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Abstract

The present contribution investigates shape optimisation problems for a class of semilinear ellip-
tic variational inequalities with Neumann boundary conditions. Sensitivity estimates and material
derivatives are firstly derived in an abstract operator setting where the operators are defined on
polyhedral subsets of reflexive Banach spaces. The results are then refined for variational inequali-
ties arising from minimisation problems for certain convex energy functionals considered over upper
obstacle sets in H1. One particularity is that we allow for dynamic obstacle functions which may
arise from another optimisation problems. We prove a strong convergence property for the material
derivative and establish state-shape derivatives under regularity assumptions. Finally, as a concrete
application from continuum mechanics, we show how the dynamic obstacle case can be used to treat
shape optimisation problems for time-discretised brittle damage models for elastic solids. We de-
rive a necessary optimality system for optimal shapes whose state variables approximate desired
damage patterns and/or displacement fields.
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1 Introduction

Finding optimal shapes such that a physical system exhibits an intended behaviour is of great interest
for plenty of engineering applications. For example design questions arise in the construction of air- and
spacecrafts, wind and combustion turbines, wave guides and inductor coils. More examples can be found
in [5] and references therein. The physical system is usually modelled by a pde or a coupled pde system
supplemented with suitable boundary conditions. In certain cases the state is given as a minimiser of
an energy, e.g., an equilibrium state of an elastic membrane, which has to be in a set of admissible
states. The solution is then characterised by a variational inequality holding for test-functions on the
sets of admissible states.

The treatment of optimal shape and control problems for variational inequalities is substantially more
difficult as without constraints, where the sets of admissible states is a linear space. For optimal control
problems there exist a rapidly growing literature exploring different types of stationarity conditions
and their approximations (see, for instance, [15, 20]). However shape optimisation problems for systems
described by variational inequalities are less explored and reveal additional difficulties due to the
intricated structure of the set of admissible domains. Some results following the paradigm first optimise-
then discretise can be found in [16, 21, 23, 24, 25, 26] and for the first discretise-then optimise approach
we refer to [1, 3, 11].

The main aim of this paper is to establish sensitivity estimates and material derivatives for certain
nonlinear elliptic variational inequalities with respect to the domain. Our approach is based on the
paradigm first optimise-then discretise, thus the sensitivity is derived in an infinite dimensional setting.
In order to encapsulate the main arguments needed in the proof of the main results and to increase their
applicability, we investigate the optimisation problems firstly on an abstract operator level formulated
over a polyhedric subset K of some reflexive Banach space V . The domain-to-state map is there
replaced by a parametrised family of operators (At) and sensitivity estimates are shown in Theorem
3.2 and Theorem 3.3 under general assumption (see Assumption (O1) and Assumption (O2)). By
strengthening the assumptions (see Assumption (O3)) differentiability with respect to the parameter
t has been shown in Theorem 3.5. One crucial requirement is the polyhedricity of the closed convex
set K on which the operators are defined. The results are applicable for optimal shape as well as for
optimal control problems.
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Equipped with the proven abstract results we resort to shape optimisation problems where the state
system is a variational inequality of semilinear elliptic type given by

u ∈ KψΩ
and ∀ϕ ∈ KψΩ

: dE(Ω, u;ϕ− u) ≥ 0

with the energy

E(Ω, u) =

∫
Ω

1

2
|∇u|2 +

λ

2
|u|2 +WΩ(x, u) dx (λ > 0)

and the upper obstacle set

KψΩ
=
{
v ∈ H1(Ω) : v ≤ ψΩ a.e. in Ω

}
.

In the classical theory of VI-constrained shape optimisation problems established in [27], linear varia-
tional inequalities with constant obstacle andWΩ(x, u) = f(x) for some given fixed function f : D → R
defined on a “larger set” D ⊃ Ω have been investigated by means of conical derivatives of projection
operators in Hilbert spaces as used in [19]. For results on topological sensitivity analysis for variational
inequalities and numerical implementations we refer to [14] as well as [2].

In our paper we allow for semilinear terms in the variational inequality by including convex contribu-
tions to WΩ with respect to u and also consider a dependence of WΩ and ψΩ on Ω in a quite general
sense. As presented in the last section of this work ψΩ may itself be a solution of a variational inequal-
ity. Such general Ω-dependence of the obstacle will be referred to as “dynamic obstacle” in constrast
to the case of a “static obstacle” where ψΩ(x) = g(x) for some fixed function g : D → R.

On the one hand the results for VI-constrained shape optimisation problems in [27] are extended in
the present contribution to certain semi-linear cases, dynamic obstacles ψΩ and dynamic potential
functions WΩ. On the other hand we establish these results by invoking abstract sensitivity results
for operators on Banach spaces (which we establish before) and without reformulating the problems
by means of projection operators as done in [27]. One advantage of our different technique is that
we encapsulate the main arguments for obtaining material derivatives in general theorems which are
freed of concrete representation of the (integral) operators. The occurring operators are supposed to
be uniformly monotone (see (O1) (iii) and (O2) (i)) – a crucial assumption to gain sensitivity estimate
in a general setting.

To apply the abstract results to the shape optimisation problem mentioned above we perform the
transformation u 7→ y := u−ψΩ such that the transformed problem is formulated over the cone H1

−(Ω),
i.e., the non-positive half space of H1(Ω). Existence of the material derivative ẏ which turns out to be
the unique solution of a variational inequality considered over the cone Ty(H1

−(Ω)) ∩ kern(dE(u; ·))
and strong convergence of the corresponding difference quotients are established in Theorem 4.8 and
Corollary 4.9. The variational inequality characterising the material derivative u̇ is then established in
Corollary 4.11. Moreover in the case of a static obstacle and H2(Ω)-regularity for u we derive relations
for the state-shape derivative u′ in Theorem 4.15 and Corollary 4.16.

The theorems for the semilinear case are then applied to a specific model problem from continuum dam-
age mechanics. Here we consider an elastic solid which undergoes deformation and damage processes
in a small strain setting. The state of damage is modelled by a phase field variable χ which influences
the material stiffness and which is described by parabolic variational inequality forcing the variable χ
to be monotonically decreasing in time. We consider a time-discretised version of the evolution system
(but we stay continuous in the spatial components) where the damage variable fulfills for all time steps
the constraints

χN ≤ χN−1 ≤ . . . ≤ χ0 ≤ 1 a.e. in Ω.
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Such constraints lead to N -coupled variational inequalities with dynamic obstacle sets of the type

Kk−1(Ω) =
{
v ∈ H1(Ω) : v ≤ χk−1 a.e. in Ω

}
, k = 1, . . . , N.

Our objective is to find an optimal shape Ω such that the associated displacement fields (uk)Nk=1 and
damage phase fields (χk)Nk=1 minimise a given tracking type cost functional. We derive relations for
the material derivative and establish necessary optimality conditions for optimal shapes which are
summarised in Proposition 5.3.

Structure of the paper. In Section 2 we recall some basics notions from convex analysis. For
reader’s convenience and for the sake of clarity we derive in Appendix A tangential and normal cones
of KψΩ

and prove polyhedricity of KψΩ
by invoking arguments from [19, 4, 13].

In Section 3 we establish sensitivity and material derivative results in an abstract operator setting (see
Theorem 3.2, Theorem 3.3 and Theorem 3.5). Some results are even applicable to quasi-linear problems
such as to p-Laplace equations. The advantage of this approach is that the theorems can be applied to
a large class of optimisation problems including shape optimisation and optimal control problems.

This flexibility is demonstrated in Section 4 where semilinear VI-constrained shape optimisation prob-
lems with an energy and obstacle of type E(Ω, u) and KψΩ

from above are treated. By applying the
abstract results from Section 3 we derive sensitivity estimates for the shape-perturbed problem in
Proposition 4.5, material derivatives in Theorem 4.8 and state-shape derivatives in Theorem 4.15.

Finally, in Section 5, we invoke results from Section 4 in order to investigate a shape optimisation
problem from continuum damage mechanics where dynamic obstacles arise.

2 Notation and basic relations

For the treatment of variational inequalities we recall certain well-known cones from convex analysis
(the definitions can, for instance, be found in [4, Chapter 2.2.4] and [27, Chapter 4.1]). Let K ⊆ V be
a subset of a real Banach space V and denote by V ∗ its topological dual space.

The radial cone at y ∈ K of the set K is defined by

Cy(K) := {w ∈ V : ∃t > 0, y + tw ∈ K}, (1)

the tangent cone at y as
Ty(K) := Cy(K)

V
(2)

and the normal cone at y as

Ny(K) := {w∗ ∈ V ∗ : ∀v ∈ K, 〈w∗, v − y〉V ≤ 0}. (3)

Furthermore we introduce the polar cone of a set K as

[K]◦ := {w∗ ∈ V ∗ : ∀v ∈ K, 〈w∗, v〉V ≤ 0}, (4)

and the orthogonal complements of elements y ∈ V and y∗ ∈ V ∗

[y]⊥ := {w∗ ∈ V ∗ : 〈w∗, y〉V = 0},
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kern(y∗) := [y∗]⊥ := {w ∈ V : 〈y∗, w〉V = 0}.

The normal cone may also be written as

Ny(K) = [Ty(K)]◦ = [Cy(K)]◦ . (5)

In combination with the bipolar theorem (see [4, Prop. 2.40]) we obtain

Ty(K) = [[Ty(K)]◦]◦ = [Ny(K)]◦. (6)

We recall that a closed convex set K ⊆ V is polyhedric if (cf. [15])

∀y ∈ K, ∀w ∈ Ny(K), Cy(K) ∩ [w]⊥
V

= Ty(K) ∩ [w]⊥. (7)

Note that the inclusion “⊆” is always satisfied above. Due to Mazur’s lemma and the convexity of the
involved sets, the closure in V can also be taken in the weak topology.

The following lemma shows a useful implication of (7) involving variational inequalities arising from
(possibly non-)linear operators.

Lemma 2.1. Let K ⊆ V be a polyhedric subset of V .

(i) Let A : K → V ∗ be an operator and let y be a solution of the following variational inequality

y ∈ K and ∀ϕ ∈ K : 〈A(y), ϕ− y〉V ≥ 0. (8)

Then it holds

Cy(K) ∩ kern(A(y)) = Ty(K) ∩ kern(A(y)). (9)

(ii) For all v ∈ V it holds

Cy(K) ∩ [v − y]⊥ = Ty(K) ∩ [v − y]⊥,

where y denotes the projection of v on K.

Proof. To (i): We infer from (8) that −A(y) ∈ Ny(K). Thus definition (7) implies

Cy(K) ∩ kern(−A(y)) = Ty(K) ∩ kern(−A(y)).

The identity kern(−A(y)) = kern(A(y)) completes the proof.
To (ii): This follows from v − y ∈ Ny(K).

Let us consider an important class of polyhedral subsets which will be utilised in Section 4 where
semilinear obstacle problems are treated. We fix a Lipschitz domain Ω ⊆ Rd. Moreover let ψ ∈ H1(Ω)
be a given function. We define the upper obstacle set as

Kψ := {w ∈ H1(Ω) : w ≤ ψ a.e. in Ω}. (10)

The proofs of the following results are based on arguments from [19, Lemma 3.1-3.2, Theorem 3.2] and
are carried out in Appendix A.
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Theorem 2.2. Let y ∈ Kψ and Kψ be as in (10). Then it holds

Ty(Kψ) =
{
u ∈ H1(Ω) : ũ ≤ 0 q.e. on {ỹ = ψ̃}

}
, (11a)

Ny(Kψ) =
{
I ∈ H1(Ω)∗ : I ∈ H1(Ω)∗+ and µI({ỹ < ψ̃}) = 0

}
, (11b)

where ỹ denotes a quasi-continuous representant of y (the same for ũ and ψ̃) and µI ∈ M+(Ω) the
measure associated to I by Lemma A.1.

Please notice that the sets

{ỹ = ψ̃} := {x ∈ Ω : ỹ(x) = ψ̃(x)},
{ỹ < ψ̃} := {x ∈ Ω : ỹ(x) < ψ̃(x)}

are calculated for arguments in Ω (not only in Ω).

Theorem 2.3 (cf. [19, Théorème 3.2]). The set Kψ is polyhedric.

3 Abstract sensitivity analysis

In this section we will derive sensitivity estimates and relations for material derivatives under general
conditions. We start in Section 3.1 with minimisers of certain p-coercive energy functionals and deduce
a Hölder-type estimate with exponent 1/p. We present an example which includes the quasi-linear
p-Laplacian ∆p(·) = div(|∇ · |p−2∇·). Then we proceed in Section 3.2 with solutions of monotone
operators where we are able to improve the estimates from Subsection 3.1. For the case p = 2 we even
establish a Lipschitz type sensitivity estimate. Finally in Subsection 3.3 we strengthen the assumptions
in order to establish the weak material derivative. A crucial requirement will be the polyhedricity of
the underlying set.

In this whole section V will denote a Banach space, K ⊆ V a closed convex subset and τ > 0 a fixed
constant.

3.1 Sensitivity result for minimisers of energy functionals

Our starting point is a family of energy functionals

E : [0, τ ]× V → R,

where we denote the set of attained infima at t ∈ [0, τ ] by

U(t) :=
{
ut ∈ V : inf

ϕ∈K
E(t, ϕ) = E(t, ut)

}
. (12)

Our aim is to establish a general result showing the convergence of minimisers of E(t, ·) to minimisers
of E(0, ·) as t↘ 0. Before we state our abstract sensitivity result, we recall [22, Theorem 1] which will
be used in a subsequent proof:

Theorem 3.1 ([22, Theorem 1]). Let ||| · ||| be a seminorm on V . Let E : V → R be an energy functional
such that for all v, w ∈ K the mapping s 7→ γ(s) := E(sw+ (1− s)v)) is C1 on [0, 1]. Let us denote by
A : K → V ∗ the Gateaux-differential of E which is supposed to be p-coercive on K:

∃α > 0,∀u, v ∈ K, 〈A(u)−A(v), u− v〉V ≥ α|||u− v|||p.
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Then every minimum u of E on K satisfies:

∀v ∈ K, α

p
|||u− v|||p ≤ E(u)− E(v).

3.1.1 Hölder-type estimate

In what follows let E satisfy the following assumption:

Assumption (O1) Suppose that the energy functionals E(t, ·) satisfies for a given p ≥ 1:

(i) ∃c1 > 0,∃c2 > 0, ∀ϕ ∈ K, E(·, ϕ) is differentiable and

∀t ∈ [0, τ ], ∂tE(t, ϕ) ≤ c1‖ϕ‖pV + c2;

(ii) ∃c > 0, ∃Λ > 0, ∀ϕ ∈ K, ∀t ∈ [0, τ ],

E(t, ϕ) ≥ c‖ϕ‖pV − Λ;

(iii) ∀t ∈ [0, τ ], E(t, ·) is Gateaux-differentiable and

∃α > 0, ∀u, v ∈ K, 〈At(u)−At(v), u− v〉V ≥ α|||u− v|||p,

where 〈At(v), w〉V := dE(t, v;w) and ||| · ||| is a semi-norm on V ;

(iv) ∀v, w ∈ K, ∀t ∈ [0, τ ],

s 7→ γ(s) := E(t, sv + (1− s)w) is C1([0, 1])

We are in the position to state and prove our sensitivity result:

Theorem 3.2. Let E : [0, τ ] × V → R be a family of energy functionals satisfying Assumption (O1)
and let U(t) be non-empty for every t ∈ [0, τ ]. Then U(t) = {ut} is a singleton and there exists a
constant c > 0 such that for all t ∈ [0, τ ]:

|||ut − u0||| ≤ ct1/p.

Proof. Let t ∈ [0, τ ] and ut ∈ U(t). Let us first show that ut is bounded in V uniformly in t. According
to Assumption (O1) (i)-(ii), the definition of ut and the mean value theorem, we obtain ηt ∈ (0, t) such
that

c‖ut‖pV − Λ ≤ E(t, ut)

≤ E(t, u0)

= E(0, u0) + t∂tE(ηt, u
0)

≤ E(0, u0) + t
(
c1‖u0‖pV + c2

)
.

(13)
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This shows that ‖ut‖V ≤ C for all t ∈ [0, τ ] for some constant C > 0. Furthermore applying Theorem 3.1
by using Assumption (O1) (iii)-(iv) shows

c|||ut − u0|||p ≤ E(t, ut)− E(t, u0), (14)

c|||ut − u0|||p ≤ E(0, u0)− E(0, ut). (15)

Adding both inequalities, applying the mean value theorem twice with some ηt, ζt ∈ (0, t) and using
Assumption (O1) (i) and the estimate (13) yields

2c|||ut − u0|||p ≤ E(t, ut)− E(t, u0) + E(0, u0)− E(0, ut)

≤ t
(
∂tE(ηt, u

t)− ∂tE(ζt, u
0)
)

≤ tC(‖ut‖pV + ‖u0‖pV )

(13)
≤ tC(1 + ‖u0‖pV ).

(16)

This finishes the proof.

3.1.2 Example: p-Laplace equation

As an application of Theorem 3.2 let us consider the p-Laplace equation

−div(|∇u|p−2∇u) = f in K = V =
◦
W 1
p (Ω)

on a bounded Lipschitz domain Ω and the associated energy given by

E(0, ϕ) =
1

p

∫
Ω
|∇ϕ|p dx−

∫
Ω
fϕdx, ϕ ∈

◦
W 1
p (Ω).

Here
◦
W 1
p (Ω) denotes the closure of C∞c (Ω) in the ‖ · ‖W 1

p
-norm. The energy of the perturbed problem

transported to Ω is of the form

E(t, ϕ) =
1

p

∫
Ω
ξ(t)|B(t)∇ϕ|p − f(t)ϕdx.

More precisely this type of energy arises if one considers the energy on a perturbed domain Φt(Ω) and
apply a change of variables, i.e.

Ẽ(t, ϕ) =
1

p

∫
Φt(Ω)

|∇ϕ|p − fϕdx =
1

p

∫
Ω

det(∂Φt)|(∂Φt)
−>∇ϕ̃|p − f det(∂Φt)ϕ̃dx,

where ϕ̃ = ϕ ◦ Φt. Now the minimisation of Ẽ(t, ·) over
◦
W 1
p (Φt(Ω)) is equivalent to the minimisation

of E(t, ϕ) := Ẽ(t, ϕ ◦ Φ−1) over
◦
W 1
p (Ω).

More generally we assume that ξ : [0, τ ] → R and B : [0, τ ] → Rd×d are C1-functions which satisfy
ξ(0) = 1 and B(0) = I. Moreover let f(0) = f and f(·, x) be differentiable and f ′(t) ∈ Lp′(Ω) be
uniformly bounded where p′ = p/(p − 1) denotes the conjugate of p. We check that the assumptions
in (E) are satisfied:
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Indeed, we have

∂tE(t, ϕ) =

∫
Ω
ξ′(t)

1

p
|B(t)∇ϕ|p + ξ(t)|B(t)∇ϕ|p−2B(t)∇ϕ ·B′(t)∇ϕdx−

∫
Ω
f ′(t)ϕdx.

Thus applying Hölder and Young’s inequalities we verify Assumption (O1) (i):

∂tE(t, ϕ) ≤
∫

Ω
ξ′(t)

1

p
|B(t)∇ϕ|p + ξ(t)|B(t)∇ϕ|p−2B(t)∇ϕ ·B′(t)∇ϕdx−

∫
Ω
f ′(t)ϕdx

≤ c
∫

Ω
|∇ϕ|p + |f ′(t)||ϕ|dx

≤ c‖∇ϕ‖pLp + 1/p′‖f ′(t)‖p
′

Lp′
+

1

p
‖ϕ‖pLp .

On the other hand using Young’s and Poincaré’s inequality with small ε > 0

E(t, ϕ) ≥ c‖∇ϕ‖pLp − 1/p′(pε)
− 1
p−1 ‖f(t)‖p

′

Lp/(p−1)
− ε‖ϕ‖pLp

≥ c1‖ϕ‖pW 1
p
− c2 − ε‖ϕ‖pLp .

Thus we have verified Assumption (O1) (ii). Assumption (O1) (iii) follows from uniform p-monotonicity
of −∆p(·) and Assumption (O1) (iv) by direct calculations.

Finally we may use Theorem 3.2 and obtain ‖ut − u‖W 1
p (Ω) ≤ ct1/p for some constant c > 0 and

all sufficiently small t > 0. In the case of the usual Laplace equation, that is for p = 2, we get
‖ut − u‖H1(Ω) ≤ ct1/2.

3.2 Sensitivity result for uniformly monotone operators

In this section we develop sensitivity results for variational inequalites involving uniformly monotone
operators. Let V be a normed space, V ∗ its dual space and K ⊆ V be a closed convex subset.

3.2.1 Enhanced Hölder-type estimate

The following assumptions are used in this section:

Assumption (O2) Suppose that (At) : K → V ∗, t ∈ [0, τ ] is a family of operators such that for a
given p ≥ 1:

(i) ∃α > 0, ∀t ∈ [0, τ ], ∀u, v ∈ K:

α‖u− v‖pV ≤ 〈At(u)−At(v), u− v〉V ;

(ii) ∀u ∈ K, ∃c > 0, ∀t ∈ [0, τ ], ∀v ∈ K,

|〈At(u)−A0(u), u− v〉V | ≤ ct‖u− v‖V .
Theorem 3.3. Suppose that (At) : K → V ∗ is a family of operators satisfying Assumption (O2). For
every t > 0 we denote by ut ∈ K a solution of the variational inequality

ut ∈ K and ∀v ∈ K, 〈At(ut), v − ut〉V ≥ 0. (17)

Then there exists a c > 0 such that

∀t ∈ [0, τ ] : ‖ut − u0‖V ≤ ct
1
p−1 .
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Proof. Taking into account Assumption (O2) and (17):

α‖ut − u0‖pV ≤ 〈At(u
t)−At(u0), ut − u0〉V

≤ −〈At(u0), ut − u0〉V
= 〈A0(u0), ut − u0〉V + 〈A0(u0)−At(u0), ut − u0〉V
≤ |〈A0(u0)−At(u0), ut − u0〉V |
≤ ct‖ut − u0‖V .

Remark 3.4. In the important case p = 2 Theorem 3.3 yields a Lipschitz type estimates.

3.2.2 Example: p-Laplace equation

It can be checked that the p-Laplace example from Subsection 3.1 where At is given by

〈At(u), ϕ〉 ◦
W 1
p

=

∫
Ω
ξ(t)|B(t)∇u|p−2B(t)∇u ·B(t)∇ϕ− f(t)ϕdx

also fulfills Assumption (O2). Thus in this case Theorem 3.3 gives a sharper estimate than Theorem
3.2.

3.3 Variational inequality for the material derivative

In the previous section we have shown that under certain conditions on (At) satisfied for p = 2 the
quotient (ut − u0)/t stays bounded. In this subsection we additionally assume that V is reflexive and
that K ⊆ V is a polyhedric subset. Then there will be a weakly converging subsequence of (ut− u0)/t
converging to some z ∈ V . If this z is unique the whole sequence converges and additionally satisfies
some limiting equation which is the subject of this subsection.

Let (At) be as in Subsection 3.2 and define in accordance with (12) for all t ∈ [0, τ ] the solution set of
the associated variational inequality as

U(t) :=
{
ut ∈ K : ∀ϕ ∈ K, 〈At(ut), ϕ− ut〉 ≥ 0

}
. (18)

We will write u := u0 and A := A0.

The variational inequality for the material derivative will be deduced from the following assumptions:

Assumption (O3) Suppose that the family (At) satisfies

(i) for all v, w ∈ V and all u ∈ K,

〈∂A(u)w, v〉V := lim
t↘0

〈
A(u+ tw)−A(u)

t
, v

〉
V

and
〈A′(u), v〉V := lim

t↘0

〈
At(u)−A(u)

t
, v

〉
V

exist;
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(ii) for all null-sequences (tn), for all sequences (vn) in V converging weakly to some v ∈ V , for all
utn ∈ U(tn) converging strongly to some u ∈ K, we have

〈A′(u), v〉V = lim
n→0

〈
Atn(utn)−A(utn)

tn
, vn

〉
V

;

(iii) there exists a null-sequence (tn) such that utn ∈ U(tn) converges strongly to u ∈ K and (un−u)/tn
converges weakly to some z ∈ V and

〈∂A(u)z, z〉V ≤ lim inf
n→0

〈
A(utn)−A(u)

tn
,
utn − u
tn

〉
V

and for all (vn) in V converging strongly to v ∈ V :

〈∂A(u)z, v〉V = lim
n→0

〈
A(utn)−A(u)

tn
, vn

〉
V

.

Theorem 3.5. Let V be a reflexive Banach space and K ⊆ V a polyhedric subset. Suppose that
At : K → V ∗, t ∈ [0, τ ] is a family of operators satisfying Assumption (O2) for p = 2 and (O3).
Suppose that ut ∈ U(t), i.e., ut solves

ut ∈ K, 〈At(ut), ϕ− ut〉V ≥ 0 ∀ϕ ∈ K. (19)

Then the material derivative u̇ := weak− limt↘0(ut − u)/t exists and solves

u̇ ∈ Tu(K) ∩ kern(A(u)) and (20a)
∀ϕ ∈ Tu(K) ∩ kern(A(u)) : 〈∂A(u)u̇, ϕ− u̇〉V ≥ −〈A′(u), ϕ− u̇〉V . (20b)

Proof. Let us firstly show (20a). We get by (19)

∀ϕ ∈ K(Ω) : 〈At(ut), ϕ− ut〉 ≥ 0, (21)
∀ϕ ∈ K(Ω) : 〈A(u), ϕ− u〉 ≥ 0. (22)

Thus testing (21) with u and (22) with ut and dividing by t > 0, we obtain by setting zt := (ut − u)/t

〈At(ut), zt〉 ≤ 0, 〈A(u), zt〉 ≥ 0. (23)

By invoking Theorem 3.3 with p = 2 we know that ut → u strongly in V and that zt is bounded in V
which allows us to choose a weakly convergence subsequence with limit u̇ ∈ V . We find (by omitting
the subscript)

〈At(ut), zt〉 − 〈A(u), u̇〉

= 〈At(ut)−A(ut), zt〉︸ ︷︷ ︸
→0 by Assumption (O3) (ii)

+
〈A(ut)−A(u)

t
, ut − u

〉
︸ ︷︷ ︸
→0 by Assumption (O3) (iii)

+ 〈A(u), zt − u̇〉︸ ︷︷ ︸
→0

Therefore passing to the limit in (23) gives 0 ≤ 〈A(u), u̇〉 ≤ 0 and thus u̇ ∈ kern(A(u)). Furthermore
we know by the definition of the radial cone that zt ∈ Cu(K). Taking the weak convergence zt ⇀ u̇ in
V and Mazur’s Lemma into account we find u̇ ∈ Tu(K). Thus (20a) is proven.
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Now we will show (20b) by using (19) and obtain for every ϕ ∈ V :

〈A(ut)−A(u), ϕ− ut〉 = 〈A(ut)−At(ut), ϕ− ut〉+ 〈At(ut)−A(u), ϕ− ut〉
≥ 〈A(ut)−At(ut), ϕ− ut〉 − 〈A(u), ϕ− ut〉.

(24)

By definition of the radial cone Cu(K) (see (1)) we find for every ϕ ∈ Cu(K) a t∗ > 0 such that for all
t ∈ [0, t∗]: u+ tϕ ∈ K. Plugging this test-function into (24) we obtain for all ϕ ∈ Cu(K)

〈A(ut)−A(u), tϕ− (ut − u)〉 ≥ 〈A(ut)−At(ut), tϕ− (ut − u)〉 − 〈A(u), tϕ− (ut − u)〉. (25)

Dividing the previous equation by t2 and setting zt := (ut − u)/t, we obtain〈
A(ut)−A(u)

t
, ϕ− zt

〉
≥ −

〈
At(ut)−A(ut)

t
, ϕ− zt

〉
− 1

t
〈A(u), ϕ− zt〉. (26)

Now let ϕ ∈ Cu(K) ∩ kern(A(u)). Then because of 〈A(u), ϕ〉 = 0 and the definition of u ∈ U(0)
(testing the relation in (18) with ut), we find

−〈A(u), ϕ− zt〉 ≥ 0.

Thus (26) reads 〈
A(ut)−A(u)

t
, ϕ− zt

〉
≥ −

〈
At(ut)−A(ut)

t
, ϕ− zt

〉
. (27)

Using Assumption (O3) we may take the lim sup on both sides to obtain (note that − lim sup(...) =
lim inf −(...))

〈∂A(u)z, ϕ− z〉 ≥ −〈A′(u), ϕ− z〉 ∀ϕ ∈ Cu(K) ∩ kern(A(u)).

Via density arguments we obtain the inequality for all ϕ ∈ Cu(K) ∩ kern(A(u)). Finally using poly-
hedricity of K and Lemma 2.1 (i) finish the proof.

4 A semilinear dynamic obstacle problem

In this section we are going to apply the theorems from Section 3 to generalised obstacle problems with
convex energies. We present a generalised obstacle problem. It also covers previous results from [27]
where the zero obstacle case has been treated as a special case. A non-trivial example from continuum
damage mechanics is presented afterward in Section 5.

4.1 State equation

Let D ⊆ Rd be an open and bounded subset. We consider a convex energy of the following type

E(Ω, ϕ) :=

∫
Ω

1

2
|∇ϕ|2 +

λ

2
|ϕ|2 +WΩ(x, ϕ) dx, ϕ ∈ H1(Ω), (28)

where Ω ⊆ D is a bounded Lipschitz domain and λ > 0. The energy is minimised over the convex set

KψΩ
(Ω) :=

{
ϕ ∈ H1(Ω) : ϕ ≤ ψΩ a.e. in Ω

}
.
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A particularity of this setting is that, besides the density function WΩ, also the obstacle function ψΩ

is allowed to depend on the shape variable Ω (the precise assumptions are stated below in Assumption
(A1)):

dynamic density function: Ω 7→WΩ

dynamic obstacle: Ω 7→ ψΩ ∈ H1(Ω)

In the special case ψΩ ≡ 0 we write K(Ω) := K0(Ω).

Remark 4.1. (i) An important class which is covered by our setting are static obstacle problems
where ψΩ := Ψ|Ω with a given function Ψ ∈ H2(D).

(ii) The energy E(Ω, ·) is motivated by time-discretised parabolic problems, where an additional λ-
convex non-linearity may be included in E. By choosing a small time step size, the incremental
minimisation problem may take the form (28).

In the context of time-discretised damage models in Section 5 we are faced with iterative obstacle
problems. In this case the obstacle ψΩ itself is a solution of a variational inequality describing the
damage profile from the previous time step. As we will see it suffices to have H1(Ω)-regularity of
the damage profile provided that the material derivative of the obstacle exists in H1(Ω) and the
initial value is in H2(Ω). We will present this application in the last section.

For later use we recall that the Sobolev exponent 2∗ depending on the spatial dimension d to the space
H1(Ω) is defined as

2∗ :=


2d
d−2 if d > 2,

arbitrary in [1,+∞) if d = 2,

+∞ if d = 1.

(29)

Its conjugate (2∗)′ is given by 2∗

2∗−1 with the convention that (2∗)′ := 1 for 2∗ = +∞. For well-posedness
of the state system we require the following assumptions (note that we restrict ourselves to the convex
case which will be exploited in the next sections):

Assumption (A1) For all Lipschitz domains Ω ⊆ D it holds:

(i) WΩ(x, ·) is convex and in C1(R) for all x ∈ Ω;

(ii) the following map H1(Ω)→ R is assumed to be continuous (in particular the integral exists)

y 7→
∫

Ω
WΩ(x, y(x)) dx

and bounded from below by ∫
Ω
WΩ(x, y(x)) dx ≥ −c(‖y‖H1 + 1);

(iii) for all y, ϕ ∈ H1(Ω):∫
Ω

WΩ(x, y + tϕ)−WΩ(x, y)

t
dx→

∫
Ω
∂yWΩ(x, y)ϕdx as t↘ 0

(in particular the integral on the right-hand side exists);
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(iv) ψΩ ∈ H1(Ω).

Remark 4.2. Assumption (A1) (iii) and the continuity property from (A1) (ii) are satisfied if, e.g.,
the following growth condition holds: There exist constants ε, C > 0 and functions s ∈ L1(Ω) and
r ∈ L(2∗)′(Ω) such that for all x ∈ Ω and y ∈ R:

|WΩ(x, y)| ≤ C|y|2∗−ε + s(x),

|∂yWΩ(x, y)| ≤ C|y|2∗−1 + r(x).

The assumptions in (A1) in combination with the direct method in the calculus of variations imply
unique solvability of the variational inequality fulfilled by the minimisers of E(Ω, ·).

Lemma 4.3. Under Assumption (A1) the energy (28) admits for each Lipschitz domain Ω ⊆ D a
unique minimum u (depending on Ω) on Kψ(Ω) which is given as the unique solution of

u ∈ KψΩ
(Ω) and ∀ϕ ∈ KψΩ

(Ω) :∫
Ω
∇u · ∇(ϕ− u) + λu(ϕ− u) + wΩ(x, u)(ϕ− u) dx ≥ 0,

(30)

where
wΩ(x, y) := ∂yWΩ(x, y).

In the sequel we will treat the variational inequality (30) by making use of the transformation for the
state variable and its test-function:

y := u− ψΩ and ϕ̂ := ϕ− ψΩ.

The variation inequality becomes a problem involving the standard obstacle set

K(Ω) := K0(Ω) =
{
ϕ ∈ H1(Ω) : ϕ ≤ 0 a.e. on Ω

}
.

Substituting above tranformation into (30) we obtain the following variational inequality:

y ∈ K(Ω) and ∀ϕ ∈ K(Ω) :∫
Ω
∇y · ∇(ϕ− y) + λy(ϕ− y) + wΩ(x, y + ψΩ)(ϕ− y) dx

≥ −
∫

Ω
∇ψΩ · ∇(ϕ− y) + λψΩ(ϕ− y) dx

(31)

Hence it will suffice to investigate the solution y to deduce properties of the function u.

4.2 Perturbed problem

In this subsection we prove a shape sensitivity result for the variational inequality (31). In what
follows let us denote by Φt the flow generated by a vector field X ∈ C1

c (D,Rd). For Ω ⊆ D denote by
Ωt := Φt(Ω), t ≥ 0, the perturbed domains (see Appendix B for more details).
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The solution yt ∈ H1(Ωt) to the perturbed variational inequality to (31) satisfies

yt ∈ K(Ωt) and ∀ϕ ∈ K(Ωt) :∫
Ωt

∇yt · ∇(ϕ− yt) + λyt(ϕ− yt) + wΩt(x, yt + ψΩt)(ϕ− yt) dx

≥ −
∫

Ωt

∇ψΩt · ∇(ϕ− yt) + λψΩt(ϕ− yt) dx.

(32)

We will sometimes write yt(X) = yt to emphasise the dependence on X. Please note that in general
y0(X) = yt(X) for all t ≥ 0 and for all vector fields X ∈ C1

c (D,R2) with the property X ·n = 0 on ∂Ω.
This implication will be used in the forthcoming Lemma 4.14. Throughout this work we will adopt the
following abbreviations:

wtX(x, ϕ) := wΩt(Φt(x), ϕ), W t
X(x, ϕ) := WΩt(Φt(x), ϕ), ψtX := ψΩt ◦ Φt,

A(t) := ξ(t)(∂Φt)
−1(∂Φt)

−T , ξ(t) := det ∂Φt, yt := yt ◦ Φt

(33)

and (for t = 0)

ψ(x) := ψΩ(x), w(x, ϕ) := w0
X(x, ϕ).

From Lemma B.3 we can directly infer the following convergences and estimates

Lemma 4.4. Let X ∈ C1
c (D,Rd) be given. Then it holds:

(i) the convergences as t↘ 0:

A(t)− I
t

→ A′(0) = div(X)I − ∂X − (∂X)> strongly in C(D,Rd,d), (34a)

ξ(t)− 1

t
→ ξ′(0) = div(X) strongly in C(D); (34b)

(ii) there is a constant t∗ > 0 such that

∀t ∈[0, t∗],∀x ∈ D,∀ζ ∈ Rd, A(t, x)ζ · ζ ≥ 1/2|ζ|2,
∀t ∈[0, t∗],∀x ∈ D, ξ(t, x) ≥ 1/2.

Performing a change of variables and using (∇y) ◦ Φt = (∂Φt)
−T∇(y ◦ Φt) it is easy to check that the

transported function yt (which is defined on Ω) satisfies the relation

yt ∈ K(Ω) and ∀ϕ ∈ K(Ω) :∫
Ω
A(t)∇yt · ∇(ϕ− yt) + ξ(t)λyt(ϕ− yt) + ξ(t)wtX(x, yt + ψtX)(ϕ− yt) dx

≥
∫

Ω
−A(t)∇ψtX · ∇(ϕ− yt)− ξ(t)λψtX(ϕ− yt) dx.

(35)

For later usage let us introduce the bilinear form

at(v, z) :=

∫
Ω
A(t)∇v · ∇z + ξ(t)λvz dx,
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the operator At : KψΩ
(Ω)→ H1(Ω)∗ by

〈At(v), z〉H1(Ω) := at(v, z) +

∫
Ω
ξ(t)wtX(x, v)z dx (36)

and the “shifted” operator Ãt : K(Ω)→ H1(Ω)∗ by

Ãt(v) := At(v + ψtX). (37)

By making use of this notation the variational inequality (35) can be recasted as

yt ∈ K(Ω) and 〈Ãt(yt), ϕ− yt〉H1 ≥ 0 for all ϕ ∈ K(Ω). (38)

In the following we also write A := A0 and Ã := Ã0.

4.3 Sensitivity estimate

Our goal is to apply Theorem 3.3 designed for abstract operators. For this reason we make the following
assumption in addition to (A1):

Assumption (A2)

(i) ∀X ∈ C1
c (D,Rd),∃c > 0,∀t ∈ [0, τ ],∀χ ∈ H1(Ω),

‖wtX(·, χ)− w(·, χ)‖L(2∗)′ (Ω) ≤ ct;

(ii) ∀X ∈ C1
c (D,Rd),∃c > 0,∀t ∈ [0, τ ],∀χ1, χ2 ∈ H1(Ω),

‖wtX(·, χ1)− wtX(·, χ2)‖L(2∗)′ (Ω) ≤ c‖χ1 − χ2‖H1(Ω);

(iii) ∀X ∈ C1
c (D,Rd),∃c > 0,∀t ∈ [0, τ ],

‖ψtX − ψ‖H1(Ω) ≤ ct.

We are now in the position to prove the following sensitivity result:

Proposition 4.5. Let the Assumptions (A1)-(A2) be satisfied. Then the family of operators (Ãt)
defined by (37) fulfills

(i) ∃α > 0, ∃t∗ > 0, ∀t ∈ [0, t∗], ∀v, z ∈ K(Ω),

α‖v − z‖2H1(Ω) ≤ 〈Ãt(v)− Ãt(z), v − z〉; (39)

(ii) ∀v ∈ K(Ω), ∃c > 0, ∃t∗ > 0, ∀t ∈ [0, t∗], ∀z ∈ K(Ω),

|〈Ãt(v)− Ã(v), v − z〉| ≤ ct‖v − z‖H1(Ω). (40)
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Proof. To (i): We first show the monotonicity estimate (39). With the help of Lemma 4.4 (ii) and
monotonicity of wtX in the second variable (see Assumption (A1) (i)) we obtain for all v, z ∈ H1(Ω)
and all small t ≥ 0

1

2

∫
Ω
|∇(v − z)|2 + λ|v − z|2 dx

≤ at(v − z, v − z)

+

∫
Ω
ξ(t)

(
wtX(x, v + ψtX)− wtX(x, z + ψtX)

)(
(v + ψtX)− (z + ψtX)

)
dx

(41)

Thus (39) is shown.

To (ii): Let us fix v ∈ H1(Ω). Then by applying Hölder inequality, Sobolev embeddings and the
assumptions in (A2) we find for all z ∈ H1(Ω)

〈Ãt(v)− Ã(v), v − z〉

≤
∫

Ω
(A(t)− I)∇v · ∇(v − z) dx︸ ︷︷ ︸

≤‖A(t)−I‖L∞‖∇v‖L2
‖∇(v−z)‖L2

+

∫
Ω
λ(ξ(t)− 1)v(v − z) dx︸ ︷︷ ︸

≤λ‖ξ(t)−1‖L∞‖v‖L2
‖v−z‖L2

+

∫
Ω

(A(t)∇ψtX −∇ψ) · ∇(v − z) + λ(ξ(t)ψtX − ψ)(v − z) dx︸ ︷︷ ︸
≤
(
‖A(t)−I‖L∞‖∇ψtX‖L2

+‖∇ψtX−∇ψ‖L2
+λ‖ξ(t)−1‖L∞‖ψtX‖L2+λ‖ψtX−ψ‖L2

)
‖v−z‖H1

+

∫
Ω

(ξ(t)− 1)wtX(x, v + ψtX)(v − z) dx︸ ︷︷ ︸
≤‖ξ(t)−1‖L∞‖wtX(x,v+ψtX)‖L(2∗)′

‖v−z‖H1

+

∫
Ω

(wtX(x, v + ψtX)− wtX(x, v + ψ))(v − z) dx.︸ ︷︷ ︸
≤‖wtX(x,v+ψtX)−wt(x,v+ψ)‖L(2∗)′

‖v−z‖H1 ≤‖ψtX−ψ‖H1‖v−z‖H1

+

∫
Ω

(wtX(x, v + ψ)− w(x, v + ψ))(v − z) dx.︸ ︷︷ ︸
≤‖wtX(x,v+ψ)−w(x,v+ψ)‖L(2∗)′

‖v−z‖H1 ≤ ct‖v−z‖H1

Taking Lemma 4.4 into account and using Young’s inequality, we obtain the assertion.

The desired Lipschitz estimate immediately follows from Theorem 3.3 since Proposition 4.5 proves that
Assumption (O2) are satisfied for p = 2.

Corollary 4.6. Under the assumption of Proposition 4.5 there exist t∗ > 0 and c > 0 such that

‖yt − y‖H1(Ω) ≤ ct for all t ∈ [0, t∗].

4.4 Limiting system for the transformed material derivative

In Corollary 4.6 we have established a Lipschitz estimate for the mapping t 7→ yt. In this section we are
going to prove that there is a unique element ẏ in H1(Ω) – called the material derivative – such that
(yt − y)/t converges strongly to ẏ in H1(Ω) which is uniquely determined by a variational inequality.
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In order to derive the differentiability of yt we impose the additional assumptions to (A1) and (A2):

Assumption (A3)

(i) w(x, ·) is of class C1(R) for all x ∈ Ω;

(ii) for all X ∈ C1
c (D,Rd), there exists a function ẇX : Ω×R→ R such that for all ϕn → ϕ strongly

in H1(Ω) we have ẇX(·, ϕ) ∈ L(2∗)′(Ω) and for all tn ↘ 0

wtnX (·, ϕn)− w(·, ϕn)

tn
→ ẇX(·, ϕ) strongly in L(2∗)′(Ω) as n→∞;

(iii) for any given sequences ϕn → ϕ in H1(Ω) and tn ↘ 0 with (ϕn − ϕ)/tn ⇀ z weakly in H1(Ω):

w(·, ϕn)− w(·, ϕ)

tn
→ ∂yw(·, ϕ)z strongly in L(2∗)′(Ω) as n→∞;

(iv) for all X ∈ C1
c (D,Rd) there exists a function ψ̇X ∈ H1(Ω) such that

ψtX − ψ
t

→ ψ̇X strongly in H1(Ω) as t↘ 0.

Remark 4.7. (i) Property (iii) from Assumption (A3) is satisfied if, e.g., there exist a constant
C > 0 and a function s ∈ L 2∗−1

2∗−2
(Ω) such that for all x ∈ Ω and y ∈ R:

|∂yw(x, y)| ≤ C|y|α + s(x)

with the exponent α := 2∗(2∗−1)
2∗−2 . The constant α is chosen such that the function x 7→ ∂yw(x, ϕ(x))z(x)

and x 7→ f ′(ϕ(x))z(x) are in L(2∗)′(Ω) for given ϕ, z ∈ H1(Ω).

(ii) A useful consequence of properties (ii) and (iii) is the following continuity

wtnX (·, ϕn)→ w(·, ϕ) strongly in L(2∗)′(Ω) as n→∞.

for all ϕn → ϕ strongly in H1(Ω) and tn ↘ 0.

(iii) Let X ∈ C1
c (D,Rd) be given. Then we have by using property (iv) from Assumption (A3)

−A(t)∇ψtX +∇ψ
t

→ −A′(0)∇ψ −∇ψ̇X strongly in L2(Ω,Rd),

−ξ(t)ψtX + ψ

t
→ − ξ′(0)ψ − ψ̇X strongly in L2(Ω,Rd).

We are now well-prepared for the derivation of the material derivative.

Theorem 4.8. Let (A1)-(A3) be satisfied. The weak material derivative ẏ of t 7→ yt exists in all
directions X ∈ C1

c (D,Rd) and is characterised as the unique solution of the following variational
inequality {

ẏ ∈ S̃y(K) and ∀ϕ ∈ S̃y(K) :

〈∂Ã(y)ẏ, ϕ− ẏ〉H1 ≥ −〈Ã′(y), ϕ− ẏ〉H1 ,
(42)
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where S̃y(K) denotes the closed and convex cone

S̃y(K) = Ty(K) ∩ kern(Ã(y)). (43)

The functional derivatives ∂Ã and Ã′ are given by

〈∂Ã(y)ẏ, ϕ〉 = a(ẏ + ψ̇X , ϕ) +

∫
Ω
∂yw(x, y + ψ)ẏϕdx, (44)

〈Ã′(y), ϕ〉 =

∫
Ω
A′(0)∇y · ∇ϕ+ ξ′(0)

(
λy + w(x, y + ψ)

)
ϕdx

+

∫
Ω
ẇX(x, y + ψ)ϕ+ ∂yw(x, y + ψ)ψ̇Xϕdx

+

∫
Ω
A′(0)∇ψ · ∇ϕ+ ξ′(0)λψϕdx.

(45)

Proof.
Existence of ẏ: We want to apply Theorem 3.5. For this we need to check Assumption (O3). To this
end we notice that by Corollary 4.6 ytn → u strongly and (ytn − y)/tn ⇀ z weakly in H1(Ω) for a
suitable subsequence tn ↘ 0.

• We check (O3) (ii): Let vn ⇀ v be a given weakly convergent sequence in H1(Ω). Then〈
Ãtn(ytn)− Ã(ytn)

tn
, vn

〉

=

∫
Ω

A(tn)− I
tn

∇ytn · ∇vn dx︸ ︷︷ ︸
→

∫
Ω A
′(0)∇y·∇v dx

+

∫
Ω

ξ(tn)− 1

tn

(
λytn + wtnX (x, ytn + ψtnX )

)
vn dx︸ ︷︷ ︸

→
∫
Ω ξ
′(0)(λy+w(x,y+ψ))v dx by Remark 4.7 (ii)

+

∫
Ω

wtnX (x, ytn + ψtnX )− w(x, ytn + ψtnX )

tn
vn dx︸ ︷︷ ︸

→
∫
Ω ẇX(x,y+ψ)v dx by Assumption (A3) (ii) and (iv)

+

∫
Ω

w(x, ytn + ψtnX )− w(x, y + ψ)

tn
vn dx−

∫
Ω

w(x, ytn + ψ)− w(x, y + ψ)

tn
vn dx︸ ︷︷ ︸

→
∫
Ω ∂yw(x,y+ψ)(z+ψ̇X)v dx−

∫
Ω ∂yw(x,y+ψ)zv dx=

∫
Ω ∂yw(x,y+ψ)ψ̇Xv dx by (A3) (iii)-(iv)

+

∫
Ω

A(tn)− I
tn

∇ψtnX · ∇vn +
ξ(tn)− 1

tn
ψtnX vn dx︸ ︷︷ ︸

→−
∫
Ω A
′(0)∇ψ·∇v+ξ′(0)ψv dx

.

• We check (O3) (iii):〈
Ã(ytn)− Ã(y)

tn
,
ytn − y
tn

〉

=

∫
Ω

∣∣∣∇ytn − y
tn

∣∣∣2 + λ
∣∣∣ytn − y

tn

∣∣∣2 dx︸ ︷︷ ︸
lim inf ≥

∫
Ω |∇z|2+λ|z|2 dx

+

∫
Ω

w(x, ytn + ψ)− w(x, y + ψ)

tn

ytn − y
tn

dx︸ ︷︷ ︸
→

∫
Ω ∂yw(x,y+ψ)|z|2 by Assumption (A3) (iii)
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and for all ϕn → ϕ strongly in H1(Ω):〈
Ã(ytn)− Ã(y)

tn
, ϕn

〉

=

∫
Ω
∇y

tn − y
tn

· ∇ϕn + λ
ytn − y
tn

ϕn dx︸ ︷︷ ︸
→

∫
Ω∇z·∇ϕ+λzϕ dx

+

∫
Ω

w(x, ytn + ψ)− w(x, y + ψ)

tn
ϕn dx︸ ︷︷ ︸

→
∫
Ω ∂yw(x,y+ψ)zϕ by Assumption (A3) (iii)

.

• Property (O3) (i) follows from the above calculations.

Uniqueness of ẏ: Assume two solutions ẏ and ż for (42). Testing their variational inequalities with ż
and ẏ, respectively, and adding the result yields

〈∂Ã(y)ẏ − ∂Ã(y)ż, ẏ − ż〉 ≤ 0.

The left-hand side calculates as

〈∂Ã(y)ẏ − ∂Ã(y)ż, ẏ − ż〉

= a(ẏ − ż, ẏ − ż) +

∫
Ω
∂yw(x, y + ψ)|ẏ − ż|2 dx.

Due to the convexity assumption in (A1) (i) we find ∂yw ≥ 0 and see that

a(ẏ − ż, ẏ − ż) ≤ 0.

We obtain ẏ − ż = 0.

By exploiting the specific structure of Ãt and Assumption (A3) we can even show that the strong
material derivative exists.

Corollary 4.9. We have for all X ∈ C1
c (D,Rd)

ytX − y
t

→ ẏX strongly in H1(Ω). (46)

Proof. We test the variational inequality (38) with ϕ = yt and for t = 0 with ϕ = y. Adding both
inequalities yields

〈Ãt(yt)− Ã(y), yt − y〉 ≤ 0.

Dividing by t2 and rearranging the terms we obtain by setting zt := (yt − y)/t

a(zt, zt)

≤ −
∫

Ω

A(t)− I
t

∇yt · ∇zt dx−
∫

Ω
λ
ξ(t)− 1

t
ytzt dx

−
∫

Ω

(
ξ(t)− 1

t
wtX(x, yt + ψtX) +

wtX(x, yt + ψtX)− w(x, yt + ψtX)

t

)
zt dx

−
∫

Ω

w(x, yt + ψtX)− w(x, y + ψ)

t
zt dx

−
∫

Ω

A(t)∇ψtX −∇ψ
t

· ∇zt dx−
∫

Ω
λ
ξ(t)ψtX − ψ

t
zt dx

=: B(t).

(47)
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The known convergence properties shows as t↘ 0 for a subsequence

B(t)→ −〈Ã′(y), ẏ〉 −
∫

Ω
∂yw(x, y + ψ)|ẏ|2 dx−

∫
Ω
∇ψ̇X · ∇ẏ dx−

∫
Ω
λψ̇X ẏ dx︸ ︷︷ ︸

=:B(0)

.

However testing (42) with ϕ = 2ẏ ∈ S̃y(K) we also obtain 〈∂Ã(y)ẏ, ẏ〉H1 ≥ −〈Ã′(y), ẏ〉H1 which is
precisely

a(ẏ, ẏ) ≥ B(0).

All in all we get

lim sup
t↘0

a(zt, zt) ≤ lim sup
t↘0

B(t) = B(0) ≤ a(ẏ, ẏ). (48)

The weak convergence zt ⇀ ẏ in H1(Ω) implies lim inft↘0 a(zt, zt) ≥ a(ẏ, ẏ). Together with (48) this
gives a(zt, zt)→ a(ẏ, ẏ) as t↘ 0. This finishes the proof.

Remark 4.10. If we assume that

ẇX(x, y) := T0(x, y) ·X(x) + T1(x, y) : ∂X(x) (49)

for functions T0(·, ·) : Ω × R → Rd and T1(·, ·) : Ω × R → Rd×d we may rewrite the variational
inequality in (42) by using Lemma 4.4 as

a(ẏ, ϕ− ẏ) +

∫
Ω
∂yw(x, y + ψ)ẏ(ϕ− ẏ) dx

≥
∫

Ω
L1(x, y + ψ;ϕ− ẏ) : ∂X + L0(x, y + ψ;ϕ− ẏ) ·X dx

− a(ψ̇, ϕ− ẏ) +

∫
Ω
∂yw(x, y + ψ)ψ̇(ϕ− ẏ) dx,

where we use the abbreviations

L1(x, y + ψ;ϕ) :=−
(
∇(y + ψ) · ∇ϕ+

(
λ(y + ψ) + w(x, y + ψ)

)
ϕ
)
I

+∇ϕ⊗∇(y + ψ) +∇(ψ + y)⊗∇ϕ−T1(x, y + ψ)ϕ,

L0(x, y + ψ;ϕ) :=−T0(x, y + ψ)ϕ.

4.5 Limiting system for the material derivative

So far we have derived an equation for ẏ. Since we are interested in the original problem (30), we may
now use Theorem 4.8 and the transformation y = u−ψ to obtain the material derivative equation for
(30). It is clear that ẏ = u̇− ψ̇X and we conclude with the following result:

Corollary 4.11. Under the assumptions (A1)-(A3) the material deriative u̇ = u̇(X) of solutions of
the perturbed problem to (30) in direction X ∈ C1

c (D,Rd) exists and is given as the solution of the
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following variational inequality:

u̇ ∈ SXu (Kψ) and ∀ϕ ∈ SXu (Kψ) :

a(u̇, ϕ− u̇) +

∫
Ω
∂yw(x, u)u̇(ϕ− u̇) dx

≥ −
∫

Ω
A′(0)∇u · ∇(ϕ− u̇) + ξ′(0)

(
λu+ w(x, u)

)
(ϕ− u̇) dx

−
∫

Ω
ẇX(x, u)(ϕ− u̇) dx,

(50)

where
SXu (Kψ) := Tu(Kψ) ∩ kern(A(u)) + ψ̇X .

In particular under the additional assumption in Remark 4.10

a(u̇, ϕ− u̇) +

∫
Ω
∂yw(x, u)u̇(ϕ− u̇) dx

≥
∫

Ω
L1(x, u;ϕ− u̇) : ∂X + L0(x, u;ϕ− u̇) ·X dx.

Proof. We obtain from Theorem 4.8 that u̇ ∈ S̃y(K) + ψ̇X and for all ϕ ∈ S̃y(K) + ψ̇X :

〈∂Ã(u− ψ)(u̇− ψ̇X), ϕ− u̇〉H1 ≥ −〈Ã′(u− ψ), ϕ− u̇〉H1 ,

which is precisely the inequality in (50).

It remains to show SXu (Kψ) = S̃y(K) + ψ̇X which is equivalent to Tu(Kψ) ∩ kern(A(u)) = Ty(K) ∩
kern(Ã(y)). Indeed, by definition (37) we find

kern(A(u)) = kern(Ã(y))

as well as by (1)-(3)

Tu(Kψ) = Tu−ψ(K) = Ty(K)

Note that we get the following characterisation of SXu by using Theorem2.2 and the definition in (43):

ϕ ∈ SXu (Kψ) ⇔ ϕ− ψ̇X ∈ Tu(Kψ) ∩ kern(A(u))

⇔

{
ϕ ∈ H1(Ω) with ϕ ≤ ψ̇X q.e. on {u = ψΩ},
〈A(u), ϕ− ψ̇X〉 = 0.

Moreover under an additional assumptions we obtain the subsequent translation property:

Lemma 4.12. Suppose that u, ψ ∈ H2(Ω) and let ζ ∈ H1(Ω) be with

ζ̃ = 0 q.e. on the coincidence set {x ∈ Ω : ũ(x) = ψ̃(x)},

where ζ̃, ũ and ψ̃ denote quasi-continuous representatives for ζ, u and ψ. Then we have

±ζ ∈ Tu(Kψ) ∩ kern(A(u)).

In particular

ζ + SXu (Kψ) = SXu (Kψ). (51)
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Proof. It is clear from the assumption that ±ζ̃ = 0 q.e. on the coincidence set {u = ψ}. Thus ±ζ ∈
Tu(Kψ). Furthermore y = u− ψ satisfies the variational inequality (see (38) with t = 0)

〈Ã(y), ϕ− y〉 ≥ 0 for all ϕ ∈ H1(Ω) and ϕ ≤ 0 a.e. in Ω.

From the H2(Ω)-regularity of u and ψ we deduce that (in a pointwise formulation) Ã(y) = 0 a.e. in
{x ∈ Ω : u(x) < ψ(x)}. In particular we see that

〈Ã(y), ϕ〉 = 0 for all ϕ ∈ H1(Ω) with {x ∈ Ω : ϕ(x) = 0} ⊇ {x ∈ Ω : u(x) = ψ(x)} a.e.

Testing with ϕ = ±ζ yields ±ζ ∈ kern(Ã(y)) = kern(A(u)).

Finally, ζ ∈ Tu(Kψ) ∩ kern(A(u)) implies ζ + SXu (Kψ) ⊆ SXu (Kψ), and −ζ ∈ Tu(Kψ) ∩ kern(A(u))
implies ζ + SXu (Kψ) ⊇ SXu (Kψ).

In the following ψΩ is referred to as a static obstacle if there exists a fixed function ψ ∈ H2(D) such
that ψΩ̃ = ψ|Ω̃ for all Lipschitz domains Ω̃ ⊆ D.

Remark 4.13. Let X ∈ C1
c (D,Rd). Suppose that ψΩ is a static obstacle, u ∈ H2(Ω) and {X = 0} ⊇

{ũ = ψ̃Ω} q.e. in Ω. Then ψ̇X = ∇ψΩ · X and the assumptions from Lemma 4.12 are satisfied for
ζ = ψ̇X and we obtain

±ψ̇X ∈ Tu(Kψ) ∩ kern(A(u)).

In particular
SXu (Kψ) = Tu(Kψ) ∩ kern(A(u))

and

ϕ ∈ SXu (Kψ) ⇔

{
ϕ ∈ H1(Ω) with ϕ ≤ 0 q.e. on {u = ψΩ},
〈A(u), ϕ〉 = 0.

4.6 Limiting system for the state-shape derivative

The state shape derivative of u at Ω in direction X ∈ C1
c (D,Rd) is defined by

u′ = u′(X) := u̇− ∂Xu on Ω (52)

where u solves (30), u̇ solves (50) and ∂Xu := ∇u ·X. It is clear that u′ ∈ L2(Ω). Thus in general the
state shape derivative is less regular than the material derivative. Another important observation is
that the boundary conditions imposed on u̇ on ∂Ω are not carried over to u′.

Lemma 4.14. Let X ∈ C1
c (D,Rd) be a vector field satisfying X · n = 0 on ∂Ω. Then the state shape

derivative vanishes identically, that is, u′(X) = 0 a.e. on Ω.

Proof. The X-flow Φt leaves the domain Ω unchanged, i.e., Φt(Ω) = Ω for all t ∈ [0, τ ]. Consequently,
ut = u(Ωt) = u(Ω) = u and thus ut = ut ◦ Φt = u ◦ Φt for all t ∈ [0, τ ]. Hence by Lemma B.3 (ii) we
may calculate the material derivative u̇ as

ut − u
t

=
u ◦ Φt − u

t
→ ∂Xu strongly in L2(Ω).

Thus u̇ = ∂Xu and consequently u′ = 0.
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Now we are prepared to prove the main result of this section which gives a simplified variational
inequality for the state-shape derivative u′ under certain conditions. To derive this result we will
assume the enhanced regularity u ∈ H2(Ω). Preliminarily we observe from Corollary 4.11 and by using
the relation (52) that

u′ ∈ ŜXu (Kψ) and ∀ϕ ∈ ŜXu (Kψ) :

a(u′, ϕ− u′) +

∫
Ω
∂yw(x, u)u′(ϕ− u′) dx

≥ −
∫

Ω
A′(0)∇u · ∇(ϕ− u′) + ξ′(0)

(
λu+ w(x, u)

)
(ϕ− u′) dx

− a(∂Xu, ϕ− u′)−
∫

Ω
∂yw(x, u)∂Xu(ϕ− u′) dx,

(53)

where
ŜXu (Kψ) := Tu(Kψ) ∩ kern(A(u)) + ψ̇X − ∂Xu.

We notice that in general the cone ŜX(K) depend on the vector field X. In the case of a static obstacle
problem (see Remark 4.1 (i)) we derive the following result:

Theorem 4.15. Suppose that (A1)-(A3), (49) and u ∈ H2(Ω) hold. Furthermore let ψΩ be a static
obstacle function.

Then ±(ψ̇X − ∂Xu) ∈ Tu(Kψ) ∩ kern(A(u)) and we have

ŜXu (Kψ) = Tu(Kψ) ∩ kern(A(u)) (54)

In particular ŜXu (Kψ) is independent of X and we write Su(Kψ) = ŜXu (Kψ). Furthermore the state
shape derivative is the unique solution of

u′ ∈ Su(Kψ) and ∀ϕ ∈ Su(Kψ) :

a(u′, ϕ− u′) +

∫
Ω
∂yw(x, u)u′(ϕ− u′) dx

≥
∫

Γ
S1(x, u;ϕ− u′)n · n(X · n) ds,

(55)

where

S1(x, u;ϕ) := L1(x, u;ϕ)−∇u⊗∇ϕ.

with L1 from Remark 4.10.

Proof. By using the assumption ψ̇X = ∇ψΩ · X we find on the coincidence set {u = ψΩ} (here we
resort to quasi-continuous representants):

ψ̇X − ∂Xu = ψ̇X − ∂XψΩ = 0.

Lemma 4.12 applied to ζ = ψ̇X − ∂Xu yields ±(ψ̇X − ∂Xu) ∈ Su(Kψ) and therefore (54).

Furthermore by using the notation in Remark 4.10 and the identity (note that u ∈ H2(Ω) by assump-
tion)

∇(∂Xu) = (∂X)>(∇u) + (∂2u)X,
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the variational inequality in (53) rewrites to u′ ∈ Su(Kψ) and for all ϕ ∈ Su(Kψ):

a(u′, ϕ− u′)+
∫

Ω
∂yw(x, u)u′(ϕ− u′) dx

≥
∫

Ω
S1(x, u;ϕ− u′) : ∂X + S0(x, u;ϕ− u′) ·X dx,

(56)

where

S0(x, u, ϕ) := L0(x, u, ϕ)− ∂yw(x, u)ϕ∇u− (∂2u)∇ϕ,
S1(x, u, ϕ) := L1(x, u, ϕ)−∇u⊗∇ϕ.

Picking any vector fieldX ∈ C1
c (D,Rd) withX ·n = 0 on Γ we know from Lemma 4.14 that u′(±X) = 0

and it follows from (56) ∫
Ω
S1(x, u; ϕ̃) : ∂X + S0(x, u; ϕ̃) ·X dx = 0 (57)

for all ϕ̃ ∈ Su(Kψ). Then integrating by parts in (57) shows the pointwise identity

−div(S1(x, u(x); ϕ̃(x))) + S0(x, u(x); ϕ̃(x)) = 0 a.e. on Ω. (58)

Now for an arbitrary X ∈ C1
c (D,Rd) and ϕ̃ ∈ Su(Kψ) we consider the additive splitting X = Xn+XT

for Xn, XT ∈ C1
c (D,Rd) such that Xn = n(X · n) and XT = X − n(X · n) on Γ. Then XT · n = 0 on Γ

and we get ∫
Ω
S1(x, u; ϕ̃) : ∂X + S0(x, u; ϕ̃) ·X dx

=

∫
Ω
S1(x, u; ϕ̃) : ∂XT + S0(x, u; ϕ̃) ·XT dx︸ ︷︷ ︸

=0 by (57)

+

∫
Ω
S1(x, u; ϕ̃) : ∂Xn + S0(x, u; ϕ̃) ·Xn dx︸ ︷︷ ︸

partial integration and (58)

=

∫
Γ
S1(x, u; ϕ̃)n ·Xn ds.

(59)

We may test (59) with ϕ̃ = u′ since u′ ∈ Su(Kψ). Then multiplying the resulting identity with −1 and
exploiting linearity of S0 and S1 with respect to ϕ yields∫

Ω
S1(x, u;−u′) : ∂X + S0(x, u;−u′) ·X dx =

∫
Γ
S1(x, u;−u′)n ·Xn ds. (60)

Now we find by letting ϕ̃ = ϕ ∈ Su(Kψ) be arbitrary, adding (59) and (60), and again exploiting
linearity ∫

Ω
S1(x, u;ϕ− u′) : ∂X + S0(x, u;ϕ− u′) ·X dx =

∫
Γ
S1(x, u;ϕ− u′)n ·Xn ds.

In combination with (56) we obtain (55). Uniqueness of u′ is implied by uniqueness of ẏ (see Theorem
4.8).
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It is readily checked that

S1(x, u;ϕ)n · n = −∇Γu · ∇Γϕ−
(
λu+ w(x, u)

)
ϕ for all ϕ ∈ Su(Kψ).

Thus we conclude this section with an explicit formula for the shape derivative in the case of a static
obstacle.

Corollary 4.16. Under the assumption of Theorem 4.15 the shape derivative u′ is the unique solution
of the following variational inequality:

u′ ∈ Su(Kψ), a(u′, ϕ− u′) +

∫
Ω
∂yw(x, u)u′(ϕ− u′) dx

≥ −
∫

Γ

[
∇Γu · ∇Γ(ϕ− u′) +

(
λu+ w(x, u)

)]
(X · n)(ϕ− u′) ds

for all ϕ ∈ Su(Kψ).

4.7 Eulerian semi-derivative of certain shape functions

We adopt the notation from Appendix B and denote by J : Ξ → R a shape function. Application of
Corollary 4.11, Lemma B.2 and the chain rule yield the following result:

Corollary 4.17. Let (A1)-(A3) be satisfied and let Ω ∈ Ξ be a Lipschitz domain, X ∈ C1
c (D,Rd) and

Φt : Ω→ Ωt be the associated flow. Suppose that for all small t > 0

J(Ωt) = J(Φt, u
t),

where
J = J(Φ, u) : C0,1(Ω;Rd)×H1(Ω)→ R

is assumed to be a Fréchet differentiable functional and ut ∈ H1(Ω) the transported state ut = ut ◦ Φt

with the unique solution ut of (30) on Ωt.

Then the Eulerian semi-derivative exists and is given as

dJ(Ω)(X) = 〈dΦJ(Id, u0), X〉C0,1(Ω;Rd) + 〈duJ(Id, u0), u̇X〉H1(Ω),

where u̇X denotes the unique solution of (50).

In particular dJ(Ω)(·) is positively 1-homogeneous, which could be further exploited for numerical pur-
poses.

5 Applications to damage phase field models

In this section we investigate shape optimisation problems for a coupled inclusion/pde system describing
damage processes in linear elastic materials. Our aim is to apply the abstract results from Section 4
designed for semilinear variational inequalities with dynamic obstacles to such concrete application
scenarios. In this way we demonstrate how necessary optimality conditions for shape problems can be
derived for relevant engineering tasks.
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5.1 Physical model

The physical model under consideration was derived in [10] and is described in the time-continuous
setting by the following relations:

utt − div
(
C(χ)ε(u)

)
= `, (61a)

0 ∈ ∂I(−∞,0](χt) + χt −∆χ+
1

2
C′(χ)ε(u) : ε(u) + g′(χ), (61b)

with the damage-dependent stiffness tensor C and the damage potential function f . The variable u
denotes the displacement field, ε(u) := 1

2(∂u+ (∂u)>) the linearised strain tensor and χ is an internal
variable (a so-called phase field variable) indicating the degree of damage. In terms of damage mechanics
χ is interpreted as the density of micro-defects and is therefore valued in the unit interval (cf. [18]). In
this spirit we may use the following interpretation:

χ(x) =


1 ↔ no damage in x,
∈ (0, 1) ↔ partial damage in x,
0 ↔ maximal damage in x.

The system is supplemented with initial-time values for χ, u and ut, Dirichlet boundary condition
for u and homogeneous Neumann boundary condition for χ. The governing state system (61) can be
derived by balance equations and suitable constitutive relations such that the laws of thermodynamics
from continuum physics are fulfilled. We refer to [10] for more details on the derivation of the model.

A main feature of the evolution system (61) is the uni-directionality constraint χt ≤ 0 enforced by
the subdifferential ∂I(−∞,0](χt). This leads to non-smooth/switching behaviour of the evolution law by
noticing that (61b) rewrites as

χt =

{
d, if d ≤ 0,

0, if d > 0
with the driving force d = ∆χ− 1

2
C′(χ)ε(u) : ε(u)− g′(χ).

A weak formulation of (61) and existence of weak solution can be found in [12] with minor adaption.
Existence and uniqueness results for strong solutions for the above system with higher-order viscous
terms are established in [8]. For the analysis of quasi-linear variants of (61) and for rate-independent
as well as rate-dependent cases, we refer to [17] and the references therein.

The following remark justifies that the phase field variable χ takes only admissible values provided
H1(0, T ;H1(Ω))-regularity and mild growth assumptions on C and g. In that case it is not necessary
to include a second sub-differential of the type ∂I[0,1](χ) in (61b) in order to force χ to be bounded in
the unit interval. The precise assumptions for C and g will be stated in (D1) below. At this point they
are assumed to be continuously differentiable.

Remark 5.1 (Maximum principle). Suppose that C′(x) = 0 and g′(x) = 0 for all x < 0. Then a weak
solution χ ∈ H1(0, T ;H1(Ω)) of (61b) is always bounded in the unit interval as long as the initial-time
value χ(0) = χ0 is.

Proof of Remark 5.1. Because of χt(t) ≤ 0 for all times t ∈ [0, T ] and χ(0) ∈ [0, 1] we obtain χ(t) ≤ 1.
It remains to show χ(t) ≥ 0.
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Please notice that we cannot directly test (61b) with (χ−)t since χ− := min{0, χ} is not necessarily
in H1(0, T ;H1(Ω)) even for smooth χ. Instead, we test the inclusion (61b) with (mε(χ))t where mε

denotes the following concave C1,1-approximation of min{0, ·}

mε(x) =


x, if x ∈ (−∞,−ε],
− 1

16ε(x− 3ε)2, if x ∈ (−ε, 3ε],
0, if x ∈ (3ε,+∞),

we obtain by simple rewriting∫∫
|χt|2m′ε(χ) +∇mε(χ) · ∇(mε(χ))t +

(
∇χ−∇mε(χ)

)
· ∇(mε(χ))t dx dt

+

∫∫ (1

2
C′(χ)ε(u) : ε(u) + g′(χ) + ξ

)
m′ε(χ)χt dx dt = 0,

where the function ξ satisfies ξ ∈ ∂I(−∞,0](χt) pointwise. We obtain by noticing that mε(·)→ (·)− :=
min{·, 0} strongly in H1(R) and weakly-star in W 1

∞(R) as ε↘ 0:∫∫
|χt|2m′ε(χ) dx dt︸ ︷︷ ︸
→

∫∫
|(χ−)t|2 dxdt

+
1

2

∫
Ω
|∇mε(χ(t))|2 − |∇mε(χ(0))|2 dx︸ ︷︷ ︸
→ 1

2

∫
Ω |∇χ−(t)|2−|∇χ−(0)|2 dx

+

∫∫ (
∇χ · ∇χt

)
(1−m′ε(χ))m′ε(χ) dx dt︸ ︷︷ ︸
→0

+

∫∫
|∇χ|2(1−m′ε(χ)m′′ε (χ)χt︸ ︷︷ ︸
≥0 due to m′′ε≤0, χt≤0,m′ε∈[0,1]

dx dt

+

∫∫ (1

2
C′(χ)ε(u) : ε(u) + g′(χ) + ξ

)
m′ε(χ)χt dx dt︸ ︷︷ ︸

→
∫∫ (

1
2
C′(χ−)ε(u):ε(u)+g′(χ−)+ξ

)
χ−t dx dt

= 0.

We have by assumption C′(χ−) = 0 and g′(χ−) = 0. Furthermore ξ× (χ−)t = 0 since ξ = 0 as long as
χt < 0. All in all we find by passing to ε↘ 0

1

2

∫
Ω
|∇χ−(t)|2 − |∇χ−(0)|2 dx+

∫∫
|(χ−)t|2 dx dt ≤ 0.

Since χ−(0) = 0 in Ω we find χ−(t) = 0 in Ω for all times t ∈ [0, T ].

In the next section we will consider a time-discrete version of (61) where such a maximum principle
can also be obtained.

5.2 Setting up time-discretisation scheme and shape optimisation problem

The shape optimisation problems will be performed on a time-discrete version of (61) and for two
spatial dimensions. Let {0, τ, 2τ, . . . , τN} be an equidistant partition of [0, T ]. The positive parameter
τ > 0 denotes the time step size. In the remaining part of this work we make use of the following
assumptions:

Assumption (D1)
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(i) d = 2;

(ii) The damage-dependent stiffness tensor satisfies C(·) = c(·)C, where the coefficient function c is
assumed to be of the form

c = c1 + c2 where c1 ∈ C2(R) is convex and c2 ∈ C2(R) is concave.

Moreover, we assume that c, c′1, c
′′
1, c
′
2, c
′′
2 are bounded and as well as

c(x) ≥ η for all x ∈ R.

with constant η > 0. The 4th order stiffness tensor C ∈ L(Rn×nsym ;Rn×nsym ) is assumed to be sym-
metric and positive definite, i.e.

Cijkl = Cjikl = Cklij and e : Ce ≥ η|e|2 for all e ∈ Rn×nsym ;

(iii) g is assumed to be of the form

g = g1 + g2 where g1 ∈ C2(R) is convex and g2 ∈ C2(R) is concave.

Moreover we assume g′1 and g′2 to be Lipschitz continuous;

(iv) `k ∈ L2(D;R2) for all k = 0, . . . , N ;

(v) dk ∈ H2(D;R2) for all k = 0, . . . , N ;

(vi) initial values: u0,v0 ∈ H2(D;R2) and χ0 ∈ H2(D).

Let Ω ⊆ D be a given Lipschitz domain. In this section a time-discrete model to (61) will be investigated
in a thermodynamically consistent scheme (in this context it indicates that the time-discrete energy-
dissipation inequality is satisfied). A related time-discretisation scheme has been used in [8]. For all
k ∈ {1, . . . , N} we are looking for a weak solution of

uk − 2uk−1 + uk−2

τ2
− div

(
C(χk)ε(uk)

)
= `k, (62a)

0 ∈ ∂I(−∞,0]

(χk − χk−1

τ

)
+
χk − χk−1

τ
−∆χk + g′1(χk) + g′2(χk−1)

+
1

2

(
c′1(χk) + c′2(χk−1)

)
Cε(uk−1) : ε(uk−1).

(62b)

In accordance with the time-continuous model from the previous section χ0, u0 and u−1 := u0 + τv0

are the initial values and the boundary conditions are chosen as

∇χ · ν = 0, uk = dk on ∂Ω. (63)

For notational convenience we will write z = {uk, χk}Nk=0.

Remark 5.2. (i) Existence of weak solutions for (62) can be obtained by alternate minimisation for
each time step by firstly solving (62b) and then solving (62a). In particular the solution χk from
(62b) is the unique minimiser of the strictly convex potential

F (χ) =

∫
Ω

1

2
|∇χ|2 +

τ

2

∣∣χ− χk−1

τ

∣∣2 +
1

2

(
c1(χ) + c′2(χk−1)χ

)
Cε(uk−1) : ε(uk−1) dx
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+

∫
Ω
g1(χ) + g′2(χk−1)χdx.

over the convex set

Kk−1 :=
{
χ ∈ H1(Ω) : χ ≤ χk−1 a.e. in Ω

}
.

As we point out later a higher integrability result from [9] yields ε(u) ∈ Lp(Ω) for some p > 2. In
combination with the embedding H1(Ω) ↪→ Lq(Ω) for every q ≥ 1 valid for d = 2 and Assumption
(D1) (ii), the potential term

∫
Ω

1
2

(
c1(χ) + c′2(χk−1)χ

)
Cε(uk−1) : ε(uk−1) dx in F is well-defined.

(ii) Under the additional assumptions that c1(x) ≥ c1(0) and g1(x) ≥ g1(0) for all x ≤ 0 as well
as c′2(x) ≤ 0 and g′2(x) ≤ 0 for all x ∈ [0, 1] we obtain that F (max{χk, 0}) ≤ F (χk) (cf. [17,
Proposition 4.1]). Thus χk is bounded in the unit interval as long as χk−1 is.

(iii) The discretisation scheme above is motivated by the fact that the associated time-discrete energy-
dissipation inequality is obtained by testing (62a) with uk − uk−1 − (dk − dk−1) and (62b) with
χk − χk−1, adding and using convexity and concavity estimates (cf. [8, Lemma 2.9]).

For the shape optimisation problem it is convenient to rewrite the pde/inclusion system (62b) as

uk ∈ dk +
◦
H1(Ω;R2), and ∀ϕ ∈

◦
H1(Ω;R2) :∫

Ω

uk − 2uk−1 + uk−2

τ2
ϕ+ C(χk)ε(uk) : ε(ϕ) dx =

∫
Ω
`k · ϕdx

 (64a)

χk ∈ Kk−1 and ∀ϕ ∈ Kk−1 :∫
Ω
∇χk · ∇(ϕ− χk) +

χk − χk−1

τ
(ϕ− χk) +

(
g′1(χk) + g′2(χk−1)

)
(ϕ− χk) dx

+

∫
Ω

1

2

(
c′1(χk) + c′2(χk−1)

)
Cε(uk−1) : ε(uk−1)(ϕ− χk) dx ≥ 0.


(64b)

Here
◦
H1(Ω;R2) denotes the closure of C∞c (Ω;R2) in the ‖·‖H1-norm. In other words the state system is

given by N -coupled variational inequalities with dynamic obstacles for the N time steps. The obstacles
are determined as the solutions of the damage variational inequality from the previous time step.

Statement of the shape optimisation problem
Our aim is to determine an optimal shape Ω ∈ Ξ from a suitable class of domains such that a tracking
type cost functional

J(Ω, z(Ω)) =
λu
2

N∑
k=1

‖uk(Ω)− ukr‖2L2(Ω;R2) +
λχ
2

N∑
k=1

‖χk(Ω)− χkr‖2L2(Ω) (65)

is minimised under the constraint that

z(Ω) solve (64) on Ω for all k ∈ {1, . . . , N}. (66)

The functions ukr ∈ L2(D;R2) and χkr ∈ L2(D) for k = 1, . . . , N are prescribed displacements and
damage patterns. Since the state z(Ω) is uniquely determined by Ω we may equivalently say that we
aim to minimise the shape function

J(Ω) := J(Ω, z(Ω)). (67)

Applications include minimisation of overall damage by choosing χkr ≡ 1 as well as deliberately inducing
damage at some desired areas which are encoded in χkr .
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5.3 Material derivative and necessary optimality system

Let us fix a vector fieldX ∈ C1
c (D,R2). In accordance with Section 4 the associated perturbed solutions

of (62a)-(62b) on Ωt := Φt(Ω) are denoted by zt = {ukt , χkt }Nk=0 whereas the transported perturbed
solutions are indicated by zt = {uk,t, χk,t}Nk=0. Note that z0 = z.

We proceed inductively over k = 1, . . . , N and assume that the strong material derivatives at the time
steps k − 1 and k − 2 exist, i.e. for a subsequence t↘ 0

uk−1,t − uk−1,0

t
→ u̇k−1 strongly in H1(Ω;R2), (68a)

uk−2,t − uk−2,0

t
→ u̇k−2 strongly in H1(Ω;R2), (68b)

χk−1,t − χk−1,0

t
→ χ̇k−1 strongly in H1(Ω). (68c)

Material derivative for the χk-variable
We want to apply Corollary 4.11 which is based on Theorem 4.8 to establish the material derivative
for the χk-variable and its variational inequality.

To check that the Assumptions (A1)-(A3) are fulfilled we require higher integrability estimates for
uk−1,t. Note that uk−1,t satisfies equation (74) below for k − 1 which is the unique minimiser of

U(u) :=

∫
Ω
ξ(t)C(χk−1,t)εt(u) : εt(u) + ξ(t)

u− 2uk−2,t + uk−3,t

τ2
· u− ξ(t)`k−1,t · udx.

over u ∈ dk−1 +
◦
H1(Ω;R2), where

εt(u) :=
1

2

(
(∂u)(∂Φt)

−1 +
(
(∂u)(∂Φt)

−1
)>)

. (69)

By using the calculation (here S(A) := 1
2(A + A>) and B := ∂Φt)

Cεt(u) : εt(u)

= Cε(u) : ε(u)−CS((∂u)(1−B)) : S(∂u)−CS((∂u)B) : S((∂u)(1−B))

≥ Cε(u) : ε(u)− c|∂u|2|1−B| − c|∂u|2|B||1−B|

and Korn’s inequality, we find a t∗ > 0 and constants c0, c1 > 0 such that for all t ∈ [0, t∗] and
u ∈ dk−1 +

◦
H1(Ω;R2) ∫

Ω
ξ(t)C(χk−1,t)εt(u) : εt(u) dx ≥ c0‖∂u‖2L2

− c1‖u‖2L2
.

Then the higher integrability result from [9] shows that there exists a constant p > 2 independent of t
such that uk−1,t ∈W 1

p (Ω;R2) and ‖uk−1,t‖W 1
p (Ω;R2) is uniformly bounded in t ∈ [0, t∗]. In combination

with (68a) we see that

uk−1,t → uk−1,0 strongly in W 1
q (Ω;R2) as t↘ 0 for all q ∈ [2, p). (70)

Furthermore we deduce from (68c) by the Sobolev embeddings in 2D

χk−1,t − χk−1,0

t
→ χ̇k−1 strongly in Lq(Ω) for all q ∈ [1,∞). (71)
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and from (68a)

εt(uk−1,t)− ε(uk−1,0)

t
→ ε(u̇k−1)− 1

2

(
(∂uk−1,0)(∂X) + ((∂uk−1,0)(∂X))>

)
=: ε̇X(u̇k−1)

strongly in L2(Ω;R2×2). (72)

The damage variational inequality (64b) can now be rewritten in the abstract form (30) by setting WΩ

in the energy (28) as follows

WΩ(x, y) := − 1

τ
χk−1(x)y +

1

2

(
c1(y) + c′2(χk−1(x))y)Cε(uk−1(x)) : ε(uk−1(x))

+ g1(y) + g′2(χk−1(x))y.

Note that WΩ(x, ·) is convex in our discretisation scheme and that

wtX(x, y) = − 1

τ
χk−1,t(x) +

1

2

(
c′1(y) + c′2(χk−1,t(x))

)
Cεt(uk−1,t(x)) : εt(uk−1,t(x))

+ g′1(y) + g′2(χk−1,t(x)).

Recall that w0
X(x, y) = w(x, y) = ∂yWΩ(x, y).

With the help of the convergence properties (68a)-(68c), (70), (72) and (71), we see that Assumptions
(A1)-(A3) are fulfilled with

∂yw(x, y) =
1

2
c′′1(y)Cε(uk−1(x)) : ε(uk−1(x)) + g′′1(y),

ẇX(x, y) = − 1

τ
χ̇k−1(x) +

1

2
c′′2(χk−1(x))χ̇k−1(x)Cε(uk−1(x)) : ε(uk−1(x))

+ c′2(χk−1(x))Cε(uk−1(x)) : ε̇X(u̇k−1(x)) + g′′2(χk−1(x))χ̇k−1(x).

Applying Corollary 4.11 yields existence of the strong material derivative χ̇k which satisfies the following
variational inequality:

χ̇k ∈ Sk and ∀ϕ ∈ Sk :∫
Ω
∇χ̇k · ∇(ϕ− χ̇k) +

1

τ
χ̇k(ϕ− χ̇k) + ∂yw(x, χk)χ̇k(ϕ− χ̇k) dx

≥ −
∫

Ω
A′(0)∇χk · ∇(ϕ− χ̇k) + ξ′(0)

(χk
τ

+ w(x, χk)
)

(ϕ− χ̇k) dx

−
∫

Ω
ẇX(x, χk)(ϕ− χ̇k) dx.


(73)

with
Sk := Tχk(Kk−1) ∩ kern(A(χk)) + χ̇k−1

and A′(0) and ξ′(0) are given in Lemma 4.4 and A = A0 is defined in (36).

Material derivative for the uk-variable
We only sketch the proof of the strong material derivative u̇k in the following and make use of standard
calculations. The main ingredient will be the uniform boundedness of ‖uk,t‖W 1

p (Ω;R2) with respect to t
and for some fixed p > 2.
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The perturbed and transported equation to (64a) is given by∫
Ω
ξ(t)

uk,t − 2uk−1,t + uk−2,t

τ2
ϕ+ ξ(t)C(χk,t)εt(uk,t) : εt(ϕ) dx =

∫
Ω
ξ(t)`k,t · ϕdx (74)

for all ϕ ∈
◦
H1(Ω;R2), where ξ(t) is defined in (33) and εt is defined in (69). Therefore by testing

(74) and testing (64a) with ϕ = uk,t − uk,0 − (dk,t − dk,0) and subtracting the result, we obtain the
sensitvity estimate

‖uk,t − uk,0‖H1(Ω;R2) ≤ ct.

Thus we may choose a weak cluster point u̇k ∈ H1(Ω;R2) such that for a subsequence

uk,t − uk,0

t
⇀ u̇k weakly in H1(Ω;R2).

Considering difference quotient of (74) and passing to the limit shows that u̇k is the weak solution of
the following pde:∫

Ω

u̇k − 2u̇k−1 + u̇k−2

τ2
ϕ+

(
C′(χk)χ̇kε(uk) + C(χk)ε̇X(u̇k)

)
: ε(ϕ) + C(χk)ε(uk) : ε̇X(ϕ) dx

= −
∫

Ω
ξ′(0)

uk − 2uk−1 + uk−2

τ2
ϕ+ ξ′(0)C(χk)ε(uk) : ε(ϕ) dx+

∫
Ω
ξ′(0)fk · ϕ+ ḟk · ϕdx (75)

for all ϕ ∈
◦
H1(Ω;R2) and u̇k = ḋk on ∂Ω where ḋk = ∂Xd

k and ḟk = ∂Xf
k. Here, ε̇X is defined in

(72).

Furthermore, it is not hard to see that the solution u̇k is unique for given functions uk, uk−1, uk−2,
u̇k−1, u̇k−2, χk, χ̇k, fk, ḟk and ḋk. Indeed, given to weak solutions u̇k1 and u̇k2 of (75) we find after
subtraction ∫

Ω

1

τ2
(u̇k1 − u̇k2) + C(χk)ε(u̇k1 − u̇k2) : ε(ϕ) dx = 0

Testing with ϕ = u̇k1 − u̇k2 yields uniqueness.

Finally, subtracting from the difference quotient taken from (74) the equation (75) and testing with
ϕ = uk,t−uk,0

t − u̇k −
(
dk,t−dk,0

t − ḋk
)
(the d-terms are necessary to achieve 0-boundary conditions for

the test-function), we find via a limit passage

uk,t − uk,0

t
− u̇k → 0 strongly in H1(Ω;R2) as t↘ 0.

Optimality system
We conclude with a necessary optimality system. Let a Lipschitz domain Ω ⊆ D with its state z =
{uk, χk}Nk=0 be a minimiser of J from (67). Given an arbitrary vector field X ∈ C1

c (D,Rd) we obtain
the associated flow Φt, the perturbed domain Ωt := Φt(Ω), the transported perturbed solution zt =
{uk,t, χk,t}Nk=0 and

J(Ωt) =
λu
2

N∑
k=1

∫
Ω
ξ(t)|uk,t − ukr ◦ Φt|2 dx+

λχ
2

N∑
k=1

∫
Ω
ξ(t)|χk,t − χkr ◦ Φt|2 dx.
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Due to the existence of the material derivatives u̇k and χ̇k for k = 1, . . . , N , we know that the
Eulerian semi-derivatives of J at Ω exist and that dJ(Ω)(·) is positively 1-homogeneous by Lemma
B.2. Therefore a necessary optimality condition for shapes which minimises J is given by the condition
that dJ(Ω)(X) ≥ 0 for all X ∈ C1

c (D,R2). By calculating the Eulerian semi-derivative of J and using
the relations for the material derivatives above, we have proven the following results:

Proposition 5.3. Under the assumption (D1) the optimality condition dJ(Ω)(X) ≥ 0 for all X ∈
C1
c (D,R2) is given in the volume expression of the shape derivative by

0 ≤ λu
2

N∑
k=1

∫
Ω
ξ′(0)|uk − ukr |2 dx+

λχ
2

N∑
k=1

∫
Ω
ξ′(0)|χk − χkr |2 dx

+ λu

N∑
k=1

∫
Ω

(uk − ukr ) · (u̇k − ∂Xukr ) dx+ λχ

N∑
k=1

∫
Ω

(χk − χkr )(χ̇k − ∂Xχkr ) dx,

where for all k = 1, . . . , N :

uk fulfills (64a) with uk = dk on ∂Ω, χk fulfills (64b),

u̇k fulfills (75) with u̇k = ḋk on ∂Ω, χ̇k fulfills (73).

A Polyhedricity of upper obstacle sets in H1(Ω)

In the remaining part of this subsection we will sketch the proofs for the characterisation of the
tangential and normal cones as well as of the polyhedricity of Kψ for reader’s convenience since such
obstacles sets are usually considered in the space

◦
H1(Ω) := C∞c (Ω)

‖·‖H1

in the literature. The adaption to H1(Ω) requires some careful modifications in the proofs.

Furthermore we denote with M+(Ω) the Radon measures on Ω. The Riesz representation theorem for
local compact Hausdorff spaces (see [7, Theorem VIII.2.5]) states that for each non-negative functional
I : C(Ω)→ R there exists a unique Radon measure µ ∈M+(Ω) such that for all f ∈ C(Ω)

I(f) =

∫
Ω
fdµ. (76)

In the sequel we will use the following notation for the half space

H1
+(Ω) :=

{
v ∈ H1(Ω) : v ≥ 0 a.e. in Ω

}
.

With the help of the Riesz representation theorem we are now in the position to give a characterisation
of (cf. [4, Chapter 6.4.3] for

◦
H1(Ω) instead of H1(Ω))

H1(Ω)∗+ :=
{
I ∈ H1(Ω)∗ : 〈I, v〉H1(Ω) ≥ 0 for all v ∈ H1

+(Ω)
}
,

where H1(Ω)∗ denotes the topological dual space of H1(Ω).

Lemma A.1. We have

H1(Ω)∗+ =
{
I ∈ H1(Ω)∗ : ∃!µI ∈M+(Ω), ∀v ∈ H1(Ω) ∩ C(Ω), 〈I, v〉H1(Ω) =

∫
Ω
v dµI

}
. (77)
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Proof. Let I : H1(Ω)→ R be a non-negative, linear and continuous functional. Then in particular the
restriction I|H1(Ω)∩C(Ω) is a non-negative and linear functional on the space H1(Ω) ∩ C(Ω) =: Y .

Now let y ∈ Y be arbitrary. Then y+ := max{0, y} and y− := min{0, y} (defined in a pointwise sense)
are also in Y and we find by non-negativity of L := I|Y :

|Ly| = |L(y+ + y−)| = |L(y+)︸ ︷︷ ︸
≥0

+L(y−)︸ ︷︷ ︸
≤0

| ≤ |L(y+)︸ ︷︷ ︸
≥0

−L(y−)︸ ︷︷ ︸
≥0

|

≤ |L(y+ − y−)| = L(|y|)
= L(|y| − 1‖y‖∞)︸ ︷︷ ︸

≤0

+‖y‖∞L(1)

≤ ‖y‖∞L(1),

where 1 denotes the constant mapping with 1(x) := 1. Thus I|Y is continuous in the C(Ω)-topology.
Since Y is also dense in C(Ω) the functional I|Y has a unique continuous and non-negative extension
Ĩ : C(Ω)→ R over C(Ω). By the Riesz representation theorem (see (76)) we find a unique µ ∈M+(Ω)
such that Ĩ(v) =

∫
Ω v dµ for all v ∈ C(Ω).

Conversely, let I be in the set on the right-hand side of (77). Then we know 〈I, v〉H1(Ω) =
∫

Ω v dµI ≥ 0

for all v ∈ Y+ := {v ∈ Y : v ≥ 0 pointwise in Ω}. So by density of Y+ in H1
+(Ω) we obtain

I ∈ H1(Ω)∗+.

Remark A.2. Note that, by an abuse of notation, the right-hand side of (77) is sometimes written as
H1(Ω)∗ ∩M+(Ω) (see, e.g., [4, Chapter 6]).

For the notion of capacity of a set, quasi-everywhere (q.e.) and quasi-continuous representant we refer
to [13, Chapter 3.3]. The following result is an extension of (76) valid for elements from H1(Ω)∗+.

Lemma A.3. For all I ∈ H1(Ω)∗+ and all f ∈ H1(Ω) there exists f̃ ∈ L1(Ω, µI) and we have

〈I, f〉H1(Ω) =

∫
Ω
f̃dµI , (78)

where f̃ (defined on Ω) denotes a quasi-continuous representative of f and µI the measure from (77)
of Lemma A.1.

Proof. The proof of this lemma requires some modifications of [4, Lemma 6.56] and references therein
which were designed for the situation V =

◦
H1(Ω). In our case we will need the following auxiliary

results:

(a) For an arbitrary D ⊆ Rd the capacity of D calculates as

cap(D) = inf
{
‖v‖2H1(Rd) : v ∈ H1(Rd) and v ≥ 1 a.e. in a neighborhood of D

}
.

See [13, Proposition 3.3.5] for a proof.

(b) Any function f ∈ H1(Ω) can be approximated by a sequence {fn} ⊆ C∞c (Rd) in the sense that
fn → f in H1(Rd) as n → ∞ by extending f to Rd with compact support and then uses an
approximation argument via Friedrichs mollifiers.
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The proof carried out in the following steps on the basis of [4, Lemma 6.56] and the references therein
(see also [13, Théorème 3.3.29] for the case V = H1(Rd)):

Claim 1: There exists a sequence {fn} ⊆ C∞c (Rd) s.t. fn|Ω → f̃ in H1(Ω) and q.e. in Ω

Let {fn} be given by (b). By resorting to a subsequence (we omit the subscript) we may find ‖fn −
f‖H1(Rd) ≤ 2−nn−1 and therefore

∞∑
n=1

4n+1‖fn+1 − fn‖2H1(Rd) ≤
∞∑
n=1

4n+1(‖fn+1 − f‖H1(Rd) + ‖fn − f‖H1(Rd)

)2
< +∞. (79)

We define

Bn :=
{
x ∈ Rd : |fn+1(x)− fn(x)| ≥ 2−n

}
.

Since |fn+1 − fn| is a continuous with compact support in Rd, the set Bn is compact and

2n+1|fn+1 − fn| ≥ 1 holds in a neighborhood of Bn.

Thus by (a)

cap(Bn) ≤ 4n+1‖fn+1 − fn‖2H1(Rd).

Using this estimate, the sub-additivity of the capacity (see [13, Remarque 3.3.10]) and (79), we obtain:

cap
( ∞⋃
k=n

Bk
)
≤
∞∑
k=n

cap(Bk) ≤
∞∑
k=n

4n+1‖fn+1 − fn‖2H1(Rd) → 0 as n→∞. (80)

Now let n ∈ N and x ∈ Ω \
⋃∞
k=nBk be arbitrary. Then {fk(x)}k≥n is a Cauchy sequence since for all

m ≥ n:

|fm(x)− fn(x)| ≤
m−1∑
k=n

|fk+1(x)− fk(x)| ≤
m−1∑
k=n

2−k.

We denote the limit with f̃(x) and gain for all N,K ≥ n:

|f̃(x)− fN (x)| ≤ |f̃(x)− fK+1(x)|︸ ︷︷ ︸
→0 as K→∞

+
K∑

k=N

|fk+1(x)− fk(x)|︸ ︷︷ ︸
≤2−k since x∈Ω\

⋃∞
k=nBk

Passing to the limit K →∞ then shows

|f̃(x)− fN (x)| ≤
∞∑
k=N

2−k.

This estimate implies that {fN}N≥n converges uniformly to f̃ on the set Ω \
⋃∞
k=nBk. Due to (80) we

obtain Claim 1.

Claim 2: If cap(A) = 0 for a Borel set A ⊆ Ω than µI(A) = 0.

Let ε > 0 be arbitrary. By (a) we find a function u ∈ H1(Rd) such that ‖u‖H1(Ω) < ε and u ≥ 1 a.e.
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on Aε where Aε is a neighborhood of A. Thus there exists a Lipschitz function fε : Rd → [0, 1] such
that

fε(x) =


0 if x ∈ Rd \Aε,
∈ (0, 1) if x ∈ Aε \A,
1 if x ∈ A.

Then fε − u ≤ 0 a.e. in Ω and by Lemma A.1

µI(A) =

∫
A
1dµI ≤

∫
Ω
fε dµI = 〈I, fε〉H1(Ω) = 〈I, u〉H1(Ω) + 〈I, fε − u〉H1(Ω)︸ ︷︷ ︸

≤ 0 since fe≤u a.e. in Ω

≤ 〈I, u〉H1(Ω)

≤ ε‖I‖H1(Ω)∗ .

Passing to the limit ε↘ 0 yields to claim.

Claim 3: fn → f̃ in L1(Ω, µI)
Lemma A.1 implies for every n,m ∈ N∫

Ω
|fn − fm|dµI = 〈I, |fn − fm|〉H1(Ω) ≤ ‖I‖H1(Ω)∗‖fn − fm‖H1(Ω), (81)

where fn is the approximation sequence from Claim 1. Since fn → f in H1(Ω) we obtain from (81)
that {fn} is a Cauchy sequence in L1(Ω, µI). Thus there exists a limit element g̃ ∈ L1(Ω, µI) and
a subsequence (we omit the subscript) such that fn → g̃ in L1(Ω, µI) and pointwise µI -a.e. on Ω.
However, by Claim 1, we already know that fn converges q.e. to f̃ on Ω and, by Claim 2, we find that
this covergence is also µI -a.e. Thus f̃ = g̃ µI -a.e.

Conclusion:
Finally, Lemma A.1 shows for every n ∈ N

〈I, fn〉H1(Ω) =

∫
Ω
fndµI .

With the properties proven above we can pass to the limit n→∞ and obtain (78).

We are now in a position to characterise the tangential and normal cones in Kψ.

Proof of Theorem 2.2. From the definitions (1)-(3) we see that

Ty(Kψ) = Ty−ψ(K), Ny(Kψ) = Ny−ψ(K)

with K := {w ∈ H1(Ω) : w ≤ 0 a.e. in Ω}. Thus it suffices to prove the assertion for Kψ = K.

We firstly prove (11b).

“⊆”: Let I ∈ Ny(K). Then by using definition (3) and choosing v = y+w for an arbitrary w ∈ H1(Ω)
with w ≤ 0 a.e. we obtain 〈I, w〉H1(Ω) ≤ 0. Thus I ∈ H1(Ω)∗+ and by Lemma A.1 we find the associated
measure µI from (77). On the other hand by choosing v = ψ and v = 2y in (3) yields 〈I, y〉H1(Ω) = 0.
From Lemma A.3 we obtain∫

Ω
ỹ dµI = 0 with a quasi-continuous representant ỹ of y. (82)
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Since y ≤ 0 a.e. in Ω we find ỹ ≤ 0 q.e. in Ω (see [13, Remarque 3.3.6]). This implies in combination
with (82) that

∫
Ω |ỹ|dµI = 0. Thus

∫
{ỹ<0} |ỹ|dµI = 0 and therefore µI({ỹ < 0}) = 0.

“⊇”: Let I ∈ H1(Ω)∗+ with µI({ỹ < 0}) = 0. Now let v ∈ K be arbitrary. The splitting v = max{v, y}+
min{0, v − y} implies

〈I, v − y〉H1(Ω) = 〈I,max{v, y} − y〉H1(Ω) + 〈I,min{0, v − y}〉H1(Ω)︸ ︷︷ ︸
≤0

≤
∫
{ỹ=0}

max{ṽ, ỹ} − ỹ dµI +

∫
{ỹ<0}

max{ṽ, ỹ} − ỹ dµI︸ ︷︷ ︸
=0 since µI({ỹ<0})=0

≤
∫
{ỹ=0}

max{ṽ, 0}︸ ︷︷ ︸
=0 since v∈K

dµI = 0.

Hence I ∈ Ny(K).

Now we prove (11a). By applying the bipolar theorem as in (6) as well as Lemma A.3, we find

Ty(K) =
{
u ∈ H1(Ω) :

∫
Ω
ũdµI ≤ 0 for all I ∈ H1(Ω)∗+ with µI({ỹ < 0}) = 0

}
=
{
u ∈ H1(Ω) :

∫
{ỹ=0}

ũdµI ≤ 0 for all I ∈ H1(Ω)∗+ with µI({ỹ < 0}) = 0
}
.

From this representation we see that the “⊇”-inclusion in (11a) is fulfilled. Conversely, let u ∈ Ty(K).
By definition of Ty(K) given in (2) we find a sequence vn ∈ K and tn > 0 such that tn(vn − y) → u
in H1(Ω) as n→∞. This implies for a subsequence (we omit the subindex) tn(ṽn − ỹ)→ ũ q.e. in Ω.
Since vn ∈ K we see that

tn(ṽn − ỹ) = tnṽn ≤ 0 q.e. on {ỹ = 0}.

Thus ũ ≤ 0 q.e. on {ỹ = 0}.

Proof of Theorem 2.3. Let y and w as in (7) and let v ∈ Ty(Kψ) ∩ [w]⊥. Then there exists a sequence
vn → v strongly in H1(Ω) such that vn ∈ Cy(Kψ). Define

v̂n := max{vn, v}.

By resorting to quasi-continuous representants we find by Theorem 2.2

v ≤ 0 q.e. in {y = ψ} and vn ≤ 0 q.e. in {y = ψ}

and thus

v̂n ≤ 0 q.e. in {y = ψ}.

Moreover by definition of v̂n

v − v̂n ≤ 0 q.e. in Ω.
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Invoking Theorem 2.2 again yield v̂n ∈ Ty(Kψ) and v− v̂n ∈ Ty(Kψ). Since w ∈ Ny(Kψ) we see by (5)
that

〈w, v̂n〉 ≤ 0 and 〈w, v − v̂n〉 ≤ 0.

Taking also 〈w, v〉 = 0 into account we obtain from above that 〈w, v̂n〉 = 0. Thus v̂n ∈ Cy(Kψ)∩ [w]⊥.
Since v̂n converges strongly to v as n→∞, we have proven

Ty(Kψ) ∩ [w]⊥ ⊆ Cy(Kψ) ∩ [w]⊥.

Noticing that the “⊇”-inclusion is always satisfied finishes the proof.

B Eulerian semi and shape derivatives

We recall some preliminaries from shape optimisation theory. For more details we refer to [5].

Let X : Rd → Rd be a vector field satisfying a global Lipschitz condition: there is a constant L > 0
such that

|X(x)−X(y)| ≤ L|x− y| for all x, y ∈ Rd.

Then we associate with X the flow Φt by solving for all x ∈ Rd

d

dt
Φt(x) = X(Φt(x)) on [−τ, τ ], Φ0(x) = x. (83)

The global existence of the flow Φ : R× Rd → Rd is ensured by the theorem of Picard-Lindelöf.

Subsequently, we restrict ourselves to a special class of vector fields, namely Ck-vector fields with
compact support in some fixed set. To be more precise for a fixed open set D ⊆ Rd, we consider
vector fields belonging to Ckc (D,Rd). We equip the space Ckc (D,Rd) respectively C∞c (D,Rd) with the
topology induced by the following family of semi-norms: for each compact K ⊆ D and muli-index
α ∈ Nd with |α| ≤ k we define ‖f‖K,α := supx∈K |∂αf(x)|. With this familiy of semi-norms the space
Ckc (D,Rd) becomes a locally convex vector space.

Next, we recall the definition of the Eulerian semi-derivative.

Definition B.1. Let D ⊆ Rd be an open set. Let J : Ξ → R be a shape function defined on a set Ξ
of subsets of D and fix k ≥ 1. Let Ω ∈ Ξ and X ∈ Ckc (D,Rd) be such that Φt(Ω) ∈ Ξ for all t > 0
sufficiently small. Then the Eulerian semi-derivative of J at Ω in direction X is defined by

dJ(Ω)(X) := lim
t↘0

J(Φt(Ω))− J(Ω)

t
. (84)

(i) The function J is said to be shape differentiable at Ω if dJ(Ω)(X) exists for all X ∈ C∞c (D,Rd)
and X 7→ dJ(Ω)(X) is linear and continuous on C∞c (D,Rd).

(ii) The smallest integer k ≥ 0 for which X 7→ dJ(Ω)(X) is continuous with respect to the Ckc (D,Rd)-
topology is called the order of dJ(Ω).

The set D in the previous definition is usually called hold-all domain or hold-all set or universe.

In the case that the state system is given as a solution of a variational inequality we cannot expect
dJ(Ω)(X) to be linear in X. However we have the following general result:
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Lemma B.2. Suppose that the Eulerian semi-derivative dJ(Ω)(X) exists for all X ∈ Ckc (D,Rd). Then
dJ(Ω)(·) is positively 1-homogeneous.

Proof. Let λ > 0 be arbitrary. We write ΦλX
t for the flow induced by λX. By definition (83), we see

that ΦλX
t and ΦX

λt solve

d

dt
ΦλX
t (x) = λX(ΦλX

t (x)),
d

dt
ΦX
λt(x) = λX(ΦX

λt(x))

as well as ΦλX
0 (x) = x and ΦX

0 (x) = x. Uniqueness of the flow implies ΦλX
t = ΦX

λt. Finally,

dJ(Ω)(λX) = lim
t↘0

J(ΦλX
t (Ω))− J(Ω)

t
= lim

t↘0

J(ΦX
λt(Ω))− J(Ω)

t
= λ dJ(Ω)(X).

Ultimately the goal would be to find descent directions of a given shape function J(·), that is, finding
solutions of minX∈H dJ(Ω)(X) in some Hilbert space H ⊂ C(Rd,Rd); cf. [6]. Now Lemma B.2 tells us
that it is sufficient to minimise over the unit sphere:

min
X∈H

dJ(Ω)(X) = min
X∈H
‖X‖H=1

dJ(Ω)(X)

which leads to a simplification of the minimisation problem; cf. [28]. In the context of variational
inequalities it rarely happens that the Eulerian semi-derivative is linear, however, the 1-homogeneity
is valid as soon as the Eulerian semi-derivative exists.

The following result can be found for instance in [5]:

Lemma B.3. Let D ⊆ Rd be open and bounded and suppose X ∈ C1
c (D,Rd).

(i) We have

∂Φt − I
t

→∂X strongly in C(D,Rd,d)

∂Φ−1
t − I
t

→− ∂X strongly in C(D,Rd,d)

det(∂Φt)− 1

t
→div(X) strongly in C(D).

(ii) For all open sets Ω ⊆ D and all ϕ ∈W 1
µ(Ω), µ ≥ 1, we have

ϕ ◦ Φt − ϕ
t

→∇ϕ ·X strongly in Lµ(Ω). (85)
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