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ABSTRACT

In a first part we consider evolutionary systems given as generalized gradient
systems and discuss various variational principles that can be used to construct
solutions for a given system or to derive the limit dynamics for multiscale
problems. These multiscale limits are formulated in the theory of evolutionary
Gamma-convergence. On the one hand we consider the a family of viscous
gradient system with quadratic dissipation potentials and a wiggly energy
landscape that converge to a rate-independent system. On the other hand we
show how the concept of Balanced-Viscosity solution arise as in the vanishing-
viscosity limit.

As applications we discuss, first, the evolution of laminate microstructures in
finite-strain elastoplasticity and, second, a two-phase model for shape-memory
materials, where H-measures are used to construct the mutual recovery se-
quences needed in the existence theory.

1 Introduction

This work shows how methods from abstract evolutionary systems ba be employed for the
study of material models which allow for small or finite-strain elastic deformation y and
are characterized by further internal or dissipative variables z which may describe damage,
plastic deformations, magnetization, polarization, or phase transformations. The common
feature of all models considered is their description in terms of an energy functional £ and
a dissipation potential R. Hence the evolution of the state ¢ = (y, z) can be described by
a generalized force balance, namely

0. € 93R(q(t), 4(t)) + Dg& (L, q(t)). (1)

Here 0;R(q, ¢) denotes the convex subdifferential of the dissipation potential R, where
for each state ¢ the function R(q, -) is nonnegative, convex, and lower semicontinuous and
satisfies R(q,0) = 0. Thus, the possibly set-valued subdifferential J;R(q, ¢) contains the
dissipative forces generated by the rate ¢ if the system is in the state g. These forces have
to be balanced by the potential restoring forces —D,E(t, q).

The formulation of material models in terms of the functionals £ and R instead of
general PDEs shows additional physical structure that can be exploited mathematically.
In particular, one can employ the rich theory of the calculus of variations, even for evolu-
tionary systems. As a first case, we see that a very useful time discretization of (1) can
be obtained by the time-incremental minimization problem

Qr+1 € Arg min (8(tk+17 Q) + (tir1—te) R(qro, m(q—%)))- (2)
q

In the context of abstract evolutionary systems this scheme relates to De Giorgi’s
theory of minimizing movements, and one way of obtaining solutions is via De Giorgi’s
(R, R*)-principle, also called the energy-dissipation principle (EDP), which is given by
the simple variational characterization via

S(T,Q(T))Jr/() R(q, 4)+R"(q, —=DE(t, Q))dtSS(O,Q(O))Jr/O GE(t, q)dt.
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This principle and its equivalence to (1) will be discussed in Section 2.1.

The EDP is also extremely useful for studying multiscale problems given in terms
of generalized gradient systems (X, &, R.), where ¢ € [0,1] is a small parameter. The
major question is under what conditions the solutions ¢. : [0,7] — X for (X, &, R.)
converge to a solution qq : [0,7] — X for (X, &y, Ro) in the limit ¢ — 0. If this holds and
additionally the energies converge, i.e. E.(t,q-(t)) — Eo(t, qo(t)) we call this evolutionary

['-convergence. In general, the ['-convergences &. I & and R, 5 Ry are not enough.
We discuss some of the results from [Miel4| and give applications to models with wiggly
energies, where for ¢ > 0 the dissipation potentials R.(q,v) = %(v, Ge(q)v) are quadratic
and satisfy R. — 0, but the limiting dissipation potential Ry is 1-homogeneous, such
that (X, &y, Ro) is a rate-independent system (RIS), such as linearized elastoplasticity,
see Section 4.2.

Moreover, the vanishing-viscosity limit e—0 of generalized gradient systems (X, &, R.),
where the “small-viscosity dissipation potential” has the form R.(q,v) = ¥(q, v)+5(v, Gv),
can also be studied efficiently using a reparametrized version of the EDP, see Section 4.3.
This leads to the notion of balanced-viscosity solutions (also called BV solutions) for RIS
(X,&E,¥,G), where G indicates the additional viscosity structure which determines the
jump behavior.

For purely rate-independent models it is advantageous to replace the infinitesimal
dissipation metric ¥ by the dissipation distance D(qo, ¢;) between two states zy and z.
This leads to the notion of energetic rate-independent systems (ERIS). In particular, the
time-incremental minimization (2) does not depend on the time step and can be replaced
by

¢"™" € Argmin ( E(tks1,9) + D(ar, q) ) (3)
qgeX

It was observed in [MTLO02| that all accumulation points of the piecewise interpolants
of the solutions of (3) are so-called energetic solutions, see (5) for the purely energetic
definition of this solution concept.

A corresponding notion of evolutionary I'-convergence for ERIS (X, &, R.) was de-
veloped in [MRSO08], see also [MiR15] for more details. Using this approach and the gen-
eral existence theory for finite-strain elastoplasticity from [MaM09, Miel0] it was shown
in [MiS13| that linearized elastoplasticity can be derived as the evolutionary I'-limit of
finite-strain elastoplasticity, if the yields stress is tending to 0, see Section 3.2.

In Section 5 we discuss two rate-independent material models that describe the evo-
lution of microstructures. The first one is a mathematical version of the model proposed
in [KoH11|, where laminates are considered as dissipative internal variables and equipped
with a physically motivated dissipation distance, see Section 5.1 and [HHM12|. In Section
5.2 the two-phase model introduced in [MTLO02] is reconsidered using a new construction
for mutual recovery sequences, which allows us to generalize the original existence proof
considerably.



2 Variational formulations for evolution

A main point of looking in different variational principles lies in the fact that theses
principles lead to different mathematical formulations. For instance, when looking to
global existence results for material models allowing for finite strains and the associated
geometric nonlinearities, it is highly desirable to use minimization principles on the energy
such that the rich theory of direct methods from the calculus of variations are applicable,
such as weak lower semicontinuity, existence of minimizers, I'-convergence, and relaxation
techniques.

2.1 Generalized gradient systems and the energy-dissipation prin-
ciple

We now convert the formal ideas from the introduction into rigorous mathematical state-
ments. We call a triple (X,E,R) a generalized gradient system (gGS), if X is a Banach
space, £ : [0,T]x X — R, := RU{oco} is an energy functional, and R : X x X — [0, o0] is
a dissipation potential, which means that for all ¢ € X the functional R(q,-) : X — Ry is
lower semicontinuous, nonnegative, convex, and satisfies R(q,0) = 0. We speak of a clas-
sical gradient system, or simply a gradient system, if R(q,-) is quadratic, i.e. there exists
a (viscosity) operator G(q) = G(g)* > 0 such that R(q,v) = 3(G(g)v,v). However, plas-
ticity requires non-quadratic dissipation potentials, e.g. of the form R(7) = oyiera||7 |2 +
S hvise||T||72. In particular, the rate-independent case requires R(g, Av) = AR(g,v) for all
A > 0, which is incompatible with a quadratic form.

The following proposition from convex analysis shows that there are several completely
equivalent formulations of the generalized force balance (1). The equivalences of the points
(i) to (iv) are also called the Fenchel equivalences, cf. [Fen49]. The essential tools is the
Fenchel-Legendre transform U* : X* — R of a convex function ¥ : X — R, defined
via

U (€) i= sup{ (€,0) — U(v) |v € X }.

Note that in a reflexive Banach space we have (U*)* = .

Proposition 2.1 (Equivalent formulations) Let X be a reflexive Banach space and
U : X — R, be proper, convex, and lower semicontinuous. Then, for every &€ € X* and
every v € X the following five statements are equivalent:

(i) v € Argmin (U(w) — (€ w); (i) & € 0T (v);

(i) U(v) + ¥ (&) = (& v);
(iv) v eIV (§); (v) €€ Argmin (U*(n) — (1, v)).

nex*

Note that the definition of U* immediately implies the Young-Fenchel inequality ¥ (w) +
U*(n) > (n,w) for all w and n. Thus, (iii) expresses an optimality as well.

Defining the dual dissipation potential R* via R*(q, ) := (R(q,))* we can apply these
equivalences to reformulate (1) in the following ways:



(I) Helmbholtz-Rayleigh principle |[Hel69, Ray71]
(HRP) ¢ € Argmin (R(q,v) = (DE(t,0),v));

(II) Force balance in X* Rayleigh-Biot equation [Ray71, Bio55]
(FB)  0€94R(q,q) +DE(t,q) € X

(IIT) Power balance in R De Giorgi’s (R, R*) formulation [DMT80]
(PB)  R{q,q) + R*(q,=DE(t, q)) = —(DE(X, q), 4);

(IV) Rate equation in X Onsager equation [Ons31]
(RE) ¢ € 0R (¢, —DE(t,q)) € X;

(V) Maximum dissipation principle cf. e.g. [HaFO08|
(MDP)  DE(t.q) € Argmax (€, 4) = R*(3,€)).

Note that we have changed the sign in (V) to justify the name of (MDP). The reason for
this will become apparent in the rate-independent setting where R* only takes the two
values 0 and oo, see (4) and [HaF08].

Before returning to the general situation, we highlight the three different cases (II)—
(IV) for the classical viscous dissipation, i.e. R(u,v) = 3(Gv,v) and R*(u,§) = (£, KE)
with K = G~'. Then, we have

(FB) Gi = —DE(u) (RE) @ = —KDE(u) = — V& (u)
(PB) 3 (G, i) + (D& (u), KDE(w) = ~(DE(u) i,

where (RE) can be seen as a “gradient evolution”, as Vg is the gradient operator.

The above forms can already be understood as variational formulations, since the
evolution is expressed by extremizing a functional or by variations or derivatives of the
two functionals £ and R. However, for mathematical purposes it is desirable to have
variational formulations for the whole solution trajectories ¢ : [0,7] — X. One such
principle can be derived on the basis of the power balance (PB) by integration in time and
using the chain rule and finally employing the Young-Fenchel inequality W (w) + ¥*(n) >
(n,w), cf. [DMT80] or the survey [Miel4].

Theorem 2.2 (De Giorgi’s energy-dissipation principle) Under suitable technical
conditions on (X,E,R) a function q : [0,T| — X satisfies (I)-(V) from above for almost
all t € [0, T] if and only if the Energy-Dissipation Principle (EDP) holds:

E(T,¢(T)) + / R(q.4) + R*(¢, —DE(t,q))dt
(EDP) 0

< £0.40) + | "ot a(t))d.

Then, the EDP is equivalent to the energy-dissipation balance (EDB), where “<” in
(EDP) is replaced by “=".



It is obvious how to obtain (EDB) (and hence (EDP) from (I)—(V). For this one simply
integrates the power balance (III) in time and uses a abstract chain rule

E(t,q(t)) =5(T,Q(T))+/ (DE(s,q(s)), 4(s)) + 0:E(s, q(s)) ds.

Starting from (EDP) and using the chain rule one easily obtains the power balance (III)
as an estimate, namely fo R+ R dt < fo (D&, q) dt. However, the Young-Fenchel
inequality gives R + R* > —(DE, ¢) for almost all ¢ € [0, 77, so that the power balance
(IIT) has to hold.

The importance of the EDP is that a discrete counterpart can be derived based on the
incremental minimization problem (2) and De Giorgi’s variational interpolants ¢.. In a
classical Banach-space setting on can use the piecewise constant right and left-continuous
interpolants ¢, and g, as well as the piecewise affine interpolant ¢, (all satisfying ¢, (tx) =
qr) and obtains the discrete version of EDP in the form

ty

. 23
t

t

Under suitable assumptions it is possible to take the time-step limit 7 — 0 and arrive at
the notion of weak energy-dissipation solutions, defined by the condition that

E(t,q /qu—i—R*( —DE(s,q))ds < E(r, q(r) /855q

holds for all ¢ € [0,T], s = 0, and almost all s € [0, T]. An existence proof for weak energy-
dissipation solutions for a model of finite-strain wviscoplasticity using the multiplicative
decomposition is given in [MRS15]. There it is not possible to derive the missing chain-
rule estimate to return back to the differential inclusions (I)—(V).

Another very useful variational principle is only valid for classical gradient systems,
where it is possible to define a dissipation distance D. If the energy functionals E(t, -)
are geodesically A-convex, then one reformulate the evolutionary problem via a so-called
evolutionary variational inequality (EVI), see [AGS05, Miel4|. For an application of this
theory of geodesically A-convex gradient systems in one-dimensional viscoelasticity we
refer to [MOS14]. This one-dimensional existence theory, where ¢ = y, relies on time-
incremental minimization problems

y** = Argmin < D(w,y")* + 5(w)>

2(tkr1—tx)
and establishes strong convergence of the solution even in the case of nonconvex £.

An approximative variational characterization of whole trajectories can be obtained
by the weighted energy-dissipation functional (WED functional), which is defined via

W) = [ e (Rlate) i) + ZEE a) dt a(0) = o



and which was introduced in [MiO08]. Under sufficient smoothness of £ and R we see
that the Euler-Lagrange equation takes the form

D;R(q,q) +D,E(t,q) = 5(%(D4R(q, q)) — DgR(q, q')), D;R(q(T);4(T)) = 0.
Thus, we obtain an “elliptic regularization” of the original evolutionary problem. The
advantage is that showing the existence of minimizers ¢ : [0,7] — X for W. is usually
much easier than establishing the existence of solutions for the gGS. Yet, the major
problem then is to pass to the limit ¢ — 0 to find a limit ¢ of the approximations ¢.. For
the rate-independent case R(q,v) = ¥(v) this was done in [MiO08|] obtaining energetic
solutions ¢. For classical gradient system R(q,v) = £(Gv,v) with G independent of ¢ the
convergence ¢. — ¢ was established in [MiS11].

The general aim of introducing the WED functional in [MiO08] was the possibility of
using relaxation techniques that are invented originally only for stationary problems also
in the context of evolutionary problems. First results on such relaxations are presented
in [MiO08, Sec.4.4+5], mainly in the context of RIS. For a proper relaxation of a viscous
PDE we refer to [CoO08, Sec. 4|, where the case

X =149, &)= [ F(Vala) = f(t)de. R(G) =3 [ #do

was considered, with Q C R? and F(A) =0 for A € K := {£(1,0),£(0,1)} and oo else.
It is proved that quasiminimizers g. of W. converge to solutions of the relaxed evolution
defined via the differential inclusion

1 1
G = 3 divo + 5f, where o(t, z) € Oxs(Vu(t, z)),

where S = conv K = {(A4;, A3) € R? | |A;]+|A2] < 1} and x5 is indicator function of
convex analysis, i.e. xg(A4) =0 for A € S and co otherwise.

2.2 Rate-independent systems and energetic solutions

The case of purely rate-independent dissipation is distinct from the general dissipation
potentials. It is characterized by the condition on R(q, \v) = AR(q,v) for all A > 0.
In that case we call (X,E,R) a rate-independent system (RIS). Then, the force-velocity
relation v — 9,R(q, v) is meant in the sense of subdifferentials of convex functions, which
is set-valued:

V() ={ne X" |Vwe X: U(w)>¥Y(v)+ (nw-u)}
For rate-independent cases we have
R(q, Av) = 0,R(q,v) = {n € K(q) | R(q,v) = (n,v) },

where K(q) := 0,R(q,0) is called the elastic domain. Moreover, for the dual dissipation
potential we find the simple form

R*(q,€) = xx@(§) = { o(l f?sr§§€¢[§((?q);,
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Figure 1: Primal and dual dissipation potential for RIS.

see Figure 1.

In principle the five formulations I to V of the previous subsection are still valid for RIS.
However, one can use the special structure of 9,R and R* to simplify the presentation.
For instance, the maximum-dissipation principle reduces to the simpler form

rate-independent MDP: D,E(t, q) = Argmax(¢, q). (4)
§EK(q)
Second the energy-dissipation principle in the rate-independent case takes a simpler form
as R* is either 0 or co. A differentiable function ¢ : [0,7] — X solves I to V if and only
if
(Shoe —D4é(tq) € K(q) == 0,R(q,0),

(E) / Rig,d)dt = £(0,(0)) + /0 OE(t,q) t

We call the first condition a local stability condition, since the system stays in a state ¢(t)
in which the driving force £(¢) = D,E(t, q(t)) is not big enough to overcome the possible
dissipative forces n € K(q).

The major problem for RIS is that the solutions will in general develop jumps, i.e.
the three values ¢(t—0) := lim, ~ q(s), ¢(t), and ¢(t40) := lims 4 ¢(s) may be different.
In such a discontinuous situation the differential formulations are not really useful. Of
course, if there is enough convexity in the system the solution will not develop jumps and
the above formulations are optimal.

In general cases, the notion of energetic solutions can be used to characterize solutions
with jump in a variational way. Instead of the infinitesimal dissipation potential R, which
in mathematical terms plays the role of a infinitesimal Finsler metric, is not suitable
but can be replaced by a dissipation distance D : X x X — [0, 00] which is assumed
to satisfy the triangle inequality D(q1,q3) < D(q1,q2) + D(g2,q3), but the symmetry
D(q1,92) = D(q2,q1) is not needed. The triple (X,&E,D) is called an energetic rate-
independent systems (ERIS), and a function ¢ : [0,7] — X is called an energetic solution
if for all t € [0, T] the global stability (S) and the energy balance (E) hold:

(S) E(t.q(t)) < &(t.q) +D(q(t),q) for all ¢ € X;
T (5)
(B) E(Tq(T) + Dissoles[0.7)) = £0,9(0)) + [ 0.6(s.q)ds,
0
where the total dissipation along a possibly discontinuous solutions is defined via

Dissp(q; [r, s]) == é@(q(tjl), qit) INeN, r<tp<t;<---<ty<s} (6



For energetic solutions, possible jumps can be given a natural physical interpretation.
First, the energy balance (E) implies the exact energy conservation E(t,q(t + 0)) =
E(t,q(t — 0))—D(q(t — 0),q(t + 0)). Second, (S) implies that a jump immediately oc-
curs if it is possible, which is called the principle of realizability in [MTTL02].

The notion of energetic solutions was first introduced in [MTL02|, and under suitable
technical assumptions it was shown that all limits of the piecewise constant interpolants
of the solutions of the time-incremental minimization problems

¢"™! € Argmin (D(qk, q) + E(thsa, @) (7)

geX

converge to energetic solutions. We refer to [Miellb, MiR15] for a detailed account of
this theory.

Note that in the incremental problems (7) one is doing a global minimization, which
is reflected in the global stability condition (S). This leads to a jump behavior which
is sometimes unrealistic, since potential barriers are not seen. To define a notion of
solutions that do not show the problem of too early jump, one can treat RIS as limits
of rate-dependent systems, i.e. systems with a small viscosity proportional to £ and then
consider the vanishing-viscosity limit ¢ — 0. The corresponding notion of solutions is
called Balanced-Viscosity solutions, which will be discussed in Section 4.3.

The two major stimuli in the development of the theory of energetic solutions for RIS
were the theory of crack evolution in brittle materials, see [DFT05] for linearized elasticity
and [Dal.10] for finite-strain elasticity, and the theory of finite-strain elastoplasticity, see
[MaM09, Miel0]. In the former case the name irreversible quasistatic evolution is used
for what is called energetic solutions here. In both cases, there is not a useful underlying
linear structure in a function space X, and the full strength of the abstract definition of
energetic solutions is needed.

3 Evolutionary ['-convergence

Following the mnotions in the survey article [Mield] we consider families of gGS
(X, &, Re)ecro] and ask the questions whether the solutions ¢. for these system have
a limit g for ¢ — 0 and whether the limit ¢ is again a solution to a gGS (X, &, Ry). Ide-
ally, one might hope that it is sufficient that £, and R. convergence in a suitable topology
to & and Ry, respectively. We will show that such results exist, but we will also discuss
situations where we start with quadratic R. and end up with a limiting dissipation R
that is rate independent.

We first give the general definition of pFE-convergence, which is a short name of evo-
lutionary I'-convergence with wellprepared initial conditions. Hence, the letter“E” stands
for both, ‘E’volutionary convergence and ‘E’nergy convergence. while the letter “p” stands
for well‘P’reparedness of the initial conditions, in contrast to E-convergence, where the

latter is not needed.

Definition 3.1 (pE-convergence of (X,&.,R.)) We say that the generalized gradient



systems (X, E., R.) pE-converge to (X, &y, Ro), and write (X,&.,R.) &5 (X &0, Ro), if

¢ : [0, 7] - X dq sol. of (X,&,Ro) with q(0)=¢"
is sol. of (X,&,R.), and a subsequence e, — 0 :
q-(0) — ¢°, and — Vit el0,T): g, (t) — q(t) and (8)
€-(0,¢:(0)) — &(0,¢°) <00 Ee (e, (1)) — Eola(?))-

Similarly, we define the pE-convergence for ERIS (Q,&.,D.) &5 (Q &0, Do), if “solution”
1s understood in the sense of energetic solutions.

In the following subsection we discuss some abstract results for pE-convergence.

3.1 pE-convergence for generalized gradient systems

The first general approach to the evolutionary I'-convergence for classical gradient sys-
tems, where the variational structure was exploited systematically, goes back to [SaS04],
see also [Serll, Miel4|. This approach is based on the energy-dissipation principle for
the gGS (X, &, R.) presented in Theorem 2.2, which transforms the evolutionary system
0 € 0;R(ge, 4-) + DyE:(t, ¢-) into the upper energy-dissipation estimate

Ex(t, q:(T)) + To(qe () < £:(0,¢2(0 / D.E. (5, ¢u(s)) ds,

where J.(q / Re( (1)) + Ri(q(t), =D,E(t, q(t)))dt

Having a variational principle for the whole trajectory, one can now use variational tech-
niques to pass to the limit ¢ — 0. First we observe that the first term on the right-hand
converges to the desired limit by the assumption of the wellpreparedness of the initial con-
ditions. For the second term on the right-hand side we may assume that it is lower order
and can be handled by compactness. In fact, often one has E.(t,q) = U.(q) — (¢(1), q),
then 9,E(t,q) = —(f.(t),q) is linear in ¢ and strong convergence of £.(t) — ((t) is X* is
sufficient.

Hence, it remains to estimate the two terms on the left-hand side. Here we can take
advantage that we only need an estimate from above, i.e. the liminf estimates

&(T,q(T)) < liminf &(T,¢-(T)) and  Jo(q(-)) < liminf F(g-(-))

are sufficient. For this, one has to derive suitable a priori estimates on the solutions ¢,
such that one is able to extract a subsequence g., which converges in a sufficiently strong
topology to establish the desired liminf estimates.

The famous Sandier-Serfaty approach [SaS04, Ser11] relies on the two liminf estimates

Jo Rolao(t), dolt))dt < liminf. o [ Re(g-(t),d-(t))dt  and
Ro(q0, =Dg&o(t; o)) < lm inf RZ(ge, =Dy (2, ¢c))-

However, the energy-dissipation principle (EDP) is even more flexible, since we do not
need these two separate lower bounds. In passing to the liminf for the total dissipa-
tion fOT Re+R:dt we may even give up the special dual form R + R* of the integrand.
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This idea, which was applied successfully in [AM*12, Miel2, MPR14, LM*15], can be
summarized as follows.

Defining the functional 7. : WH([0,T]; X) — [0, 00| via
T
T-(u) := / Re(u, ) + R:(u, —DE(u))dt,
0
we have to find a sufficiently good lower bound for the I'-liminf, namely
(i) we(-) = u(-) in L2([0, T); — /./\/lo (t)dt < hmmfjg(ug)

where the integrand M does not need to be of the form Ry + R{. Hence, finding the
best (i.e. largest) M, is nothing else than finding the (static) I-limit of the functionals
J-. It suffices to find (X, &, Ry) and M, such that

(i) & RN &o;

(iii) Mo(u,v) = —(D&(u),v);

(iv) the chain rule holds for(X, &, Ro);

(v) Mo(u,v) = —(D&(u),v) = Ro(u,v)+Rg(u, —DE(u)) = —(DE(u), v).

As before, we can start from the EDP & (u.(T")) + J-(u:) = E-(u-(0)). Using the wellpre-
paredness of the initial datum, (i), and (ii) we pass to the limit and obtain the EDP

/ Mo(u(t), i(t)) dt < Eq(u(0)).

Now using the (iii) and the chain rule (iv) we find

T

Eo(u(0)) Y & (u(T)) - /@ﬂ(»'@ﬂt
< ey(u /Mo ))dt < E(u(0)).

Thus, we conclude that we must have equality in (iii) for almost all ¢ € [0, T], such that
we can use (v ) to conclude that u is a solution for (X, &, Ry). Hence, the pE-convergence

(X,E,R) B (X &0, Ro) is established.

Section 4.1 summarizes the results of [Miel2, MiT12|, which show that the above
strategy can even be applied to justify the passage from small viscous dissipation (i.e.
R.(u,-) is quadratic) to a limit problem with large rate-independent dissipation (i.e.
Ro(u, -) is positively homogeneous of degree 1, see Section 2.2).

In fact, under a slight and natural strengthening of the conditions (i) to (v), it is
possible to construct Ry directly from My. Indeed, assume that My(u, -) is additionally
even, convex, R-valued, and lower semicontinuous, then R, defined via

Rm(u,v) := Mo(u,v) — Mo(u,0)
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is a dissipation potential. Moreover, using property (iii) we find the estimate

R (u, =D& (u)) = sup <(—D80(u), vy — Mo(u,v) + Mo(u, 0)> < My(u, 0).

veX
Thus, we find the desired EDP & (u(T)) + fOT Rm + Ry dt < E(u(0)). We emphasize
that the choice Rp = R in (iv) and (v) is admissible, but not unique. In particular, it

may be possible to find simpler R, as is the case in the application discussed in Section
4.1.

3.2 pE-convergence for rate-independent systems

A quite general theory of evolutionary I'-convergence for ERIS (X, ., D.) was already
developed in [MRS08], see also [MiR15] for more details and applications. For simplicity,
here we restrict to the case that the energies have the form

E(t,q) = Felq) — (€(t), q), (9a)

where X is a reflexive Banach space. We allow for the case that F is not convex and that
the dissipation distances D. are not translation invariant. A typical set of assumptions
reads as follows:

3¢,C>0Vee 0,1, g€ X : Fulq) = clalf* - C; (9b)

Veel0,1]: F.: X — R is weakly lower semicontinuous; (9¢)

dC >0Ve e [0, 1] : H&HCl([O,T}) < C; (9d)

Vte[0,T]: {-(t)— lo(t) in X* as e — 0; (9e)
Ds(q17 qS) S Ds(le Q2) + DS(QQ? QS)a

Veel|0,1] Vg € X : of

sl vy ex: { PG =Dl o) Dl (1)

In general, these conditions together with I' convergence of the energies and the dissipation
are not strong enough to show pE-convergence. Even for existence for a fixed ¢ we need
additional conditions, e.g. weak continuity of D, is sufficient.

Our first result on pE-convergence for ERIS assumes that the dissipation distances D,
weakly continuously converge to Dy, viz.

C . ~ ~ ~ —~
D, = Dy, which means that ¢. — qo, ¢ = 0 = D:(¢,q:) — Do(qo, q0)-

Theorem 3.2 (pE-convergence for ERIS) Assume that the ERIS (X, E., D) satisfy
9), & 5 &, and D. & Dy in X; then (X,&.,D.) ™= (X, &y, Dy).

We refer to [MRS08] for the first proof and to [Miel4, Thm.5.4] for a shorter proof. In
fact, it is rather straightforward to establish the EDP, i.e. (E) in (5) where “=" is replaced
by “<”. The major difficulty lies in showing that the global stability condition (S) holds
for the limit ¢ = 0. This stability then implies a “chain-rule estimate”, which show that
(E) holds even with equality “=".

The major tool for passing to the limit in the stability condition is the existence of
so-called mutual recovery sequences. (A very similar condition is already very useful in
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showing existence of energetic solutions.) Given a family (¢:)-co,1) with ¢ — ¢ and a
test state gy, we say that the family (gz).cjo,1] is a mutual recovery sequences at time ¢, if

lim S(l)lp (ga(tv Z]\a)_ge(t7 QE)+D6(q67 EI\E)) < 50<t7 Z]\)_gO(t7 qo)+D0(q07 E]\O) (10)
e
Clearly, if all ¢. satisfy the stability condition at time ¢, then all term in the limsup are
nonnegative; hence we conclude that the right-hand side is nonnegative, which is the
stability of ¢ if the test state ¢y can be chosen arbitrary. Under the conditions of the
above Theorem 3.2 we see that the existence of mutual recovery sequence easily holds,
since it suffices to choose recovery sequences for the energy F. and use the weak continuity
of D, and ((.(1),-).
In the case that X is a Hilbert space H, the energies are quadratic, and the dissipation
distances are translationally invariant, viz.

1
Fs(Q) = §<AEQ7Q> 2 CHQH%—I and Ds(leQZ) = ‘IJE(QZ_Ql)a (11)

one can construct mutual recovery sequences in the form ¢, = ¢. + w, with w. — gy — qo
and exploit the better convergence ¢. — g = w. — Gy — qo (strong convergence in H!) in
the following terms:

~ 1 ~ ~
fs(Qs) - fs(Qs) = §<A€w€7 QE+qS> and De(Qsa Q5) = \Ij€<w€>' (12)

Using this, the following result was derived in [LiM11] and [MiR15, Ch. 3.5.4]. Here the
Mosco convergence - — £, means E(t,") 5 Eo(t, ) and E(t, ) EN Eo(t,-) forall t € [0,T7.

Theorem 3.3 (pE-convergence for quadratic ERIS) Let (H,E&.,V,).cp0,1) satisfy (9)
and (11). If & 5 &, V. S Wy, and U. 2 Wy, then (H,E.,V.) XX (H, &, Ty).

In contrast to Theorem 3.2 we need the continuous convergence W, < W, here only in
the strong topology of H. Applications of this theory occur in linearized elastoplasticity
in the context of homogenization in [MiT07, GiM11, Hanll| and in the derivation of
elastoplastic plate models.

A highly non-trivial application of pE-convergence is treated in [MiS13], where the
ERIS (X, &, D.) for € > 0 describe models for finite-strain elastoplasticity for which ex-
istence of energetic solutions was established in [MaM09, Miel0]. In [MiS13], the energy,
the dissipation distance, and the loadings are scaled by ¢ > 0 in such a way that the
system converges to linearized elastoplasticity in the sense of pE-convergence. The major
assumption is that the yield stress (contained in D.) scales in the same way as the dis-
placement. Thus, linearized elastoplasticity is a justifiable model only under the condition
that the yield stress is so small that even small strains can generate plastic effects.

4 Justification of rate-independent models

In this section we discuss two distinct cases in which RIS arise as limits of rate-dependent
systems. The typical situation we are interested in is a system with slow loading, where
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we always assume that the loading time ¢ € [0,7] is our relevant time scale. In fact, in
mechanics this time scale is often called process time, since it may be significantly larger
than the intrinsic time scales inside the material.

In Section 4.1 we consider purely viscous systems, i.e. with a quadratic dissipation
potential R.(q,v) = %(G(q)v, v), where the small parameter ¢ indicates that the relax-
ation times due to viscous effects are much smaller, namely of order O(e®). However, to
prevent the system to relax into a global minimum for each macroscopic time we con-
sider an energy that has microscopic wiggles that keeps the system outside macroscopic
minimizers.

In Section 4.3 we consider gGS with a dissipation potential consisting of a fixed rate-
independent and a small rate-dependent part, e.g. R.(q,v) = Rii(q,v) + 5(G(q)v,v). For
e > 0 the solutions ¢. will be absolutely continuous with respect to ¢ € [0, 7] and the task
is to characterize the jumps that develop in the vanishing-viscosity limit ¢ — 0.

We also refer to [LORO7| for a derivation of macroscopic rate-independent behavior in

the case of crack propagation.

4.1 Wiggly energies give rise to rate-independent friction

This section deals with the question how macroscopic RIS can arise from purely viscous
systems in the limit of vanishing viscosity ¢ — 0. We refer to [PuT02, MiT12, Miel2|
for the full details. We stay in the framework of evolutionary I'-convergence of gGS
(X, &, R:). In particular, we will start with the cases R.(q,v) = %(Gv, v), where obvi-
ously R. — 0, and end up with a limit system (X, &, Ro), where Ry is rate-independent.
The first example will show very clearly that R is determined not by R., but by micro-
scopic variations in the energies £., hence one uses the name wiggly energies.

In [Miel2] the following slight generalization of the wiggly-energy model of [Jam96] was
studied. The latter was analyzed already in [PuT02, PuT05|, but the gradient structure
was first exploited in [Miel2]. As viscous gradient system (X, &, R.) it takes the form

ea
X =R, E(t,q) = F(q) +eW(q, Lq) — ((t)q, R.(v) = ?UQ_

Here F € C%*(R) denotes the macroscopic part of the energy, W € C?(R x S') denotes
the wiggly part, and ¢ € C([0,7]) is the given time-dependent loading. Here S' =
R/Z indicated that W is nontrivially periodic with period 1 in the second variable. In
particular, writing W = W (q, p), we assume

p1(q) == max{D,W(q,p) | p€S'} >0 and (13a)
p-(q) := min{ D, W (q,p) | p€S' } <0. (13b)

Defining &y(t,q) = F(q) — {(t)q, we see that the energies & uniformly converge to the
macroscopic limit & via |E.(t,q) — &(t,q)| < Ce, i.e. the wiggles are not seen on the
energetic level. However, for the restoring force D,E. (¢, q) we see a strong deviation from
D,&o(t, q). In particular, the functions ¢ — D,E-(¢, ¢) has many zeros (local equilibria of
E.).

The ODE 0 = D;R.(¢) + D,E-(t, q) generated by (R, &, R.) reads

0=e%+F'(q) +DpyW(q, tq) — DWW (q, Lq) — £(t). (14)
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The aim of evolutionary I'-convergence is to show that the solutions ¢. of the viscous
gradient system (R, &, R.) converge to a solutions of the RIS (R, &y, Ry), where the
macroscopic energy & is given above and the rate-independent dissipation potential R

is defined via
p+(z)v forv >0,

Ro(z,0) := { p—(z)v for v <0. (15)

Hence the solutions ¢ of the limiting RIS (R, &, Ry) are given by the differential inclusion
0e aqRO(% Q> + Dqg()(ta Q> (16)

We emphasize that the definition of Ry does only involve characteristics of the wiggly
microscopic energy landscape of &, namely the p-derivate of the wiggle function W (q, p).

The main convergence result states that the solutions ¢. of (14) converge to solutions
of the RIS (R, 50, Ro)

Theorem 4.1 ([PuT02, Miel2]) Let F, W, ¢, &, and R. be as described above, o >
0, and assume that the mutual-convexity condition

inf{ £"(¢) | ¢ € R} > sup{|D,D,W (g, p)| | ¢ €R, p S} (17)
holds. Then (R,E.,R.) 5 (R, &, Ro).

The proof in [Miel2| relies on three major pillars, namely (a) suitable a priori esti-
mates, (b) a liminf-estimate for the energy-dissipation principle, and (c) uniqueness of the
limiting systems. For (a) and (c) the standard energy estimates and the mutual-convexity
condition (17) are used. The major difficulty lies in the limit passage (b) for the energy-
dissipation principle as described in Section 3.1. For this we define the total dissipation
functional

\75((]) = /OMe(tv QE(t)7 %(t))dt with Ms(t7 q, U) = Ra(qv U)+R; (Q7 _Dqgs(tu (]))

Inserting the specific forms of R., R, and &, we find

M.(t,q,v) = =

5 F(a) — () + D, (g, 0/¢) + <D (g, /)]

Homogenization arguments from [Bra02, Sect. 3| yield the liminf estimate
T
lim iglfje(qe) > Jo(q) ::/ Mo(t, ¢, ¢) dt with My (t, q,v) = P(v, F'(q)—L(t)),
E— 0

B0 = oK () + X €): and K(a.€) = [ €D W (@.p)ldp

It is easy to check the conditions (ii)—(v) in Section 3.1 for & and R, given above. First
note that (ii) and (iv) are trivial. Next observe K(q,&) > |£|, which implies (iii). For
the crucial condition (v) we use that My(¢,q,v) = —vD,&(t, q) means & = D,&(t, q) €
[p—(q), p+(q)] and |v|K(q,&) = —v&. However, K(q,&) = |£| holds if and only if £ ¢
1p-(q), p+(¢)[. Thus, the equivalence to 0 € 9,Ro(q,v) + & (or any other of the five
equivalent formulations in Proposition 2.1) follows easily.
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4.2 1D elastoplasticity as limit of a chain of bistable springs

A second evolutionary I'-limit with wiggly energies is established in [MiT12]. The system
models a chain of N bistable springs with small viscous damping. Denoting by e; the
strain in the jth spring, the system reads

Véj:_ lglq(e])+u§V+G<t7j/N)+0<t> forj=1,..,N; (18)
Cyl(e;)) =% 20 e = ((t),
where the biquadratic double-well potential Fq(e) := & min{(e+a)?, (e—a)?} generates

the bistability. The coefficients ,uév are biases that act as quenched disorder (time-
independent) and are chosen randomly, namely independently and identically distributed
according to a probability density f € L([—., 1s]) with average 0.

The system is driven by the volume loading G € C'([0, 7] x [0,1]) and the constraint
Cy corresponding to a Dirichlet loading ¢ € C([0,T]) prescribing the total length of the
chain, where ¢ is the Lagrange parameter for this constraint.

Using e = (e, ...,en) as a state vector, the system has the energy functional £y and
the viscous dissipation potential Ry:

N N
%Z (fblq e;) — ple; + G(t,j/N)e]-> and Ry(e,é) Z

The total system can now be written abstractly as a viscous gradient flow via
0= DéRN(e, 6) + Deg]\[(t, 6) + O'(t)DCN(e) with CN(G) = g(t)

Our small parameter is now € = 1/N, which is the ratio between the length of the springs
and the total length. Clearly, the energy &y is wiggly in the sense that there are many
local minimizers for a given constraint Cy(e) = ¢, namely up to 2.

The limit of particle number N — oo and viscosity ¥ — 0 can be studied by embedding
the system into a spatially continuous setting on the physical domain = ]0,1[. The
potential F;q has two wells and hence two phases for each spring, which we characterize
by the phase indicators z; = sign(e;) € {—1,0,1}. With the indicator functions

ey = { | Broe (G=0/N.a/) 19

we define elastic and plastic strains via (" (), p" (¢)) := Pn(e™ (1)), where

. RN N L2(Q) X LZ(Q)
PN'{eZ(ej)j1 ,,,,, N (Zjvl ]SOJ’ 2111 ) =

The definition of (€, p") is such that we obtain a linear stress-strain relation

f{)iq<€N(t7 l’)) = k(€N<t7 l’) - pN@a l’)),

since the nonlinearity is moved into the definition of p via z; = sign(e;).
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The limiting gGS (H, &y, Ro) describes linearized elastoplasticity with hardening and
is defined via

H = 13@) x1@).  Ro(p) = [ kalia)]a.

fe.7) = | S(E @) + Hy(pla)) +G(t.0)e(a) d,
where the hardening potential H is a convex function that is uniquely determined by the
distribution function f for the random biases uj-v . Indeed, defining L such that L} = f
one obtains Hy as Legendre transform of Lf, see [MiT12].
Together with the constraint Cy(e fQ x)dx=/(t), we obtain the RIS (H, &, Ro, Co)
with a 1-homogeneous dissipation potentlal Ro glven in terms of the “yield stress ka”. The
associated differential inclusion

0=D:E(e,p) + o(t)DC(e) = k(e—p) + o, C(e) =L(t),

0 € OR(D) + DpE(e,p) = kaSign(p) + k(p—e) + OH;(p). (21)

describes one-dimensional elastoplasticity With Dirichlet loading u(¢,0) = 0 and u(¢,1) =
((t), if the displacement is defined by u(t, ) fo (t,y)dy.

The following convergence result shows that the rate-independent evolution (21) is
indeed the evolutionary I'-limit of the finite-dimensional viscous systems (18).

Theorem 4.2 ([MiT12, Thm. 5.2]) Assume vy = 1/N® for a fited o > 1. Consider
the solutions e : [0,T] — RY of the gradient system (R™,En,Ry), where the biases
u;\’ are chosen randomly (and independently and identically distributed) according to the
distribution f. Then, with probability 1 with respect to the random biases uév we have

(RN, En, Ry) PE (H,&),Ro) in the sense of the embedding Py: If the initial conditions
e™N(0) satisfy e} (0) < 0 for all j,

Py (eN(0)) — (eo,Dy) in H, and EN(0,e™(0)) — £(0,%0,D);
then, for all t € [0,T] we have
Pr(eM(t)) = (e(t),p(t)) in H and EN(t,e™(t)) — E(t,e(t),p(t)),
where (€,D) is the unique solution of (21).

We again emphasize that the limiting dissipation potential Rg is not related to the
original quadratic potentials Ry. In the definition of Ry the constants k and a appear,
which are part of the definition of the double-well potential Fy;q.

4.3 Balanced-viscosity solutions as vanishing-viscosity limits

Assuming rate independence for an evolutionary system is always an approximation: the
loading time-scale is taken to be much slower than all the internal relaxation processes.
Moreover, in most material models there are two kinds of variables, i.e. we write the state
variable ¢ as a couple ¢ = (y, z), where y denotes the elastic or fast variables, usually
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containing the elastic deformation ¢ : Q@ — R? or the small displacement v : Q — R%
The variable z are taken to be internal variables which are slower and may be modeled by
rate-independent friction such as plastic yields or activated phase transformation. Hence,
a typical quasistatic material model (where we still neglect inertial terms) will have the
form of a coupled system

0=¢"G1(y, 2)y + D,E(t,y, 2), 0€0V(y,z,2)+eGa(y, 2)2 + D.E(L, vy, 2),

where we again assume that the loading rate is scaled to be of order one, such that the vis-
cous relaxation times for the variable y are O(¢®) while the variable z has rate-independent
terms (instantaneous relaxation is possible) as well as additional viscous relaxation on the
time scale O(¢e). Clearly, we have a generalized gradient system (X, &, R.) with

«

. . € .o € .o
X =YXxZ and Rs(y,z,y,Z):‘If(y,z,z)+?<G1(y,z)y,y>y—|—§<G2(y,2)2,z>z

Again, we can ask the question of evolutionary I'-convergence of (X, €, R.) towards a limit
system (X, &, ¥, =), in the sense that solutions ¢. of the former converge to the solutions
qo of the latter system. Here the additional structure “=” indicates that the simple RIS
(X, &, ¥) needs to be enhanced by some information characterizing the jumps.

To obtain a rate-independent limit, one is again interested in the case ¢ — 0, which is
called the vanishing-viscosity limit. Formally, it is expected that the limits gy = (yo, 20)
of solutions ¢. = (y., z.) will satisfy the different inclusion

0=D,E(t, qo(t)) and 0 € 8, W(qo(t), 5(t)) + D.E(L, qolt)) (22)

for almost all ¢ € [0,7]. However, in general the limits ¢y : [0,7] — X will develop
jumps with go(t—0) # qo(t4+0) and (22) will not be enough to characterize these jumps.
Moreover, the jumps arising in the vanishing-viscosity limit will depend on the different
viscosity choices €*G1(q) and €Ga(q).

Indeed, in [MRS14b]| the dependence of the exponent o« > 0 was investigated in a
situation where ¢ = (y, z) € R” x R™ and where £(t, -, z) is strictly convex. It turns out
that the jump behavior is quite different for the three cases o € |0, 1[, « = 1, and a > 1.
For o > 1 the component y can relax into the unique minimizer of £(¢, -, z(¢)) much faster
than any changes in 2. Hence, it is possible to reduce the situation by eliminating the
variable y by defining y = Y (¢, 2) = ArgmingE(t,y, 2) and E(¢,2) = E(t,Y (1, 2), 2).

For a < 1 the situation is much more difficult and new jump phenomena occur, which
are not yet understood, see [MRS14b] for some first results.

In light of the above discussion for a > 1 we restrict ourself to the case X = Z and
consider gGS (Z,&,R.) with the simplest “vanishing-viscosity dissipation potential”

R.(v) = W(v) + g(Gv, v, (23)

where W is positively homogeneous of degree 1 and G = G* > 0. The important obser-

vation is that G generates a Hilbert-space norm |jv|y = ((Gv,v>)l/2, which is defines
the Hilbert space V. Throughout, we assume that Z is continuously embedded into V,
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which is certainly the case for the model system studied in [Miellb, MiZ14|:

Z=LYQ), V=L*Q), R.(v) :/|v!+%]v|2dx,
(MS) .
and £(t, 2) :/

K
) §|Vz|2 + W(z) — £(t)zdz for z € HY(Q),

where Q C R? is a smooth bounded domain, W is the double-well potential W (z) =
(22 —1)?/4, and ( is a smooth loading. The evolutionary equation is

0 € Sign(2) + ez — kAz +W'(2) — L(t) for (t,x) € [0,T] x Q,

z(t,x) =0 for (t,z) € [0,T] x 09, (24)

which is extensively studied in [MiZ14] by direct PDE methods.

For passing to the limit ¢ — 0 and still controlling the jump behavior it is useful to
reparametrize the solutions ¢ — (¢, z:(¢)) € [0,7] X Z in the extended state space and
study the convergence there. This idea was introduced in for RIS in [EfM06| and turned
into an energetic framework in the series of papers [MRS09, MRS12, MRS14a, MRS14b)|.

For the reparametrization we let ¢ = t(s) and z(t) = 3(s), where s € [0, 5] is now an
arclength-like parameter. We write 3'(s) = <3(s) and note 2(t(s))t'(s) = 3'(s).

Definition 4.3 (Parametrized solutions) Let the RIS (Z,E,V,G) and V' be given as
above. Then, a pair (t,3) : [0,S] — [0,T] x Z is called a G-parametrized solution, if
(t,3) € W0, T; R x V') and there exists X : [0, S] — [0, co[ such that

H0) =0, (S)=T, t(s)>0, A(s)>0, As){(s)=0,
75

0 € OU(3/(s)) + A(s)G3'(s) + D.E((s), 3(s)), } a.e. on [0,5]. (25

The definition clearly displays the rate independence of the notion of G-parametrized
solutions, since 3 only occurs in the rate-independent term 0¥ or together with A which
can be scaled freely.

For a variational approach we transform the EDP, cf. Theorem 2.2, by time rescaling
and obtain for (t,3) the following identity:

S
EUS) 5N + [ P05 5 ~DoE(U).5(9) ds

= Emft(0),50) + [ AE(s).3(9)(s)ds. 20
0
where P.(7,V,&) = TR(:V) + TR(E). (27)
Using the special form of R. we obtain a quite explicit form for ., namely

Po(7,V.§) = (V) + —(GV, V) + =My ()? with My (€) = dnf [lé=nlv-

It is now easy to see that the I'-limit of P, : [0, 00[ X Z x V* — [0, 00] for € — 0 takes

the form
U(V)+U*(¢) for 7 > 0,

Po(r, V. &) = { (V) + ||V][v My (&) for 7=0.
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Clearly, Bo(r,V,&) > —(&, V) for all (1,V,£). Moreover, equality holds if and only if
0€ 0¥(V)+& in the case 7 > 0 and 0 € 0¥ (V) + AGV + ¢ in the case 7 = 0 see [MRS12,
Sec. 3.2]. Thus, all parametrized solutions satisfy the limiting EDP

ewadw»+/ Po(t(5).5'(5), ~DE(t(s).3(5))) ds (28)
=£&(t / & ( (s))¥(s)ds, (29)

and vice versa, sufficiently smooth solutions of the EDP are parametrized solutions. The
advantage of (29) is that we do not need to assume 3 € WH1([0,T]; V). All solutions (t,3)
with t € WH([0,7]) and 3 € BV([0,T]; Z) N C°([0,T]; V) of (29) are called parametrized
balanced-viscosity solutions of (Z,£, ¥, G). Here the term “balanced viscosity” relates to
the subtle balance of rate-independent and viscous dissipations along jumps, that is seen
in Py for 7 = 0 in the term V(V) + ||V |v My (£).

The advantage of reformulating subdifferential equations like (24) and (25) in terms of
the reparametrized EDP (27) is that we can control the limit & — 0 easily. In particular,
if the define the solutions of (Z,&, ¥, G) to be parametrized balanced-viscosity solution,
then we have evolutionary I'-convergence of (Z, £, R.) (with R. from (23)) to (Z,&, V¥, G).

However, the introduction of the parametrization may appear ad hoc and disturbing.
So one can define the notion of Balanced-Viscosity solutions as follows: z : [0,T] — Z
is called a BV solutions for (Z,&, ¥, G) if there exists a parametrized balanced-viscosity
solutions (t,3) : [0,S] — [0,7] x Z such that for all ¢ € [0,T] there exists an s € [0, 5]
with ¢ = t(s) and z(t) = 3(s). This simply means that the image of (t,3) in [0,7] x X
contains the graph of z : [0,7] — Z.

One major achievement in [MRS12, MRS14a] is a proper intrinsic definition of BV so-
lutions without referring to parametrizations. For this one defines a new (time-dependent)
dissipation distance A(t, -, -) that measures the minimal dissipation according to B, along
all curves connecting to states zo and z;:

A(t, 21, 2) = inf { /0 o (0,5(r), ~D-E(t,n(r))) dr |
p e CH([0,1V), n(0) = 1, (1) = 2 |. (30)

Note that A is defined with time t as a frozen parameter, i.e. ¥(r) = 7 = 0. Clearly,
we have the triangle inequality A(t, 29, 22) < A(t, 20, 21) + A(t, 21, 22) and the lower esti-
mate A(t, z1,22) > V(z9—21). For the definition of BV solutions we use a supplemented
dissipation functional Diss, ¢ defined on functions z € BV([0,T]; X ). Here J(z) C [0,T]
is the jump set of z, i.e. all the times ¢t where the three values z(t—0), z(t), and z(¢+0)
are not equal. The new dissipation functional Dissgn ¢(2; [t1,t2]) is bigger than the purely
rate-independent functional Dissy defined in (6), because it properly accounts for the
additional dissipation through the viscous terms during jumps:

Dissy ¢ (2; [t1, ta]) := Dissy (2; [t1, ta]) + Aty 2(t1), 2(67))+A(ts, 2(85 ), 2(E2))
+ s (At 2(t7), 2(6) At 2(1), 2(t7))),

where A(t, 20, 21) == A(t, 20, 21) — V(z1—29) > 0.
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Definition 4.4 (Balanced-Viscosity solutions) A function z € BV([0,T]; Z) is called
a Balanced-Viscosity solution, in short BV solution, for (Z,£,V,G), if

Vte[0,T]\ J(2): 2(t) € Sie(t):={2€ Z|0€0¥(0)+D,E(t,2)} and (31a)
Vi [0,T]: E(t 2(t)+ Dissme(: [0, ]) / DE(t 2(t (31b)

It is interesting to see that the definition of BV solutions again consists of a static stability
condition and an energy balance as in the case of energetic solutions, see (5). However,
no the stability is local instead of global and it is only valid at continuity points of the
solution. To compensate for this the dissipation is enhanced at jumps deriving from the
additional dissipation through balanced viscosity.

We now use the advantage that BV solutions are defined as functions from the time
interval [0, 7] into the state space Z like the viscous approximations. Thus, the natural
question is how the solutions z. converge to BV solutions. This question was first answered
in [MRS12] for the finite-dimensional setting and in [MRS14a, Thm. 3.9] for a general
infinite-dimensional setting.

Theorem 4.5 (Vanishing-viscosity limit gives BV solutions) Under suitable tech-
nical conditions on (Z,€,V,G) and the initial condition 2° € Z, the solutions z. : [0,T] —
Z of (X,E,R.) with z.(0) = 2° and R. from (23) exist and there erist a subsequence
e — 0 and a BV solution z : [0, T| — Z for (Z,£,¥,G) such that

Vtel0,T): 2z, (t)— z2(t) inZ and E(t, 2, (t)) — E(t,2(t)) for k — oo.
Moreover, any pointwise limit z of a subsequence of (2:)e>0 15 a BV solution.

Our final result concerns the vanishing-viscosity limit jointly with time discretizations,
which provides an easy way of numerically calculating BV solutions. We discretize the
time interval by partitions I = (to, 1, ...., tny) with fineness ¢(I1) = max{t,—tx_1 | k =
1,..., Ny }. The incremental minimization problem for the viscous problem reads

€ 0

zp € Argmin, & (tg, 2) + V(2—2;_,) + 25 =2".

2
m”z—zi—lﬂvv

We denote by 2 : [0,T] — Z the piecewise constant interpolant. The following result
was first proved in [EfM06, MRS12| for the finite-dimensional setting. For a quite general
infinite-dimensional version we refer to [MRS14a, Thm. 3.10].

Theorem 4.6 (Convergence of viscous time discretizations) Assume suitable tech-
nical conditions on (Z,E,V,G) and zg € Z (see [Miellb, MRS1}a]) and consider a
sequences (I1,)pen and (,)nen such that

en — 0 and ¢(I1,) /e, — 0. (32)

Then, there erists a subsequence n; — oo and a BV solution z for (Z,E,V,G) such that
the piecewise constant interpolants 2" satisfy

Vi [0,T): 2M(t) — 2(t) in Z and E(t, 2Moem(t)) — E(t, 2(t)) for | — oo.

Moreover, any such pointwise limit of a subsequence of ('), en is a BV solution.
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5 Rate-independent evolution of microstructures

The theory of RIS provides an ideal framework for studying microstructures in the sense
of the calculus of variations, namely those given by laminates or more general Young
measures. The starting point of most of these works was the seminal paper [OrR99|
on microstructures in finite-strain plasticity. In the sequel a lot of work was done for
the relaxation of a single elastoplastic time step, see [CHM02, CDK13b, CDK13a]. We
also refer to [HeK14, Heil5, Heil4] for the characterization and numerical calculation of
quasiconver hulls.

In contrast, the evolution of microstructures in plasticity is mathematically much less
developed, see e.g. [Mie04, CoT05|. However, the same theory was soon transferred to
easier dissipative material models such as damage (cf. e.g. [FrG06, GaL09, Miella|) and
phase transformations in elastomers (cf. e.g. [DeD02]) or shape-memory materials (cf. e.g.
[BC*04, BaH09, KoH11, CLR15|).

In the following we discuss two applications of the evolutionary theory, both based on
energetic solutions for RIS, see Section 2.2. The first application is treated in [HHM12|
and deals with the evolution of microstructure in the form of laminates, where laminates
are explicitly takes as an allowed microstructure with an appropriate dissipation distance
as proposed in [KoH11|. The second application reconsiders the evolutionary model from
[MTL02], where the microstructure is captured by a macroscopic phase fraction z(t,z) €
0, 1].

5.1 Laminate evolution in finite-strain plasticity

We summarize the results in [HHM12|, which analyze a rate-independent model for finite-
strain elastoplasticity with microstructure. The state of the system is described by the
deformation ¢ : Q@ — R? and by a Young measure A : Q@ — £ C Prob(K), where
K = R™4 x SL(R?)), and SL(R?Y) = {P € R¥™?| det P = 1} is the special linear
group containing the plastic strains, whereas R?*? will contain microfluctuations of the
deformation gradient.

The main idea is to specify a physically relevant subset £ of admissible Young mea-
sures, like laminates of a fixed order as in [OrR99], to define a suitable dissipation distance
between these measures, and to prevent formation of different microstructures by a suit-
able regularization. Following [KoH11| the simplest set of admissible probability measures
are laminates of first order:

L= {aé((l,a)b@m@ + (1_04>5(7ab®n,R) | o€ [0, 1], b, n e Rd, R, Q c SL(Rd) }

Of course, more complicated lamination trees on the sense of [OrR99| would be possible.
The point is now to define a dissipation distance Dy, : £ X £ — [0, 00] between such
laminates, which properly accounts for changes in the microstructure. In particular, one
wants to model the fact that it is very difficult to rotate the normal vector n in such
microstructures. When keeping n fixed, then the deformation fluctuation b € R? may
change without dissipation, while changes of the volume fraction « dissipate according to
the distance Dgp,(Qo, Q1) or Dsp, (R, Ry).

The ERIS is now constructed via the state space @ =Y x Z with Y = WH?(Q; RY)
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and Z={A e YM(; K)|A(z) € £ a.e. } and the energy functional

(16, A) = / / (Vo(Lo+ A)P~Y) + H(P))A(dA, dP)da

+0G(A) = (U(t), ¢) with G(A //dw|x y’d+9p)) dzdy,

where dyw defines a 1-Wasserstein like norm on £, namely

dw(Ag, A1) := sup{/ g(A, P)A;(dA,dP) —/ 9(B,Q)Ao(dB,dQ) |Lipk(g) <1}.
K K
Thus, G(A) serves as a spatial regularization for the laminate field A : © — £ which
prevents the formation of further more complicated microstructures.
The dissipation distance D : Z x Z — [0, 00 is defined as

(Ao, /Dlam AO( ) Al( ))d

Under suitable assumptions on the polyconvex energy density W and the hardening
energy H it is shown in [HHM12, Thm. 2.4] that the ERIS O, &, D) has for each stable
initial condition (¢°, A°) an energetic solution describing the laminate evolution. Indeed,
using the regularizing term G one has a compactness for the laminate fields, which allows
to establish suitable lower semicontinuity results for £ and D as well as mutual recovery
sequences in the sense of (10).

5.2 A two-phase shape-memory model for small strains

Finally we present some new results for the two-phase model for introduced in [MTLO02].
In fact, this model was the origin for the development of energetic solutions.

The two elastic phases are described by linearized elasticity with the same elastic
tensor C, but have different transformation strains A;. On the microscopic level one may
use the stored energy density

—~

W(e) = min{%(e—Al):C(e—Al) + ¢, %(6—142)1@(6—142) + ¢},

where e = e(u) := 3(Vu+Vu') is the infinitesimal strain tensor. The relazation of W
with given volume fraction z € [0, 1] for phase 2 was derived in [Koh91]:

W(e,z) = (1-2)(3(e—A1):Cle—A1) + 1) + 2(3(e—A2):Ce—Az) + ) — pz(1—2),

where the relaxation coefficient p > 0 can be calculated explicitly.
The ERIS studied in [MTL02] is given by Q = H}(Q; RY) x LY(Q;[0,1]),

E(t,u, 2) /W —0(t) - udz, and D(zg,z1) = d||z1—20]|11 (33)

for some smooth loading and some dissipation coefficient § > 0. A first existence result for
energetic solutions was obtained in [MTLO02, Thm.5.1] under the unnatural assumption
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that the energy £(t,-) is convex. A corresponding numerical algorithm using space-time
discretization and incremental minimizations (cf. (7)) were developed in [CaP01]. Us-
ing the abstract theory for ERIS in [Miellb, MiR15|, the existence theory was recently
improved, see [HeM15|, by a new construction of mutual recovery sequences, see (10).

Theorem 5.1 ([HeM15]) The ERIS (33) with £ € WH([0, T); HL(Q)*) has, for each
stable initial state qo = (uo, 20), an energetic solution (u, z) : [0,7] — Q.

The proof relies in reducing the system to a problem in z alone. For this note that
the equation D,E(t,u,z) = 0 is a linear elliptic PDE for u with a right-hand side that is
linear in z and (. Hence, the unique solution u = U(z,¢) € HL(Q;R?) can be inserted
into £ to obtain the reduced ERIS (Z,Z,D) with

Z:=LY2100,1]) and Z(t,0) = E(t,U(z,L(t)),2) = ;<Lz+7 ), z) + af

Here L is a pseudo-differential operator of order 0, and the symbol, which can be calculated
explicitly, is non-negative by the explicit formula for p from [Koh91]. The symbol attains
the value 0 along the optimal laminates and p is the largest number such that the symbol
remains non-negative.

Because of the constraint z € [0, 1] the quadratic trick indicated in (12) cannot be
used for showing the closedness of the set of stable states. Indeed, from the incremental
minimization problem (7) we obtain piecewise constant interpolants 27 : [0,7] — Z that
are globally stable, i.e. (S) in (5) holds at ¢t = k7 for k € Ny. For a subsequence 7, — 0
we have 2™ (t) — z(t) and we have to show that z(t) is stable as well.

Since stability is a static concept we can fix ¢t and drop it for notational convenience.
To establish stability of z we start from the stability of z, in the form

Z(t,zn) +D(2zn, 2n) — Z(t, z,) > 0 for all z,, € Z.

To pass to the limit we can only use z, — z, but may choose a suitable mutual recovery
sequence z,, — 2 for a given test state z. In [HeM15] the following choice was introduced:

20 for 2(x) <

z(x) <
Zn(x) = 2(2) + g(2) (2n(2)—2(2)), where g(z) = L for Z(z) = 2,
8 for 2(x) > 2

Clearly we have z,, € Z, z, — Z and sign(z,—z,) = sign(z—z). Decomposing §2 into
and €)_ such that 2 > z and Z < z, respectively, we obtain
ID(2n,%n) = |2n—2nllr = fQ Zn—zpdr + [, zp—Z,dx

_fsui £(1—z, dx+fQ —zndm — fﬂ z— ZdIL‘—I—fQ zZ— de_‘D(%E\)-

To control the energy differences Z(¢,z,) — Z(t, z,) we exploit the quadratic form of
the energy. In fact, the sequence v, := 2z,—z — 0 generates an H-measure p > 0 which
exactly characterizes the limit of the quadratic energy, namely

lim Z(t, z,) = Z(t, 2) // p(z, dw)dz,
n—oo wesd-1



where Y7 (w) > 0 is the symbol of L. The construction of z,, gives v, := z,, — 2z = gv,, — 0,
such that v,, generates the H-measure ¢g?u. Thus, we obtain

lim (Z(t,2,) — Z(t, z,))

n—~o0

= I(t,2) — Z(t, ) //WGS 1) (w)pz, dw) dz.

Now, using ¢> < 1 we conclude the desired limsup estimate

0 < limsup (I(t, Zn) + D(zn, 2n) — I(t, zn)) <I(t,2)+D(z2)—ZI(t,z).
Since Z was arbitrary, the global stability (S) of z is established.

We refer to [HeM15] for a detailed analysis, which includes the convergence of space-
time discretizations in suitable finite-element spaces as well as the strong convergence of
certain Riesz projections related to the directions of the microstructures between the two
phases.
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