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ABSTRACT. We consider the membrane model, that is the centered Gaussian field on Zd whose covari-
ance matrix is given by the inverse of the discrete Bilaplacian. We impose a δ−pinning condition, giving
a reward of strength ε for the field to be 0 at any site of the lattice. In this paper we prove that in dimen-
sions d ≥ 4 covariances of the pinned field decay at least stretched-exponentially, as opposed to the field
without pinning, where the decay is polynomial in d ≥ 5 and logarithmic in d = 4. The proof is based on
estimates for certain discrete Sobolev norms, and on a Bernoulli domination result.

1. THE MODEL AND MAIN RESULTS

The membrane model, or Laplacian model, is an example of an effective random interface, see for exam-
ple Sakagawa (2003), Velenik (2006) and Kurt (2008). We will work on the d-dimensional integer lattice
Zd, and in the present paper our focus will be in d ≥ 4, although the definition is well-posed in all dimen-
sions. For N ∈ N, let VN := [−N/2, N/2]d ∩Zd and Vc

N := Zd \VN . The discrete Laplacian ∆
on Zd is defined as the operator acting on functions f : Zd → R by

∆ f (x) =
1

2d ∑
y: ‖x−y‖=1

(
f (y)− f (x)

)
,

where ‖x‖ denotes the `1-norm on the lattice. We sometimes write fx for f (x).

Definition 1.1. The membrane model is the random field {ϕx}x∈Zd ∈ RZd
with zero boundary condi-

tions outside VN , whose distribution is given by

PN(dϕ) =
1

ZN
exp

(
−1

2 ∑
x∈Zd

(∆ϕx)2

)
∏

x∈VN

dϕx ∏
x∈Vc

N

δ0(dϕx), (1.1)

where ZN is a normalizing constant.

Note that by re-summation, the law PN of the field is the law of the centered Gaussian field on VN with
covariance matrix

GN(x, y) := cov(ϕx, ϕy) =
(

∆2
N

)−1
(x, y), x, y ∈ VN.

Here, ∆2
N =

(
∆2(x, y)

)
{x, y∈VN}

is the Bilaplacian with 0-boundary conditions outside VN . We extend

both ∆2
N and GN to x, y ∈ Zd by setting the entries to 0 outside VN × VN. For x ∈ VN, the matrix

GN is determined by the boundary value problem i.{
∆2GN(x, y) = δx(y), y ∈ VN
GN(x, y) = 0, y ∈ ∂2VN,

where we denote ∂2VN := {y ∈ Vc
N : ∃z ∈ VN : ‖y− z‖ ≤ 2}. It is known that in d ≥ 5 there

exists P on RZd
such that PN → P weakly (Sakagawa (2003)). Under P, the canonical coordinates

(ϕx)x∈Zd form a centered Gaussian process with covariance given by

G(x, y) = ∆−2(x, y) = ∑
z∈Zd

∆−1(x, z)∆−1(z, y) = ∑
z∈Zd

Γ(x, z)Γ(z, y), (1.2)

i.δx(y) is the Dirac delta mass at x, i. e., δx(y) = 1 ⇐⇒ x = y.
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where Γ denotes the covariance of the discrete Gaussian Free Field (DGFF, see Sznitman (2012, Section
2) for an overview). The matrix Γ has an easy representation in terms of the simple random walk (Sn)n≥0
on Zd given by

Γ(x, y) = ∑
m≥0

Px[Sm = y]

(Px is the law of S starting at x). This entails that

G(x, y) = ∑
m≥0

(m + 1)Px[Sm = y] = Ex,y

[
+∞

∑
`, m=0

1{Sm=S̃`}

]
(1.3)

where S and S̃ are two independent simple random walks started at x and y respectively. One can note
from this representation that G(·, ·) is translation invariant. The existence of the infinite volume measure
in d ≥ 5 gives that G(0, 0) < +∞. Using the above one can derive the following property of the
covariance:

Lemma 1.2 (Sakagawa (2003, Lemma 5.1)). Let d ≥ 5. Then

lim
‖x‖→+∞

G(0, x)
‖x‖4−d = η (1.4)

where

η = (2π)−d
∫ +∞

0

∫
Rd

exp
(

ι〈ζ, θ〉 − ‖θ‖
4t

4d2

)
dθdt

for any ζ ∈ Sd−1 and ι =
√
−1.

In other words, as ‖x− y‖ → ∞, the covariance between ϕx and ϕy decays like ‖x− y‖4−d in the
supercritical dimensions. For d = 4 it was shown that GN(x, y) behaves in first order as γ4(log N −
log ‖x− y‖) for some γ4 ∈ (0, ∞), if x and y are not too close to the boundary of VN, see Cipriani
(2013, Lemma 2.1).

The goal of this paper will be to show that this polynomial decay of covariances changes drastically if
we introduce a so-called “δ-pinning” which gives a reward of size ε > 0 if the interface touches the
0-hyperplane at a site x ∈ Zd. More precisely, we introduce an atom of size ε in 0 to our model (1.1):

Definition 1.3. Let ε > 0 and let PN be defined as in (1.1). The membrane model on VN with pinning
of strenght ε is defined as

Pε
N(dϕ) =

1
Zε

N
exp

(
−1

2 ∑
x∈Zd

ϕx∆2ϕx

)
∏

x∈VN

(dϕx + εδ0(dϕx)) ∏
x∈Vc

N

δ0(dϕx). (1.5)

With this definition we have for any measurable function f : RZd → R,

Eε
N( f ) =

1
Zε

N

∫
f (ϕ) exp

(
−1

2 ∑
x∈Zd

ϕx∆2ϕx

)
∏

x∈VN

(dϕx + εδ0(dϕx)) ∏
x∈Vc

N

δ0(dϕx) =

= ∑
A⊆VN

ε|A|
ZVN\A

Zε
N

EVN\A( f )
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where EVN\A is the mean according to the measure PVN\A defined for A ⊆ VN by

PVN\A(dϕ) =
1

ZVN\A

∫
exp

(
−1

2 ∑
x∈Zd

ϕx∆2ϕx

)
∏

x∈VN\A
dϕx ∏

x∈A∪Vc
N

δ0(dϕx).

Thus Pε
N is a convex combination of probabilities PVN\A which are distributed according to a probability

measure on P(VN)ii., namely

ζε
N(A) = ζε

N(A = A) := ε|A|
ZVN\A

Zε
N

(Velenik, 2006, Section 5). Here and in the followingA denotes a P(VN)-valued random variable under
some site percolation law (which will be specified in each occurrence). Using the above expansion, we
obtain for the covariances with respect to Pε

N

Eε
N[ϕx ϕy] = ∑

A⊆VN

ζε
N(A)EVN\A[ϕx ϕy]. (1.6)

To write this even more concisely, let A ⊂ Zd with |Ac| < +∞, and denote by PAc the law of the
membrane model with 0−boundary conditions outside Ac. Let

GA(x, y) := EAc [ϕx, ϕy], x, y ∈ Ac,

which we again extend by setting it to 0 to all of Zd. Observe that in this notation GN = GVc
N

. Then we
can rewrite (1.6) as

Eε
N[ϕx ϕy] = Eζε

N

[
GA∪Vc

N
[ϕx ϕy]

]
. (1.7)

Our main result shows, in the following couple of theorems, that for any positive pinning strength ε the
correlations between two points decay at least stretched-exponentially in the distance.

Theorem 1.4 (Decay of covariances, supercritical case). Let d ≥ 5 and ε > 0. There exists α > 0
independent of ε such that

lim sup
‖x−y‖→+∞

lim sup
N→+∞

Eε
N[ϕx ϕy]e‖x−y‖α

= 0. (1.8)

Theorem 1.5 (Decay of covariances, critical case). Let d = 4 and ε > 0. For every 0 < λ ≤ 1 there
exists β = β(λ) > 0 independent of ε such that for δ ∈ (0, 1]

lim sup
N→+∞

sup
x,y∈VN :‖x−y‖≥δNλ

Eε
N[ϕx ϕy]e‖x−y‖β

= 0. (1.9)

This result complements the one of Sakagawa (2012), who proves, via a free-energy estimate, that in
d ≥ 4 the model is localized, in the sense that it exhibits a positive density of pinned sites.

The proof relies on two main steps: firstly, using certain equivalences of discrete Sobolev norms, we show
in Theorem 3.5 that for “very good sets” A the decay is indeed exponential:

|GA(x, y)| ≤ ce−c′‖x−y‖.

Unfortunately these sets do not have probability high enough under ζε
N , thus we need to make adjust-

ments to the definition of “very good” to balance the effect of the random environment of pinned points
and the exponential decay.

ii.P(A) is the powerset of A ⊂ Zd.
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For the DGFF it was proved (see Bolthausen and Brydges (2001), Bolthausen and Velenik (2001),
Deuschel and Velenik (2000), Ioffe and Velenik (2000)) that the decay of the covariances is in fact ex-
ponential in the critical and supercritical dimensions. We conjecture that this is also true for the mem-
brane model, but due to the lack of the random walk representation (see Remark 2.5 below) we are not
able to prove this at the moment. Results on the membrane model with pinning were shown in (1 + 1)
dimensions by Caravenna and Deuschel (2008).

The structure of the paper is as follows: we begin with general results, including Bernoulli domination, in
Section 2. In Section 3 we prove our main theorems, starting with Theorems 3.5, 3.6 in Subsection 3.2,
and then Theorems 1.4, 1.5 in Subsection 3.3.

2. GENERAL RESULTS ON THE MEMBRANE MODEL

In this section we collect and prove some results on the membrane model that will be important for the
proof of the main results. Just as the DGFF enjoys the spatial Markov property, the membrane model
does too. In fact it holds that

Proposition 2.1 (Markov property, Cipriani (2013, Lemma 2.2)). Let (ϕx)x∈Zd be the membrane model
under the measure PN . Let B ⊆ VN . Let FB := σ(ϕz, z ∈ VN \ B). Then

{ϕx}x∈B
d=
{

EN [ϕx|FB] + ϕ′x
}

x∈B (2.1)

where “
d=” indicates equality in distribution. In particular, under PN(·), ϕ′x is independent of FB. Also

{ϕ′x}x∈B is distributed as the membrane model with 0-boundary conditions outside B.

A further important observation is that the variances of the membrane model are decreasing in the number
of points in which the field is 0.

Lemma 2.2. Let A1 ⊂ A2 ⊂ VN. Then

GA2∪Vc
N
(x, x) ≤ GA1∪Vc

N
(x, x) ≤ GN(x, x)

for all x ∈ VN \ A2.

Proof. Let B := VN \ A1. By Proposition 2.1, for a membrane model ϕ under PN

{ϕx}x∈B
d=
{

EN [ϕx|FB] + ϕ′x
}

x∈VN\B

where ϕ′ has the law of a membrane model on B with zero boundary conditions on A1 ∪Vc
N . Therefore

GN(x, x)− GA1∪Vc
N
(x, x) = EN

[
(EN [ϕx|FB])2

]
≥ 0.

For A1 ⊂ A2, the proof follows exactly the same lines replacing VN with VN \ A1 above. �

Next we prove that GA satisfies a similar boundary value problem as GN.

Lemma 2.3. Let d ≥ 4, A ⊂ Zd such that |Ac| < +∞. Let N be large enough such that Ac ⊂ VN,
and fix x ∈ Ac. Then GA(x, y) solves the discrete boundary value problem{

∆2GA(x, y) = δx(y) y ∈ Ac,
GA(x, y) = 0 y ∈ A ∪Vc

N. (2.2)
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Moreover, there exists a constant γ = γ(d) such that for all x ∈ Zd,

GA(x, x) ≤
{

γ if d ≥ 5,
γ log N if d = 4.

(2.3)

Proof. By Proposition 2.1, GA is the covariance matrix of the membrane model on VN conditioned to
be 0 in A ∪ Vc

N. A well-known fact about Gaussian random vectors is that conditioning on the values
of some of the entries yields again a Gaussian vector, whose covariance matrix can be calculated by a
simple formula. In our case, this formula looks as follows: let

ΣA,N := (GN(x, y))x,y∈A∪Vc
N

.

Then (Zhang, 2006, Chapter 6)

GA(x, y) = GN(x, y)− ∑
z,w∈A∪Vc

N

GN(x, z)Σ−1
A,N(z, w)GN(w, y). (2.4)

From (1.2) we immediately obtain (2.2), and using the fact that GA is positive semi-definite (since it is a
covariance matrix) and Kurt (2008, Proposition 2.1.1 resp. Proposition 2.1.2) we get (2.3). �

For d ≥ 5 we obtain the same result for any A ⊆ Zd.

Lemma 2.4. Let d ≥ 5, A ⊂ Zd, and x ∈ Ac (thus Ac is possibly infinite). The membrane model on
Ac is well-defined, and its covariance matrix GA(x, y) solves the discrete boundary value problem{

∆2GA(x, y) = δx(y) y ∈ Ac,
GA(x, y) = 0 y ∈ A. (2.5)

Moreover, there exists a constant γ = γ(d) such that

GA(x, x) ≤ γ

for all x ∈ Zd.

Proof. By Lemma 2.2, GA(x, x) := limN→+∞ GA∪Vc
N
(x, x) exists for x ∈ Zd, and from (2.3) we

know that the sequence of measures PAc∩VN is tight. Since we are dealing with Gaussian measures, it is
enough to prove the existence of the weak limit PAc of PAc∩VN to show the statement. Then (2.5) follows
by taking limits in (2.2). �

Remark 2.5. At this point it is important to note that GA is not the convolution of the covariance matrix of
the DGFF with 0-boundary conditions outside Ac, which is only the case for the infinite volume situation,
c. f. (1.2). Therefore the random walk representation (1.3) doesn’t carry over to GA. This is an important
difference between the membrane model and the DGFF. To study properties of the pinned DGFF one can
rely on the random walk representation, as for example Bolthausen and Brydges (2001), Bolthausen and
Velenik (2001), Coquille and Miłoś (2013), Ioffe and Velenik (2000), Velenik (2006) do. In the membrane
model one can, as in Cipriani (2013) and Kurt (2009), approximate GN by a random walk representation
and thus derive useful estimates. However, this approximation is only valid for convex connected Ac, and
thus cannot be applied to the pinning case. We therefore need to apply very different methods in order
to find estimates for GA(x, y) for general A ⊂ VN. Our approach is based on equivalences of certain
discrete Sobolev norms and a Bernoulli domination argument, with which we begin.
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2.1. The random environment of pinned points. Let us now prove a simple Lemma on partition func-
tions for the measure Pε

N . We denote as fϕE the density of ϕx with respect to the measure
∏x∈E dϕx ∏x∈Ec δ0 (dϕx) and ZE its partition function.

Lemma 2.6. In d ≥ 5 there exist constants 0 < C`, Cr < +∞ such that for every E ⊆ VN and x ∈ E

C` ≤
ZE

ZE\{x}
≤ Cr. (2.6)

Proof.
ZE

ZE\{x}
=

fϕE(0, . . . , 0)
fϕE\{x}(0, . . . , 0)

= fϕx|ϕE\{x}
(0|0, . . . , 0)

where the latter is the conditional density of ϕx given that the field {ϕx, x ∈ E \ {x}} is zero. We
know already that ϕx conditioned on {ϕx, x ∈ E \ {x}} is a well-defined normal variable N (0, σ2

x)
by Proposition 2.1, with σ2

x ≤ γ because of Lemma 2.3. Therefore

0 < C` :=
1√
2πγ

≤ 1√
2πσ2

x
= fϕx|ϕE\{x}

(0|0, . . . , 0) ≤ 1 =: Cr.

�

Lemma 2.7. In d ≥ 5 there exist constants 0 < C`, Cr < +∞ such that for every E ⊆ VN and x ∈ E

C`
1√

log N
≤ ZE

ZE\{x}
≤ Cr. (2.7)

Proof. The proof is similar to Lemma 2.6, using the fact that σ2
x ≤ γ log N, see Lemma 2.4. �

Our target now is to control the pinning measure ζε
N through a natural distribution of sites on the discrete

lattice, that is through independent site percolation. We will briefly recall here two definitions.

Definition 2.8 (Stochastic and strong stochastic domination). Given two probability measures µ and
ν on the set P(Λ), |Λ| < +∞, we will say that µ dominates ν strongly stochastically if for all x,
C ⊆ Λ \ {x},

µ(A : x ∈ A | A \ {x} = C) ≥ ν(A : x ∈ A | A \ {x} = C). (2.8)

When (2.8) holds we will write µ � ν. We will say that µ dominates ν stochastically, µ � ν, if for all
increasing functions f ,

µ( f ) ≥ ν( f ).
Note that strong stochastic domination implies stochastic domination.

Let now ν
ρ
Λ be the Bernoulli site percolation measure on VN with intensity ρ. We would like to prove that

our Gaussian free fields restricted to the pinned set are “sandwiched” between two such Bernoullian in
the stochastic ordering. This argument is similar to the one in Velenik (2006, Section 5.3).

Proposition 2.9. Let d ≥ 5. There exist constants 0 < c−(d) < c+(d) < ∞ such that for ε small
enough,

ν
ρ−(d)
N ≺ ζε

N ≺ ν
ρ+(d)
N

where ρ±(d) = c±(d)ε.
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Proof. In the following we will omit the subscript N as we will be always working on the d-dimensional
box of side-length N. The first step is to notice that for all i ∈ VN , C ⊆ VN \ {i},

ζε(A : i ∈ A | A \ {i} = C) =
ζε(C ∪ {i})

ζε(C)
and by (2.6)

C`≤
ZC∪{i}

ZC
≤Cr.

Therefore stochastic domination is achieved for two Bernoulli measures of parameter ρ−(d) := C`ε,
ρ+(d) := Crε. �

Proposition 2.10. Let d = 4. There exist constants 0 < c−(4) < c+(4) < ∞ such that for ε small
enough,

ν
ρ−(4)
N ≺ ζε

N ≺ ν
ρ+(4)
N

where ρ+(4) = c+(4)ε, and

ρ−(4) =
c−(4)ε√

log N
.

Remark 2.11. Observe that ρ−(4) converges to 0 as N → +∞.

Proof. The argument is the same of Prop. 2.9 where the conclusion is this time drawn from (2.7). �

3. PROOF OF THE MAIN RESULTS

3.1. Equivalence of norms. For a function f : Zd → R we define the derivative in the i-th coordinate
direction, i ∈ {1, ..., d} by

Di f (x) := f (x + ei)− f (x), x ∈ Zd, i = 1, . . . , d,

where ei is the unit vector in direction i. Define the discrete gradient as

∇ f (x) := (D1 f (x), . . . , Dd f (x)).

It will be convenient to introduce D−i f (x) := f (x− ei)− f (x) = −Di f (x− ei), for i = 1, . . . , d.
The second discrete derivatives of a function are

Dij f (x) := DiDj f (x), i, j ∈ {±1, . . . , ±d}.
With this notation, the discrete Laplacian is then given by

∆ f (x) = − 1
2d

d

∑
i=1

Di,−i f (x)

and the Bilaplacian assumes the form

∆2 f (x) =
1

4d2

d

∑
i, j=1

Di,−iDj,−j f (x). (3.1)

We have the following summation by parts formula whose proof is an elementary calculation:
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Lemma 3.1. Let f , g be such that ∑x∈Zd f (x)g(x) < +∞ and ∑x∈Zd f (x)g(x + ei) < +∞ for all
i ∈ {±1...± d}. Then for all i ∈ {±1, ...,±d} we have

∑
x∈Zd

Di f (x)g(x) = ∑
x∈Zd

f (x)D−ig(x).

Moreover

Lemma 3.2. For u : Zd → R we have

∑
x∈Zd

d

∑
i,j=1

(DiDju(x))2 = 4d2 ∑
x∈Zd

u(x) ∆2u(x).

Proof. Follows from Lemma 3.1 and (3.1). �

The standard discrete Sobolev norms on E ⊆ Zd associated to the discrete Sobolev space Hk(E) are
given by

‖ f ‖2
Hk(E) =

k

∑
`=0

(
d

∑
i1,...,i`=1

∑
x∈E
|Di1 ...Di` f (x)|2

)
. (3.2)

We also introduce the norms

‖∇k f ‖2
L2(E) := ∑

i1,...,ik
∑
x∈E
|Di1 ...Dik f (x)|2. (3.3)

We obviously have
‖∇k f ‖L2(E) ≤ ‖ f ‖H`(E), k ≤ ` (3.4)

and
‖∆ f (x)‖L2(E) ≤ C‖∇2 f ‖L2(E) (3.5)

for some C depending only on d. The next Lemma will show that the above norms are equivalent on
subsets where “groups” of pinned points are not too spread out. Let A ⊂ Zd. Set

Â := {x ∈ A : for all y ∼ x, y ∈ A} .

We can think of Â, which obviously is a subset of A, as the interiour of “pinned clusters”. We introduce
the notation

dE(x, y) := min
{
` : ∃ {x0 = x, x1, . . . , x` = y} ⊆ E, xi ∼ xi+1 ∀ 0 ≤ i ≤ `− 1, xi 6= xj ∀ i 6= j

}
for the graph distance on E ⊂ Zd, x, y ∈ E. In the rest of the paper, c = c(d) denotes a constant
depending from the dimension which may vary from line to line.

Lemma 3.3. Let E ⊂ Zd be connected in the `1-topology. Assume there exists M < +∞ such that

supx∈E dE

(
x, Â ∩ E

)
≤ M/2.iii.. Let u : Zd → R be a function in H2(E) such that u(x) = 0 for

all x ∈ A. Then there exists a constant c = c(d) such that

‖u‖H2(E) ≤ cM2d−2‖∇2u‖L2(E).

iii.For τ ∈ E, Λ ⊂ Zd, dE(τ, Λ) := infλ∈Λ dE(τ, λ).
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FIGURE 1. E in white. A in red. The length of the green path is dE(x, Â ∩ E).

Proof. Consider a partition E of E made up by sets of diameter at most M such that each set B ∈ E
has no-empty intersection with Â. In other words, every set in this partition contains at least one point
x0 ∈ Â. Fix B ∈ E , and fix y ∈ B. Then we can find a path z0, ..., zK inside B, such that z0 =
x0, zK = y, zn 6= zm for n 6= m, ‖zn+1 − zn‖ = 1 for all n, and K ≤ M. Then, since u(x0) = 0,

|u(y)|2 =

∣∣∣∣∣ K

∑
n=1

u(zn)− u(zn−1)

∣∣∣∣∣
2

≤ K
K

∑
n=1
|u(zn)− u(zn−1)|2 ≤ K ∑

z∈B
|∇u(z)|2 .

We can do this for every y ∈ B. Thus

∑
y∈B
|u(y)|2 ≤ Md+1 ∑

z∈B
|∇u(z)|2.

Hence, summing over all B ∈ E , we obtain

‖u‖2
L2(E) = ∑

B∈E
∑
y∈B
|u(y)|2 ≤ Md+1 ∑

B∈E
∑
y∈B
|∇u(z)|2 = Md+1‖∇u‖2

L2(E).

Now we want to use the same type of argument on |Diu(y)| (resp. |∇u(y)|). Since x0 ∈ Â, we have
∇u(x0) = 0. So our argument gives

|∇u(y)|2 =
∣∣∣∇u(x0) + ∑K

n=1(∇u(zn)−∇u(zn−1))
∣∣∣2 ≤ K ∑z∈B ∑i,j |Diju(z)|2

which leads to

∑
y∈B
|∇u(y)|2 ≤ Md+1 ∑z∈B ∑d

i, j=1 |Diju(z)|2.

Thus

‖∇u‖2
L2(E) ≤ Md+1‖∇2u‖2

L2(E).
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Finally

‖u‖2
H2(E) = ‖u‖2

L2(E) + ‖∇u‖2
L2(E) + ‖∇2u‖2

L2(E) ≤ ‖∇u‖2
L2(E)

(
Md+1 + 1

)
+ ‖∇2u‖2

L2(E)

≤
(

M2(d+1) + Md+1 + 1
)
‖∇2u‖2

L2(E) ≤ c(d)M2(d+1)‖∇2u‖2
L2(E).

This completes the proof. �

For fixed y, let Bk = Bk,y :=
{

x ∈ Zd : ‖x− y‖1 ≤ k
}

denote the ball with radius k and center y on

the lattice, k ≥ 0. We denote by Gy
A a solution to (2.2) for fixed y. Recall in d = 4 we are extending Gy

A
to 0 outside VN ×VN .

3.2. Deterministic pinning. The equivalence of norms of Lemma 3.3 can be applied as follows.

Lemma 3.4. Let d ≥ 1 and let A ⊂ Zd. Fix k ≥ 5. For any connected subset Dk ⊆ Bc
k for which there

exists M = M(Dk, A) < +∞ such that supx∈Dk
dDk(x, Â ∩ Dk) ≤ M/2, there exists c = c(d)

such that
‖Gy

A‖
2
H2(Dk)

≤ cM2d+2‖Gy
A‖H2(Bk\Bk−5).

Proof. Let (ηk)k≥1 be a family of cutoff functions such that
ηk(x) = 1 x ∈ Bc

k−2,
ηk(x) = 0 x ∈ Bk−3,
0 ≤ ηk(x) ≤ 1 x ∈ Zd.

We also denote by ηkGy
A(x) := ηk(x)Gy

A(x) the pointwise product of the two functions. Since we have

ηkGy
A = Gy

A on Bc
k−2, we obtain from Lemma 3.3

‖Gy
A‖

2
H2(Dk)

= ‖ηkGy
A‖

2
H2(Dk)

≤ c(d)M2d+2‖∇2(ηkGy
A)‖2

L2(Dk)

≤ c(d)M2d+2‖∇2(ηkGy
A)‖2

L2(Zd). (3.6)

On the other hand we have, using Lemma 3.2, the properties of ηk, and the fact that Gy
A(x) is biharmonic,

‖∇2(ηkGy
A)‖2

L2(Zd) = ∑
x∈Zd

d

∑
i,j=1
|DiDj(ηkGy

A(x))|2 = 4d2 ∑
x∈Zd

(
ηkGy

A(x)
) (

∆2ηkGy
A(x)

)
= 4d2 ∑

x∈Bk−1\Bk−3

(
ηkGy

A(x)
) (

∆2ηkGy
A(x)

)
≤ C2(d)‖ηkGy

A‖
2
H2(Bk\Bk−5)

≤ C2(d)‖Gy
A‖

2
H2(Bk+1\Bk−5)

. (3.7)

Putting (3.6) and (3.7) together gives the desired result. Observe that the above Lemma holds for any
dimension d ≥ 1, in particular for d = 4, if we set

Gy
A,N := GA∩VN(·, y), (3.8)

which we extend to Zd by setting it 0 outside VN. The statement is obviously interesting only if Dk ∩
VN 6= ∅, but it is trivially true otherwise. �

With this preparation, we can prove the following deterministic version of our main result, whose proof
illustrates the ideas behind our approach.
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Theorem 3.5 (Deterministic pinned set). Let d ≥ 5, and let A ⊂ Zd be such that there exists M < +∞
such that supx∈Ac d(x, Â) ≤ M/2. Then there exist s = s(d, M) ∈ (0, +∞) and c = c(d, M) ∈
(0, +∞) such that for all x, y ∈ Ac

|GA(x, y)| ≤ ce−s‖x−y‖

Moreover
∥∥Gy

A

∥∥2
H2(Zd) ≤ γ.

Proof. From Lemma 3.4 we obtain, choosing Dk = Bc
k, and observing ‖Gy

A‖2
H2(A∪B) = ‖Gy

A‖2
H2(A) +

‖Gy
A‖2

H2(B) for any disjoint sets A, B ⊂ Zd,

‖Gy
A‖

2
H2(Bc

k)
≤ cM2d+2

(
‖Gy

A‖
2
H2(Bc

k−5)
− ‖Gy

A‖
2
H2(Bc

k)

)
which yields

‖Gy
A‖

2
H2(Bc

k)
≤ cM2d+2

1 + cM2d+2‖G
y
A‖

2
H2(Bc

k−5)
.

Since ‖Gy
A‖2

H2(Bc
i )
≥ ‖Gy

A‖2
H2(Bc

i+1)
for all i ≥ 0, iteration yields, setting C = cM2d+2,

‖Gy
A‖

2
H2(Bc

k)
≤
(

C
C + 1

)bk/5c
‖Gy

A‖
2
H2(Bc

0)
≤
(( C

C + 1

)1/5
)k−1

‖Gy
A‖

2
H2(Bc

0)

≤e−s(k−1)‖Gy
A‖

2
H2(Bc

0)

(3.9)

for

s =
1
5

log
1 + C

C
> 0.

Note that for some c(d) < +∞ we have

‖Gy
A‖

2
H2(Bc

0)
≤ ‖Gy

A‖
2
H2(Zd) = ∑

z∈Zd

(
d

∑
i,j=1

DiDjG
y
A(z)

)2

≤ c(d) ∑
z∈Zd

d

∑
i,j=1

(
DiDjG

y
A(z)

)2
.

Lemma 3.2 and the fact that Gy
A(z) = 0 for z ∈ A give

∑
z∈Zd

d

∑
i,j=1

(
DiDjG

y
A(z)

)2 = ∑
z∈Zd

∆2Gy
A(z)Gy

A(z) = ∑
z∈Ac

∆2Gy
A(z)Gy

A(z)

= ∑
z∈Ac

δy(z)Gy
A(z) = Gy

A(y) ≤ G(y, y) = γ
(2.3)
< +∞.

(3.10)

Hence ‖Gy
A‖2

H2(Bc
0)

< +∞ for all A, and we get for ‖x− y‖ > k from (3.9)∣∣Gy
A(x)

∣∣2 ≤ ‖Gy
A‖

2
H2(Bc

k)
≤ Ce−sk (3.11)

which is what we wanted to prove. �

We now pass on proving the 4-dimensional case as follows.
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Theorem 3.6 (Deterministic pinned set). Let d = 4, and let A ⊂ Zd be such that there exists M < +∞
such that supx∈Ac d(x, Â) ≤ M/2. Then there exist s = s(d, M) ∈ (0, +∞) and c = c(d, M) ∈
(0, +∞) such that for all x, y ∈ Ac

|GA∩VN(x, y)| ≤ c log Ne−s‖x−y‖.

Moreover
∥∥Gy

A

∥∥2
H2(Zd) ≤ γ log N.

Proof. This works exactly as for Theorem 3.5, using Gy
A,N defined in (3.8) instead of Gy

A, except that
(3.10) has to be replaced by

∑
z∈Zd

d

∑
i,j=1

(
DiDjG

y
A(z)

)2 = ∑
z∈Zd

∆2Gy
A,N(z)Gy

A,N(z) = ∑
z∈Ac∩VN

∆2Gy
A,N(z)Gy

A,N(z)

= ∑
z∈Ac∩VN

δy(z)Gy
A,N(z) = Gy

A,N(y) ≤ GN(y, y)
(2.3)
≤ γ log N.

(3.12)

In the last inequality we have used Lemma 2.4. This leads to the statement. �

3.3. From deterministic to random pinning. In this subsection we explain how to “transfer” the decay
of covariances from the deterministic case to the random situation. Now the point is that in the random
situation there is no fixed M that we can take as in the previous proofs. Fix k > 5, A ⊂ Zd. The idea

is now to choose sets D(k)
` , 0 ≤ ` ≤ bk/5c, in the right way such that there are suitable M(k)

` =

M
(

D(k)
`

)
for which we can adjust the iteration procedure. We make the following choices:

D(k)
` := Bk+1 \ Bk−5`, 0 ≤ ` ≤ bk/5c, (3.13)

and

M(k)
` = M(k)

` (A) := max
x∈D(k)

`

d
D(k)

`

(
x, Â ∩ D(k)

`

)
,

where the distance is taken on the lattice. If D(k)
` ∩ Â = ∅, let M(k)

` := +∞. The following Lemma,
albeit deterministic, shows that if we wish to obtain a strong decay of correlations, one needs to control
appropriately the maximal distance between a point and the clusters of pinned points.

Lemma 3.7. Let d ≥ 5. For mk = kξ , 0 < ξ < 1/2(d+1), define ak = ak(A) > 0 as ak := |{` ∈
{0 , ..., bk/5c} : M(k)

` ≤ mk}|. Then there exist c > 0 dependent only on d such that for ‖x− y‖ = k,

|Gy
A(x)| ≤ γe−cm−2(d+1)

k ak

and γ is as in (2.3).

Proof. Observe that we have

D(k)
` ⊆ Bc

k−5`, and D(k)
` ∪

(
Bk−5` \ Bk−5(`+1)

)
= D(k)

`+1
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where the last union is disjoint. If M(k)
` < +∞ we thus get from Lemma 3.4 that

‖Gy
A‖

2
H2(D(k)

` )
≤ c(M(k)

` )2d+2‖Gy
A‖

2
H2(Bk−5`\Bk−5`)

= c
(

M(k)
`

)2d+2
(
‖Gy

A‖
2
H2
(

D(k)
`+1

) − ‖Gy
A‖

2
H2
(

D(k)
`

)
)

,

which leads to

‖Gy
A‖

2
H2
(

D(k)
`

) ≤ c

(
M(k)

`

)2d+2

1 + c
(

M(k)
`

)2d+2‖G
y
A‖

2
H2(D(k)

`+1)
.

If M(k)
` = +∞ we have, since D(k)

` ⊂ D(k)
`+1,

‖Gy
A‖

2
H2
(

D(k)
`

) ≤ ‖Gy
A‖

2
H2
(

D(k)
`+1

).

Hence

‖Gy
A‖

2
H2
(

D(k)
`

) ≤
(

1{
M(k)

` <+∞
}c

(M(k)
` )2d+2

1 + cM2d+2
`

+ 1{M`=+∞}

)
‖Gy

A‖
2
H2
(

D(k)
`+1

)
for all 0 ≤ ` ≤ bk/5c. Iteratively we find

‖Gy
A‖

2
H2(Bk+1\Bk)

= ‖Gy
A‖

2
H2
(

D(k)
0

)

≤
bk/5c−1

∏
`=0

(
1{

(M(k)
` )<+∞

}c
(M(k)

` )2d+2

1 + c(M(k)
` )2d+2

+ 1{
(M(k)

` )=+∞
}
)
‖Gy

A‖
2
H2
(

D(k)
`+1

)

≤
bk/5c−1

∏
`=0

(
1{

(M(k)
` )<+∞

}c
(M(k)

` )2d+2

1 + c(M(k)
` )2d+2

+ 1{
(M(k)

` )=+∞
}
)
‖Gy

A‖
2
H2(Zd).

(3.14)

With our definition of ak, we can then rewrite (3.14) as

‖Gy
A‖

2
H2(Bk+1\Bk)

≤
(

c
m2(d+1)

k

1 + cm2(d+1)
k

)ak

‖Gy
A‖

2
H2(Zd).

Using the fact that log 1+x/x ≥ 1/x, x > 0, we obtain for x ∈ Zd \ {y} and for k such that x ∈
Bk+1 \ Bk,

∣∣Gy
A(x)

∣∣ ≤ ‖Gy
A‖

2
H2(Bk+1\Bk)

≤
(

cm2(d+1)
k

1 + cm2(d+1)
k

)ak

‖Gy
A‖

2
H2(Zd) ≤ γe−c(mk)−2(d+1)ak

where we have concluded by means of Theorem 3.5. �

The 4-dimensional case is also at hand as follows:

Lemma 3.8. Let d = 4. For mk = kξ , 0 ≤ ξ < d − 1, set ak = ak(A) > 0 such that ak :=
|{` ∈ {0 , ..., bk/5c} : M(k)

` ≤ mk}|. Then there exist c > 0 dependent only on d such that for
‖x− y‖ = k,

|Gy
A(x)| ≤ γd log Ne−cm−2(d+1)

k ak .
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Proof. The proof is the same of Lemma 3.7, where in the very last step one uses Theorem 3.6. �

Thus in order to prove our main result, we will try to make m−2(d+1)
k ak as large as possible. We first have

the following auxiliary Lemma:

Lemma 3.9. Let ν be a Bernoulli site percolation measure on Zd with ν(x is open) = ρ ∈ (0, 1),
x ∈ Zd. Let A be the set of open sites. Furthermore let (mk)k∈N and ak = ak(A) be defined as in
Lemma 3.7. Then there exists C = C(d) ∈ (0, +∞) independent ofA and k such that

ν (ak ≤ bk/10c) ≤ Ckd+1(1− ρ2d+1)bmk/4c.

Proof. Recall Â := {x ∈ A : y ∈ A for all y ∼ x}. We have ν(x ∈ Â) = ρ2d+1. We also observe

that if ‖x − y‖ > 2, the events {x ∈ Â} and {y ∈ Â} are independent. For any t ∈ N with

t ≤
∣∣∣D(k)

`

∣∣∣, we have

ν

(
d

D(k)
`

(x, Â) ≥ t
)

≤ ν
(
∃ {x0 = x, . . . , xt}, xi ∈ D(k)

` \ Â, xi ∼ xi+1 ∀ 0 ≤ i ≤ t− 1, xi 6= xj ∀ i 6= j
)

≤ ν
(

x0 /∈ Â, x3 6∈ Â, . . . , xbt/4c /∈ Â
)

=
(

1− ρ2d+1
)bt/4c

by independence. By means of the FKG inequality (Grimmett, 2006, Theorem 2.16),

ν

max
x∈B(k)

`

d
D(k)

`

(x, Â) ≥ t

 = 1− ν

(
d

D(k)
`

(x0, Â) < t, ∃ x0 ∈ D(k)
`

)

≤ 1−
(

1−
(

1− ρ2d+1
)bt/4c

)∣∣∣D(k)
`

∣∣∣
≤
∣∣∣D(k)

`

∣∣∣ (1− ρ2d+1
)bt/4c

≤ |Dk+1|
(

1− ρ2d+1
)bt/4c

=
(√

2(k + 1)
)d (

1− ρ2d+1
)bt/4c

. (3.15)

By the condition imposed on mk we can choose k large such that mk ≤
∣∣∣D(k)

`

∣∣∣ for all 0 ≤ ` ≤ bk/10c.
Then

ν (ak ≤ bk/10c) ≤ ν

 max
0≤`≤bk/10c

max
x∈D(k)

`

d
D(k)

`

(x, Â) ≥ mk


≤
⌊

k
10

⌋
(
√

2(k + 1))d
(

1− ρ2d+1
)bmk/4c

.

�
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Proof of Theorem 1.4. Take x, y ∈ Zd and assume ‖x − y‖ > k ∈ N. Using the expansion (1.7),
Equation (2.3) and Lemma 3.7 we get∣∣Eε

N(ϕx ϕy)
∣∣ ≤ Eζε

N

(∣∣∣GA∪Vc
N
(x, y)

∣∣∣ 1{ak(A)<bk/10c}

)
+ Eζε

N

(∣∣∣GA∪Vc
N
(x, y)

∣∣∣ 1{ak(A)≥bk/10c}

)
≤ γ ζε

N

(
ak(A) <

⌊
k

10

⌋)
+ γ ∑

A⊆VN

ζε
N

(
A = A, ak(A) ≥

⌊
k

10

⌋)
e−cb k

10 cm
−2(d+1)
k

≤ γ ζε
N

(
ak(A) <

⌊
k

10

⌋)
+ γe−c k−10

10 k−2ξ(d+1)
.

Since {ak(A) < bk/10c} is a decreasing event for the percolation realisation, we can use Proposi-
tion 2.9 to obtain

ζε
N (ak(A) < bk/10c) ≤ νρ−(d) (ak(A) < bk/10c) ,

where due to Lemma 3.9 the right-hand side is bounded by e−kξ′
, for any ξ ′ < ξ. Thus we get the

desired result for any 0 < α < min{ξ, 1− 2ξ(d + 1)}. �

Proof of Theorem 1.5. We can proceed as in the previous proof and obtain∣∣Eε
N(ϕx ϕy)

∣∣ ≤ Eζε
N

(∣∣∣GA∪Vc
N
(x, y)

∣∣∣ 1{ak(A)<bk/10c}

)
+ Eζε

N

(∣∣∣GA∪Vc
N
(x, y)

∣∣∣ 1{ak(A)≥bk/10c}

)
≤ γ ζε

N

(
ak(A) <

⌊
k

10

⌋)
+ γ log N ∑

A⊆VN

ζε
N

(
A = A, ak(A) ≥

⌊
k

10

⌋)
e−cb k

10cm−2(d+1)
k

≤ γ ζε
N

(
ak(A) <

⌊
k

10

⌋)
+ γ log Ne−c k−10

10 k−2ξ(d+1)
.

We have to take care of the fact that ρ− converges to 0 as N → +∞. From Proposition 2.10 and Lemma
3.9 we have

νρ−(d) (ak(A) < bk/10c) ≤ Ckd+1

(
1− εc−√

log N

)kξ /4

.

Inserting k ≥ Nλ, we thus get

ζε
N (ak(A) < bk/10c) ≤ νρ−(d) (ak(A) < bk/10c) ≤ e−λξ ′

for any ξ ′ < ξ. Then we conclude by the same arguments as before. �
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