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Abstract

Well posedness is established for a family of equations modelling particle populations undergoing delocalised
coagulation, advection, inflow and outflow in a externally specified velocity field. Very general particle types are
allowed while the spatial domain is a bounded region of d-dimensional space for which every point lies on exactly
one streamline associated with the velocity field. The problem is formulated as a semi-linear ODE in the Banach
space of bounded measures on particle position and type space. A local Lipschitz property is established in
total variation norm for the propagators (generalised semi-groups) associated with the problem and used to
construct a Picard iteration that establishes local existence and global uniqueness for any initial condition. The
unique weak solution is shown further to be a differentiable or at least bounded variation strong solution under
smoothness assumptions on the parameters of the coagulation interaction. In the case of one spatial dimension
strong differentiability is established even for coagulation parameters with a particular bounded variation structure
in space. This one dimensional extension establishes the convergence of the simulation processes studied in
[Patterson, Stoch. Anal. Appl. 31, 2013] to a unique and differentiable limit.

1 Introduction

Smoluchowski [18] introduced equations for the concentrations of particles of different sizes undergoing coagula-
tion in a spatially homogeneous population.

d

dt
c(t, y) =

1

2

∑
y′<y

K(y, y′)c(t, y′)c(t, y − y′)− c(t, y)
∑
y′

K(y, y′)c(t, y′), (1)

where c(t, y) is the concentration of particles of size y at time t and K is a symmetric function defining the
‘reaction’ rates. The Smoluchowski coagulation equations can be regarded as describing a system of binary reac-
tions involving an infinite number of species, but with a very structured, although non-sparse set of rates and (1)
abstractly written ċ = R(c). The model therefore extends naturally to a reaction–transport problem for spatially in-
homogeneous populations of coagulating particles of the general form ċ+Ac = R(c) for some transport operator
A.

Since coagulation is a binary reaction in which every possible pair of particles may coagulate, the equations are,
even in the spatially homogeneous case, non-linear and more significantly non-local in particle size (size may here
be generalised to ‘type’). The first existence results for the Smoluchowski coagulation equation and its extensions
were based on convergent sub-sequences of approximating stochastic processes. The first convergence result of
this kind with simple diffusive transport of particles is due to Lang and Xanh [8], generalisations were achieved
by Norris [12, 11], Wells [19] and Yaghouti et al. [21]. This is quite a natural approach, because the equations are
based on a microscopic stochastic model and related stochastic processes have also proved fruitful for numerical
purposes going back to Marcus [9] and Gillespie [5].

The results just mentioned are essentially compactness results and say nothing about uniqueness of the limiting
trajectories, much less of uniqueness for the solutions to the Smoluchowski equation and its extensions. Conver-
gence and uniqueness were proved together by Guiaş [6] who modelled diffusion as a random walk on a lattice
and used a more functional analytic approach. Going further in this direction one is led to regard the Smoluchowski
equation and its extensions as an ODE on a Banach space and to proceed via a locally Lipschitz source term and
a Picard iteration method to show existence and uniqueness in some functional setting. The general strategy is
presented in chapters 5&6 of [17]. Applications to Smoluchowski problems are given by [20, 1, 3] and the works
cited therein.

Especially when approaching the Smoluchowski equation from the point of view of stochastic particle systems it
is natural to think of measure valued solutions. A particle system is identified with its empirical measure and thus
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instead of functional solutions one is led to look at measure valued solutions in a weak setting. To give the concrete
example that will be the focus of this work: A solution (with a given initial condition) is a flow of measures µt on
positions in X and particle types (sizes and potentially additional details) in Y satisfying

d

dt

∫
X×Y

f(x, y)µt(dx, dy)

=

∫
X×Y

ut(x) · ∇f(x, y)µt(dx,dy) +

∫
X×Y

f(x, y)It(dx,dy)

+
1

2

∫
(X×Y)2

[f(x1, y1 + y2)− f(x1, y1)− f(x2, y2)]

K(y1, y2)h(x1, x2)µt(dx1,dy1)µt(dx2,dy2) (2)

for all f in a class of functions D to be specified below. Here the problem has been moved from the strong
formulation of (1) to a weak setting; a transport operator ut · ∇ (the dual of the A mentioned above) has been
introduced and the delocalisation of the coagulation specified via a function h, which may be regarded as a mollifier.
A particle source term It has also been added, which is relevant for many real-world applications as discussed
later.

Signed measures can be regarded as Banach space under a wide range of norms and equation (2) interpreted as a
Banach space valued ODE and Picard-like fixed point strategies introduced. An important insight of the monograph
[7] was to exploit duality of linear operators and norms between measures and appropriate spaces of test functions
in pursuit of this programme. In this way one performs most calculations for operators on test function spaces,
which are a little easier to work with than operators on spaces of measures. Measure valued solutions are also the
topic of [11], which also uses a linear operator approach, but uses approximation rather than duality arguments
and deals with unbounded coagulation kernels.

All the work discussed so far deals with diffusing particles (contrast (2)) and solutions either with a zero gradient
boundary conditions, which excludes outflow or defined on the whole of Rd so that outflow is thereby excluded.
For numerical reasons motivated by applications in engineering, the present author has been interested in the
Smoluchowski equation with advective transport and a delocalised coagulation interaction [15, 10]. In particular for
engineering applications particle gain and loss terms are important—industrial equipment is designed to take in
material, alter it and then send it on either as waste or product. This gives the problem as formulated in [15, 10] and
other applied works a different structure to those studied in previous mathematical works. For example, individual
particles experience irreversible processes, but nevertheless the system is expected to reach a steady state in the
large time limit under a wide range of conditions. Measure valued processes (which can be interpreted as particle
processes) with an inflow term although no interaction were also studied in [4].

For (2) specific problem an initial existence result via the compactness of approximating stochastic processes was
given in [14]. In that work however convergence of the approximating processes could not be proved, only se-
quential compactness, because the number of distinct limit points was unknown. This was not only mathematically
frustrating, but also a major obstacle hindering the numerical analysis of the associated simulation methods.

The purpose of the present work is to establish uniqueness of measure valued solutions for (2). Additionally Lips-
chitz continuity in the initial conditions is shown and the same Picard iteration method that proves uniqueness of
solutions provides a purely analytic existence proof. The result can thus be characterised as one of “well posed-
ness”. Formally there are some new existence results—the assumption of only one spatial dimension in [14] is
relaxed, but with the assumptions used in this work the proof in that paper could easily be extended. The existence
of a differentiable strong solution is of interest, because it opens the way to a study of the way in which the solution
approaches a solution of the corresponding equation with a local coagulation interaction, see for example [16].

2 Statement of Main Results

In order to make a precise statement it is first necessary to go into details regarding the various objects appearing
in (2). The basic spaces are the particle position and type spaces X and Y respectively. The type space, which
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carries information about the mass and any other internal details of a particle is assumed to be a locally compact,
second countable Hausdorff space on which coagulation is represented by a commutative + operator. The particle
position space X is assumed to be a simply connected, relatively compact subset of Rd, which is equipped with
Lebesgue measure and a derivative ∇. Both X and Y are given their respective Borel σ-algebras and X × Y is
given the product topology and σ-algebra.

Throughout this work Rd will be given the usual Euclidean norm, which will be written |·|. Linear operators L
between two normed spaces (A, ‖·‖A) (B, ‖·‖B) are given the operator norm

‖L‖A→B := sup
x∈A : ‖x‖A=1

‖Lx‖B .

2.1 Properties of the Flow and Spatial Domain

Velocity field

Particles are assume to be transported in a time dependent velocity field ut defined on X the closure of X such
that u ∈ C

(
R+, C2

(
X ,Rd

))
, satisfying

� ‖u‖∞ := supt∈R+,x∈X |ut(x)| <∞,

� ‖∇ · u‖∞ := supt∈R+,x∈X

∣∣∣∑d
k=1

∂
∂xk

uk,t(x)
∣∣∣ <∞,

� |||∇u||| := supt ‖∇ut(x)‖Rd→Rd <∞ viewing the matrices∇ut as linear operators,

� ‖∇∇ · u‖∞ := supt∈R+,x∈X |∇ (∇ · ut(x))| <∞.

Boundaries

It is assumed that the spatial domain X is simply connected and has a regular boundary ∂X that can be decom-
posed into three parts, each with outward normal n(x):

� Γin where n(x) · ut(x) < 0 for all t ∈ R+,

� Γside where n(x) · ut(x) = 0,

� Γout where n(x) · ut(x) > 0.

Further Γin ⊂ X but Γside,Γout ⊂ Rd \ X .

Flow Field

Define Φs,t(x) as the position at time t of a particle moving with the velocity field u starting from x at time s. It is
assumed that

� There exists a t0 > 0 such that, for all t ≥ 0 and x ∈ X one has Φt,t+t0(x) /∈ X , that is, an upper
bounded on the residence time.

� For every t > 0 and x ∈ X there exist unique s(t, x), ξ(t, x) such that Φs(t,x),t (ξ(t, x)) = x and either
s(t, x) = 0 or ξ(t, x) ∈ Γin (the possibility of both is not excluded). This defines a start position for each
point in the flow and ξ(t, x) = Φt,s(x)(x).

� s(t, x) and ξ(t, x) are differentiable in x and ‖∇s‖∞ := supt,x |∇s(t, x)| <∞. A bound for the deriva-
tive of ξ is given in the appendix.

� The set Ξt = {x ∈ X : ξ(t, x) ∈ Γin} forms a differentiable d−1 dimensional manifold that dividesX \Ξt
into two disjoint simply connected components.
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2.2 Test Function Spaces

Definition 1. Let Bb(Y) be the space of bounded measurable functions on Y with the supremum (not essential
supremum) norm, which will be written ‖·‖Y−∞.

Definition 2. LetB := Bb(X ×Y) be the space of bounded measurable functions onX ×Y with the supremum
(not essential supremum) norm, which will be written ‖·‖B .

Definition 3. Let Bd be the space of d-dimensional vector valued functions with components in B. This will be
given the norm ‖f‖Bd := supx,y |f(x, y)|, where |·| is the Euclidean norm on Rd.

To handle the derivative in (2) and associated boundary condition introduce

Definition 4.

D :=

{
f ∈ B : f differentiable ,∇f ∈ Bd, lim

x→Γout

‖f(x, ·)‖Y−∞ = 0

}
The norm is

‖f‖D = ‖f‖B + ‖∇f‖Bd .

This is an appropriate class of test functions to use in (2), because the derivative is well behaved. For a discussion
of the boundary condition see [14], although that work imposes slightly stricter regularity conditions, which are here
seen to be unnecessary.

2.3 Solution Spaces

A particle distribution is at a minimum a measure on the product of the particle position and type spaces, that is
on X × Y . The solution processes must accordingly take values in the following spaces, which are built from the
space of measures on particle types Y :

Definition 5. Let
(
M(Y), ‖·‖Y−TV

)
=: M(Y)TV be the normed space of signed bounded measures on Y

with the total variation norm

‖µ‖Y−TV := sup
f 6=0

∣∣∣∫Y f(y)µ(dy)
∣∣∣

‖f‖Y−∞
, f ∈ Bb(Y).

Definition 6. LetM =M(X × Y) be the vector space of bounded signed measures on X × Y .

Under reasonable assumptions one expects to find solutions to (2) that are absolutely continuous with respect to
Lebesgue measure on X ; this leads to the following space (compare [11]).

Definition 7.
M0,∞ = {µ ∈M : µ(dx, dy) = c(x, dy)dx, c ∈ L∞ (X ,M(Y)TV)}

with the norm
‖c‖M0,∞

= ess sup
x
‖c(x, ·)‖Y−TV

where a measure is identified with its density.

The B and D dual norms onM will play a role in this work

Definition 8. Let µ ∈M,

‖µ‖TV ≡ ‖µ‖B? := sup
f 6=0

∣∣∣∫X×Y f(x, y)µ(dx, dy)
∣∣∣

‖f‖B
, f ∈ B,

and

‖µ‖D? := sup
f 6=0

∣∣∣∫X×Y f(x, y)µ(dx, dy)
∣∣∣

‖f‖D
, f ∈ D.
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As the notation suggests, the B? norm is the total variation norm onM. For calculations the B? point of view
is emphasised, however the main results are stated in terms of TV. When dealing with processes the following
abbreviation is useful

Definition 9. Let T > 0 and c ∈ L∞ ([0, T );M) then

|||c|||B? := ess sup
t∈[0,T )

‖c(t, ·, ·)‖B? .

2.4 Coagulation

It is now possible to set out the assumptions on the coagulation dynamics specified by K and h in (2). K is
assumed to be non-negative and measurable with some bound K∞ > 0 such that supy1,y2 K(y1, y2) ≤ K∞.

The delocalisation h : X 2 → R must be measurable and non-negative. For fixed x1 ∈ X write h1,x1 and h2,x1

for the the functions given by h1,x1
(·) = h(x1, ·) and h2,x1

(·) = h(·, x1). It will be assumed that neither K nor
h are identically zero—this would lead to a trivial problem with no coagulation.

H1: ‖hi,x‖B ≤ C1 ∀x ∈ X , i = 1, 2.

H2: H1 holds and h(x, x2) =
∑J
j=1 χj,1(x)χj,2(x2) with χj,i positive, and of special bounded variation (deriva-

tive in L1 plus atoms) for all i and j with the number of atoms in the weak derivatives bounded. Further one has
supx,x2

∑J
j=1 ‖χj,2‖B

∫ t
r
|∇χj,1 (Φr,s(x), x2)|ds ≤ C2t0e

|||∇u|||min(t−r,t0) and its symmetric counterpart

supx1,x

∑J
j=1 ‖χj,1‖B

∫ t
r
|∇χj,2 (x1,Φr,s(x))|ds ≤ C2t0e

|||∇u|||min(t−r,t0)

H3: H1 holds and the hi,x are in D with
∥∥∥ ∂
∂ξhi,x(ξ)

∥∥∥
B
≤ C2 ∀x ∈ X , i = 1, 2. It should be noted that H3

implies H2 (Proposition 60 is helpful here).

The function h parametrises the numerical methods that lie behind this work [15]. H2 is describes the case where
the spatial domain is partitioned into cells and coagulation is only simulated between particles that are in the
same cell. From a software point of view this is somewhat simpler than dealing with functions satisfying H3. In one
dimension, which was the case simulated in [15], H2 is a weak integrability condition on the derivative of h.

2.5 Inception

Particles are added to the system with intensity given by signed measures It ∈M.

I1: supt ‖It‖B? <∞ and I ∈ C([0,∞), (M, ‖·‖D?)).

I2: I1 holds, the It are non-negative measures and for every f ∈ B∫
X×Y

f(x, y)It(dx, dy) =

∫
X×Y

f(x, y)Iint(t, x,dy)dx+

∫
Γin×Y

f(ξ, y)Ibdry(t, ξ,dy)dξ

with Iint ∈ C ([0,∞),M0,∞) also Ibdry ∈ C ([0,∞), L∞ (Γin,M(Y)TV)) with the respective norms uni-
formly bounded for all time and with some I∗ > 0 such that ‖Ibdry(t, ξ, ·)‖Y−TV ≤ I∗ut(ξ) · n(ξ) for all t and
ξ ∈ Γin.

I3: I2 holds, Ibdry has a time and space derivative so that Ibdry ∈ C1 ([0,∞)× Γin,M(Y)TV) and Iint has
an X -derivative which is∇Iint ∈ C

(
[0,∞), (M0,∞)d

)
2.6 Statements of the Theorems

These results progress from local existence and uniqueness of a measure valued solution to a global result and
then existence followed by differentiability of a density for the measures.
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Theorem 10. Assume H2 or H3 holds and that c0 ∈M, then there exists a T = T (c0) such there is a unique so-
lution ct to (2) inL∞ ([0, T ), (M, ‖·‖TV)) with initial condition c0 and this solution is inC ([0, T ), (M, ‖·‖TV))∩
C1 ((0, T ), (M, ‖·‖D?)).

Additionally, there is no time interval on which more than one TV-bounded solution exists for a given initial condition.
If solutions exist on a common compact time interval for at two or more initial conditions, then the solutions are
Lipschitz continuous with respect to the initial data in the TV-norm on this compact time interval.

In the physically reasonable setting of non-negative particle numbers, the previous result holds for all time:

Theorem 11. The T = T (c0) from the previous theorem is∞ if c0 and the It are non-negative measures.

Theorem 12. Assume H2 or H3 holds, that c0 is in the positive cone ofM0,∞, and that I2 is satisfied, then (2) has
a unique solution, which is in L∞ ([0,∞),M0,∞) and therefore has a density in L∞ ([0,∞)×X ,M(Y)TV)
starting from c0.

Theorem 13. Assume that c0 ∈ W 1,∞ (X ,M(Y)TV) is consistent with the boundary condition given below,
that I3 is satisfied, and further that either H3 holds and X has a sufficiently regular boundary or d = 1, H2 holds
and u is bounded away from 0, then (2) has a unique solution c with a density inW 1,∞ ([0,∞)×X ,M(Y)TV),
satisfying the boundary condition −ut(x) · n(x)c(t, x,dy) = Ibdry(t, x,dy) ∀t ∈ R+, x ∈ Γin and with
initial condition c0.

As a corollary of the preceding two results an earlier result by the author, which demonstrated the existence of
converging sub-sequences of stochastic approximations to solutions (2) can be extended to a full convergence
result:

Theorem 14. The stochastic jump processes studied in [14], which have X = [0, L) for some L > 0 and satisfy
H2 and I3 converge to the unique solution of (2) and this weak solution is also a strong solution in the Sobolev
space W 1,∞ ([0,∞)× [0, L),M(Y)TV) provided that the initial condition c0 is in W 1,∞ ([0, L),M(Y)TV)
with u0(0)c0(0,dy) = Ibdry(0, 0,dy). Further one has ut(0)c(t, 0,dy) = Ibdry(t, 0,dy) for all t.

Proof. In [14] it was shown that every sequence of approximating processes has a sub-sequence converging to
a solution of (2) (a compactness result). Theorem 11 shows that there is only one such limit point so one has
convergence and Theorem 13 yields the differentiability.

3 Dual Operator Estimates

Introduce the more compact notation 〈f, µ〉 =
∫
X×Y f(x, y)µ(dx, dy) for f ∈ B and µ ∈ M. It is now helpful

to seek a generator for the evolution given in (2), that is an operator At such that

d

dt
〈f, µt〉 = 〈At(f), µt〉+ 〈f, It〉 . (3)

This is in fact a dual generator, because it acts on the functions not the measures.

The author emphasises his dependence on Kolokoltsov [7] for the material in this section and the first half of
the next. The first novelty in this section is the boundary condition associated with the finite domain and outflow,
which required careful treatment, but is not covered by the existing work. Also the consideration of coefficients
of bounded variation (H2) is essential to treating the motivating example from [14] and even under this relatively
weak assumption differentiability of the solutions in one spatial dimension is established. An additional variation
from [7] appears in Proposition 26 where some additional problem structure is exploited and enables the fixed point
methods to be applied in the B?-norm, rather than the weaker D?-norm used in [7].
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3.1 The Generators

Because (2) is quadratic in µ the same must be true of the expression 〈At[µ](f), µt〉, which is achieved by
including the path (µr)r∈[0,t] as a parameter of At. It is technically convenient to parametrise by the entire path,
not just µt, because one eventually deals with propagators where the dependence cannot be expressed in terms
of µ at any finite set of time points. One notes that At[µ] = Ut +Ht[µ] where U is the transport operator and H
is the coagulation operator.

Definition 15. Let µ ∈ L∞ ([0, T ), (M, ‖·‖B?)) and assume H1 holds. The coagulation generator parametrised
by µ is Ht[µ] : B → B defined by

Ht[µ](f)(x, y) =
1

2

∫
X×Y

h(x, x2)f(x, y + y2)K(y, y2)µt(dx2,dy2)

− 1

2

∫
X×Y

f(x, y) [h(x, x2) + h(x2, x)]K(y, y2)µt(dx2,dy2) (4)

for t ∈ [0, T ).

This is not the only possible definition for Ht[µ], other versions also yield the desired expression (the coagulation
term from (2)) for 〈Ht[µ](f), µt〉. Each definition would lead to characterising the solutions as fixed points of a
different mapping; the definition given here seems to be the one that minimises the technical difficulties in the
following analysis.

Proposition 16. Let 0 < T and µ ∈ L∞ ([0, T ),M) and assume H1 holds, then the operator norm of Ht[µ]
as a mapping B → B satisfies

ess sup
t
‖Ht[µ]‖B→B ≤

3

2
K∞C1|||µ|||B? .

Proof. Immediate.

Definition 17. Let t ∈ R and f ∈ D then the transport generator Ut : D → B is given by

Utf(x, y) = ut(x) · ∇f(x, y).

One can now define At[µ] = Ut +Ht[µ] as a linear operator D → B.

3.2 The Propagators

Propagators are generalisations of semi-groups to deal with time dependent generators. For a detailed discussion
the reader is referred to [7, Chapter 2] or [17, Chapter 5]. The key idea (given in the dual setting appropriate to this
section) is that a generator At generates a family of linear operators Ar,s such that Ar,sAs,t = Ar,t and

d

dt
As,t = As,tAt,

d

ds
As,t = −AsAs,t. (5)

The goal of this section is to construct such a family of propagators for the generator At[µ] from the previous
section.

Definition 18. Let s, t ∈ R and f ∈ B and define the transport propagators U t,s : B → B by

Us,tf(x, y) =

{
f (Φs,t(x), y) Φs,t(x) ∈ X
0 otherwise

where Φ is the flow due to the velocity field u (see §2.1 and Appendix A).
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Proposition 19. Let t ≥ s, then the transport propagator Us,t preserves D. The following operator norm esti-
mates hold: ∥∥Us,t∥∥

B→B ≤ 1 (t− s ≤ t0) ,

where 1 is an indicator function and∥∥Us,t∥∥
D→D ≤ e

(t−s)|||∇u|||1 (t− s ≤ t0) .

Proof. The B-norm of f is immediate. Use the chain rule and Proposition 60 in the appendix for the derivative of
f .

The required propagator is now constructed as a perturbation of the transport propagator U by the bounded
coagulation generator:

Definition 20. Let T > 0, 0 ≤ r ≤ t ≤ T and µ ∈ L∞ ([0, T ),M), and define (compare [7, Theorem 2.9]):

Ar,t[µ] := Ur,t +

∞∑
m=1

∫
r≤s1≤...≤sm≤t

Ur,s1Hs1 [µ] · · ·Usm−1,smHsm [µ]Usm,tds1 · · · dsm.

It is now necessary to establish estimates for the operator norm of A on B and D. For this it is shown that the
infinite sum just given is absolutely convergent in both operator norms. During this analysis it is convenient to use
some additional notation:

Definition 21. Under the assumptions of Definition 20 let f ∈ B and t ≥ 0; define both f0
r,t := Ur,tf and

fmr,t :=

∫ t

r

Ur,sHs[µ]fm−1
s,t ds.

This allows one to write

Ar,t[µ]f =

∞∑
m=0

fmr,t. (6)

Proposition 22. Under the assumptions of Definitions 20&21

∥∥fmr,t(x, ·)∥∥Y−∞ ≤ 1

m!

(
3

2
K∞C1|||µ|||B?(t− r)

)m
‖f (Φr,t(x), ·)‖Y−∞ ,

which is zero for t− r ≥ t0 and∥∥fmr,t∥∥B ≤ 1

m!

(
3

2
K∞C1|||µ|||B?(t− r)

)m
‖f‖B .

Proof. Proceed by induction.

The B-operator norm estimate now follows:

Proposition 23. Let T > 0, 0 ≤ r ≤ t < T and µ ∈ L∞ ([0, T ), (M, ‖·‖B?)) and assume H1 holds, then
Ar,t[µ] is a locally bounded propagator on B satisfying∥∥Ar,t[µ]

∥∥
B→B ≤ e

3
2K∞C1|||µ|||B? (t−r)1(t− r ≤ t0)

and Ar,t[µ]f is ‖‖B-continuous in t for every f ∈ B and t ≥ r (this is known as ‘strong continuity’). Further, for
any f ∈ D and almost all t

d

dt
Ar,t[µ]f = Ar,t[µ]At[µ]f,

where one recalls At[µ] = ut · ∇+Ht[µ].
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Proof. The first part of the result follows from Proposition 22 and (6).

The (left) generatorAt[µ] can be found differentiating the series in Proposition 20 term by term and observing that
the resulting series is again absolutely convergent.

Differentiating with respect to r in Proposition 23 is not possible, because Ar,t does not necessarily preserve
D. This is addressed in the next few propositions by making stronger smoothness assumptions on h, the spatial
delocalisation of the coagulation interaction introduced in §2.4 and used in the definition of H (Definition 15).

Proposition 24. Under the assumptions of Definitions 20&21 and additionally assuming either H3 holds or H2
holds and µ is bounded for all (not just Lebesgue almost all t), for example because it is continuous

∥∥∇fmr,t(x, ·)∥∥Y−∞ ≤ (3

2
K∞C1|||µ|||B?

)m
(t− r)m

m!
‖∇ (f (Φr,t(x), ·))‖Y−∞

+m

(
3

2
K∞C1|||µ|||B?

)m
(t− r)m−1

(m− 1)!

C2t0e
|||∇u|||(t−r)

C1
‖f (Φr,t(x), ·)‖Y−∞

and

∥∥∇fmr,t∥∥Bd ≤
(

3

2
K∞C1|||µ|||B?

)m
(t− r)m

m!
e|||∇u|||(t−r) ‖∇f‖Bd 1(t− r ≥ t0)

+m

(
3

2
K∞C1|||µ|||B?

)m
(t− r)m−1

(m− 1)!

C2t0e
|||∇u|||(t−r)

C1
‖f‖B 1(t− r ≥ t0).

Proof. The first inequality is established by induction making use of Proposition 22 for the terms in f . The second
inequality introduces Proposition 60 to get an estimate for∇Φr,t(x)

Proposition 25. Let T > 0, 0 ≤ r ≤ t < T , µ ∈ L∞ ([0, T ), (M, ‖·‖B?)) and either H3 hold or H2 hold
but with µ bounded for all (not just Lebesgue almost all) times, then Ar,t[µ] is a propagator on D and there is a
C3 ∈ R such that ∥∥Ar,t[µ]

∥∥
D→D ≤ e

(|||∇u|||+ 3
2K∞C1|||µ|||B?)(t−r)C31(t− r ≤ t0).

Further, for any f ∈ D and almost all t

d

dt
Ar,t[µ]f = Ar,t[µ]At[µ]f,

d

dr
Ar,t[µ]f = −Ar[µ]Ar,t[µ]f.

Proof. From Proposition 24 one sees that, for f ∈ D∥∥∇ (Ar,t[µ]f
)∥∥
Bd ≤ e(

3
2K∞C1|||µ|||B?+|||∇u|||)(t−r)1(t− r ≤ t0)×(
‖∇f‖Bd +

3K∞C2t0|||µ|||B?

2

(
1 +

3

2
K∞C1|||µ|||B?(t− r)

)
‖f‖B

)
. (7)

For the f part of the D-norm use Proposition 23, the first statement of that proposition also established the
boundary condition forD. Differentiation in r and t is performed term by term in the infinite sum from Definition 20.

These results concerning the dual propagators are concluded by showing Lipschitz continuity in the measure
valued path parameter.

Proposition 26. Let T > 0, suppose µ, ν ∈ L∞ ([0, T ), (M, ‖·‖B?)), 0 ≤ s ≤ t < T and H1 holds, then∥∥As,t[µ]−As,t[ν]
∥∥
B→B

≤ 3

2
K∞C1e

3K∞C1 max(|||µ|||B? ,|||ν|||B? )(t−s)1(t− s ≤ t0) ess sup
r∈[s,t]

‖µr − νr‖B? dr.
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and∥∥As,t[µ]−As,t[ν]
∥∥
B→B

≤ 3

2
K∞C1(t− s)e 3

2K∞C1 max(|||µ|||B? ,|||ν|||B? )(t−s)1(t− s ≤ t0)

∫ t

s

‖µr − νr‖B? dr.

Proof. Write M = max(|||µ|||B? , |||ν|||B?) and show by induction that∥∥Ur,s1Hs1 [µ] · · ·Usm−1,smHsm [µ]Usm,t − Ur,s1Hs1 [ν] · · ·Usm−1,smHsm [ν]Usm,t
∥∥
B→B

≤ 3

2
K∞C1

(
3

2
K∞C1M

)m−1 m∑
j=1

∥∥µsj − νsj∥∥B? . (8)

This result exploits a small amount of additional problem structure to adapt the method set out in the proof of
Theorem 2.12 in [7]. The key is that the parameterisation only affects the coagulation (H) part of the propagator,
which has a bounded generator, while the transport (U ) part of the propagator, which has an unbounded generator
is independent of the parameterisation by µ and ν.

4 Operators on the Space of Measures

Under the duality pairing of B and M given by 〈f, µ〉 =
∫
X×Y fµ(dx, dy) as used above, (dual) operators

B → B define (pre-dual) operatorsM→M with the same operator norms.

Definition 27. Let 0 ≤ s ≤ t < T and µ ∈ L∞ ([0, T ), (M, ‖·‖B?)). For the pre-duals of Us,t and As,t[µ]

write Ũ t,s and Ãt,s[µ] respectively and note the reversal of the time indices. For the pre-dual ofHt[µ] write H̃t[µ].

It is emphasised that As,t[µ] acts on functions while Ãt,s[µ] acts on measures, but both are parameterised by a
measure-valued path µ.

The existence of the dual operators and their norm estimates is immediate, see for example [7, Thrm 2.10]. The
duality relations yield:

Proposition 28. Let 0 ≤ s ≤ t < T , µ, ν ∈ L∞ ([0, T ),M) and assume H1 holds, then∥∥∥Ãt,s[µ]
∥∥∥
M→M

=
∥∥As,t[µ]

∥∥
B→B ≤ e

3
2K∞C1|||µ|||B? (t−s)1 (t− s ≤ t0) ,

along with∥∥∥Ãt,s[µ]− Ãt,s[ν]
∥∥∥
M→M

=
∥∥As,t[µ]−As,t[ν]

∥∥
B→B

≤ 3

2
K∞C1e

3K∞C1 max(|||µ|||B? ,|||ν|||B? )(t−s)1(t− s ≤ t0)

∫
r∈[s,t]

‖µr − νr‖B? dr.

and∥∥∥Ãt,s[µ]− Ãt,s[ν]
∥∥∥
M→M

=
∥∥As,t[µ]−As,t[ν]

∥∥
B→B

≤ 3

2
K∞C1(t− s)e 3

2K∞C1 max(|||µ|||B? ,|||ν|||B? )(t−s)1(t− s ≤ t0) ess sup
r∈[s,t]

‖µr − νr‖B? .

Proof. Duality and Proposition 23.
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Proposition 29. Let 0 ≤ s ≤ t < T , µ ∈ L∞ ([0, T ), (M, ‖·‖B?)), c ∈ M, f ∈ D and assume H1 holds,
then for almost all t

d

dt

〈
f, Ãt,s[µ]c

〉
=
〈
At[µ]f, Ãt,s[µ]c

〉
.

Proof. Duality and Proposition 23

4.1 The Fixed Point Mapping

This section presents a Picard iteration method for (2) highlighting the roles of theB? andD? norms on the space
of measures. The mapping that will be shown to have a fixed point is:

Definition 30. Suppose c0 ∈ M, 0 ≤ t < T , let µ ∈ L∞ ([0, T ), (M, ‖·‖B?)) and suppose H1 holds. Define
Ψc0 : L∞ ([0, T ), (M, ‖·‖B?))→ L∞ ([0, T ), (M, ‖·‖B?)) by

Ψc0(µ)(t) = Ãt,0[µ]c0 +

∫ t

0

Ãt,s[µ]Isds. (9)

Proposition 31. Under the assumptions of Definition 30 one has Ψc0(µ) ∈ Cb ([0, T ], (M, ‖·‖B?)) with

‖Ψc0(µ)(t)‖B? ≤ e
3
2K∞C1|||µ|||B? min(t,t0)

(
‖c0‖B? 1 (t− s ≤ t0) +

2 sups ‖Is‖B?

3K∞C1|||µ|||B?

)
.

The time derivative exists for almost all t ∈ (0, T ) with∥∥∥∥ d

dt
Ψc0(µ)(t)

∥∥∥∥
D?

≤ ‖It‖D? +

(
‖u‖∞ +

3

2
K∞C1 ‖µt‖B?

)
‖Ψc0(µ)(t)‖B? (10)

and if µ ∈ C ([0, T ), (M, ‖·‖B?)) then Ψc0(µ) ∈ C1 ((0, T ), (M, ‖·‖D?)) .

Proof. B? boundedness is a consequence of Proposition 28 and continuity follows from the continuity in t of
Ãt,0[µ].

For the time derivative differentiate the formula in Definition 30, and use Proposition 29.

Proposition 32. Suppose c0 ∈ M, T ∈ (0,∞), H2 or H3 holds and c : [0, T ) → (M, ‖·‖B?) is a bounded
solution to (2) with initial condition c0, then c is a fixed point of Ψc0 .

Proof. Suppose c to be a solution of (2) and let t ∈ [0, T ), then using duality and Proposition 25 one finds

∂

∂r

〈
f, Ãt,r[c]cr

〉
=
〈
f, Ãt,r[c]Ir

〉
. (11)

Integrating over r ∈ [0, t] completes the result. This (standard) argument can be found, for example, in [17,
§5.1].

Proposition 32 is the only place where one requires H2 or H3 in the existence and uniqueness analysis. This is
in order to invoke Proposition 25 and more fundamentally so that As,t[µ] preserves D; otherwise one cannot

give meaning to d
dr Ã

t,r[µ]. Without this result it still follows that the mapping Ψ has unique fixed point with all
the advertised properties (in particular solving (2)), but one cannot rule out the possibility that there are additional
(possibly less regular) solutions to (2). These conclusions are stated more formally in Proposition 35 for which two
preparatory results are needed.

Proposition 33. Let c0 ∈M, M ∈ R+ be large enough to satisfy

M > ‖c0‖B? +
2 sups ‖Is‖B?

3K∞C1M
,

define EM = {µ ∈M : ‖µ‖B? ≤M} and assume H1 holds. Then there exists a τM > 0 such that Ψc0

preserves L∞ ([0, τM ), (EM , ‖·‖B?)).
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Proof. Let rM > 1 be given by

rM

(
‖c0‖B? +

2 sups ‖Is‖B?

3K∞C1M

)
= M (12)

and suppose µ ∈ L∞ ([0, T ), (EM , ‖·‖B?)) for some T > 0. Use Definition 30 along with the operator norm
estimate from Proposition 28 to see that, for t < T

‖Ψc0(µ)(t)‖B? ≤ e
3
2K∞C1M min(t,t0) M

rM
(13)

and so ‖Ψc0(µ)(t)‖B? ≤M if min(t, t0) ≤ 2 log rM
3K∞C1M

. Hence it is sufficient to take τM = 2 log rM
3K∞C1M

and if t0,

the maximum residence time for a particle, satisfies t0 ≤ 2 log rM
3K∞C1M

then one may take τM =∞.

Proposition 34. Let c0 ∈ M and EM , τM be as in Proposition 33 and assume H1 holds, then there is a
τ ′M ≤ τM such that Ψc0 is a contraction on L∞ ([0, τ ′M ), (EM , ‖·‖B?)).

Proof. Suppose µ and ν are in L∞ ([0, τM ), (EM , ‖·‖B?)) f ∈ B and t ∈ [0, τM ), then by Proposition 26

‖Ψc0(µ)(t)−Ψc0(ν)(t)‖B?

≤
∥∥∥Ãt,0[µ]− Ãt,0[ν]

∥∥∥
B→B

‖c0‖B? 1 (t ≤ t0)

+

∫ t

0

∥∥∥Ãt,s[µ]− Ãt,s[ν]
∥∥∥
B→B

‖Is‖B? 1 (t− s ≤ t0) ds

≤ 3

2
K∞C1te

3
2K∞C1Mt ‖c0‖B? 1(t ≤ t0) ess sup

r∈[0,tM )

‖µr − νr‖B?

+
3

4
K∞C1 min(t2, t20)e

3
2K∞C1M min(t,t0) sup

r
‖Ir‖B? ess sup

r∈[0,tM )

‖µr − νr‖B? . (14)

Hence for any 0 < r < 1 one can find a τ ′M ≤ τM such that

sup
t∈[0,τ ′M )

∥∥Ψc0(µ1)(t)−Ψc0(µ2)(t)
∥∥
B? ≤ r ess sup

t∈[0,τ ′M )

∥∥µ1
t − µ2

t

∥∥
B? . (15)

Proposition 35. Let c0 ∈ M and EM be as in Proposition 33, τ ′M as in Proposition 34 and assume H1 holds,
then (2) with initial condition c0 has a solution on [0, τ ′M ) and this solution is in Cb ([0, τ ′M ), (EM , ‖·‖B?)). If H2
or H3 hold this solution is unique.

Proof. By Proposition 34 there is precisely one fixed point of Ψc0 , which by Proposition 31 is a solution of (2) with
initial condition c0. Proposition 33 shows that this solution is in Cb ([0, t′M ), (EM , ‖·‖B?)). By Proposition 32
every solution of (2) with initial condition c0 is a fixed point of Ψc0 and thus is unique.

Proposition 36. Let T > 0, assume H1 and suppose Ψµ0
and Ψν0 have fixed points µ and ν respectively. Write

M = max (|||µ|||B? , |||ν|||B?), then there exists C4(M) > 0 such that for t ≤ T

‖µt − νt‖B? ≤ ‖µ0 − ν0‖B? e
3
2K∞C1M min(t,t0)eC4(M)t

and thus at most one finite solution is possible for any given initial condition.

Proof. Since any solution must be a fixed point of Ψ for the appropriate initial condition

‖µt − νt‖B? = ‖Ψµ0(µ)(t)−Ψν0(ν)(t)‖B?

≤ ‖Ψµ0(µ)(t)−Ψµ0(ν)(t)‖B? + ‖Ψµ0(ν)(t)−Ψν0(ν)(t)‖B? . (16)
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Now by Proposition 28 estimate the second term as follows

‖Ψµ0
(ν)(t)−Ψν0(ν)(t)‖B? =

∥∥∥Ãt,0[ν] (µ0 − ν0)
∥∥∥
B?
≤ e

3
2K∞C1Mt1 (t ≤ t0) ‖µ0 − ν0‖B? . (17)

For the first term using Proposition 28 one finds

‖Ψµ0(µ)(t)−Ψµ0(ν)(t)‖B?

≤
∥∥∥Ãt,0[µ]− Ãt,0[ν]

∥∥∥
B→B

‖µ0‖B? 1 (t ≤ t0)

+

∫ t

0

∥∥∥Ãt,s[µ]− Ãt,s[ν]
∥∥∥
B→B

‖Is‖B? 1 (t− s ≤ t0) ds

≤ 3

2
K∞C1e

3K∞C1Mt ‖µ0‖B? 1(t ≤ t0)

∫
r∈[0,T )

‖µr − νr‖B? dr

+
3

2
K∞C1e

3K∞C1M min(t,t0) min(t, t0) sup
r
‖Ir‖B?

∫
r∈[0,T )

‖µr − νr‖B? . (18)

so using Gronwall with

C4(M) =
3

2
K∞C1e

3
2K∞C1Mt0

(∥∥c10∥∥B? + t0 sup
r
‖Ir‖B?

)
(19)

one has
‖µt − νt‖B? ≤ ‖µ0 − ν0‖B? e

3
2K∞C1M min(t,t0)eC4(M)t. (20)

Proof of Theorem 10. The existence of a solution on a small time interval is the conclusion of Proposition 35, this
procedure may be iterated, but the time steps may decay so that a solution cannot necessarily be constructed for
all time.

Proposition 32 establishes a representation for any solutions, should they exist. Using this representation bounded-
ness and continuity in the B?-norm along with differentiability in the D?-norm were established in Proposition 31.

For compact subsets of the time interval on which a solution exists (which may be longer than the time inter-
val for which this theorem proves existence), B? Lipschitz continuity in the initial conditions and uniqueness are
consequences of Proposition 36.

4.2 Positive Measures

Write B+ for the cone of non-negative functions in B andM+,M+
0,∞ for the cone of non-negative measures

in M, respectively M0,∞. These cones are of course not Banach spaces, but one would expect the physical
solutions of any reaction–transport problem to remain inM+, if they start there. This is indeed the case and turns
out to allow the local existence result for the coagulation–transport problem studied here to be extended to a global
one, which along with the results already established makes the problem well posed.

Proposition 37. Let T > 0 and µ ∈ L∞ ([0, T ), (M+, ‖·‖B?)), then for 0 ≤ s ≤ t < T As,t[µ] is a positivity

preserving on B, the same is true of Ãt,s[µ] onM and both operators are contractions on the respective positive
cones, that is ∥∥As,t[µ]f

∥∥
B
≤ ‖f‖B , f ∈ B

+,
∥∥∥Ãt,s[µ]ν

∥∥∥
B?
≤ ‖ν‖B? , ν ∈M+.

Proof. A proof for the dual propagators on B suffices. For this note that Us,t is positivity preserving with B-
operator norm 1. One further checks that Ht[µ] generates a positivity preserving propagator with operator norm
at most 1 on B+, which will be denoted Hs,t[µ]. One can now approximate As,t[µ] by

U t,tm−1Ht,tm−1 [µ] · · ·U t1,t2Ht1,t2 [µ]Us,t1Hs,t1 [µ], ti = s+ i
t− s
m

, i = 1, . . .m− 1, m ∈ N (21)
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which is a splitting, to see positivity is preserved and the operator norm is bounded above by 1.

The key estimate from Proposition 31 can now be improved (recall t0 is the maximum particle residence time from
§2.1):

Proposition 38. Assume H1 holds, c0 ∈M+ and µ ∈ L∞ ([0, T ),M+) for T ∈ [0,∞) then

‖Ψc0(µ)(t)‖B? ≤ ‖c0‖B? 1 (t ≤ t0) + min(t, t0) sup
s
‖Is‖B? .

Proof. This follows from Definition 30, and the norm estimates in Proposition 37.

Proof of Theorem 11. One can take M = ‖c0‖B? + t0 sups ‖Is‖B? and tM = ∞ in Proposition 33. Proposi-
tion 34 then extends to show that Ψc0 is a contraction on L∞ ([0,∞), EM ∩M+).

4.3 Measures with Lebesgue Densities

One would of course like to prove that every measure valued to solution to (2) is in fact also a strong solution
to an appropriate extension of (1). The main difficulty that has to be addressed in this section is the inflow of
pre-existing particles through Γin which leads to It having a singular (with respect to Lebesgue measure on X )
part concentrated on Γin. In this section it is shown that under a mild time-regularity condition (I2) the advective
transport smooths out the inception concentrated on Γin sufficiently for solutions to (2) to remain inM0,∞. Shocks
are of course preserved by advective transport, but what happens here is more like spraying paint onto a moving
surface, as long as the surface keeps moving a thin layer of paint is deposited everywhere and no ridge (shock) is
created.

Proposition 39. Assume H1 holds, 0 ≤ s ≤ t < T , µ ∈ L∞ ([0, T ), (M, ‖·‖B?)), then

Ãt,s[µ] = Ũ t,s +

∞∑
m=1

∫
r≤s1≤...≤sm≤t

Ũ t,smH̃sm [µ]Ũsm,sm−1 · · · H̃s1 [µ]Ũr,s1ds1 · · · dsm.

Proof. For each m the term in the sum here is dual to the term with the same m in Definition 20.

Proposition 40. Assume H1 holds, 0 ≤ s ≤ t < T , µ ∈ L∞ ([0, T ), (M, ‖·‖B?)) and c ∈ M0,∞, then for
any φ ∈ Bb(Y) and bounded measurable f : X → R∫

X
f(x)

∫
Y
φ(y)Ũ t,sc(x, dy)dx =

∫
X
f(x)e−

∫ t
s
∇·ur(Φt,r(x))dr

∫
Y
φ(y)c (Φt,s(x),dy) dx

and∫
Y
φ(y)H̃t[µ]c(x,dy) =

∫
Y

1

2

∫
X×Y

φ(y + y2)h(x, x2)K(y, y2)µt(dx2,dy2)c(x, dy)

−
∫
Y

1

2

∫
X×Y

φ(y) [h(x, x2) + h(x2, x)]K(y, y2)µt(dx2,dy2)c(x, dy).

Proof. For the first statement, which concerns the transport propagator U , one makes the change of variable x↔
Φs,t(x). Liouville’s formula then gives the determinant of the Jacobian as

∣∣∣det
∂Φs,t(x)
∂x

∣∣∣ = exp
∫ t
s
∇ · ut (Φt,r(x)) dr.

Alternatively one can approximate c by X -differentiable functions (since the claim is only of an L1 nature) and
check the formula directly using Proposition 59.

For Ht use Definition 15; the important point is that the new measure also has a density with respect to Lebesgue
measure on X .
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Proposition 41. Assume H1 holds, 0 ≤ s ≤ t < T , µ ∈ L∞ ([0, T ), (M, ‖·‖B?)) then Ãt,s[µ] is a bounded
propagator onM0,∞ with∥∥∥Ãt,s[µ]

∥∥∥
M0,∞→M0,∞

≤ e(‖∇·u‖∞+ 3
2K∞C1|||µ|||B?)(t−s)1(t− s ≤ t0).

Proof. From Proposition 40 one sees that∥∥∥Ũ t,s∥∥∥
M0,∞→M0,∞

≤ e‖∇·u‖∞(t−s)

and ∥∥∥H̃t[µ]
∥∥∥
M0,∞→M0,∞

≤ 3

2
K∞C1|||µ|||B? .

The proof now follows that of Proposition 23.

The Ũ and therefore also the Ã are not (norm-)continuous onM0,∞. This can easily be seen by considering a
small translation of a step function regarded as the density of a measure inM0,∞. The eventual time continuity of
the solutions will depend on having some X -regularity for the densities of the measures inM0,∞.

The next proposition provides a better norm estimate when the propagator is restricted to positive measures. This
is then used in Propositions 43&44 to show that inception concentrated on the inflow boundary does not take the
solution out ofM0,∞.

Proposition 42. Assume H1 holds, 0 ≤ s ≤ t < T , µ ∈ L∞ ([0, T ), (M+, ‖·‖B?)) and let c ∈ M0,∞ be a

positive measure, then Ãt,s[µ]c is also a positive measure and∥∥∥Ãt,s[µ]c
∥∥∥
M0,∞

≤ e‖∇·u‖∞(t−s)1(t− s ≤ t0) ‖c‖M0,∞
.

Proof. Since M0,∞ ⊂ M preservation of positivity is a consequence of Proposition 37 and Proposition 40

states theM0,∞ is preserved. To proceed note that the propagator generated by H̃t[µ] preservesM+
0,∞ not just

M0,∞ and coagulation reduces c(x,Y) = ‖c(x, ·)‖Y−TV for all x ∈ X . Secondly Ũ t,s is positivity preserving

and
∥∥∥Ũ t,s∥∥∥

M0,∞
≤ e‖∇·u‖(t−s) using the representation from Proposition 40 so the result now follows by the

same splitting approximation as in the proof of Proposition 37.

Proposition 43. Let T > 0, and ν : [0, T ) → M be such that (note the reduction in the domain of integration
accompanied by a change in the position of the time argument)∫

X×Y
f(x, y)νt(dx, dy) =

∫
Γin×Y

f(ξ, y)ν(t, ξ,dy)dξ ∀f ∈ B ∀t ∈ [0, T ).

Suppose further that there is a ν∗ ∈ (0,∞) such that supt∈[0,T ),ξ∈Γin
‖ν(t, ξ, ·)‖Y−TV /ut(ξ) · n(ξ) ≤ ν∗,

then
∫ t

0
Ũ t,sνsds ∈ L∞ ([0, T ),M0,∞) and for all (not just almost all) t < T∥∥∥∥∫ t

0

Ũ t,sνsds

∥∥∥∥
M0,∞

≤ ν∗e‖∇·u‖∞min(t,t0).

Proof. Let ξ ∈ Γin and take an orthonormal basis for Rd at ξ given by e1 = n(ξ) the outward normal and
e2, . . . , ed ∈ Γin. With respect to this basis let the rows of the matrix ∇Φr,t(x) |x=ξ be ∂iΦr,t(x) |x=ξ . Thus

rows 2, . . . , d of this matrix are the same as rows 2, . . . , d of ∂Φr,t(ξ)
∂(r,ξ) and using Proposition 59 the first row is

∂

∂r
Φr,t(ξ) = −∇Φr,t(x) |x=ξ ur(ξ) =

−
d∑
i=1

∇Φr,t(x) |x=ξ ei (ei · ur(ξ)) = −
d∑
i=1

∂iΦr,t(x) |x=ξ (ei · ur(ξ)) , (22)
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which is ± (∂1Φr,t(x) |x=ξ) (n(ξ) · ur(ξ)) plus a linear combination of the remaining rows. One thus has for
ξ ∈ Γin

det

(
∂Φr,t(ξ)

∂(r, ξ)

)
= −ur(ξ) · n(ξ) det (∇Φr,t(x))

∣∣∣∣
x=ξ

. (23)

Now let f ∈ B with f (Φr,t(ξ), y) = 0 for Φr,t(ξ) /∈ X as in the definition of Ur,t so〈
f,

∫ t

s

Ũ t,rνrdr

〉
=

∫ t

s

∫
Γin

∫
Y
f (Φr,t(ξ), y) ν(r, ξ,dy)dξdr

=

∫
x : x=Φr,t(ξ)
r∈(s,t),ξ∈Γin

det

(
∂Φr,t(ξ)

∂(r, ξ)

)−1 ∫
Y
f (x, y) ν(r, ξ,dy)dx

=

∫
x : x=Φr,t(ξ)
r∈(s,t),ξ∈Γin

∣∣∣det (∇Φr,t(ξ))
−1
∣∣∣ ‖f (x, ·)‖Y−∞ |ur(ξ) · n(ξ)|−1 ‖ν̂(x, ·)‖ dx

≤ e‖∇·u‖∞min(t−s,t0)ν∗

∫
x : x=Φr,t(ξ)
r∈(s,t),ξ∈Γin

‖f (x, ·)‖Y−∞ dx, (24)

where ν̂(x, dy) is defined to be ν(r, ξ,dy) for the unique r, ξ such that Φr,t(ξ) = x. Proposition 60 in the
Appendix provides the estimate for the determinant.

Proposition 44. Let T > 0 and µ ∈ L∞ ([0, T ), (M+, ‖·‖B?)), then under the conditions of Proposition 43∥∥∥∥∫ t

0

Ãt,s[µ]νsds

∥∥∥∥
M0,∞→M0,∞

≤ ν∗e‖∇·u‖∞min(t,t0).

Proof. Use the series expansion from Proposition 39 and theM0,∞-operator norm estimates from Proposition 42.

Proof of Theorem 12. Theorem 11 provides the existence of a solution c. Proposition 32 shows that this solution
satisfies

ct = Ãt,0[c]c0 +

∫ t

0

Ãt,s[c]Isds t ≥ 0. (25)

Propositions 42&44 show that this is inM0,∞ for all times. The boundedness follows from the estimates in the
same two propositions.

In order to obtain a strong solution to (2) it is not sufficient that the measure valued solutions have a density with
respect to Lebesgue measure on X , this density should itself have a derivative.

4.4 Differentiability

One could proceed as in Proposition 25 to see that Ãt,s[c] preserves measures with X -differentiable densities
except for possible jumps where s, t, x are such that Φt,s(x) ∈ Γin. This leaves two questions open—how to
handle these jumps and secondly the treatment of the integral term from (25) and in particular the Ibdry part of I
in that integral. The right approach to these tasks seems to be to introduce the space of measures withX -bounded
variation densities:

Definition 45.

MBV =
{
c ∈M0,∞ : (∃C = C(c))

(
∀f ∈ Dd

)
(〈∇ · f, c〉 ≤ C ‖f‖Bd)

}
.
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This is equivalent to the existence of a measure ∇c ∈ Md (not necessarily in M0,∞) such that 〈∇f, c〉 =
−〈f,∇c〉.

Until now the notation 〈f, µ〉 has been used for
∫
X×Y f(x, y)µ(dx, dy) for f ∈ B and µ ∈ M. To consider

derivatives it is necessary to move to vector valued functions and measures; to facilitate this the notation is extended
so that for g ∈ Bd and ν ∈Md

〈g, ν〉 :=

d∑
i=1

∫
X×Y

gi(x, y)νi(dx,dy). (26)

Some more definitions are now needed for the proof that
∫ t

0
Ãt,sIsds and by extension the entire solution isMBV.

First recall s(t, x) from §2.1, the time at which a particle travelling with the flow must have entered the domain in
order to reach x at time t. Since t is fixed in the relevant places s(x) will be written for brevity in numerous sub-
and superscripts, the t should be understood.

Definition 46. Let f ∈ B, t > 0 andµ ∈ C ([0, t],M). Define f0
r,t = Ur,tf , and fm+1

r,t =
∫ t
r
Ur,sHs[µ]fms,tds

as in Definition 21. The define f̃ by

f̃mr,t(x, y) = fmr,t (Φt,r(x), y)1 (Φt,r(x) ∈ X )

the operators Sr,t : B → B by

Sr,tf(x, y) =

∞∑
m=0

f̃mr,t(x, y)

and finally the operator St : B → B by

Stf(x, y) = Ss(x),tf(x, y) =

∞∑
m=0

f̃ms(x),t(x, y).

This operator can also be regarded as acting on Bd by applying it componentwise.

Proposition 47. Let f ∈ B or f ∈ Bd, t > 0 and µ ∈ C ([0, t],M), then∥∥Gtf(x, ·)
∥∥
Y−∞ ≤ e

3
2K∞C1|||µ|||B? (t−s(x)) ‖f(x, ·)‖Y−∞

for all x ∈ X and the operator even preserves D.

Proof. This is an exercise in estimating the terms of the summation as in Propositions 22&24.

Proposition 48. Let F ∈ Dd, t > 0 and µ ∈ C ([0, t],M), then the operator (∇ · St) : Dd → B defined by(
∇ · St

)
F = ∇ ·

(
StF

)
− St (∇ · F )

satisfies∥∥(∇ · St)F (x, ·)
∥∥
Y−∞ ≤ ‖F (x, ·)‖Y−∞×

(3K∞C2t0|||µ|||B? + ‖∇s‖∞)

(
1 +

3

2
K∞C1|||µ|||B? (t− s(x))

)
e

3
2K∞C1|||µ|||B? (t−s(x))

for all x ∈ X . Of course St depends on µ, but since this will always be the unique solution to (2) this detail is
ignored in the notation.

Proof. Define F̃mr,t by replacing f with F throughout Definition 46 and let f = ∇ · F and let f̃mr,t be as in
Definition 46. By induction one establishes∥∥∥∇ · F̃mr,t(x, ·)− f̃mr,t(x, ·)∥∥∥Y−∞ ≤ ‖F (x, ·)‖Y−∞×

3

2
K∞C2t0|||µ|||B?m

(
3

2
K∞C2t0|||µ|||B?

)m−1
(t− s(x))

m−1

(m− 1)!
. (27)

One then establishes a similar formula with r replaced by s(x) and the result follows.
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Proposition 49. Assume H2 or H3 holds, that c0 is in the positive cone ofMBV, and that I3 is satisfied, then the
unique solution c to (2) given by Theorem 12 satisfies ct ∈MBV ∀t ∈ R+.

Proof. Following (25) and §2.5 ct can be decomposed as

ct = Ãt,0[c]c0 +

∫ t

0

Ãt,s[c]Iint(s)ds+

∫ t

0

Ãt,s[c]Ibdry(s)ds. (28)

One checks in the same way as for the dual propagator in Proposition 24 that Ãt,s[c] preservesMBV, possibly
introducing a new jump on the manifold {x ∈ X : Φt,s(x) ∈ Γin}. This deals with the first two terms in the above
representation; the third term is somewhat more challenging.

Let F ∈ Dd and t ∈ R+, then it is sufficient to show that∫ t

0

〈
∇ · F, Ãt,s[c]Ibdry(s)

〉
ds =

∫ t

0

∫
Γin

∫
Y

(
As,t[c]f

)
(ξ, y)Ibdry(s, ξ,dy)dξds (29)

is bounded by a constant times ‖F‖Bd . One can introduce a change of variables (s, ξ) ↔ x where (t is fixed)
Φs,t(ξ) = x, so ξ = Φt,s(x) is the point where fluid reaching x at time t entered the domain and the time of
entry was s. The determinant of the Jacobian for this transformation is the inverse of

det
∂Φs,t(ξ)

∂(s, ξ)
= −e−

∫ t
s
∇·ur(Φt,r(x))drus(ξ) · n(ξ) (30)

by Proposition 60 and the additional factor of −us(ξ) · n(ξ) comes from replacing the X direction perpendicular
to Γin with s (ξ lives in the d− 1 dimensional manifold Γin) so∫ t

0

〈
∇ · F, Ãt,s[c]Ibdry(s)

〉
ds =

−
∫
X

∫
Y

(
St∇ · F

)
(x, y)e

∫ t
s
∇·ur(Φt,r(x))dr

(
us(x)(ξ(x)) · n(ξ(x))

)−1
Ibdry(s(x), ξ(x),dy)dx

=
〈
St∇ · F, νt

〉
(31)

where
νt(x, dy) = e

∫ t
s
∇·ur(Φt,r(x))dr

(
us(x)(ξ(x)) · n(ξ(x))

)−1
Ibdry(s(x), ξ(x),dy). (32)

Writing
St∇ · F = ∇ ·

(
StF

)
−
(
∇ · St

)
F (33)

and checking that νt ∈MBV concludes the proof.

To simplify the remainder of this section it will be assumed that X = [0, L) × Γin for some L > 0, that is,
that X is a something rather like a cylinder. The results are expected to generalise, but this assumption avoids
introducing technical conditions on X . In particular x ∈ X can be written as (x1, x2, · · · , xd) for x1 ∈ [0, L)
and (x2, · · · , xd) ∈ Γin.

Proposition 50. Assume H1 and I3 hold, c ∈ L∞ ([0,∞),M0,∞) solves (2) with additionally c ∈W 1,∞ ([0,∞)×X ,M(Y)TV).
Let n(x) be the outward normal on Γin, then

u1,t(x)c(t, x,dy) = −ut(x) · n(x)c(t, x,dy) = Ibdry(t, x,dy) ∀t ∈ R+, x ∈ Γin.

Proof. Consider (2) with f(x1, x2, . . . , xd) = ε−x1

ε 1 {x1 ≤ ε} as ε→ 0.

The existence of a one or more inverses to the divergence operator is necessary to avoid making statements about
an empty set of functions in the remainder of this section.
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Proposition 51. Let f ∈ D, then there exists g ∈ Dd such that ∇ · g ≡ f and g · n = 0 on Γside, where n is
the outward normal.

Proof. Take g(x1, x2, . . . , xd, y) = (g1, g2, . . . , gd) where

g1(x1, x2, . . . , xd, y) = −
∫ L

x1

f(ξ, x2, . . . , xd, y)dξ (34)

and gi ≡ 0 for i > 1. This construction has a natural generalisation in terms of path integrals. It is not important
exactly which end point on Γout is chosen because f = 0 all along this boundary.

This representation is not in general unique. Consider for example the case where f = 0 on Γside and take
integrals along lines perpendicular to the direction used in the above proof.

If c solves (2), f ∈ D and g : X → Cb(Y)d is differentiable with ∇ · g ≡ f and g · n = 0 on Γside for normal
vectors n, then applying the divergence theorem to (2) (at this stage in a purely formal calculation) suggests

d

dt

∫
X×Y

g · ∇cdxdy =

∫
X×Y

u>t (∇g)∇cdxdy −
∫
X×Y

g>(∇ut)∇cdxdy

−
∫
X×Y

g · ∇(∇ · ut)cdxdy +

∫
X×Y

g · ∇Iint dxdy

+

∫
Γin×Y

g · n ∂
∂t
cdxdy −

∫
Γin×Y

u>t (∇g)ncdxdy −
∫

Γin×Y
g · nIintdxdy

−
∫

Γin×Y
∇ · gIbdry dxdy +

∫
Γin×Y

g>(∇ut)nc dxdy

+
1

2

∫
X×Y

∫
Γin×Y

K(y, y2)g(x, y + y2) · n(x) (h(x, x2)ct(x, dy)) ct(x2,dy2)dx2dx

− 1

2

∫
X×Y

∫
X×Y

K(y, y2)g(x, y + y2) · ∇ (h(x, x2)ct(x, dy)) ct(x2,dy2)dx2dx

− 1

2

∫
X×Y

∫
Γin×Y

K(y, y2)g(x, y) · n(x) ((h(x, x2) + h(x2, x)) ct(x, dy)) ct(x2,dy2)dx2dx

+
1

2

∫
X×Y

∫
X×Y

K(y, y2)g(x, y) · ∇ ((h(x, x2) + h(x2, x)) ct(x,dy)) ct(x2,dy2)dx2dx. (35)

Definition 52. Define a norm onMd, which by a slight abuse of notation will also be referred to as the B?-norm
by setting ‖µ‖B? = supf∈Bd : ‖f‖B=1 |〈f, µ〉|, for µ ∈Md.

Conditions are now provided to make (35) rigorous, first by restricting the test functions to the interior of the domain,
so that the boundary terms can be ignored and then proceeding to more general test functions:

Proposition 53. Assume H2 and I3 hold and that c ∈ L∞ ([0,∞),M0,∞) solves (2). Suppose further that ct ∈
MBV for each t, so that there exist vector measures νt of finite total variation such that 〈∇ · f, ct〉 = −〈f, νt〉
for all f ∈ Dd. This means that ν ∈ L∞

(
[0,∞), (Md, ‖·‖B?)

)
and in particular for all g ∈ C1

K

(
X ◦,Bb(Y)d

)
,

the space of once continuously differentiable functions with compact support strictly contained in the interior X ◦ of
X that also satisfy∇ · g ∈ D (for example g ∈ C2

K

(
X ◦,Bb(Y)d

)
) one has

d

dt
〈g, νt〉 =

〈
(∇g)>ut, νt

〉
−
〈
(∇ut)>g, νt

〉
− 〈g · ∇ (∇ · u) , ct〉+ 〈g,∇Iint,t〉+

〈
Ĥt[c]g, νt

〉
+

1

2

∫
X×Y

∫
X×Y

g(x, y + y2)K(y, y2)ĉt(x,dy) · (∇xh(x, ξ)(dx)) ct(ξ,dy2)dξ

− 1

2

∫
X×Y

∫
X×Y

g(x, y)K(y, y2)ĉt(x, dy) · (∇x [h(x, ξ) + h(ξ, x)] (dx)) ct(ξ,dy2)dξ.
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Here Ĥt[c] is a bounded linear operator mapping B → B acting componentwise on g with
∥∥∥Ĥt[c]

∥∥∥
B→B

=

‖Ht[c]‖B→B and Ĥt[c]g(x, y) = Ht[c]g(x, y) (recall Ht is specified in Definition 15) for all y and all x except
possibly x at which h and c both have discontinuities, which is a set of (Rd-Lebesgue) measure 0. Similarly
‖ĉ‖M0,∞

= ‖c‖M0,∞
with possible differences between c and ĉ on the same set of measure 0. Because h is

only assumed to be of bounded variation, it only has a weak derivative; in the case of the weak derivative with
respect to the first argument this is written∇xh(x, ξ)(dx).

Proof. The boundary integrals on Γ vanish because g is zero here. Note that the product of two functions of
bounded variation (c and the h in the definition of H) is itself of bounded variation, but the Leibniz product rule
for differentiation has to be adapted slightly at points where both are discontinuous (yielding Ĥ and ĉ). The details
follow from [2, Theorem 3.96 & Example 3.97]. In one dimension this amounts to adjustments to give left or right
continuity at the jump points.

The terms in the preceding expression can be grouped as follows (c is in this context known):

� Transport
〈
u>t ∇g, νt

〉
= 〈Utg, νt〉 (note∇g is a matrix),

� linear reactions −〈g∇ut, νt〉+
〈
Ĥt[c]g, νt

〉
,

� source terms, which are collected as a vector measure Ĵt[c] so that, for g ∈ CK

(
X ◦,Bb(Y)d

)
〈
g, Ĵt[c]

〉
= −〈g · ∇ (∇ · u) , ct〉+ 〈g,∇Iint,t〉

+
1

2

∫
X×Y

∫
X×Y

g(x, y + y2)K(y, y2)ĉt(x, dy) (∇xh(x, ξ)(dx)) ct(ξ,dy2)dξ

− 1

2

∫
X×Y

∫
X×Y

g(x, y)K(y, y2)ĉt(x, dy) (∇x [h(x, ξ) + h(ξ, x)] (dx)) ct(ξ,dy2)dξ. (36)

This characterisation is however limited to functions with compact support in the interior of X . It can only give
information about how a solution changes within X , it says nothing about what might happen on Γin. Including the
boundary terms in the integration by parts/Gauss Theorem used for Proposition 53 yields the following additional
terms. That these are the correct additional terms is part of the assertion of Proposition 57.

Definition 54. Let c ∈ L∞ ([0,∞),M0,∞) and define a vector measure Jt[c] on X × Y by

〈g, Jt[c]〉 =
〈
g, Ĵt[c]

〉
+∫

Γin×Y
g(x, y) · n(x)

(
∂

∂t

Ibdry(t, x,dy)

ut(x) · n(x)
+ Iint(t, x,dy)−∇Γ ·

(
ut(x)Ibdry(t, x,dy)

ut(x) · n(x)

))
dx

− 1

2

∫
X×Y

∫
Γin×Y

K(y, y2)g(x, y) · n(x) ((h(x, x2) + h(x2, x)))
Ibdry(t, x,dy)

ut(x) · n(x)
ct(x2,dy2)dx2dx

+

∫
Γin×Y

g(x, y) · ∇ΓIbdry(t, x,dy)dx−
∫

Γin×Y

Ibdry(t, x,dy)

ut(x) · n(x)
g(x, y) · (∇Γn(x))

>
ut(x)dx

for g ∈ Bd and where∇Γ is the derivative restricted to directions perpendicular to n(x). Under the assumptions
on X set out above∇Γ = (0, ∂

∂x2
, . . . , ∂

∂xd
).

Definition 55. For c ∈ L∞ ([0,∞),M0,∞) define time dependent linear operators G̃t[c] onMd by
〈
g, G̃t[c]ν

〉
=

−〈g · ∇ut, ν〉+
〈
Ĥt[c]g, ν

〉
for all g ∈ Bd.
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One can now compactly rewrite the equation from Proposition 53 as (compare (3))

d

dt
〈g, νt〉 =

〈
g, Ũtνt

〉
+
〈
g, G̃t[c]νt

〉
+ 〈g, Jt[c]〉 (37)

for all g ∈ Bd such that ∇ · g ∈ D. The additional terms introduced in Definition 54 are not seen by the smaller
class of test functions used in Proposition 53.

Proposition 56. Assume H1 holds and that c ∈ L∞ ([0,∞),M0,∞), then there is a strongly continuous,

bounded propagator Ṽ t,s[c] onMd with∥∥∥Ṽ t,s[c]∥∥∥
Md→Md

≤ e(
3
2K∞C1|||c|||B?+|||∇u|||) min(t−s,t0)

and for f ∈ D, µ ∈Md

d

dt

〈
f, Ṽ t,s[c]µ

〉
=
〈
f,
(
Ũt + G̃t[c]

)
Ṽ t,s[c]µ

〉
.

Proof. This follows the same perturbation argument as Proposition 23 since by duality
∥∥∥G̃t[c]∥∥∥

Md→Md
≤

3
2K∞C1|||c|||B? + |||∇u|||.

Proposition 57. Let I3 hold; assume further that either d = 1, H2 holds and inft,x ut(x) > 0 or H3 holds for
general d; assume further that c ∈ L∞ ([0,∞),M0,∞), then (37) has a unique solution

νt = Ṽ t,0[c]ν0 +

∫ t

0

Ṽ t,s[c]Js[c]ds ∈ C
(
[0,∞),

(
Md, ‖·‖B?

))
with initial condition ν0. This solution is in L∞

(
[0,∞),Md

0,∞
)

provided ν0 ∈ Md
0,∞ and thus (identifying the

measure with its X -density) also in L∞
(
[0,∞)×X ,M(Y)dTV

)
.

Proof. Existence and uniqueness are immediate for this linear problem. Continuity in the B?-norm follows from
the strong continuity in t of Ṽ t,s.

That the propagators Ṽ t,s preserveMd
0,∞ can be seen by analogy with Proposition 41. Definition 54 expresses

the Jt[c] as a sum of Ĵt[c] and a term concentrated on the inflow boundary. Under H3 Ĵt[c] ∈Md
0,∞ and so one

argues as in Propositions 43&44 to show that
∫ t

0
Ṽ t,s[c]Js[c]ds has a density with respect to Lebesgue measure

on X .

In the case when only H2 holds, then the x-derivatives of h in (36) may only exist in a distributional sense. However,
under H2, the measure ∇xh(x, ξ)(dx) can be expressed as a sum of an absolutely continuous part with a
bounded density and a finite number of atomsαk(t)δak withαk(t) ∈ R, ak ∈ X ⊂ R. When d = 1 each of these
atoms is like a simpler version of the boundary part of the inception measure, which in this case reduces under the
assumption I2 (see § 2.5) to Ibdry(t, dy)δ0(dx). The boundedness (uniform in t and k) of the αk(t) is immediate
from the boundedness ofK and c and since u is bounded away from 0 the analysis of Propositions 43&44 applies
to show that for each k and all t ∫ t

0

Ṽ t,s[c]αk(t)δakds ∈Md
0,∞ (38)

with a global in time bound in theM0,∞-norm.

Proof of Theorem 13. For d = 1 assume without loss of generality that X = [0, L) for some L > 0 and Γin =

{0}. The boundary condition c(t, 0,dy) =
Ibdry(t,0,dy)

ut(0) is given by Proposition 50. The presumed derivative ν
from Proposition 57 is then used to construct

c̃(t, x,dy) =
Ibdry(t, 0,dy)

ut(0)
+

∫ x

0

ν(t, ξ,dy)dξ, (39)
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which is readily seen to be a strong solution to (2) and therefore to be in the same L∞ ([0,∞),M0,∞) equiv-
alence class as c. Therefore (a version of) c is in L∞

(
[0,∞),W 1,∞ (X ,M(Y)TV)

)
and since d

dtc can be

expressed in terms of c and d
dxc the result follows.

This argument does not generalise easily to more then one space dimension. However the existence of a weak
derivative was shown in Proposition 49 and under H3 Proposition 57 shows that this weak derivative in fact has an
L∞ density. The boundary condition comes from Proposition 50.

5 Discussion

This paper proves the well posedness of an equation for measures, modelling the creation and coagulation of
particles in a flow, for example a flame, for which stochastic approximations were studied in [14]. In that work the
existence of one or more non-negative solutions was proved under somewhat less general assumptions there by
constructing the solutions as limits of stochastic approximations. The present work extends this result by showing
that there is in fact only one solution to the equation for a given initial condition and thus that all limit points of the
approximating sequence from [14] are the same and those approximations converge rather than merely having
convergent sub-sequences. The present work incidentally provides an additional, less constructive proof of the
existence of a solution to (2).

It is proved here and in [14] that solutions to (2) have a density with respect to Lebesgue measure on X and
that this is uniformly bounded in time and in X . The differentiability of the density is established here even for
delocalisations that are of bounded variation, but only in one spatial dimension. This result does not extend in full
generality to higher spatial dimensions—it is easy to imagine two parallel streams of particles that never mix and
therefore not even continuity over the dividing line in the flow, much less differentiability, is to be expected. It seems
therefore likely that the discontinuous, cell based delocalisation of the coagulation interaction used for numerical
purposes in [15] is not well suited to more than one spatial dimension and that smoother delocalisations should be
used. Similar methods have been used for the simulation of Boltzmann gases[13].
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A The flow field

Definition 58. Let s, t ∈ R and define the flows Φs,t by

∂

∂t
Φs,t(x) = ut (Φs,t(x)) , Φs,s(x) = x.

Φ is a vector, so in more than one dimension it is necessary to distinguish between the matrix ∇Φ, which is the
subject of the next two propositions and the divergence, a real number∇ · Φ, which occurs in connection with the
velocity field u.
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Proposition 59.
∂

∂s
Φs,t(x) = −∇Φs,t(x)us(x).

Proof.

lim
δ↘0

Φs,t(x)− Φs−δ,t(x)

δ
= lim
δ↘0

Φs,t(x)− Φs,t (Φs−δ,s(x))

δ

= lim
δ↘0

∇Φs,t(x) (x− Φs−δ,s(x))

δ
= −∇Φs,t(x)us(x). (40)

The right sided limit is dealt with similarly.

Proposition 60.
e−|||∇u|||(t−s) ≤ ‖∇Φs,t(x)‖Rd→Rd ≤ e|||∇u|||(t−s).

and
det∇Φs,t(x) = e

∫ t
s
∇·ur(Φs,r(x))dr, det∇Φt,s(x) = e−

∫ t
s
∇·ur(Φt,r(x))dr.

Proof. For the first statement one has ∂
∂tΦs,t(x) = ut (Φs,t(x)) so that, since u and therefore Φ are both

smooth,
∂

∂t
∇Φs,t(x) = ∇ut (Φs,t(x))∇Φs,t(x) (41)

and the result follows by an application of Gronwall’s inequality.

The result for the determinant is known as Liouville’s formula. One checks by row operations that det∇ut (Φs,t(x))∇Φs,t(x) =
Tr(∇u) det (∇Φs,t(x)) and the result that follows by solving the resulting ODEs.
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