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The moving mesh PDE (MMPDE) method for variational mesh generation and adaptation

is studied theoretically at the discrete level, in particular the nonsingularity of the obtained

meshes. Meshing functionals are discretized geometrically and the MMPDE is formulated

as a modified gradient system of the corresponding discrete functionals for the location

of mesh vertices. It is shown that if the meshing functional satisfies a coercivity condition,

then the mesh of the semi-discrete MMPDE is nonsingular for all time if it is nonsingular

initially. Moreover, the altitudes and volumes of its elements are bounded below by positive

numbers depending only on the number of elements, the metric tensor, and the initial mesh.

Furthermore, the value of the discrete meshing functional is convergent as time increases,

which can be used as a stopping criterion in computation. Finally, the mesh trajectory has

limiting meshes which are critical points of the discrete functional. The convergence of the

mesh trajectory can be guaranteed when a stronger condition is placed on the meshing

functional. Two meshing functionals based on alignment and equidistribution are known to

satisfy the coercivity condition. The results also hold for fully discrete systems of the MMPDE

provided that the time step is sufficiently small and a numerical scheme preserving the

property of monotonically decreasing energy is used for the temporal discretization of the

semi-discrete MMPDE. Numerical examples are presented.

1 Introduction

The variational method for mesh generation and adaptation has received considerable attention in the

scientific computing community; e.g., see [3, 18, 20, 25, 30] and references therein. It generates an

adaptive mesh as the image of a given reference mesh under a coordinate transformation determined

by a meshing functional. Such a functional is typically designed to measure difficulties in the numerical

approximation of the physical solution and involve a user-prescribed metric tensor (monitor function)

to control mesh adaptation. This method has the advantage that it makes it easy to incorporate mesh

requirements (e.g., smoothness, adaptivity, or alignment) in the formulation of the functional [2]. It serves

as not only a standalone method for mesh generation and adaptation but also a smoothing device for

automatic mesh generation (e.g., see [5, 13]). Moreover, the variational method is the base for a number

of adaptive moving mesh methods [15, 17, 18, 24].

A number of variational methods have been developed so far. For example, Winslow [31] proposes

an equipotential method based on variable diffusion. Brackbill and Saltzman [2] develop a method by

combining mesh concentration, smoothness, and orthogonality. Dvinsky [4] uses the energy of harmonic

mappings as his meshing functional. Knupp [21] and Knupp and Robidoux [22] formulate functionals based

on the idea of conditioning the Jacobian matrix of the coordinate transformation. Huang [10] and Huang

and Russell [18] develop functionals based on the so-called equidistribution and alignment conditions.
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Compared with the algorithmic development, much less progress has been made in theoretical studies.

The existence and uniqueness of the minimizer of Dvinsky’s meshing functional is guaranteed by the

theory of harmonic mappings between multidimensional domains [4]. Winslow’s functional [31] is uniformly

convex and coercive so it has a unique minimizer [18, Example 6.2.1]. Huang’s functional [10] is coercive

and polyconvex and has minimizers [18, Example 6.2.2] while that of Huang and Russell is coercive

and polyconvex and has a nonsingular minimizer [18, Example 6.2.3]. Note that the nonsingularity of

the minimizer for the above mentioned functionals is unknown (except for that of Huang and Russell).

Moreover, these results are only at the continuous level.

At the discrete level, studies mainly remain in one spatial dimension. Pryce [27] proves the existence of the

limiting mesh and the convergence of de Boor’s algorithm for solving the equidistribution principle when the

metric tensor is approximated by a piecewise linear interpolant. His result is generalized by Xu et al. [32]

to the situation where the metric tensor is approximated by a piecewise constant interpolant. Gander and

Haynes [6] and Haynes and Kwok [9] show the existence of the limiting mesh and the convergence of the

parallel and alternating Schwarz domain decomposition algorithms applied to the continuous and discrete

equidistribution principle.

The objective of this paper is to present a theoretical study on variational mesh generation and adaptation

at the discrete level for any dimension. We consider a broad class of meshing functionals and the MMPDE

method for finding their minimizers. We employ a geometric discretization recently introduced in [12] for

meshing functionals. The semi-discrete MMPDE (discrete in space and continuous in time) is defined

as a modified gradient system for the corresponding discrete functionals. The mesh nonsingularity and

the existence and uniqueness of limiting meshes for both the semi-discrete and fully discrete MMPDEs

are studied. Largely thanks to the inherent properties of the new discretization, it can be shown that

if the meshing functional satisfies a coercivity condition, the mesh of the semi-discrete MMPDE stays

nonsingular for all time if it is nonsingular initially. Moreover, the altitudes and volumes of its elements are

bounded from below by positive numbers depending only on the number of elements, the metric tensor,

and the initial mesh. Furthermore, the value of the discrete functional is convergent as time increases,

which can be used as a stopping criterion for the computation. Finally, the mesh trajectory has limiting

meshes which are critical points of the discrete functional. The convergence of the mesh trajectory can be

guaranteed when a stronger condition is placed on the meshing functional (see the discussion following

Theorem 4.4). The functionals based on alignment and equidistribution [10, 18] are known to satisfy the

coercivity condition for a large range of parameters (see (11) with p > 1). The analysis also holds for

a fully discrete system for the MMPDE provided that the time step is sufficiently small and a numerical

scheme preserving the property of monotonically decreasing energy is used to integrate the semi-discrete

MMPDE. Euler, backward Euler, and algebraically stable Runge-Kutta schemes (including Gauss and

Radau IIA) are known to preserve the property under a time-step restriction that involves a local Lipschitz

bound of the Hessian matrix of the discrete functional (e.g., [8, 29]).

An outline of this paper is given as follows. Meshing functionals and the MMPDE method for finding

minimizers are described in Sect. 2. The geometric discretization of the meshing functionals is given in

Sect. 3. Section 4 is devoted to the analysis of the semi-discrete MMPDE and its discretization. Numerical

examples are given in Sect. 5 to demonstrate the theoretical findings. The conclusions are drawn in

Sect. 6.
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2 Meshing functionals and MMPDE

In this section we describe the general form of a functional and two specific examples used for mesh

generation and adaptation. We also discuss the concept of functional equivalence and the MMPDE

approach for finding a minimizer of the meshing functional.

Let Ω be a bounded, not necessarily convex, polygonal or polyhedral domain in Rd, d ≥ 1, and

M = M(x) a symmetric metric tensor defined on Ω which satisfies

m I ≤M(x) ≤ m I ∀x ∈ Ω, (1)

where the inequality sign is in the sense of positive definiteness and m,m > 0 are constants. Our goal is

to use the variational method to generate a simplicial mesh for Ω according to M.

Let Ωc be a chosen computational domain, which can be a real domain in Rd or a collection of simplexes

(see the discussion in the next section). With the variational method, an adaptive mesh is generated as

the image of a computational mesh on Ωc under a coordinate transformation between Ωc and Ω which in

turn is determined as a minimizer of a meshing functional.

Denote the coordinate transformation by x = x(ξ) : Ωc → Ω and its inverse coordinate transformation

by ξ = ξ(x) : Ω→ Ωc. We consider meshing functionals in the form

I[ξ] =

∫
Ω
G (J,det(J),M,x) dx, (2)

where J = ∂ξ
∂x is the Jacobian matrix of ξ = ξ(x) and G is a given function which is sufficiently smooth

with respect to all of its arguments. This functional is minimized for the coordinate transformation subject to

suitable boundary correspondence between ∂Ω and ∂Ωc. The form (2) is very general and includes many

existing meshing functionals as special examples (e.g., [18, 20, 25] and Examples 2.1 and 2.2 below).

The functional (2) is formulated in terms of the inverse coordinate transformation ξ(x). It can be trans-

formed into a mathematically equivalent functional expressed in terms of the coordinate transformation

x(ξ). To explain this, we consider a coordinate transformation (x, ξ)→ (u,v) defined by

x = Φ(u,v), ξ = Ψ(u,v), det

(
∂(x, ξ)

∂(u,v)

)
6= 0, (3)

where u and v are the new independent and dependent variables, respectively. The curve given by

the equation ξ = ξ(x) in the x-ξ space corresponds to the curve given by some equation v = v(u)

in the u-v space. Making the change of variables (3), we can transform the functional (2) into a new

functional involving u and v. The invariance of the Euler-Lagrange equation in calculus of variations

(e.g., Gelfand and Fomin [7]) states that if ξ = ξ(x) satisfies the Euler-Lagrange equation of (2), then

v = v(u) satisfies the Euler-Lagrange equation of the new functional. Thus, the minimizers of (2) can be

obtained through the minimizers of the new functional, and vice versa. In this sense, we say (2) and the

new functional are mathematically equivalent.

Consider a special coordinate transformation

x = Φ(u,v) ≡ v, ξ = Ψ(u,v) ≡ u, (4)
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which represents an interchange of the roles of the independent and dependent variables. Since the

Jacobian matrix of (4) is

∂(x, ξ)

∂(u,v)
=

[
0 I

I 0

]
,

which is nonsingular, the invariance of the Euler-Lagrange equation implies that the functional (2) is

mathematically equivalent to

I[x] =

∫
Ωc

G (J,det(J),M,x)

det(J)
dξ, (5)

which is obtained by interchanging the roles of its independent and dependent variables in (2). Notice that

the new functional is still denoted by I without causing confusion. Indeed, from the equivalence, we can

consider (2) as a functional for ξ = ξ(x) (the ξ-formulation) or for x = x(ξ) (through the interchanging

the roles of the independent and dependent variations, i.e., (5) (the x-formulation).

In this work, we use the x-formulation. We employ the MMPDE method (a time-transient approach [14, 15])

to find a minimizer of the functional (5). The MMPDE is defined as a modified gradient flow of (5),

∂x

∂t
= −P

τ

δI

δx
, t > 0, (6)

where δI
δx is the functional derivative of I with respect to x, τ > 0 is a constant parameter used to adjust

the time scale of the equation, and P is a positive scalar function used to make the equation to have

some invariance properties (a choice of P will be given later for Examples 2.1 and 2.2). A discretization

of (6) gives a system for the nodal velocities for the physical mesh. The interested reader is referred to

[18] for detailed discussion on the discretization of MMPDEs. In the next section, we consider a direct

discretization method with which the functional (2) (instead of MMPDEs) is discretized directly and the

nodal velocity system is then obtained as a modified gradient system of the discretized functional.

Example 2.1 (The generalized Winslow functional). The first example is a generalization of Winslow’s

variable diffusion functional [31],

I[ξ] =

∫
Ω

tr(JM−1JT ) dx, (7)

where tr(·) denotes the trace of a matrix and M−1 serves as the diffusion matrix. This functional has

been used by many researchers; e.g., [1, 16, 17, 24]. It is coercive and convex (in terms of ξ = ξ(x))

and therefore has a unique minimizer [18, Example 6.2.1].

For the discretization to be discussed in the next section, we need the derivatives of G with respect to J,

det(J), M, and x. They are 

G = tr(JM−1JT ),
∂G
∂J = 2M−1JT ,
∂G

∂ det(J) = 0,

∂G
∂M = −M−1JT JM−1,
∂G
∂x = 0.

(8)

Note that ∂G∂J and ∂G
∂M are d-by-d matrices and ∂G

∂x is a row vector of d components. They are expressed

in the notation of scalar-by-matrix differentiation. For example, ∂G∂J is a d-by-d matrix defined as(
∂G

∂J

)
ij

=
∂G

∂Jji
. (9)
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The chain rule for scalar-by-matrix differentiation reads as1

∂G

∂t
= tr

(
∂G

∂J
∂J
∂t

)
. (10)

Using the definition of G and viewing J as a function of t, we have

∂G

∂t
= tr

(
∂JM−1JT

∂t

)
= tr

(
∂J
∂t

M−1JT + JM−1∂JT

∂t

)
= tr

(
2M−1JT

∂J
∂t

)
.

By comparing this with the chain rule, we get

∂G

∂J
= 2M−1JT .

The other derivatives are obtained similarly.

Regarding the choice of P , it is useful to make the MMPDE invariant under the scaling transformation

M→ c ·M for a positive number c since the mesh concentration is controlled by the distribution of M
instead of its absolute value. A choice of P for this purpose for the current functional is

P = det(M)
1
d .

Example 2.2 (Huang’s functional). The second functional is

I[ξ] = θ

∫
Ω

√
det(M)

(
tr(JM−1JT )

) dp
2 dx+(1−2θ)d

dp
2

∫
Ω

√
det(M)

(
det(J)√
det(M)

)p
dx, (11)

where 0 ≤ θ ≤ 1 and p > 0 are dimensionless parameters. This functional was proposed by Huang [10]

based on the so-called alignment and equidistribution conditions. Alignment and equidistribution are

balanced by θ, with full alignment for θ = 1 and full equidistribution for θ = 0. For 0 < θ ≤ 1
2 , dp ≥ 2,

and p ≥ 1, the functional is coercive and polyconvex (in terms of ξ = ξ(x)) and has a minimizer [18,

Example 6.2.2]. Moreover, for θ = 1
2 it reduces to

I[ξ] =
1

2

∫
Ω

√
det(M)

(
tr(JM−1JT )

) dp
2 dx, (12)

which is coercive and convex (in terms of ξ = ξ(x)) and has a unique minimizer. Particularly, (12) gives

the energy functional for a harmonic mapping from Ω to Ωc when dp/2 = 1 (cf. [4]). Moreover, (12) and

Winslow’s functional (7) coinside when dp/2 = 1 and M = I .

The derivatives of G are

G = θ
√

det(M)
(
tr(JM−1JT )

) dp
2 + (1− 2θ)d

dp
2

√
det(M)

(
det(J)√
det(M)

)p
,

∂G
∂J = dpθ

√
det(M)

(
tr(JM−1JT )

) dp
2
−1M−1JT ,

∂G
∂r = p(1− 2θ)d

dp
2 det (M)

1−p
2 det (J)p−1,

∂G
∂M = − θdp

2

√
det(M)

(
tr(JM−1JT )

) dp
2
−1M−1JT JM−1 + θ

2

√
det(M)

(
tr(JM−1JT )

) dp
2 M−1

+ (1−2θ)(1−p)d
dp
2

2

√
det(M)

(
det(J)√
det(M)

)p
M−1,

∂G
∂x = 0.

(13)
1The interested reader is referred to [12] for more detailed discussion on scalar-by-matrix differentiation.
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A choice of P to make the MMPDE invariant under the scaling transformations of M for the current

functional is

P = det(M)
p−1
2 .

3 A geometric discretization of meshing functionals

Let Th = {K} be the target simplicial mesh on Ω and N and Nv the numbers of its elements and

vertices, respectively. We assume that the computational mesh Tc = {Kc} is chosen such that

(a) it has the same N and Nv as Th,

(b) there is a one-to-one correspondence between the elements of Tc and those of Th,

(c) Tc has the same connectivity when Tc is a real mesh (see the explanation below),

(d) Tc is almost uniform (all of its elements have almost the same size and are almost equilateral).

Tc can be a real mesh or a collection of N simplexes. An example of the latter case is a Tc consisting of

N copies of (N−
1
d K̂), where (N−

1
d K̂) denotes a unitary equilateral simplex K̂ scaled by N−

1
d .

For any element K ∈ Th and the corresponding element Kc ∈ Tc, let FK : Kc → K be the affine

mapping between them and F ′K its Jacobian matrix. Let the vertices of K and Kc be xKj , j = 0, . . . , d

and ξKj , j = 0, . . . , d, respectively. It holds

F ′K = EKÊ
−1
K , (F ′K)−1 = ÊKE

−1
K , |K| = 1

d!
|det(EK)|, |Kc| =

1

d!
| det(ÊK)|, (14)

where the edge matrices EK and ÊK are defined as

EK = [xK1 − xK0 , . . . ,xKd − xK0 ], ÊK = [ξK1 − ξK0 , . . . , ξKd − ξK0 ].

Let

Ωc =
⋃

Kc∈Tc

Kc.

Note that Ωc may be a real domain in Rd or a collection of N simplexes.

We now describe the geometric discretization [12] for the functional (2). The idea is simple: the coordinate

transformation x = x(ξ) is approximated by the piecewise linear mapping {FK , K ∈ Th} and the

integral in (2) is approximated by the midpoint quadrature rule.2 This results in a Riemann sum which can

be considered as a function of the location of the physical vertices (in the x-formulation), according to the

functional equivalence discussed in the preceding section. (Note that Tc is given and, thus, known.) From

J ≈ (F ′K)−1 = ÊKE
−1
K on K , we have

Ih(x1, . . . ,xNv) =
∑
K∈Th

|K|G(ÊKE
−1
K ,

det(ÊK)

det(EK)
,MK ,xK), (15)

2A more accurate quadrature rule could be used; however, our numerical experience shows that the simple midpoint quadrature

rule works well for problems tested.
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where xK is the centroid of K and MK = 1
d+1

∑d
i=0 M(xKi ). As for the continuous case, the MMPDE

for (15) is defined as

dxi
dt

= −P (xi)

τ

(
∂Ih
∂xi

)T
, i = 1, . . . , Nv, t > 0. (16)

The derivatives on the right-hand side of the mesh equation (16) can be found analytically in a compact

matrix form (see [12] for the derivation):

dxi
dt

=
P (xi)

τ

∑
K∈ωi

|K|vKiK , i = 1, . . . , Nv, (17)

where ωi is the patch of the elements having xi as one of their vertices and iK and vKiK are the local

index and velocity of vertex xi on the element K , respectively. The local velocities are
(vK1 )

T

...

(vKd )
T

 =−GE−1
K + E−1

K

∂G

∂J
ÊKE

−1
K +

∂G

∂ det(J)

det(ÊK)

det(EK)
E−1
K

− 1

d+ 1

d∑
j=0

tr

(
∂G

∂M
Mj,K

)
∂φj,K
∂x
...

∂φj,K
∂x

− 1

d+ 1


∂G
∂x
...
∂G
∂x

 , (18)

(vK0 )
T

=−
d∑

k=1

(vKk )
T −

d∑
j=0

tr

(
∂G

∂M
Mj,K

)
∂φj,K
∂x

− ∂G

∂x
, (19)

where Mj,K = M(xKj ), φj,K is the linear basis function associated with xKj , and

G,
∂G

∂J
,

∂G

∂ det(J)
,

∂G

∂M
, and

∂G

∂x

are evaluated at

J = ÊKE
−1
K , det(J) =

det(ÊK)

det(EK)
, x = xK .

The MMPDE (16) should be modified properly for boundary vertices: if xi is a fixed boundary vertex, the

corresponding equation is replaced by
dxi
dt

= 0,

and when xi is allowed to move on a boundary curve (in 2D) or surface (in 3D) represented by φ(x) = 0,

then the mesh velocity ∂xi
∂t needs to be modified such that its normal component along the curve or

surface is zero, i.e.,

∇φ(xi) ·
dxi
dt

= 0.

Remark 3.1. The formulation of the MMPDE (16) is similar to that of a spring model for mesh

movement (cf. [18, Section 7.3.2]), with the right-hand side term acting as the sum of the spring forces

between xi and its neighboring vertices. This makes it amenable to time integration by both explicit and

implicit schemes. On the other hand, (16) is different from existing spring models for mesh movement. It
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does not involve parameters such as spring constants that typically need fine tuning. Moreover, the forces

in (16) are defined based on the global meshing functional (2). This property is very important since it

provides a good chance to prevent the mesh from becoming singular. For example, for the functional (11)

the forces are defined to keep the mesh elements as regular and uniform in the metric M as possible.

4 Mesh nonsingularity and existence of the limiting meshes

In this section we study the nonsingularity of the mesh trajectory and the existence of the limiting meshes

as t→∞ for the semi-discrete MMPDE (16) and its discretization.

4.1 Two lemmas

The functionals in both Examples 2.1 and 2.2 involve a factor tr(JM−1JT ) = tr((F ′K)−1M−1
K (F ′K)−T ).

An equivalent form of it is ‖(F ′K)−1M−1
K (F ′K)−T ‖. We first obtain a geometric interpretation for it, which

is needed later in our analysis.

Lemma 4.1. Let K̂ be an equilateral simplex and K an arbitrary simplex in Rd, FK : K̂ → K the

affine mapping between them, and MK a constant symmetric and positive definite matrix. Then,

â2

a2
K,M

≤ ‖(F ′K)−1M−1
K (F ′K)−T ‖ ≤ d2 â2

a2
K,M

, (20)

where aK,M is the minimum altitude of K in the metric MK and â is the altitude of K̂ .

Proof. Let φ̂i (i = 0, . . . , d) be the linear basis functions associated with the vertices of K̂. It holds

(e.g., Křížek and Lin [23] or Lu et al. [26, Lemma 1])

(∇̂φ̂i)T ∇̂φ̂i =
1

â2
, i = 0, . . . , d,

where ∇̂ is the gradient operator on K̂ with respect to ξ. (Recall that K̂ is equilateral so all of its altitudes

are the same.)

Let φi(x) = φ̂i(F
−1
K (x)), where F−1

K is the inverse mapping of FK . Since FK is affine, φi is also a

linear basis function on K. The altitudes of K in the metric MK are related to the gradient of the linear

basis functions by (cf. [26, (25) with DK being replaced by M−1
K ])

(∇φi)TM−1
K ∇φi =

1

a2
i,K,M

,

where∇ stands for the gradient operator on K with respect to x. φi(x) = φ̂i(F
−1
K (x)) and the chain

rule give

∇φi = (F ′K)−T ∇̂φ̂i.
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We are now ready to prove (20):

‖(F ′K)−1M−1
K (F ′K)−T ‖ = max

v 6=0

vT (F ′K)−1M−1
K (F ′K)−Tv

vTv

≥
(∇̂φ̂i)T (F ′K)−1M−1

K (F ′K)−T ∇̂φ̂i
(∇̂φ̂i)T ∇̂φ̂i

=
(∇φi)TM−1

K ∇φi
â−2

=
â2

a2
i,K,M

,

which implies

‖(F ′K)−1M−1
K (F ′K)−T ‖ ≥ max

i

â2

a2
i,K,M

=
â2

a2
K,M

.

Thus, we obtained the left inequality of (20).

On the other hand, ∇̂φ̂i, i = 1, . . . , d, form a set of d linearly independent vectors. Thus, we can

represent any v ∈ Rd as

v =

d∑
i=1

αi∇̂φ̂i.

Then,

vTv =
d∑

i,j=1

αiαj∇̂φ̂Ti ∇̂φ̂j

and

vT (F ′K)−1M−1
K (F ′K)−Tv =

d∑
i,j=1

αiαj∇̂φ̂Ti (F ′K)−1M−1
K (F ′K)−T ∇̂φ̂j

=
d∑

i,j=1

αiαj∇φTi M−1
K ∇φj

=

d∑
i,j=1

αiαj(M
− 1

2
K ∇φi)

T (M−
1
2

K ∇φj).

Thus,

vT (F ′K)−1M−1
K (F ′K)−Tv ≤

d∑
i,j=1

|αi| |αj |
1

ai,K,Maj,K,M
≤ 1

a2
K,M

d∑
i,j=1

|αi| |αj |

=
1

a2
K,M

(

d∑
i=1

|αi|)2 ≤ d

a2
K,M

d∑
i=1

α2
i .

Then,

‖(F ′K)−1M−1
K (F ′K)−T ‖ ≤ d

a2
K,M

max
α 6=0

∑d
i=1 α

2
i∑d

i,j=1 αiαj∇̂φ̂Ti ∇̂φ̂j
. (21)

9



We now establish a lower bound on the smallest eigenvalue of the matrix B = (∇̂φ̂Ti ∇̂φ̂j)di,j=1. Since

K̂ is equilateral, it has the same altitude and the same dihedral angle. This gives

∇̂φ̂Ti ∇̂φ̂j =

{
1
â2
, i = j

− cos(α̂)
â2

= − 1
d â2

, i 6= j

where α̂ is the dihedral angle between the two faces of K̂ not containing the ith and j th vertices each.

Thus, B is a Z-matrix. Moreover, from
d∑
j=0
∇̂φ̂j = 0,

d∑
j=1

Bi,j = ∇̂φ̂Ti
d∑
j=1

∇̂φ̂j = −∇̂φ̂Ti ∇̂φ̂0 =
cos(α̂)

â2
=

1

d â2
> 0.

This implies that B is an M -matrix. We have

λmin(B) ≥ min
i

d∑
j=1

Bi,j ≥
1

d â2

and
d∑

i,j=1

αiαj∇̂φ̂Ti ∇̂φ̂j ≥
1

d â2

d∑
i=1

α2
i .

Thus, from (21) we get

‖(F ′K)−1M−1
K (F ′K)−T ‖ ≤ d2 â2

a2
K,M

,

which gives the right inequality of (20).

Lemma 4.1 indicates that

‖(F ′K)−1M−1
K (F ′K)−T ‖ ∼ a−2

K,M (22)

if K̂ is chosen to further satisfy |K̂| = O(1).

It is also interesting to obtain a geometric interpretation for ‖(F ′K)TMKF
′
K‖. In this case, we do not

need to require that K̂ be equilateral.

Lemma 4.2. Let K̂ and K be two arbitrary simplexes in Rd, FK : K̂ → K the affine mapping

between them, and MK be a constant symmetric and positive definite matrix. Then,

h2
K,M

ĥ2
≤ ‖(F ′K)TMKF

′
K‖ ≤

h2
K,M
ρ̂2

, (23)

where hK,M is the diameter of K in the metric specified by MK and ĥ and ρ̂ are the diameter and the

in-diameter (defined as the diameter of the largest inscribed ellipsoid) of K̂ , respectively.

Proof. Consider any two points ξ1, ξ2 ∈ K̂ and the corresponding points x1,x2 ∈ K . Then,

(x2 − x1) = F ′K(ξ2 − ξ1).
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This gives

(x2 − x1)TMK(x2 − x1) = (ξ2 − ξ1)T (F ′K)TMKF
′
K(ξ2 − ξ1) (24)

≤ ‖(F ′K)TMKF
′
K‖ · ‖ξ2 − ξ1‖2

≤ ĥ2‖(F ′K)TMKF
′
K‖.

Since x1,x2 ∈ K are arbitrary,

h2
K,M ≤ ĥ2 ‖(F ′K)TMKF

′
K‖,

which gives the left inequality of (23).

Now consider two arbitrary opposing points ξ1 and ξ2 on the sphere of the largest inscribed ball of K̂

(with the diameter ρ̂). Dividing both sides of (24) by ‖ξ1 − ξ2‖2 = ρ̂2, we get

(x2 − x1)TMK(x2 − x1)

ρ̂2
=

(ξ2 − ξ1)T (F ′K)TMKF
′
K(ξ2 − ξ1)

‖ξ1 − ξ2‖2
.

Taking the maximum over all points on the sphere of the largest inscribed ball, the right-hand side is equal

to ‖(F ′K)TMKF
′
K‖ while the left-hand side is less than h2

K,M/ρ̂
2. Hence,

‖(F ′K)TMKF
′
K‖ ≤

h2
K,M

ρ̂2
,

which gives the right inequality of (23).

Lemma 4.2 implies that ‖(F ′K)TMKF
′
K‖ is equivalent to h2

K,M, i.e.,

‖(F ′K)TMKF
′
K‖ ∼ h2

K,M, (25)

when K̂ is chosen to be a unitary equilateral simplex.

Note that interchanging the roles of K and K̂ and replacing MK by M−1
K in Lemma 4.2 provide bounds

for ‖(F ′K)−1M−1
K (F ′K)−T ‖ as well. However, these bounds are not as sharp as bounds in Lemma 4.1.

4.2 Mesh nonsingularity

We first consider the semi-discrete MMPDE (16). In practical computation, proper modifications of the

MMPDE for boundary vertices are required. Since the analysis is similar for the MMPDE with or without

these modifications, for simplicity in the following we consider only the case without modifications.

Theorem 4.1. Assume that the meshing functional (2) satisfies the coercivity condition

G(J,det(J),M,x) ≥ α
[
tr(JM−1JT )

]q − β, ∀x ∈ Ω, (26)

with q > d/2, where α > 0 and β ≥ 0 are constants. Assume also that the computational mesh Tc is

chosen so that each of its elements is almost congruent to N−
1
d K̂ up to rotation and translation, where

K̂ is the reference element taken to be a unitary equilateral simplex. If the elements of the mesh trajectory
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of the semi-discrete MMPDE (16) have positive volumes initially, they will have positive volumes for t > 0.

Moreover, their minimum altitudes in the metric M and their volumes are bounded below by

aK,M ≥ Cm
− d

2(2q−d)N
− 2q

d(2q−d) , ∀K ∈ Th, ∀t > 0, (27)

|K| ≥ Cm−
d2

2(2q−d)
− d

2N
− 2q

(2q−d) , ∀K ∈ Th, ∀t > 0, (28)

where C is a positive constant depending only on the initial mesh.

Proof. Recall that (16) is a gradient system. As a consequence,

dIh
dt

=

Nv∑
i=1

∂Ih
∂xi

dxi
dt

= −
Nv∑
i=1

Pi
τ

∥∥∥∥∂Ih∂xi

∥∥∥∥2

≤ 0. (29)

This implies

Ih(Th(t)) ≤ Ih(Th(0)), (30)

where Th(t) ≡ (x1(t), · · · ,xNv(t)) is the mesh at time t. From the coercivity (26), we get

Ih(Th(t)) ≥ α
∑
K∈Th

|K|
[
tr((ÊKE

−1
K )M−1

K (ÊKE
−1
K )T )

]q
− β|Ω|. (31)

Since, by assumption, Kc is almost congruent to N−
1
d K̂ (up to rotation and translation),

ÊK ≈ N−
1
dQKÊ,

whereQK is a rotation operator and Ê is the edge matrix for K̂ . Inserting this into (31) gives

Ih(Th(t)) ≥ CN−
2q
d

∑
K∈Th

|K| (tr(ÊE−1
K M−1

K E−TK ÊT ))q − β|Ω|.

From Lemma 4.1 (with (F ′K)−1 = ÊE−1
K ) and (30), we have∑

K∈Th

|K| · 1

a2q
K,M

≤ CN
2q
d , (32)

where C depends on the initial mesh through the initial discrete functional Ih(Th(0)). Moreover, from (1)

we have

|K| =
|K|
√

det(MK)√
det(MK)

≥ C1

adK,M

m
d
2

,

for some positive constant C1 depending on d. Combining this with (32) leads to∑
K∈Th

1

a2q−d
K,M

≤ Cm
d
2N

2q
d , (33)

which gives rise to (27) and (28).

Finally, the volumes of the elements will stay positive: from (17)-(19) we see that the nodal mesh velocities

are bounded when |K| is bounded from below as in (28). As a consequence, the mesh vertices will move

continuously with time and the volumes of the elements cannot jump over the bound (28) to become

negative. Thus, the volumes of the elements will stay positive (and bounded from below) if they are positive

initially.
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Remark 4.1. From inequality (27) we can see that the ratio of aK,M to the average element diameter,

N−
1
d , is bounded below by

aK,M

N−
1
d

≥ Cm−
d

2(2q−d)N
− 1

(2q−d) , ∀K ∈ Th. (34)

This implies that the larger q is, the closer aK,M is to the average element diameter. In particular, when

q →∞, we have aK,M → O(N−
1
d ) and the mesh is close to being quasi-uniform. Similarly, from (28)

we have
|K|
N−1

≥ Cm−
d2

2(2q−d)
− d

2N
− d

(2q−d) , ∀K ∈ Th. (35)

For example, for Huang’s functional (11) in 2D with p = 1.5 and q = pd/2 = 1.5 we have |K| & N−3.

Note that this is a rather pessimistic worst case estimate. Recall that the functional (11) is designed

to make the mesh to satisfy the equidistribution and alignment conditions as closely as possible. The

equidistribution condition takes the form

|K|
√

det(MK) =
σh
N
, K ∈ Th

where σh =
∑

K |K|
√

det(MK). Thus, when a mesh closely satisfies this condition we have

|Ω|
N

( m
m

) d
2 ≤ |K| ≤ |Ω|

N

(
m

m

) d
2

, K ∈ Th

which implies |K| = O(N−1). This has been observed in numerical experiment; e.g., see Example 5.2

and Fig. 2f in Sect. 5.

Remark 4.2. The key point of the proof is the energy decreasing property (29). This property is

a crucial advantage of the geometric discretization (15) over discretizations based on the continuous

MMPDE (6) which, generally speaking, cannot be guaranteed to be a gradient system. Another key

component of the proof is the coercivity assumption (26). Once again, this may not be preserved in general

by discretizations based on the continuous MMPDE (6).

Remark 4.3. It can be seen that Huang’s functional (11) satisfies the coercivity assumption (26) with

p > 1 whereas Winslow’s functional does not. In the latter case, we have q = 1 and (32) still holds. But

(32) with q = 1 is not sufficient to guarantee a lower bound for aK,M.

It is worth pointing out that the functional of Huang and Russell [18, Example 6.2.3] also satisfies the

coercivity assumption (26) for p > 1.

Remark 4.4. The quantity Ih defined in (15) can be viewed as a measure for mesh quality. The

smaller Ih is, the better the mesh quality. Then, (29) implies that the mesh quality improves when t

increases.

We now consider the time integration of (16). Denote the time instants by tn, n = 0, 1, . . . with the

property tn →∞ as n→∞. We are interested in one-step methods in the form

T n+1
h = Φn(T nh ), n = 0, 1, . . . , (36)
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for integrating MMPDE (16). From the proof of Theorem 4.1, we have seen that it is important that the

discrete functional Ih is monotonically decreasing with the mesh trajectory. Thus, we assume that the

scheme has the property

Ih(T n+1
h ) ≤ Ih(T nh ), n = 0, 1, . . . , (37)

Many schemes, such as Euler’s, the backward Euler, and algebraically stable Runge-Kutta schemes

(including Gauss and Radau IIA schemes) can be used for this purpose under a time-step restriction

involving a local Lipschitz bound of the Hessian matrix of Ih (e.g., [8, 29]).

Theorem 4.2. Assume that the assumptions of Theorem 4.1 are satisfied, a numerical scheme in the

form (36) is applied to MMPDE (16) and the resulting mesh sequence {T nh }∞n=0 satisfies the property of

monotonically decreasing energy (37).

If the time step is sufficiently small (but not diminishing) and the elements of the mesh trajectory have

positive volumes initially, they will have positive volumes for all tn > 0. Moreover, the minimum altitudes in

the metric M and the element volumes are bounded from below by (27) and (28).

Proof. The proof of (27) and (28) for the fully discrete case is similar to that of Theorem 4.1 for the

semi-discrete case. We only need to show that the volumes of the elements will stay positive if the time

step is sufficiently small. To this end, we recall that G is assumed to be sufficiently smooth and M is

bounded below and above (cf. (1)). A close examination on (17)-(19) shows that the mesh velocities have a

upper bound independent of the elements and time instants when the mesh satisfies (27) and (28). Since

the minimal altitude and, hence, the minimal distance between vertices have a lower positive bound (c.f.

(27)), the elements will not become inverted and their volumes will stay positive if the time step is chosen

small enough (smaller than the ratio of the minimal altitude to the maximal nodal velocity). (Note that this

ratio is also independent of the elements and time instants and thus the time step is not diminishing.) The

argument can be repeated for the next time step since the new mesh satisfies (27) and (28), too. Thus,

the volumes of the elements stay positive for tn > 0.

4.3 Existence of limiting meshes and minimizers

We now investigate the convergence of the mesh trajectory as t→∞. First, we consider the semi-discrete

case (16) and then the fully discrete case.

Theorem 4.3. Under the assumptions of Theorem 4.1, for any nonsingular initial mesh, the mesh

trajectory {Th(t), t > 0} of MMPDE (16) has the following properties.

(a) Ih(Th(t)) has a limit as t→∞, i.e.,

lim
t→∞

Ih(Th(t)) = L. (38)

(b) The mesh trajectory has limiting meshes, all of which are nonsingular and satisfy (27) and (28).

(c) The limiting meshes are critical points of Ih, i.e., they satisfy

∂Ih
∂xi

= 0, i = 1, . . . , Nv. (39)
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Proof. (a) Ih(Th(t)) has a limit since it is monotone, decreasing as t→∞ and bounded from below by

−β|Ω|.

(b) Theorem 4.1 implies that the mesh stays nonsingular for t > 0 and its vertices remain on Ω (the

closure of Ω). The compactness of Ω means that {Th(t), t > 0} has limits as t→∞. Obviously, the

limiting meshes satisfy (27) and (28) and thus are nonsingular.

(c) Consider a convergent mesh sequence Th(tk), k = 1, 2, ..., with the limit T ∗h . We will prove that

T ∗h satisfies (39) using the contradiction argument: assume that T ∗h does not satisfy (39). Take a small

positive number ε > 0 and choose a mesh sequence T̃h(tk) ≡ Th(tk + ε), k = 1, 2, . . . . From the

compactness of Ω, we can choose a convergent subsequence from {T̃h(tk)}. Without loss of generality,

we pass the notation and consider {T̃h(tk)} as the subsequence with the limit T ∗∗h . From the definition

of T̃h(tk) and Taylor’s expansion, we have

Ih(T ∗∗h ) = lim
k→∞

Ih(T̃h(tk))

= lim
k→∞

Ih(. . . ,xi(tk) + ε
dxi
dt

(tk) +O(ε2), . . . )

= lim
k→∞

(
Ih(Th(tk)) + ε

Nv∑
i=1

∂Ih
∂xi

(Th(tk))
dxi
dt

(tk) +O(ε2)

)

= lim
k→∞

(
Ih(Th(tk))− ε

Nv∑
i=1

Pi
τ

∥∥∥∥∂Ih∂xi
(Th(tk))

∥∥∥∥2

+O(ε2)

)
.

Since Ih and its first and second derivatives are bounded under the conditions (27) and (28), we can

choose ε small enough such that the second term in the about equation dominates the higher order terms.

Moreover, the second term is positive since we have assumed that T ∗h does not satisfy (39). Thus, from

the above equation we get

Ih(T ∗∗h ) < Ih(T ∗h ).

But this contradicts with (38) since it implies that Ih(T̃h(tk)) − Ih(Th(tk)) → 0 as k → ∞ or

Ih(T ∗∗h )− Ih(T ∗h ) = 0.

Theorem 4.4. Under the assumptions of Theorem 4.2, for any nonsingular initial mesh, the mesh

trajectory {T nh , n = 0, 1, ...} of the scheme (36) applied to MMPDE (16) has the following properties.

(a) Ih(T nh ) has a limit as n→∞, i.e.,

lim
n→∞

Ih(T nh ) = L. (40)

(b) The mesh trajectory has limiting meshes. All of the those limiting meshes are nonsingular and

satisfy (27) and (28).

(c) If we further assume that the scheme satisfies a stronger property of monotonically decreasing

energy, {
Ih(T n+1

h ) ≤ Ih(T nh ), n = 0, 1, . . . ,

Ih(T n+1
h ) < Ih(T nh ), if T nh is not a critical point,

(41)

then the limiting meshes are critical points of Ih, i.e., they satisfy (39).
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Proof. The proof for (a) and (b) is similar to that of Theorem 4.4. The proof for (c) is also similar to that of

Theorem 4.4 except that we choose T̃h
nk

= T nk+1
h , where T nk

h is a subsequence converging to T ∗h .

Then (c) can be proved using (41) and the contradiction argument.

Theorems 4.3 and 4.4 state that the values of the functional for the mesh trajectory are convergent as

time increases, which can be used as a stopping criterion for the computation. In general, however, there

is no guarantee that the mesh trajectory converges. To guarantee the convergence, a stronger descent in

the functional value or a stronger requirement on the meshing functional is needed. For example, if the

time marching scheme satisfies

Ih(T n+1
h ) ≤ Ih(T nh )− α

Nv∑
i=1

∥∥∥∥∂Ih∂xi
(T nh )

∥∥∥∥2

, n = 0, 1, . . . , (42)

for a positive constant α, which is a stronger monotonically decreasing energy property than (41), then we

have
∞∑
n=0

Nv∑
i=1

∥∥∥∥∂Ih∂xi
(T nh )

∥∥∥∥2

<∞,

which in turn means that
Nv∑
i=1

∥∥∥∥∂Ih∂xi
(T nh )

∥∥∥∥→ 0 as n→∞.

Then, we may expect the mesh trajectory {T nh , n = 0, 1, . . . } to converge since typically (T n+1
h − T nh )

is proportional to the gradient of Ih.

On the other hand, a stronger condition can be placed on the meshing functional. In particular, {T nh , n =

0, 1, . . . } is convergent if Ih has a unique critical point. To explain this, we consider a special example:

the functional (11) with θ = 1
2 or the functional (12). In this case, we have

Ih =
1

2

∑
K∈Th

|K|
√

det(MK)
(

tr(ÊKE
−1
K M−1

K E−TK ÊTK)
) dp

2
,

dp

2
≥ 1. (43)

We show that Ih is strongly convex about the variables ξ1, . . . , ξNv
, for which it is sufficient to show

the term
(

tr(ÊKE
−1
K M−1

K E−TK ÊTK)
) dp

2
to be convex about E ≡ [ξK0 , . . . , ξ

K
d ] for any element K.

Moreover, since

d

dβ
β

dp
2 =

dp

2
β

dp
2
−1 ≥ 0,

d2

dβ2
β

dp
2 =

dp

2
(
dp

2
− 1)β

dp
2
−2 ≥ 0,

from [18, Lemma 6.2.1] it suffices to show that β ≡ tr(ÊKE
−1
K M−1

K E−TK ÊTK) is a convex function

about E.

Let

e =

1
...

1

 ∈ Rd, Eη =
[
ηK0 , . . . ,η

K
d

]
∈ Rd×(d+1),
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where Eη is an arbitrary matrix representing a perturbation of E. The quadratic form of the Hessian of β

with respect to E can be expressed as

tr

∂ tr
(
∂β
∂EEη

)
∂E

Eη

 ,

where we have used the notation of scalar-by-matrix differentiation (cf. (9) and (10) and [12]). We first

compute ∂β
∂E . By examining the relation between E and ÊK , we get

∂β

∂[ξK1 , . . . , ξ
K
d ]

=
∂β

∂ÊK
,

∂β

∂ξK0
= −eT ∂β

∂ÊK
,

which can be combined into
∂β

∂E
=

[
−eT

I

]
∂β

∂ÊK
,

where I is the d-by-d identity matrix. To find ∂β

∂ÊK
, we look at ÊK as a function of t. Then,

∂β

∂t
= tr

(
∂(ÊKE

−1
K M−1

K E−TK ÊTK)

∂t

)
= tr

(
2E−1

K M−1
K E−TK ÊTK

∂ÊK
∂t

)
,

which gives
∂β

∂ÊK
= 2E−1

K M−1
K E−TK ÊTK .

Thus,

tr

(
∂β

∂E
Eη

)
= tr

(
2

[
−eT

I

]
E−1
K M−1

K E−TK ÊTKEη

)
.

Repeating the process,

tr

∂ tr
(
∂β
∂EEη

)
∂E

Eη

 = 2 tr

(
Eη

[
−eT

I

]
E−1
K M−1

K E−TK

[
−e I

]
ETη

)

= 2

∥∥∥∥∥Eη
[
−eT

I

]
E−1
K M−

1
2

K

∥∥∥∥∥
2

F

≥ 0,

where ‖ · ‖F is the Frobenius matrix norm. The equality in the above equation holds if and only if

ηK0 = · · · = ηKd . (44)

Thus, the quadratic form of Ih about ξ1, . . . , ξNv
is zero if and only if the above equality holds for all

Kc ∈ Tc. Since at least one of the boundary vertices is held fixed and its perturbation must be zero,

(44) applies that Eη = 0 for the element containing the boundary vertex and then other elements, which

means that Ih is strongly convex. As a consequence, Ih has a unique critical point (which is the minimizer)

when Ωc is convex.

Notice that the above uniqueness result is for Ih as a function of the computational coordinates. For the

convergence of the mesh trajectory for (16) or its discretization, we need the uniqueness result for Ih
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as a function of the physical coordinates. We use the argument of the functional equivalence described

in Sect. 2. We first notice that the continuous functional in (12) is the same as the discrete functional

Ih in (43) for the piecewise linear mapping {FK : Kc → K, K ∈ Th} and the piecewise constant

metric tensor {MK , K ∈ Th}. From the functional equivalence, we can conclude that Ih has a unique

minimizer either as a function of the coordinates of the physical vertices as long as Ωc is convex. Then,

the mesh trajectory is convergent.

5 Numerical examples

To demonstrate the theoretical findings, in particular the decrease of the meshing functional and the lower

positive bound of the element volumes, we present several numerical examples for mesh adaptation as

well as mesh smoothing in two and three dimensions. Huang’s functional (11) with p = 3
2 and θ = 1

3 is

used in the computation. The MMPDE (17) is integrated using Matlab explicit ODE solver ode45 for the

mesh smoothing situation and implicit ODE solver ode15s for the mesh adaptation situation.

Example 5.1 (2D smoothing). We use the MMPDE-based smoothing to improve the mesh quality:

we start with an initial mesh, perturb it (Fig. 1a) and use M = I to smooth the perturbed mesh. Figs. 1b

and 1c show the resulting mesh at t = 1.0 and t = 3.0. The functional is monotonically decreasing.

The minimal element volume is also decreasing but seems to converge to a positive number and stay

bounded from zero. This is consistent with Theorem 4.2 which states that the element volumes of the

mesh is bounded below by a positive number.

Example 5.2 (2D mesh adaptation for the sine wave). In this example, the metric tensor M is based

on optimizing the piecewise linear interpolation error measured in the the L2-norm [11, 19],

M = det (αI + |H(u)|)−
1
6 [αI + |H(u)|] , (45)

where |H(u)| is the eigen-decomposition of the recovered Hessian of u with the eigenvalues being

replaced by their absolute values and the regularization parameter α > 0 is chosen such that∫
Ω

√
det(M)dx = 2

∫
Ω

det (|H(u)|)
1
3 dx. (46)

We choose Ω = (0, 1)× (0, 1) and

u(x, y) = tanh (−20 [y − 0.5− 0.25 sin (2πx)]) .

Figs. 2a to 2c show the adaptive mesh at three time instants: t = 0, 1.0, and 3.0 for a 30 × 30 initial

mesh. As expected, the functional energy is monotonically decreasing (Fig. 2d) and, for a fixedN , |K|min

stays bounded from below (Fig. 2e). Moreover, Fig. 2f shows the change of |K|min for a sequence of

finer grids with N →∞ and it seems that |K|min ∼ N−1, which is in consistent with (35), which reads

as |K| ≥ Cm−3N−3 for this example.

Example 5.3 (3D smoothing, cami1a). This example demonstrates smoothing of a tetrahedral mesh

obtained by TetGen [28] for cami1a part (Fig. 3a). For this example too, the functional is monotonically

decreasing and |K|min stays bounded from below. Additionally, we compare the dihedral angle statistics of

the original TetGen mesh with those after mesh smoothing. As it can be observed from Fig. 3d, smoothing

significantly reduces the number of small (0◦–20◦) and large (150◦–180◦) dihedral angles and thus

produce a more uniform mesh.
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(a) perturbed initial mesh, t = 0 (b) smoothed mesh at t = 1.0 (c) smoothed mesh at t = 3.0
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Figure 1: Example 5.1 (2D smoothing)
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(f) |K|min and N−1 as N →∞

Figure 2: Example 5.2 (2D mesh adaptation for the sine wave)
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(a) mesh geometry
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(d) statistics of dihedral angles before and after smoothing

angle before after angle before after

0 – 5 2 80 – 110 25 178 25 025

5 – 10 280 8 110 – 120 4 858 5 186

10 – 20 3 372 2 280 120 – 130 3 896 4 761

20 – 30 6 673 7 036 130 – 140 2 557 3 315

30 – 40 11 001 12 385 140 – 150 1 448 1 256

40 – 50 13 227 13 911 150 – 160 793 163

50 – 60 14 754 14 697 160 – 170 284 5

60 – 70 12 158 12 308 170 – 175

70 – 80 13 399 11 544 175 – 180

Figure 3: Example 5.3 (3D smoothing, cami1a example, 18 980 elements)

Example 5.4 (3D mesh adaptation for nine spheres). In this example we choose Ω = (−1, 1) ×
(−1, 1)× (−1, 1) and M to minimize the L2 interpolation error bound (see Example 5.2 on the choice

of M) for

u(x, y, z) = tanh
(

30
[
(x− 0.0)2 + (y − 0.0)2 + (z − 0.0)2 − 0.1875

])
+ tanh

(
30
[
(x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2 − 0.1875

])
+ tanh

(
30
[
(x− 0.5)2 + (y + 0.5)2 + (z − 0.5)2 − 0.1875

])
+ tanh

(
30
[
(x+ 0.5)2 + (y − 0.5)2 + (z − 0.5)2 − 0.1875

])
+ tanh

(
30
[
(x+ 0.5)2 + (y + 0.5)2 + (z − 0.5)2 − 0.1875

])
+ tanh

(
30
[
(x− 0.5)2 + (y − 0.5)2 + (z + 0.5)2 − 0.1875

])
+ tanh

(
30
[
(x− 0.5)2 + (y + 0.5)2 + (z + 0.5)2 − 0.1875

])
+ tanh

(
30
[
(x+ 0.5)2 + (y − 0.5)2 + (z + 0.5)2 − 0.1875

])
+ tanh

(
30
[
(x+ 0.5)2 + (y + 0.5)2 + (z + 0.5)2 − 0.1875

])
.

Fig. 4 shows an example of the final adaptive mesh and plots of the functional value and |K|min with
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(a) mesh clip

0 10 20 30
5.8

6

6.2

t

Ih

(b) Ih as function of t

0 10 20 30
3

4

5

6

7
·10−6

t

|K|min

(c) |K|min as function of t

Figure 4: Example 5.4 (3D mesh adaptation for nine spheres)

respect to the time. As expected, the functional value is monotonically decreasing. |K|min is decreasing

with time as well but one observes that it is bounded from below.

6 Conclusions

We have considered a geometric discretization recently introduced in [12] for meshing functionals and

formulated the MMPDE as a modified gradient system of the corresponding discrete functionals for the

location of mesh vertices. The main results are stated in Theorems 4.1–4.4.

Specifically, for meshing functionals satisfying the coercivity condition (26) with q > d/2 (such as Huang’s

functional (11) with p > 1), the mesh of the semi-discrete system (16) stays nonsingular for t > 0 if it

is nonsingular initially. Moreover, the altitudes and the volumes of its elements are bounded below by

positive numbers depending only on the number of elements, the metric tensor, and the initial mesh;

cf. (27) and (28). Furthermore, the value of the meshing functional is always convergent as time increases,

which can be used as a stopping criterion. Finally, the mesh trajectory has limiting meshes which satisfy

(27) and (28), are nonsingular, and are critical points of the discrete functional. The convergence of the

mesh trajectory can be guaranteed if a stronger condition is placed on the meshing functional.

It is shown in Theorems 4.2 and 4.4 that the above results also hold for fully discrete systems of (16)

provided that the time step is sufficiently small and the underlying integration scheme for MMPDE (16)

satisfies the property of monotonically decreasing energy (for example, Euler, backward Euler, algebraically

stable Runge-Kutta schemes are known to preserve such a property with a mild restriction on the time

step).
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