two boundary value problems to get the

unique solutions in Λ2,α
1 of the form

w0,D = χ
∑

j

dD,j r
jπ/ω sin[(jπ/ω)θ] + w̃D, dD,j ∈ C, w̃D ∈ Λ2,α

0,D,

w0,N = χ
∑

j

dN,j r
jπ/ω cos[(jπ/ω)θ] + w̃N , dN,j ∈ C, w̃N ∈ Λ2,α

0,N ,
(4.9)

where the sums in (4.9) are both taken over all j ∈ N such that jπ/ω ∈ (1 + α, 2 + α), or equivalently,

jπ/ω ∈ (1 + α, 2]. Comparing (4.8), (4.9) and recalling that v solves both the Dirichlet and Neumann

boundary value problems, we obtain the following expressions as r → 0:

v =
∑

j

dD,j r
jπ/ω sin[(jπ/ω)θ] + q2,D + cD r

2 {ln r sin 2θ + θ cos 2θ} + O(r2+α)

=
∑

j

dN,j r
jπ/ω cos[(jπ/ω)θ] + q2,N + cN r

2 {ln r cos 2θ − θ sin 2θ} + O(r2+α).
(4.10)

Note that both w̃D and w̃N are subject to the decay of order O(r2+α) near the corner. Letting r → 0
and using the linear independence of the sin and cos functions, we get the relations (see Section 7.2 for

the proof in the more complicated case of circular cones)

cD = cN = 0, dD,j = dN,j = 0 if jπ/ω < 2.

Hence, the lowest order term of v near O takes the form

dD r
2 sin 2θ + q2,D = dN r

2 cos 2θ + q2,N =: q2 ∈ P2,

where dD = dN = 0 if ω 6= π/2, 3π/2. Moreover, the polynomial q2 must satisfy q2 = ∂νq2 = 0 on

∂K and the equations

∆q2 = ∆q2,D = ∆q2,N = p0 ∈ P0, ∆2q2 = 0 in K.

Making use of Proposition A.1 in the Appendix, we then get q2 ≡ 0, so that p0 = 0. This implies that

v ∈ Λ2,α
0 . Finally, the relation u1(O) = 0 follows from (4.5) and the definition of p0 in (4.6).

Step 4. For any m ∈ N, we show via induction that, for α > 0 sufficiently small,

f ∈ Λ 0,α
1−m, v ∈ Λ 2,α

1−m, ∇ju1(O) = 0 for all j ∈ N0, j ≤ m− 1. (4.11)
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Note that the case m = 1 has been covered by Step 2, and the last equality in (4.11) means that

∂j1
x1
∂j2

x2
u1(O) = 0 for all j1, j2 ∈ N0 such that j1 + j2 = j. Assuming the induction hypothesis that the

relations in (4.11) hold for some m > 1, we have to show that

f ∈ Λ 0,α
−m, v ∈ Λ 2,α

−m, ∇mu1(O) = 0. (4.12)

Denote by u1,m ∈ Pm the homogeneous Taylor polynomial of degree m of u1 at O. By the last relation

in (4.11), we have u1,j ≡ 0 for all j ≤ m− 1.

From the induction hypothesis and the assumption on q it follows that

χ∇l(qu) ∈ Λ 2,α
1−m ⊂ Λ 0,α

−m, k2χ∇l(hu1) ∈ Λ 0,α
1−m.

This implies that the right hand side can be split into

f = χpm + fm ∈ Λ 0,α
1−m

with

pm := k2 ∇lh(O)u1,m, χpm ∈ Λ 0,α
1−m, fm := f − χpm ∈ Λ 0,α

−m.

By Proposition A.1 in the Appendix we see that ∆pm = k2∇lh(O)∆u1,m = 0.

Repeating the arguments in Step 2 and applying Proposition 4.4 with κ = m, we find that v ∈ Λ2,α
1−m,D ∩

Λ2,α
1−m,N takes the form

v =χ
{

qm+2,D + cD r
m+2 {ln r sin(m+ 2)θ + θ cos(m+ 2)θ}

}

+ χ
∑

j

dD,j r
jπ/ω sin[(jπ/ω)θ] + w̃D

=χ
{

qm+2,N + cN r
m+2 {ln r cos(m+ 2)θ − θ sin(m+ 2)θ}

}

+ χ
∑

j

dN,j r
jπ/ω cos[(jπ/ω)θ] + w̃N ,

(4.13)

for some w̃D/N ∈ Λ2,α
−m,D/N , cD/N ∈ C, dD/N,j ∈ C and qm+2,D/N ∈ Pm+2 satisfying ∆qm+2,D/N =

pm. The two sums in (4.13) are taken over j ∈ N such that

jπ/ω ∈ (1 + α+m, 2 + α+m), or equivalently, jπ/ω ∈ (1 + α+m, 2 +m].

It is easy to observe that w̃D/N = O(r2+m+α) as r → 0. Hence, it follows from (4.13) by letting r → 0
that

cD = cN = 0, dD,j = dN,j = 0 if jπ/ω < m+ 2 ;

see again the proof of Lemma 7.1 for the details. Therefore, the lowest order term qm+2 of v near O
belongs to Pm+2 and satisfies

∆qm+2 = ∆qm+2,D/N = pm ∈ Pm, ∆2qm+2 = ∆pm = 0 in K
qm+2 = ∂νqm+2 = 0 on ∂K.

Using Proposition A.3 in the Appendix we arrive at qm+2 ≡ 0. Consequently, it follows that pm ≡ 0 and

u1,m ≡ 0 which implies the relations in (4.11).

Step 5. We have proved that ∇ju1(O) = 0 for all j ∈ N0 in the previous step. Hence, u1 ≡ 0 inB1 due

to the analyticity. Finally, the vanishing of u2 follows from the unique continuation for elliptic equations;

see e.g. [23, Chapters 3.2 and 3.3] for a proof based on Carleman estimates. This finishes the proof of

Lemma 4.1.
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5 Edges in 3D always scatter

This section is devoted the proof of Lemma 3.1 for a polyhedron with flat surfaces. Consider an infinite

wedge domain W = K × R in R
3, where the notation K still stands for a sector with the opening angle

ω ∈ (0, 2π)\{π}. For simplicity we write x′ = (x1, x2) so that x = (x′, x3) ∈ R
3. Analogously, the

originO ∈ R
3 can be written as O = (O′, 0) where O′ = (0, 0) ∈ R

2. Let Ua = {x ∈ R
3 : x2

1 +x2
2 <

1, |x3| < a} be a cylinder of height 2a for some a > 0. Then O ∈ ∂W ∩ U1 is an interior edge point.

Let ∆ = ∆x and ∆x′ be the three and two dimensional Laplace operators with respect to the variables

x and x′, respectively. Suppose that q ∈ C l,s(W ∩ U1) for some s ∈ (0, 1) and l ∈ N0 and that q ≡ 1
in We ∩ U1. As the counterpart of (4.3) in 3D, we consider the problem

∆u1 + k2u1 = 0, ∆u2 + k2qu2 = 0 in U1,

∂j
ν(u1 − u2) = 0 on ∂W ∩ U1, j = 1, 2, · · · , l + 1.

(5.1)

The analogue of Lemma 4.1 in a wedge domain is formulated as follows.

Lemma 5.1. Assume that q satisfies the assumption (a) with D := W ∩ U1 near the edge point O. Let

u1, u2 ∈ H2(U1) be a solution pair to (5.1). Then u1 = u2 ≡ 0 in U1.

Based on Lemma 5.1 one can prove that an edge with an arbitrary opening angle ω ∈ (0, 2π)\{π}
scatters every incident wave non-trivially (see Section 3). Below we extend the arguments for proving

Lemma 4.1 to a wedge domain by using partial Fourier transform. Lemma 3.1 in the case of a polyhedron

with flat surfaces is a direct consequence of Lemma 5.1.

Proof. By Proposition 3.1, u := u2 − u1 ∈ C l,α(U1) ∩ H l+2(U1) for all α ∈ [0, 1). To prove the

lemma, we set h := 1 − q and v(x) := χ(x′)ϕ(x3)∇l
xu where χ ∈ C∞

0 (K) is the cut-off function

introduced in the proof of Lemma 4.1 and ϕ ∈ C∞
0 (−1, 1) satisfies ϕ ≡ 1 in (−1/2, 1/2). Then

v ∈ C 1,α(W) ∩H2(W) is a solution to the inhomogeneous Laplace equation (cf. (4.4))

∆v = −k2χϕ∇l
x(qu) + k2χϕ∇l

x(hu1) − [∆, χϕ](∇l
xu) =: f0 in W ,

v = ∂νv = 0 on ∂W .
(5.2)

Introduce the partial Fourier transform

Fx3→ξ(v(x
′, x3)) = Fv(x′, ξ) :=

1√
2π

∫

R

v(x′, x3) e
ix3ξ dx3, ξ ∈ R

and set

w0 := ϕ∇l
xu, w(x′, ξ) := χ(x′)Fw0(x

′, ξ) = Fv(x′, ξ).

Applying the partial Fourier transform to (5.2), we obtain a Cauchy problem for the two-dimensional

Laplace equation in the infinite sector K depending on the parameter ξ ∈ R:

∆x′w(x′, ξ) = Ff0(x
′, ξ) + ξ2w(x′, ξ) =: f(x′, ξ) in K,

w(·, ξ) = ∂νw(·, ξ) = 0 on ∂K. (5.3)

Note that the right hand side f is analytic in ξ for any fixed x′ ∈ R
2. Moreover, for all ξ ∈ R, we have for

α ≤ s that

w(·, ξ) ∈ C1,α(K) ∩H2(K), f(·, ξ) ∈ C0,α(K) ⊂ Λ0,α
1 (K)
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and

f(·, ξ) − f(O′, ξ) ∈ Λ0,α
0 (K).

Applying Step 2 in the proof of Lemma 4.1 to (5.3) yields w(·, ξ) ∈ Λ2,α
1,D(K)∩Λ2,α

1,N(K), if 0 < α < s is

chosen sufficiently small. Further, by arguing analogously to Step 3 in the proof of Lemma 4.1 we obtain

f(·, ξ) ∈ Λ0,α
0 , f(O′, ξ) = 0, w(·, ξ) ∈ Λ2,α

0,D(K) ∩ Λ2,α
0,N(K), ∀ ξ ∈ R.

Together with (5.3) this leads to Ff0(O
′, ξ) = 0 for all ξ ∈ R and thus f0(O

′, x3) = 0, x3 ∈ R. In view

of the definition of f0 on the right hand side of (5.2) we see that

0 = f0(O
′, x3) = k2∇l

xh(O
′, x3) u1(O

′, x3) for all |x3| < 1/2,

where we have used the fact that ∇ju = 0 on ∂W ∩ U1 for all j = 0, 1, · · · , l + 1. By the continuity

of ∇l
xh(O

′, x3) near x3 = 0 and using the assumption ∇l
xh(O) 6= 0, we get u1(O

′, x3) ≡ 0 for |x3|
sufficiently small. Further, u1(O

′, x3) ≡ 0 for all x3 ∈ R by the analyticity, and in particular u1(O) = 0.

For β = (β1, β2) ∈ N
2
0, let |β| = β1 + β2. Denote by u1,j(·, x3), j ∈ N0, the homogeneous Taylor

expansion of degree j of u1(·, x3) at x′ = O′ which takes the form

u1,j(x
′, x3) =

∑

|β|=j

cβ,j(x3) x
′β, x′β = xβ1

1 x
β2

2 . (5.4)

For some m ∈ N, m > 1, we make the induction hypothesis that

w(·, ξ) ∈ Λ2,α
1−m(K), f(·, ξ) ∈ Λ0,α

1−m(K) for all ξ ∈ R,

u1,j ≡ 0 for all j < m.
(5.5)

We need to prove that

w(·, ξ) ∈ Λ2,α
−m(K), f(·, ξ) ∈ Λ0,α

−m(K) for all ξ ∈ R, u1,m ≡ 0.

Note that the relations in (5.5) for m = 1 have been verified in the previous step and that the last relation

in (5.5) implies that, for all x3 ∈ R,

u1(x
′, x3) − u1,m(x′, x3) = O(|x′|m+1) as |x′| → 0. (5.6)

The right hand side of the equation in (5.3) takes the form (cf. (5.2))

f = k2χF(ϕ∇l
x(hu1)) − k2χF(ϕ∇l

x(qu)) −F([∆, χϕ](∇l
xu)) + ξ2w. (5.7)

Obviously, F([∆, χϕ](∇l
xu))(·, ξ) ∈ Λ0,α

−m(K). Using the induction hypothesis on w and the regularity

of q it can be readily checked that, for all ξ ∈ R,

ξ2w(·, ξ) ∈ Λ2,α
1−m(K) ⊂ Λ0,α

−m(K), F(ϕ∇l
x(qu))(·, ξ) ∈ Λ0,α

−m(K).

To estimate the first term on the right hand side of (5.7), we use (5.6) and the assumption on q to derive

the decompositions

h(x′, x3)u1(x
′, x3) = h(O′, x3)u1,m(x′, x3) + O(|x′|l+m+1),

ϕ(x3)∇l
x[h(x

′, x3)u1(x
′, x3)] = ϕ(x3)∇l

x[h(O
′, x3)] u1,m(x′, x3) + ϕ(x3)O(|x′|m+1)
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as |x′| → 0. Taking the partial Fourier transform gives

F
(

ϕ (∇l
x(hu1) −∇l

xh(O
′, x3) u1,m)

)

(·, ξ) ∈ Λ0,α
−m(K) for all ξ ∈ R. (5.8)

Now, combining (5.4), (5.7) and (5.8) we see that

f(·, ξ) − χk2p̂m(·, ξ) ∈ Λ0,α
−m(K),

where p̂m(·, ξ) ∈ Pm is defined as

p̂m(x′, ξ) =
∑

|β|=m

c̃β(ξ)x′β, c̃β(ξ) := F
(

ϕ(x3)∇l
x[h(O

′, x3)] cβ,m(x3)
)

(ξ).

Note that the coefficients c̃β are analytic on R and belong toL1(R), since the functionsϕ∇l
x[h(O

′, x3)]cβ,m

are continuous and have a compact support on R. Applying the arguments in the proof of Lemma 4.1,

we may conclude that the lowest order term Qm+2(·, ξ) of w(·, ξ) near the corner of K belongs to Pm+2

and satisfies the Cauchy problem

∆x′Qm+2(·, ξ) = p̂m(·, ξ) in K,
Qm+2(·, ξ) = ∂νQm+2(·, ξ) = 0 on ∂K (5.9)

for all ξ ∈ R.

Since Fpm(x′, ·) ∈ L1(R), its inverse Fourier transform is given by

pm(x′, x3) = ϕ(x3)∇l
x[h(O

′, x3)] u1,m(x′, x3). (5.10)

Recalling the induction hypothesis that u1,j(x
′, x3) ≡ 0 for all 0 ≤ j < m (see (5.4) and (5.5)), we get

u1(x
′, x3) = u1,m(x′, x3) + O((|x′| + |x3 − t|)m+1),

as |x′| → 0, x3 → t for all t ∈ R. Hence, u1,m coincides with the lowest order term U1,m in the Taylor

expansion of u1 at (x′, t) ∈ R
3. As a consequence of Proposition A.2 (iii), it holds for all x3 ∈ R that

∆x′u1,m(x′, x3) = ∆xU1,m ≡ 0 and thus

∆x′(pm(x′, x3)) = ϕ(x3)∇l
x[h(O

′, x3)] ∆x′u1,m(x′, x3) ≡ 0. (5.11)

Taking the partial Fourier transform of (5.11) with respect to x3 gives

∆x′ p̂m(x′, ξ) ≡ 0 for all ξ ∈ R.

Together with (5.9) this implies thatQm+2(·, ξ) is a biharmonic function with vanishing Dirichlet and Neu-

mann data on ∂K. Now, applying Proposition A.3 to Qm+2 gives the relations Qm+2(·, ξ) = p̂m(·, ξ) ≡
0 for all ξ ∈ R, which further result in

f(·, ξ) ∈ Λ0,α
−m(K), w(·, ξ) ∈ Λ2,α

−m(K), pm ≡ 0.

Since ∇l
x[h(O

′, x3)] 6= 0 in a neighborhood of x3 = 0, it follows from (5.10) that u1,m(x′, x3) ≡ 0 in

a neighborhood of the plane x3 = 0 in R
3. Hence, u1,m ≡ 0 in R

3 due to the analyticity. This proves

the relation ∇mu1 = 0 at O. Since m ∈ N0 is arbitrary, the relation u1 ≡ 0 follows. Finally, we obtain

u2 ≡ 0 by unique continuation. The proof of Lemma 5.1 is thus complete.
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6 Curvilinear polygons and polyhedra always scatter

In this section we shall adapt the arguments in Sections 4.2 and 5 to the case of a curvilinear polygon or

polyhedron. Lemma 3.1 in the cases (i) and (ii) can be equivalently stated as

Lemma 6.1. Let D be a bounded curvilinear polygon or polyhedron and let the potential q satisfy the

assumption (a) near a corner or edge point P ∈ ∂D. For ε > 0 sufficiently small, let Γε = Bε(P )∩ ∂D
be a sub-boundary of ∂D such that P ∈ Γε. If the solution pair uj ∈ H2(Bε(P )) (j = 1, 2) solves the

coupling problem (3.1), then u1 = u2 ≡ 0.

Proof. For brevity we only indicate the changes that are necessary to reduce the case of a curvilinear

domain to a sector or wedge domain. We start with the same argument as in the proof of Lemmas 4.1

and 5.1 by choosing an appropriate cut-off function χ in a neighbourhood of P in D. Consequently, the

function v := χ(x)∇l
x(u1 − u2) satisfies the boundary value problem (cf. (4.4) and (5.2))

∆ v = f in D ∩Bε(P ), v = ∂νv = 0 on Γε (6.1)

for some Hölder continuous function f supported in a neighborhood of P in D. Denote by y = Ψ(x),

y = (y1, y2, · · · , yn), x = (x1, x2, · · · , xn), the diffeomorphism specified in Definitions 2.1 and 2.1

mapping a curvilinear domain near P to a sector or wedge domain with flat boundaries. For notational

convenience we write U = K in two dimensions and U = W = K × R in three dimensions. Under the

transformation

ṽ(y) = v(Ψ−1(y)), f̃(y) = f(Ψ−1(y)), y ∈ R
n,

we have

∆yṽ = ∆xv(Ψ
−1(y)) − gṽ(y) = f̃(y) − gṽ(y) in U ,

ṽ = ∂ν ṽ = 0 on ∂U . (6.2)

where

gṽ(y) :=
n
∑

i,j=1

[aij(y) − δij]
∂2ṽ

∂yj∂yi

+
n
∑

i=1

bi(y)
∂ṽ

∂yi

,

aij(y) := (∇x yi(x) · ∇x yj(x)) |x=Ψ−1(y),

bi(y) := (∆x yi(x))|x=Ψ−1(y).

Here δij is the Kronecker delta symbol. Compared to the right hand sides of (4.4) and (5.2), the term −gṽ

in (6.2) is additional. Since ∇Ψ = I and Ψ is of C2-smoothness, it holds that

aij(y) − δij = O(|y|), bi(y) = O(1) as y → O, i, j = 1, 2, · · · , n.

Hence, if ṽ ∈ Λ2,α
1−m(U) for some m ∈ N0, then it must hold that gṽ ∈ Λ0,α

−m(U) because

[aij(y) − δij]
∂2ṽ

∂yj∂yi

∈ Λ0,α
−m(U), bi(y)

∂ṽ

∂yi

∈ Λ0,α
−m(U),

for all i, j = 1, · · · , n. Proceeding by induction on m, suppose that f ∈ Λ2,α
1−m(Bε(P ) ∩D) takes the

form

f = χpm + fm, χpm ∈ Λ0,α
1−m(D ∩Bε(P )), fm ∈ Λ 0,α

−m(D ∩Bε(P ))
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for some pm ∈ Pm. Then by the assumptions on Ψ the transformed function f̃ can be written as

f̃ = χ̃qm + gm, χ̃qm ∈ Λ 0,α
1−m(U), gm ∈ Λ 0,α

−m(U)

for some qm ∈ Pm. Further, the relation qm ≡ 0 then implies the vanishing of pm and also of the m-th

order terms in the Taylor expansion of u1 at P . Applying the arguments in the proof of Lemmas 4.1 and

5.1 to the equation (6.2), we successively obtain qm ≡ 0 for allm ∈ N0, which implies u1 = u2 ≡ 0.

7 Circular cones always scatter

This section is concerned with the scattering problems corresponding to a penetrable obstacle with cir-

cular conic corners on the boundary. We first present the solvability of the Laplace equation in a three-

dimensional cone and then verify Lemma 3.1 in the case (iii).

7.1 Solvability of the Laplace equation in a circular conic domain

Let C be the infinite circular cone introduced in Section 2.3. For β ∈ R, κ ∈ N0 and α ∈ [0, 1),

we define the weighted spaces V κ
β (C), V κ

β,D/N(C), Λκ,α
β (C) and Λκ,α

β,D/N(C) in the same way as in

Section 4.1, where only the sector K ⊂ R
2 is replaced with the cone C ⊂ R

3 and r denotes the

distance of x to the conic pointO. In this section we denote by ∆D resp. ∆N the operator of the Dirichlet

resp. Neumann problem corresponding to the inhomogeneous Laplace equation with the homogeneous

boundary condition on ∂C acting on the spaces V κ
β,D/N(C) and Λκ,α

β,D/N(C). Consider the Dirichlet and

Neumann boundary value problems

∆D u = f, ∆N u = f on C. (7.1)

Using spherical coordinates we may rewrite the Laplace operator as

∆ =
1

r2

{

(r
∂

∂r
)2 + r

∂

∂r
+ ∆̂

}

, ∆̂ :=
1

sin θ

(

∂

∂θ
sin θ

∂

∂θ
+

1

sin θ

∂2

∂ϕ2

)

where ∆̂ is the Beltrami operator defined on S
2. To study the solvability of the boundary value problems

(7.1) in the weighted Sobolev spaces V κ
β (C) and Hölder spaces Λκ,α

β (C), we shall apply Kondratiev’s

method [26] by looking for solutions of the homogeneous problems (7.1) (i.e., f = 0) in the form u(x) =
rλV (x̂) with x̂ = x/r ∈ S

2; cf. [33] and [27]. Then V satisfies the eigenvalue problem

∆̂V + λ(λ+ 1)V = 0 in Ω := S
2 ∩ C,

V = 0 or ∂νV = 0 on ∂Ω.
(7.2)

The Dirichlet and Neumann eigenvalues of (7.2), λD,j and λN,j (j ∈ Z\{0}), counted with their finite

multiplicities, form a discrete set in R. Further, there are corresponding orthogonal (in L2(Ω)) sequences

of eigenfunctions Vj,D and Vj,N (see e.g. [27, Chapter 2]).

Below we present a more explicit description of the eigenvalues and eigenfunctions in our case of a

circular cone. For this purpose we need the definition of Legendre functions and spherical harmonic
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functions. For λ ∈ R, denote by Pλ the Legendre function of first kind satisfying the Legendre differential

equation

d

dt

[

(1 − t2)
df

dt

]

+ λ(λ+ 1)f = 0. (7.3)

By Pm
λ (m ∈ N0) we denote the associated Legendre functions of the first kind defined via

Pm
λ (t) := (1 − t2)m/2d

mPλ(t)

dtm
, m = 0, 1, · · · , n,

which satisfy the associated Legendre differential equations

d

dt

[

(1 − t2)
df

dt

]

+

[

λ(λ+ 1) − m2

1 − t2

]

f = 0. (7.4)

Recall that the normalized spherical harmonic functions of order n ∈ N0 are defined by

Y m
n (θ, ϕ) :=

√

2n+ 1

4π

(n− |m|)
(n+ |m|)P

|m|
n (cos θ) eimϕ (7.5)

for all m = −n, · · · , n. By [10], λ ∈ R is an eigenvalue to the Dirichlet resp. Neumann boundary value

problem (7.2) if and only if there exists some m ∈ Z such that P
|m|
λ (cosω) = 0 resp. (P

|m|
λ )′(cosω) =

0, with the associated eigenfunction V = P
|m|
λ (cos θ)eimϕ ∈ C∞(Ω). In the special case that λ = n ∈

N and |m| ≤ n− 1, the eigenfunction V = P
|m|
n (cos θ)eimϕ is a spherical harmonic function of order n

and rnV ∈ Pn is a homogeneous polynomial of order n. Note that Dirichlet and Neumann eigenvalues

may coincide. For instance, if (P 0
2 )′(cosω) = P ′

2(cosω) = 0, then P 1
2 (cosω) = sinω(P 0

2 )′(cosω) =
0, implying that λ = 2 is both a Dirichlet and Neumann eigenvalue. Since Pm

λ = Pm
−λ−1, we have

λD/N,−j = −λD/N,j − 1, λD,1 > 0, λN,1 = 0, λN,−1 = −1.

Below we state the solvability results for the Laplace equation in the weighted spaces V 2
β (C) and Λ2,α

β (C).

Proposition 7.1. ( [33, Chapter 3, Theorem 5.1]) The operator ∆D/N : V 2
β,D/N(C) → V 0

β (C) is an

isomorphism if 1/2 − β 6= λD/N,j for all j ∈ Z\{0}.

Proposition 7.2. ( [33, Chapter 3, Theorem 6.11]) The operator ∆D/N : Λ2,α
β,D/N(C) → Λ0,α

β (C) is an

isomorphism if 2 + α− β 6= λD/N,j for all j ∈ Z\{0}.

Proposition 7.3. ( [33, Chapter 3, Theorem 6.9]) Let γ1 < γ ≤ 2 and assume 2 + α− β 6= λD/N,j for

β = γ, γ1 and for all j ∈ N. Moreover, let f ∈ Λ0,α
γ (C)

⋂

Λ0,α
γ1

(C) and denote by vβ ∈ Λ2,α
β,D/N(C) the

unique solution of the problem ∆D/Nv = f ∈ Λ0,α
β (C). Then the relation

vγ1
= vγ +

∑

j

Cj r
λD/N,j Vj, D/N(x̂), Cj ∈ C

holds, where the sum is taken over all j ∈ N such that λD/N,j ∈ (2 + α− γ, 2 + α− γ1).

The following is a special case of [33, Chapter 3, Lemma 5.11] with additional information in the case of

a circular cone.
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Proposition 7.4. For κ ∈ N0, consider the inhomogeneous problem ∆D/Nv = pκ ∈ Pκ on C. There

exists a special solution of the form

vD/N = qD/N,κ+2 ∈ Pκ+2 (7.6)

if λD/N,j 6= κ+ 2 for all j ∈ N, and

v = qD/N,κ+2 +
∑

m

CD/N,m r
κ+2
{

ln r Y m
κ+2(x̂) + ψD/N,m(x̂)

}

(7.7)

if κ + 2 is a Dirichlet resp. Neumann eigenvalue. In (7.7), CD/N,m ∈ C, ψD/N,m ∈ C∞(Ω) and the

sum is taken over all m ∈ Z such that |m| ≤ κ and P
|m|
κ+2(cosω) = 0 in the Dirichlet case and

(P
|m|
κ+2)

′(cosω) = 0 in the Neumann case.

Proof. Applying Proposition A.2 (i), we may expand pκ ∈ Pκ as

pκ(r, θ, ϕ) = rκ
∑

n,j∈N0:n+2j=κ

n
∑

m=−n

a(j)
n,m Y

m
n (θ, ϕ).

Hence, it suffices to prove the proposition for a term of the form

pκ(x) = rκ Y m
n (x̂) for some 0 ≤ n ≤ κ, |m| ≤ n. (7.8)

One can readily look for a polynomial qκ+2 to the equation ∆qκ+2 = pκ in the form

qκ+2(x) = ζ rκ+2 Y m
n (x̂), ζ =

1

(κ+ 2)(κ+ 3) − n(n+ 1)
. (7.9)

We first consider the Dirichlet boundary value problem. In the case κ + 2 6= λD,j for all j, we have

P
|m|
κ+2(cosω) 6= 0. Setting

qD,κ+2(x) := qκ+2(x) − qκ+2(r, ω, ϕ)P
|m|
κ+2(cos θ)/P

|m|
κ+2(cosω),

we obtain the requested polynomial solution. Now we assume that κ+ 2 is a Dirichlet eigenvalue of (7.2)

with the associated eigenfunction V = Y m
κ+2, which implies that P

|m|
κ+2(cosω) = 0. As in [33, Chapter 3]

we make the ansatz

vD(r, x̂) = c rκ+2 ln r Y m
κ+2(x̂) + rκ+2W (x̂) (7.10)

with an unknown constant c ∈ C and an unknown function W to be determined from the Dirichlet

boundary value problem

∆̂W + (κ+ 2)(κ+ 3)W = −c(2κ+ 5)Y m
κ+2 + Y m

n =: F in Ω = C ∩ S
2,

W = 0 on ∂Ω,
(7.11)

where the number n ∈ N0 is the same as that in (7.8). Note that ifW solves the previous boundary value

problem, then the solution vD of the form (7.10) must be a Dirichlet eigenfunction to (7.2). The constant

c will be selected such that the right hand side F is orthogonal to Y m
κ+2 in the L2(Ω)-sense, i.e.,

c =

∫

Ω
Y m

n Y m
κ+2 ds

(2κ+ 5)
∫

Ω
|Y m

κ+2|2 ds
.
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Hence the problem (7.11) admits at least one solution by the Fredholm alternative. Now we may rewrite

vD in (7.10) as

vD = qκ+2 + CD,m r
κ+2
{

ln rY m
κ+2 + ψD,m

}

,

where qκ+2 = ζ rκ+2 Y m
n ∈ Pκ+2 satisfies the equation ∆qκ+2 = pκ (see (7.9)) and

ψD,m = (W − ζY m
n )/c, CD,m = c.

Hence we obtain the assertion for the Dirichlet boundary value problem with our special right hand side.

The case of the Neumann boundary condition can be treated analogously.

7.2 Proof of Lemma 3.1 for circular cones

Recall that B1 is the unit ball centered at the origin O and that C ⊂ R
3 is an infinite circular cone with

the angle 2ω ∈ (0, 2π)\{π}. Assume q ∈ C l,s(C ∩B1) for some l ∈ N0, s ∈ (0, 1), satisfying q ≡ 1
in B1\C. Consider the coupling problem between the Helmholtz equations

∆u1 + k2u1 = 0, ∆u2 + k2qu2 = 0 in B1,

∂j
ν(u1 − u2) = 0 on ∂C ∩B1, j = 1, 2, · · · , l + 1,

(7.12)

where ∂j
ν denotes the normal derivative of order j at ∂C and ν is the unit normal pointing into the exterior

of C. The following lemma implies Lemma 3.1 in the case (iii) and the fact that a circular cone scatters

each incident wave non-trivially.

Lemma 7.1. Let u1, u2 ∈ H2(B1) be a solution pair to (7.12), and suppose that q satisfies the assump-

tion (a) near the vertex O with D := C ∩B1. Then we have u1 = u2 ≡ 0 in B1.

Proof. We shall proceed following the lines in the proof of Lemma 4.1. In order to avoid repeating the

arguments used in Section 4.2, we only indicate the necessary changes for circular cones. For simplicity

we shall carry out the proof for Hölder continuous potentials only, i.e., under the assumption (a) with

l = 0. Hence, we have q ∈ C0,s(C ∩B1) and q(O) 6= 1. The general case of l ≥ 1 can be treated

analogously to the proof of Lemma 4.1.

Step 1. Choosing an appropriate cut-off function χ ∈ C∞
0 (C) and setting v := χ(u1 − u2), we have by

Proposition 3.1 that v ∈ C1,α(C) ∩H2(C) for all α ∈ [0, 1). Further,

∆v = −k2χ qu+ k2χhu1 − [∆, χ]v =: f in C,
v = ∂νv = 0 on ∂C, (7.13)

with h = 1 − q. Here the commutator [·, ·] is defined in the same way as in Section 4.2. Applying

Proposition 7.1 with β = −1/2 and using the vanishing of the Cauchy data on ∂C, it follows that v is the

unique solution of (7.13) in V 2
−1/2(C). Note that we have λD/N,j 6= 1 for all j ∈ N, because

P 0
1 (cosω) = cosω 6= 0,

P 1
1 (cosω) = −(P 0

1 )′(cosω) = sinω 6= 0,

(P 1
1 )′(cosω) = − cosω/ sinω 6= 0
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for all ω ∈ (0, π)\{π/2}. On the other hand, by Propositions 7.2 and 7.3, there exist unique solutions

vD/N of the first equation in (7.13) satisfying vD/N ∈ Λ2,α
β,D/N(C) for all β ≥ 1 sufficiently close to 1

and α > 0 sufficiently small. Note that 2 + α − β 6= λD/N,j for those α, β and all j ∈ N. Since

vD/N ∈ Λ2,α
1 (C) ∩ Λ2,α

β (C) for some β > 1, it is easy to check that vD/N ∈ V 2
−1/2(C). Hence v =

vD = vN ∈ Λ2,α
1,D(C) ∩ Λ2,α

1,N(C).

Step 2. To show that f ∈ Λ 0,α
0 (C), v ∈ Λ2,α

0 (C) and u1(O) = 0, we rewrite the right hand side

f ∈ Λ0,α
1 (C) in the form

f = χp0 + f0, p0 := k2 h(O)u1(O) ∈ P0, f0 := f − χp0 ∈ Λ0,α
0 (C), (7.14)

and consider the boundary value problems ∆D/Nv0 = p0 on C. Applying Proposition 7.4 with κ = 0
yields special solutions vD/N,0 of the form

vD,0(x) = qD,2(x) + cD r
2
{

ln r Y 0
2 (x̂) + ψD,0(x̂)

}

,

vN,0(x) = qN,2(x) + cN r
2
{

ln r Y 0
2 (x̂) + ψN,0(x̂)

}

,
(7.15)

where qD/N,2 ∈ P2 satisfy ∆qD/N,2 = p0, ψD/N,0 ∈ C∞(Ω), cD = 0 if P2(cosω) 6= 0 and cN = 0 if

P ′
2(cosω) 6= 0. Set wD/N,0 := v − χ vD/N,0 ∈ Λ2,α

1 . It follows from (7.14) that

∆wD/N,0 = f0 − [∆, χ]vD/N,0 ∈ Λ0,α
0 (C) ∩ Λ0,α

1 (C).

Applying Proposition 7.3 with γ1 = 0, γ = 1 and α > 0 sufficiently small, we get the representations

wD/N,0 = χ
∑

j

dD/N,j r
λD/N,j Vj,D/N(x̂) + w̃D/N (7.16)

with dD/N,j ∈ C, w̃D/N ∈ Λ2,α
D/N,0(C), where (λD/N,j, Vj,D/N) is the eigensystem corresponding to

(7.2) and the sum is taken over all j ∈ N such that λD/N,j ∈ (1 + α, 2]. Here the eigenvalues are

counted with their multiplicities. Note that we may assume that there are no Dirichlet and Neumann

eigenvalues of (7.2) in the interval (2, 2 + α). Combining (7.15) with (7.16) and recalling that v solves

both the Dirichlet and Neumann boundary value problems, we obtain the following expressions for v as

r → 0:

v =
∑

j

dD,j r
λD,j Vj,D(x̂) + qD,2 + cD r

2
{

ln r Y 0
2 + ψD,0

}

+ O(r2+α)

=
∑

j

dN,j r
λN,j Vj,N(x̂) + qN,2 + cN r

2
{

ln r Y 0
2 + ψN,0

}

+ O(r2+α),
(7.17)

from which we get the relations (see Step 3 below for the proof in the general case)

cD/N = 0, dD/N,j = 0 if λD/N,j < 2.

Equating the lowest order terms in (7.17) as r → 0 allows us to define q2 ∈ P2 as

q2 := qD,2 + r2
∑

j∈N:λD,j=2

dD,j Vj,D(x̂) = qN,2 + r2
∑

j∈N:λN,j=2

dN,j Vj,N(x̂).

Using ∆rλD/N,j Vj,D/N = 0 and Proposition 4.3, we get

∆q2 = ∆qD,2 = ∆qN,2 = p0 ∈ P0, ∆2q2 = 0 in C.
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Moreover, q2 has vanishing Cauchy data q2 = ∂νq2 = 0 on ∂C. Applying Proposition A.4 in the Appendix,

we arrive at q2 ≡ 0, so that p0 = 0. This implies that v ∈ Λ2,α
0 (C). Finally, the relation u1(O) = 0 follows

from the definition of p0 in (7.14) and the assumption q(O) 6= 1.

Step 3. Assume for some m > 1, m ∈ N and α > 0 sufficiently small that

f ∈ Λ 0,α
1−m(C), v ∈ Λ 2,α

1−m(C), ∇ju1(O) = 0 for all j ∈ N0, j ≤ m− 1. (7.18)

We want to show in this step that

f ∈ Λ 0,α
−m(C), v ∈ Λ 2,α

−m(C), ∇mu1(O) = 0. (7.19)

Again denote by u1,m ∈ Pm the homogeneous Taylor polynomial of degree m of u1 at O. By the last

relation in (7.18), we have u1,j ≡ 0 for all j ≤ m− 1. Using Proposition A.2 (iii) we get ∆u1,m ≡ 0.

By (7.18), the right hand side in (7.13) can be split into

f = χpm + fm, pm := k2 h(O)u1,m ∈ Pm, fm := f − χpm ∈ Λ 0,α
−m(C).

Repeating the arguments in Step 2, we find that near the conic point O the function v ∈ Λ2,α
1−m,D(C)

takes the form

v = qD,m+2 + cD,κ r
m+2

{

ln r Y κ
m+2 + ψD,κ

}

+
∑

j

dD,j r
λD,j Vj,D(x̂) + w̃D (7.20)

as a solution to the Dirichlet boundary value problem, whereas v ∈ Λ2,α
1−m,N(C) can be expressed as

v = qN,m+2 + cN,κ′ rm+2
{

ln rY κ′

m+2 + ψN,κ′

}

+
∑

j

dN,j r
λN,j Vj,N(x̂) + w̃N (7.21)

as a solution to the Neumann boundary value problem. The parameters and functions involved in (7.20)

and (7.21) are described as follows:

(i) w̃D/N ∈ Λ2,α
−m,D/N(C), ψD,κ, ψN,κ′ ∈ C∞(Ω). Hence w̃D/N = O(rm+2+α) as r → 0.

(ii) The integers κ and κ′ satisfy |κ|, |κ′| ≤ m and P
|κ|
m+2(cosω) = (P

|κ′|
m+2)

′(cosω) = 0. Further, it

holds that |κ′| 6= |κ|, since P n
m+2(cosω) and (P n

m+2)
′(cosω) cannot vanish simultaneously for

0 ≤ n ≤ m+ 2; see Proposition A.5 (ii).

(iii) cD/N , dD/N,j ∈ C. Moreover, cD = 0 if P
|κ|
m+2(cosω) 6= 0 for all |κ| ≤ m, while cN = 0 if

(P
|κ′|
m+2)

′(cosω) 6= 0 for all |κ′| ≤ m.

(iv) The sums in (7.20) and (7.21) are taken over all j ∈ N such that the eigenvalues (counted with their

multiplicities) fulfill λD/N,j ∈ (m+ 1 + α,m+ 2].

(v) qm+2,D/N ∈ Pm+2 satisfies ∆qm+2,D/N = pm ∈ Pm.

We first claim that

dD/N,j = 0 if λD/N,j < m+ 2. (7.22)
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For this purpose we denote by λ∗ = minj{λD,j, λN,j} the smallest exponent of r on the right hand sides

of (7.20) and (7.21). Supposing on the contrary that (7.22) does not hold, we then have λ∗ < m + 2.

Subtracting (7.20) from (7.21), multiplying r−λ∗
to the resulting expression and letting r → 0, we arrive

at dD/N,j = 0 for λD/N,j = λ∗ due to the orthogonality of the eigenfunctions Vj,D and Vj,N . Repeating

this process yields (7.22).

The relation (7.22) implies that λ∗ = m + 2. We now multiply (rm+2 ln r)−1 to both equalities (7.20)

and (7.21) and consider the difference of the resulting expressions to obtain cD,κ = cN,κ′ = 0, where

we have used the linear independence of P
|κ|
m+2 and P

|κ′|
m+2 for |κ| 6= |κ′|. Hence, the lowest order term

qm+2 of v near O belongs to Pm+2 and takes the form

qm+2 = qD,m+2 +
∑

j:λD,j=m+2

dD,j r
m+2 Vj,D

= qN,m+2 +
∑

j:λN,j=m+2

dN,j r
m+2 Vj,N .

This further yields

∆qm+2 = pm ∈ Pm, ∆2qm+2 = ∆pm = 0 in C
qm+2 = ∂νqm+2 = 0 on ∂C.

Again using Proposition A.4 in the Appendix, we get qm+2 ≡ 0. Consequently, pm ≡ 0 and u1,m ≡ 0,

which implies the relations in (7.19).

Step 4. Having proved that ∇ju1(O) = 0 for all j ∈ N0 in the previous steps, we obtain u1 ≡ 0 in B1

due to the analyticity. Finally, the vanishing of u2 follows from the unique continuation for the Helmholtz

equation. This finishes the proof of Lemma 7.1.

8 Appendix

In the Appendix, we prove several propositions that are used in Sections 4-6. In particular, Propositions

A.1 and A.2 below extend the results of [2]. We present an alternative method of proof relying on the

expansion of real-analytic solutions, which is of independent interest.

Proposition A.1. Suppose that (∆ + k2)u = 0 in a neighbourhood of the point O ∈ R
2. Then the two

lowest order terms in the Taylor expansion of u at O are both harmonic functions.

Proof. Suppose that the lowest degree in the Taylor expansion of u1 atO isM ∈ N0 and that all terms of

order less than M vanish. Then the function u1 = u1(r, θ) can be expanded into the convergent series

(see, e.g., [14, Lemma 2.2])

u =
∑

j∈N0,j≥M

rjFj(θ), Fj(θ) =
∑

n,m∈N0,n+2m=j

(

c+n,m cosnθ + c−n,m sinnθ
)

, (A.1)

where c±n,m ∈ C satisfy the recurrence relations:

c±n,m+1 = − k2

4(m+ 1)(n+m+ 1)
c±n,m for all n,m ∈ N0.
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In particular, the coefficients of the first three terms in the expansion are given by

F0(θ) = c+0,0,

F1(θ) = c+1,0 cos θ + c−1,0 sin θ,

F2(θ) = c+0,1 + c+2,0 cos 2θ + c−2,0 sin 2θ, c+0,1 = −c+0,0 k
2/4.

Hence, if M = 0, it is obvious that both F0 and rF1 are harmonic. If M = 1, we have c+0,0 = 0 and

both rF1 and r2F2 are harmonic functions. Now assume that M ≥ 2. It then holds that c±n,m = 0 for

all n + 2m ≤ M − 1. For n,m ∈ N0, m ≥ 1 such that n + 2m = M , it follows from the recurrence

relations that

c±n,m = − k2

4m(n+m)
c±n,m−1 = 0,

since n+ 2(m− 1) = M − 2. This implies that the lowest order term, given by

FM = c+M,0 cosMθ + c−M,0 sinMθ,

is harmonic. Analogously, one can prove that rM+1FM+1(θ) is also harmonic.

Next we prove the result corresponding to Proposition A.1 in 3D.

Proposition A.2. (i) A real-analytic function u = u(r, θ, ϕ) can be expanded in a neighbourhood of the

origin as follows:

u(x) =
∑

n,l∈N0

rn+2 l

n
∑

m=−n

a(l)
n,m Y m

n (θ, ϕ), a(l)
n,m ∈ C. (A.2)

(ii) A solution to the Helmholtz equation (∆ + k2)u = 0 can be expanded in the form (A.2) where the

coefficients a
(l)
n,m fulfill the recurrence relations

a(l+1)
n,m = − k2

2(l + 1)(2l + 2n+ 3)
a(l)

n,m, n, l ∈ N0, m = −n,−n+ 1, · · · , n− 1, n.

(iii) Suppose that (∆ + k2)u = 0 in R
3. Then the two lowest order terms in the Taylor expansion of u

at O ∈ R
3 are both harmonic functions in R

3.

Proof. (i) Recall that Pn denotes the collection of all homogeneous polynomials of degree n ∈ N0. We

denote by Hn the subset of Pn consisting of harmonic homogeneous polynomials of degree n. Then, for

any Hn ∈ Hn there holds the expansion

Hn(x) = rn

n
∑

m=−n

cn,m Y m
n (θ, ϕ), cn,m ∈ C. (A.3)

Since Pn = Hn + |x|2 Pn−2, we obtain by induction that any pn ∈ Pn can be written in the form

pn(x) =
∑

l∈N0,n−2l≥0

bl |x|2l Hn−2l(x), bl ∈ C, Hn−2l ∈ Hn−2l. (A.4)
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Since u is real-analytic, applying the Taylor expansion and using (A.4) yields

u(x) =
∑

n∈N0

cn pn(x) =
∑

n∈N0

cn
∑

l∈N0,n−2l≥0

bl |x|2l Hn−2l(x).

Rearranging the terms in the previous expression, we get

u(x) =
∑

l∈N0

|x|2l
∑

n∈N0

a(l)
n Hn(x), a(l)

n ∈ C.

which together with (A.3) proves the first assertion.

(ii) The second assertion follows from the relation

∆u =
∑

n∈N0,l∈N

2l (2l + 2n+ 1)rn+2 l−2

n
∑

m=−n

a(l)
n,m Y m

n (θ, ϕ)

=
∑

n,l∈N0

2(l + 1)(2l + 2n+ 3)rn+2 l

n
∑

m=−n

a(l+1)
n,m Y m

n (θ, ϕ).

(A.5)

(iii) To prove the third assertion, we rewrite the expansion (A.2) as

u(x) =
∑

j∈N0

rj Fj(θ, ϕ), Fj(θ, ϕ) :=
∑

n,l∈N0,n+2l=j

n
∑

m=−n

a(l)
n,m Y m

n (θ, ϕ).

Proceeding in the same way as in Proposition A.1, one can verify the third assertion.

In [2], Propositions A.1 and A.2 are verified for the lowest order term of solutions to the Helmholtz equation

only. Proposition A.3 below implies the absence of non-trivial biharmonic functions with vanishing Dirichlet

and Neumann data on the boundary of a sector in R
2.

Proposition A.3. Let K = Kω ⊂ R
2 be the sector defined in Section 2 with the opening angle ω ∈

(0, 2π)\{π}. Suppose that u ∈ H2(B1) solves the boundary value problem

∆2u = 0 in K, u = ∂νu = 0 on ∂K ∩B1. (A.6)

Then u ≡ 0.

In [28], Proposition A.3 was proved for a homogeneous polynomial pl such that ∆pl is harmonic. Our

proof differs from that in [28]. It is also elementary, since simple calculations using Cartesian coordinates

are involved only. Alternatively, Proposition A.3 also follows from the expansion (A.1) under polar coor-

dinates; we refer to the proof of Proposition A.4 below where the spherical coordinates are employed to

prove the analogue of Proposition A.3 for circular cones in 3D.

Proof. Denote by τj and νj (j = 1, 2) the unit tangential and normal vectors on the two half-lines of

∂K starting at the corner O. Since the opening angle of K is not π, the tangential and normal vectors

are linearly independent. Without loss of generality we suppose that ν1 = c1τ1 + c2τ2 with c1, c2 ∈ R,

c2 6= 0. Hence,

∂τ2 =
1

c2
∂ν1

− c1
c2
∂τ1 . (A.7)
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We shall prove by induction that ∇mu(O) = 0 for all m ∈ N0, which implies the proposition.

From the Dirichlet and Neumann boundary conditions of u on ∂K we see that

u = ∇u = 0, ∂2
τ1
u = ∂2

τ2
u = ∂ν1

∂τ1u = 0 at the corner O. (A.8)

Combining (A.7) and (A.8) gives the relation ∂τ1∂τ2u = 0 at O. Since each entry of the vector ∇2 can

be expanded as a linear combination of ∂2
τ1

, ∂2
τ2

and ∂τ1∂τ2 , we obtain ∇2u = 0 at O.

To prove that ∇3u(O) = 0, we observe that

∂3
τ1
u = ∂3

τ2
u = ∂2

τ1
∂ν1
u = ∂2

τ2
∂ν2
u = 0 at O.

Applying ∂2
τ1

to both sides of (A.8) yields ∂2
τ1
∂τ2u(O) = 0. Analogously we can get ∂2

τ2
∂τ1u(O) = 0.

Hence, the relation ∇3u(O) = 0 follows from the fact that the differential operators ∂3
τ1
, ∂2

τ1
∂τ2 , ∂τ1∂

2
τ2

and ∂3
τ2

span the vector ∇3.

Now we want to verify that ∇4u(O) = 0. Arguing as in the previous step we get

∂4
τ1
u = ∂3

τ1
∂τ2u = ∂τ1∂

3
τ2
u = ∂4

τ2
u = 0 at O. (A.9)

Hence it suffices to prove ∂2
τ1
∂2

τ2
u(O) = 0. Using (A.9), ∂ν1

= c1∂τ1 + c2∂τ2 and ∆2u ≡ 0, this follows

from the identity

0 = ∆2u(O) = [∂2
ν1

+ ∂2
τ1

]2u(O) = [2(1 + c21)c
2
2 + 4c21c

2
2] ∂

2
τ1
∂2

τ2
u(O).

For m > 4, we make the induction hypothesis that

∇ju(O) = 0 for all j = 0, 1, · · · ,m. (A.10)

We then only need to verify that ∇m+1u = 0 at O. For j ∈ N0, denote by ∇j
τ the vector of all tangential

derivatives of order j, i.e.,

∇j
τu =

{

∂j1
τ1
∂j1

τ2
u : j1, j2 ∈ N0, j1 + j2 = j

}

.

Using the relations in (A.6) and (A.7) again, we have

∇m−3
τ ∆2u = ∂m+1

τ1
u = ∂m

τ1
∂τ2u = ∂τ1∂

m
τ2
u = ∂m+1

τ2
u = 0 at O.

Therefore, it remains to prove that the span of the differential operators ∇m−3
τ ∆2, ∂m+1

τ1
, ∂m

τ1
∂τ2 , ∂τ1∂

m
τ2

and ∂m+1
τ2

contains the vector ∇m+1
τ .

It can be readily checked that

∆ = (1 + c21)Λ1(∂)Λ2(∂),

∂τ1 = − 1

2ic Im c
(Λ1(∂) + ζΛ2(∂)),

∂τ2 =
1

2i Im c
(Λ1(∂) − Λ2(∂)),

where

c :=
c1c2 + ic2

1 + c21
, ζ := −c/c,

Λ1(∂) := ∂τ1 + c ∂τ2 , Λ2(∂) := ∂τ1 + c ∂τ2 .

28



Consequently, it suffices to verify that the span of the differential operators

Λj1
1 Λj2

2 Λ2
1Λ

2
2, ∀ j1, j2 ∈ N0, j1 + j2 = m− 3,

together with

(Λ1 + ζΛ2)
m+1, (Λ1 + ζΛ2)

m(Λ1 − Λ2), (Λ1 + ζΛ2)(Λ1 − Λ2)
m, (Λ1 − Λ2)

m+1

contains the set of differential operators {Λj1
1 Λj2

2 : j1 + j2 = m+ 1}. This is equivalent to the claim that

the polynomial expressions containing the terms zm+1
1 , zm

1 z2, z1z
m
2 , z

m+1
2 in the expansion of

(z1 − z2)
mz1, (z1 − z2)

mz2, (z1 + ζz2)
mz1, (z1 + ζz2)

mz2

are linearly independent. Simple calculations show that









(z1 − z2)
mz1

(z1 − z2)
mz2

(z1 + ζz2)
mz1

(z1 + ζz2)
mz2









=









1 −m (−1)m 0
0 1 (−1)m−1m (−1)m

1 mζ ζm 0
0 1 mζm−1 ζm

















zm+1
1

zm
1 z2

z1z
m
2

zm+1
2









+
m−1
∑

j=2

Mj(ξ)z
j
1z

m+1−j
2

with Mj ∈ R
4×1. It is easy to check that the determinant of the 4-by-4 coefficient matrix on the left hand

side of the previous equation vanishes if and only if

m2ζm−1(1 + ζ)2 + (−1)m[(−1)mζm − 1]2 = 0.

If m ∈ N is an odd number, the previous relation implies that

m2ζm−1 = (
1 + ζm

1 + ζ
)2 = (ζm−1 − ζm−2 + · · · + 1)2.

Since |ζ| = 1, the modulus of the right hand side of the previous identity equals to m2 only if ζ = −1,

which however is impossible. If m is even, the number ζ1 = −ζ is a solution of

−m2ζm−1
1 = −(

1 − ζm
1

1 − ζ1
)2 = −(ζm−1

1 + ζm−2
1 + · · · + 1)2,

which cannot hold for |ζ1| = 1 and ζ1 6= 1.

Proposition A.4. Let C = Cω ⊂ R
3 be the circular cone defined by (2.3) with the opening angle

2ω ∈ (0, 2π)\{π}. Suppose that u ∈ H2(B1) solves the boundary value problem

∆2u = 0 in C ∩B1, u = ∂νu = 0 on ∂C ∩B1. (A.11)

Then u ≡ 0.

Proposition A.4 extends the result of Proposition A.3 in a planar corner domain to a circular conic do-

main in R
3. Being different from the proof of Proposition A.3 using Cartesian coordinate, our proof of

Proposition A.4 relies on the expansion of real-analytic functions using the spherical coordinates.
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Proof. By Proposition A.2 (ii), a real-analytic function u = u(r, θ, ϕ) in B1 can be expanded as the

following convergent series

u(x) =
∑

n,l∈N0

rn+2 l

n
∑

m=−n

a(l)
n,m Y m

n (θ, ϕ), a(l)
n,m ∈ C. (A.12)

Simple calculations using (A.5) shows that

0 = ∆2u =
∑

n,l∈N0

4(l + 1)(l + 2)(2l + 2n+ 3)(2l + 2n+ 5)rn+2 l

n
∑

m=−n

a(l+2)
n,m Y m

n (θ, ϕ).

The previous relation implies that a
(l+2)
n,m = 0 for all l, n ∈ N0 and |m| ≤ n, since rn+2 l Y m

n ∈ Pn+2l are

linearly independent. Hence, we only need to prove that a
(l)
n,m = 0 for all l = 0, 1 and n ∈ N0, |m| ≤ n.

The expansion of u in (A.12) can be rewritten as

u(x) =
∑

n∈N0,l=0,1

rn+2 l

n
∑

m=−n

a(l)
n,m Y m

n (x̂) =:
∑

n∈N0

rnFn(x̂), x̂ = (θ, ϕ), (A.13)

with

Fn(x̂) :=











a
(0)
0,0Y

0
0 (x̂) if n = 0;

∑1
m=−1 a

(0)
1,m Y m

1 (x̂) if n = 1;
∑n

m=−n a
(0)
n,m Y m

n (x̂) +
∑n−2

m=−n+2 a
(1)
n−2,m Y m

n−2(x̂) if n ≥ 2.

Making use of the boundary conditions

u = ∂θu = 0 on {(r, θ, ϕ) : 0 < r < 1, θ = ω, 0 ≤ ϕ < 2π},

we see that Fn(ω, ϕ) = ∂θFn(ω, ϕ) = 0 for all 0 ≤ ϕ < 2π. In view of the definition of the spherical

harmonics (see (7.5)), we obtain the following results by inserting (A.13) into the boundary conditions and

equating the coefficients of equal powers of r :

(i) a
(0)
0,0 = 0 in the case n = 0, because Y 0

0 ≡
√

1/(2π) 6= 0.

(ii) a
(0)
1,mP

|m|
1 (cosω) = a

(0)
1,m(P

|m|
1 )′(cosω) = 0 for m = −1, 0, 1 when n = 1. Applying Proposition

A.5 (ii), it follows that a
(0)
1,m = 0, since P

|m|
n (t) and (P

|m|
n )′(t) cannot vanish simultaneously for

any t ∈ (−1, 1).

(iii) For all n ≥ 2 and |m| ≤ n− 2,

(

P
|m|
n (cosω) P

|m|
n−2(cosω)

(P
|m|
n )′(cosω) (P

|m|
n−2)

′(cosω)

)(

a
(0)
n,m

a
(1)
n−2,m

)

= 0. (A.14)

By Proposition A.5 (i) below, the determinant of the matrix on the left hand side of (A.14) never

vanishes for ω ∈ (0, π)\{π/2}. Therefore, a
(0)
n,m = a

(1)
n−2,m = 0 for n ≥ 2 and |m| ≤ n− 2.
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(iv) For all n ≥ 2 and |m| = n, n− 1,

a(0)
n,mP

|m|
n (cosω) = a(0)

n,m(P |m|
n )′(cosω) = 0.

In view of Proposition A.5 (ii) we get a
(0)
n,m = 0 for all n ≥ 2 and |m| = n, n− 1.

To sum up the above results in (i)-(iv), we obtain a
(l)
n,m = 0 for all l = 0, 1, n ∈ N0 and |m| ≤ n,m ∈ Z,

which finishes the proof of the proposition.

Proposition A.5. Let t ∈ (−1, 1) and m,n ∈ Z.

(i) It holds that

det

(

Pm
n (t) Pm

n−2(t)
(Pm

n )′(t) (Pm
n−2)

′(t)

)

6= 0 for all t 6= 0, n− 2 ≥ m ≥ 0. (A.15)

(ii) It cannot happen that Pm
n (t) = (Pm

n )′(t) = 0 for all 0 ≤ m ≤ n.

Proof. (i) Introduce the augmented Wronskian of the form

Wn(t; j) = det

(

Pn(t) Pn−j(t)
P ′

n(t) P ′
n−j(t)

)

, j = 1, 2, · · · , n.

The number t0 ∈ (−1, 1) is called a nodal zero of Wn if Wn has opposite signs for t = t0 + h and

t = t0 − h, h sufficiently small. It has been shown in [24, Chapter 4, Theorem 9] that Wn(t; j) has

exactly j − 1 nodal zeros in the interval (−1, 1). Hence, when j = 2, Wn(t; 2) has only one nodal zero

t0 in (−1, 1). If n ≥ 2 is odd, then Pn(0) = Pn−2(0) = 0, since both Pn and Pn−2 are odd functions.

This implies that t0 = 0 is the nodal zero of Wn(t; 2). If n ≥ 2 is even, we have P ′
n(0) = P ′

n−2(0) = 0.

Hence, t0 = 0 is also the nodal zero. This proves the first assertion with m = 0.

In the case m ≥ 1, the functions Pm
n (t), n = m,m + 1, · · · , satisfy the associated Legendre dif-

ferential equation (7.4). The proof of [24, Chapter 4, Theorem 9] depends solely on the form of the

governing equation (see (7.3) in the case of Legendre polynomials) and extends to the associated Leg-

endre differential equation (7.4). Hence, the determinant on the right hand side of (A.15) has also one

nodal zero in (−1, 1). On the other hand, it is easy to check that either Pm
n (0) = Pm

n−2(0) = 0 or

(Pm
n )′(0) = (Pm

n−2)
′(0) = 0, implying that t0 = 0 is the unique nodal zero. Hence, the first assertion

for m ≥ 1 follows from the proof for the Legendre polynomials.

(ii) The second assertion is a consequence of the fact that the zeros of P
|m|
n and (P

|m|
n )′ are all simple

and strictly interlaced. Note that when |m| = n, we have the explicit expression (see e.g. [34, Chapter

2.4])

P n
n (t) =

(2n)!

2nn!
(1 − t2)n/2.

Finally we present a corollary that extends the results of Propositions A.3 and A.4 to a more general case.

It can also be considered as a local non-solvability result on the Cauchy problem for the Laplace equation

on a cone and it is proved just as Lemmas 4.1 and 7.1.
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Corollary A.1. Let U be the sector Kω ⊂ R
2 or the cone Cω/2 ⊂ R

3 defined in Section 2 with the

opening angle ω ∈ (0, 2π)\{π}. Suppose that u ∈ H2(U ∩B1) solves the Cauchy problem

∆u = h g in U , u = ∂νu = 0 on ∂U ∩B1,

where h ∈ Cα(U ∩B1) for some α ∈ (0, 1), h(O) 6= 0 and (∆ + λ)g = 0 in B1 for some λ ∈ C.

Then u ≡ 0.

Note that Corollary A.1 does not hold in the case of a half space (ω = π) where even a global existence

result for the analytic Cauchy problem can be proved; see [18, Theorem 9.4.8].
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