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Abstract

The approximation of the time-dependent Oseen problem using inf-sup stable mixed
finite elements in a Galerkin method with grad-div stabilization is studied. The main goal
is to prove that adding a grad-div stabilization term to the Galerkin approximation has a
stabilizing effect for small viscosity. Both the continuous-in-time and the fully discrete case
(backward Euler method, the two-step BDF, and Crank—Nicolson schemes) are analyzed.
In fact, error bounds are obtained that do not depend on the inverse of the viscosity in
the case where the solution is sufficiently smooth. The bounds for the divergence of the
velocity as well as for the pressure are optimal. The analysis is based on the use of a
specific Stokes projection. Numerical studies support the analytical results.



1 Introduction

A considerable amount of papers have been recently written concerning the
numerical approximation of the steady Oseen equations. These equations play
a crucial role in the numerical simulation of the time-dependent incompressible
Navier—Stokes equations. After having applied an implicit time discretization,
a fixed point iteration can be used every time step to solve the resulting non-
linear equations. In this context one has to approach a steady Oseen problem in
every time step of this iteration. It is well known that the standard Galerkin
method suffers from instabilities for small values of the viscosity. Stabilized
methods have to be used to improve the numerical simulations. The well-
known streamline upwind/Petrov-Galerkin (SUPG) method combined with
the pressure-stabilization/Petrov-Galerkin (PSPG) method allows to achieve
both stability and accuracy. A grad-div stabilization is usually included. The
SUPG/PSPG/grad-div stabilized method applied to the steady Oseen equa-
tions was analyzed in [26], see also [24]. In [19], see also [4], the hp version
of the stabilized SUPG/PSPG/grad-div method was analyzed for the same
equations. Similar error bounds as in [26] were obtained. The h version of the
method was revisited in [13] using conforming inf-sup stable elements. In [20],
the reduced SUPG/grad-div stabilized scheme was studied again in the case
of using inf-sup stable elements. A stabilized finite element formulation us-
ing orthogonal subscales was analyzed in [8]. All the results mentioned above
concern the steady Oseen equations.

The analysis of the time-dependent Oseen equations can be seen as a first
step towards the analysis of the evolutionary Navier—Stokes equations. How-
ever, in the case of the evolutionary Oseen equations the literature is rather
scarce. The stabilized approach based on orthogonal subscales was described
in [7] but not analyzed. The analysis of the method using time-dependent sub-
scales can be found in [9]. Recently, in [10] the time-dependent Oseen problem
was considered using Local Projection Stabilization (LPS) methods with sta-
bilization of the streamline derivative together with grad-div stabilization. In
the case of using methods of order k£ without compatibility condition, error
bounds are obtained under a restriction on the mesh size: a certain measure
for the mesh size should be of order of the square root of the viscosity, see [10,
(35)] for details. In order to avoid the restriction on the mesh size for small
viscosity, the authors of [10] consider pairs satisfying a certain element-wise
compatibility condition between the discrete velocities on the fine mesh and on
the projection space. Even in that case optimal error bounds for the pressure
were not obtained in [10].

Several authors have previously studied the effect of grad-div stabilization.
In [22] the author considers the approximation of the steady incompressible
Navier—Stokes equations using both SUPG and grad-div stabilization. The



grad-div stabilization is shown to enhance the accuracy of the solution and to
improve the convergence of preconditioned iterations for the linearized Navier—
Stokes problem if the corresponding stabilization parameter is not too large.
In [23] the use of the grad-div term on the numerical solution of the Stokes
equations is considered. The authors show that this stabilization improves
the well-posedness of the continuous problem for small values of the viscosity.
They also analyze the influence of this stabilization on the accuracy of the
approximation. A refined analysis was presented in [16]. In [21] the grad-div
stabilization is considered as a subgrid pressure model in the framework of
variational multiscale methods. Some error estimates for the steady Oseen
problem with grad-div stabilization are proved. In [10] a significant role of
grad-div stabilization for inf-sup stable approximations is observed while a
SUPG-type stabilization seems to be much less important. More precisely the
authors of [10] say: “it turned out that the grad-div stabilization with a globally
constant parameter set is essential for an improvement of local mass balance
and gives always good results in our numerical experiments. Nevertheless, the
theoretical foundation is not really convincing.” With the theoretical results
obtained in the present paper a theoretical foundation is added to the fact
already observed about the improvement due to the grad-div stabilization.
Even for the simulation of turbulent flows it was observed in [17, Fig. 3] that
the addition of only the grad-div stabilization to the Galerkin approximation
was sufficient for performing stable simulations.

Finally, the role of grad-div stabilization in preconditioning techniques
should be mentioned. One of the advantages of such a formulation is its posi-
tive effect in the solution of the Schur complement problem. As it is claimed in
[2], with this approach, the solution of the Schur complement is no longer the
bottleneck of the iterative solution as it is the case in many block precondition-
ing approaches to the original system arising from the linearized Navier—Stokes
equations, see also [3,15]. The optimal value of the stabilization parameter is
found in these works to be small. This fact is in agreement with the size O(1)
found to be optimal in the present paper.

In the present paper, mixed finite element approximations to the time-
dependent Oseen problem are analyzed using inf-sup stable pairs of finite ele-
ment spaces and a grad-div stabilization. It is shown that the plain Galerkin
approximations can be stabilized by adding only a grad-div stabilization term.
Optimal error bounds with constants that do not depend on the viscosity pa-
rameter are obtained for the L? norm of the divergence of the velocity and the
L? norm of the pressure, assuming the solution is smooth enough. In addition,
an error bound for v'/2 times the gradient of the velocity is proved that is
optimal in the diffusion-dominated regime although it is a weak term in the
convection-dominated regime.

The derived optimal error bounds for the L? norm of the divergence of the
velocity and the L? norm of the pressure are global bounds that can only be
applied to globally smooth solutions. In [12] local error estimates are obtained
for the SUPG method applied to evolutionary convection-reaction-diffusion
equations combined with the backward Euler scheme. The question of getting



local error bounds for the method studied in this paper following the techniques
in [12] will be the subject of future research.

Let 2 C R4 d € {2,3}, be a bounded polyhedral domain with Lips-
chitz boundary 042 and let (0,7") be a time interval with 7' < co. The time-
dependent Oseen problem, as a model problem for the linearized Navier—Stokes
equations, reads as follows

o —vAu+(b-Va+Vp=F in (0,7] x 2,
V-a=0 in [0,7] x £, )
=0 on [0,7T] x 012,
w(0,x) = ap(x) in £,

where @ : (0,7) x 2 — R% and p: (0,T) x 2 — R are the unknown velocity
and pressure, v > 0 is the viscosity, } :(0,T) x 2 — R? the external forces,
and b : (0,7) x 2 — R? a solenoidal vector field, i.e., V-b = 0, with b €
L>(0,T; L>(2)%).

For the numerical analysis it is of advantage to perform a change of vari-
ables: (u,p) = e~ *(w,p) with a > 0. A direct calculation shows that with
this transformation one obtains a problem with a positive zeroth order term:

ou—vAu+ (b-Vi)u+ou+Vp=f in (0,7] x £2,
V-u=0 in [0,7] x £2, @)
u=0 on [0,7T] x 912,
u(0,z) = uo(x) in 2.

The analysis can be applied to the new problem. Finally, one can transform
back to the original variables. In the analysis, o = 1/T is chosen such that the
error bounds only change in a multiplicative constant of size e®! < e.

In this paper a grad-div scheme to approach problem (2) will be analyzed.
The outline of the paper is as follows. Section 2 introduces the grad-div stabi-
lization of the Galerkin approximation and some preliminaries are stated. Sec-
tion 3 is devoted to the analysis of the continuous-in-time case. In Section 4
the fully discrete case is considered using the backward Euler method, the
two-step backward differentiation formula (BDF2), and the Crank-Nicolson
scheme as time integrators. Finally, some numerical studies which support the
analytical results are presented in Section 5.

2 Preliminaries and notation

Using the function spaces, see [6, Section 1.2]
V= Hy(2)", Q=Lj(%2)={ge L*(®):(g,1) =0},

the weak formulation of problem (2) is: Find (u,p) € V x @ such that for all
(v,q) €V xQ,

(Ou,v)+v(Vu, Vo) + ((b-VIu+au,v) — (V-v,p)+(V-u,q) = (f,v). (3)



Notice that
(b-V)v,v)=0 YveV. (4)

The Hilbert space HYW = {u € L?(2) : V-u = 0,u-n|pn = 0}
will be endowed with the inner product of L?(£2)? and the space V4V =
{u € H}(2) . V-u = 0} with the inner product of HE(£2)%. Let IT
L?(2)¢ — HY be the Leray projector that maps each function in L?(£2)?
onto its divergence-free part. The Stokes operator in {2 is given by

A D(A) C Vdiv N Vdiv, A= 7HA, D(A) — HQ(Q)d N VdiV.

The norm in L2(£2) for scalar-, vector-, and tensor-valued functions is denoted
by || - lo and the norm in H*(£2) by || - ||x-
In the error analysis, the Poincaré—Friedrichs inequality

[vllo < CprlVollo Vv eV (5)
will be used and also the inequality
IV-wlly < IVolly, v e Hg(2)% (6)

which follows from the identity, | Vol|Z = ||V - v]|2 4 |V x v||2, a relation that
can be obtained from the vector identity V x (V x v) = —Av + V(V - v) after
taking the inner product in L?(2)% with v and integrating by parts.

Let V), C V and Qp C @ be two families of finite element spaces that
correspond to a family of partitions 7 of {2 into mesh cells with maximal
diameter h. In this paper, only pairs of finite element spaces will be considered
that satisfy the discrete inf-sup condition

(V- vn,qn)

inf  sup ———— > [p > 0. 7
25, S TVonTollanllo @)

It will be also assume that Vj, C H(£2)? and Q;, C L*(§2) comprise piecewise
polynomials of degrees at most k and [, respectively. It will be assumed that
the meshes are quasi-uniform and that the following inverse inequality holds
for each vy, € V4, see, e.g., [6, Theorem 3.2.6],

a4

[onllweazon < Cinvhig lonllwro aeyes (8)

where 0 <1 <m <1,1<¢ <q< oo, hg is the size (diameter) of the mesh
cell K € Ty, and || - [|ym.a(x)e is the norm in W™ 9(K)%.
The space of discretely divergence-free functions is denoted by

Vil ={vp € Vi © (V-vn,qn) =0 Vgn € Qn}.
The linear operator A, : V4V — VAV is defined by

(Ahvh,wh) = (Vvh,th) Yo, wy, € V;?iv. (9)



Note that from this definition it follows that
14 %onllo = [Vonllo, VAL onllo = llollo Vor € Vi, (10)
Additionally, the linear operators By, : V,f“", — Vfi", given by
(Bpop,wp) = (V-vp,,V-wp) Yo, wy, € VY, (11)
and Dy, : L2(£2) — VAV given by
(Dna,vr) = (V-wvn,q) q€ L*(2),Yv, € VI (12)

are defined. Finally, the so-called discrete Leray projection IT3Y : L2(02)? —
VAV is introduced, which is the L? orthogonal projection of L?(£2)¢ onto V,div

(Hﬁivuwh) = (v,wy) Ywy € V,fi". (13)

By definition, it is clear that the projection is stable in the L? norm: || [TV w||g <
||lv]lo for all v € L2(§2)%. Denote by 7, the L? projection of the pressure p in
(2) onto Qp. Then, for [ > 0 and 0 < m < 1 one has

Ip = 7nllm < CRH " pllisa,  p e HTY(). (14)

There exists an interpolation operator I, : H'(£2) — V}, that satisfies for all
v € H' ()% and all mesh cells K € Ty,

v = Invllox + hc|lv — Iyl x < Chlc|vllwi), 1<I<r+1,  (15)

where w(K') denotes a certain local neighborhood of K, see [25].
To carry out the analysis, the Stokes problem

—vAu+Vp=g in {2,
u=0 on 012, (16)
V-u=0 in {2,

will be considered. The standard Galerkin approximation (up,pr) € Vi X Qp,
is the solution of the mixed finite element approximation to (16), given by

v(Vup, Vop) + (Vpp,vp) = (g,vn) Yop, € Vi, (17)
(V-up,qn) =0 Vg, € Qn.

Following [14] one gets the estimates
uU—u <C|( inf |lu—v +v7 b inf - , 18
Ju—wih <€ (inf Ju-vali+v ™t inf lp-ado), 09
— <C inf |Ju—wv inf — 19
lp=ulo <€ (v it uvali+ inf Ip-ailo). (9

u—u < Ch|( inf |uw— vyl +v " inf — . 20
o< O ( it fuvala 407" ot lp-anl). (0



It can be observed that the error bounds for the velocity depend on negative
powers of v.

For the purpose of analysis, it is useful to have a projection of (u,p) onto
Vi X Qp where the bounds for the velocity are uniform in v. This goal can be
achieved for smooth functions by choosing a special right-hand side in (16). For
the Oseen problem, let (u,p) be the solution of (2) with u € V N H¥1(02)4,
p € QN H*2), k> 1, and define the right-hand side of the Stokes problem
(16) by

g=f—-0u—(b-V)u—au— Vp. (21)

Then (u,0) is the solution of (16). Denoting the corresponding Galerkin ap-
proximation in Vi, x Qp by (sp,lr), one obtains from (18) — (20)

I = sullo +Allw = sulli < R lullps, (22)
linllo < Cvh* ||+, (23)

where the constant C' does not depend on v.

Remark 1 Assuming the necessary smoothness in time and considering (16)
with

g=0(f—0u—(b-V)u—au—Vp),
then one can derive an error bound of form (22) also for d;(u — s3). In the
same way, one can proceed for higher order derivatives in time.

The method that will be studied for solving the Oseen problem (2) is ob-
tained by adding to the Galerkin method a control of the divergence constraint,
the so-called grad-div stabilization: Find (wp,pp) : (0,7] — Vi x Qp, such
that for all (vp,qpn) € Vi X Qp, one has

(Osun,vn) + Ap((Wh, pr), (Vn, qn)) = (f,vn), (24)

where the initial discrete velocity is an appropriate approximation of ug in
vh

A ((w,r), (v,9) = v(Vw, Vo) + ((b- V)w + aw,v) — (V- v,7)
+(V-w,q)+u(V-w,V~v),

and p > 0 is a stabilization parameter, whose optimal asymptotic choice will
be determined by the results of the numerical analysis.

3 Error analysis of the method in the continuous-in-time case

The proof of the error estimates is based on the comparison of the Galerkin
approximation (wp,pp) in (24) with the approximation (s, ;) of the Stokes
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equations with right-hand side (21). Let e, = uj, — s, € V,41V, then a straight-
forward calculation, using V - u = 0, yields

(Oren, vi) + Au((en, pn —In), (Vn, qn))
= (O(u — sp),vp) + ((b-V)(u — sp) + a(u — sp,),vp) (25)
(V- (u—584), Vo) + (Vp,vp), Yon € Vi, qn € Q.
Taking (vp, gn) = (€n,pn—Ip) in (25), observing that (Vp,e) = —(p, V-ep) =
—(p—h, V-eyp) since e;, € V3, using (4), and applying the Cauchy—Schwarz
inequality gives

1d
2dt
< [|0¢(w — sn)llollenllo + [|blloc [ V(e — 1) [lo]l€nllo

+allu = snllollenllo + (ul|V - (w = su)llo + llp — 7allo) [V - enllo-

lenlls + vIVenlls + allenlls + pllV - enll

With Young’s inequality and hiding terms on the left-hand side, one obtains

d
%Ilehl\g +2v[|Ven || + allenll§ + ullV - enll
3
<~ (19:(u - su)ll§ + Bl IIV (w — s) 1 + o®[|lw — s113)
+2u)|V - (w = s) 1§ + 207 lp — - (26)
Assuming now

(u,p) € L2(0,; H**(2)%) x L*(0,t; H'*'(12)),

(B, ) € L2(0, 8 HF(2)4) x L2(0, t; H'(2)), (27)

applying the estimates (22) and (14), integrating (26) on (0, ), and recalling
that o = 1/T, one gets
len()1F + 20l VenllZ2(0 1.2y + allenllFzo nrzy + IV - €nllZz(.r12)
< |len(0)||§ + Ch?* ((T + w)llullZz g ppreeny + THatu”%Q(O,t;H’“))
+C'u’71h2(l+1)HPHQL?(O,t;HHl)’ (28)

where C' = C (||bl| 1< (0,t:15)) -

Remark 2 It will be assumed that ug € H*(£2)% and that the projection s, is
well defined at t = 0, which implies that compatibility conditions at ¢ = 0 are
assumed. Then, if, for example, uy,(0) = I ug, the error e, (0) can be bounded
by

llen(0)llo < [[Tnuo — uollo + [[wo — 81 (0)][o,

and then (15) and (22) can be applied.



Theorem 1 Let (u,p) € V x Q be the solution of (3) and let (upn,pr) €
Vi X Qp be the solution of (24). Assume that (27) and the conditions from
Remark 2 hold. Then, the following error estimate holds for all t € (0,T]

I = wn) ()1 + VIV (= ) By + e — B iz,
V- (w = un) 72 0.0:22)
< Cn** ((T+ 1) w320 4 resny + TlOsl|72 g 4 vy + o]l + ||U(t)‘|i)
+CM_1h2l+2||p||2L2(o,t;Hl+1)’ (29)
where C'= C (||bl| Lo (0,t:15)) -

Proof The result is obtained by applying the triangle inequality to the left-
hand side of (29) and using (28) and (22).

Remark 3 The most common situation for the choice of the finite element
spaces consists in choosing the polynomial degree of the pressure one degree
smaller than for the velocity, i.e., I = k — 1. Then, it follows from (29) that
the optimal error bound O(h*) is obtained for p = O(1). In the case k = I,
e.g., for the MINT element where k = = 1, one can choose = O(h) or even
p = O(h?). Which choice is the better one depends on the concrete situation,
see the discussion in [16].

To facilitate the presentation of the further analysis, it will be assumed
henceforth that | = k — 1.

Lemma 1 The following stability estimate holds for the discrete velocity
[un ()15 + 20 VunllTz022) + llunllFzpre) + 200V - wnllZagoLe)
1
< [lun(0)[15 + a”f”%z(o,t;L?) vt € [0, T]. (30)

Proof Taking (v, qn) = (up,pr) in (24) and using (4), it follows immediately
that

1d

Sdi
Applying Young’s inequality on the right-hand side and integrating on (0,t)
gives (30).

|unllg + v Vunllg + ollwn|l§ + #lV - walls < [l £llollwnllo.

Remark 4 From (30) it follows in particular that

1 1
19wl e < i o (1 + 21100 ) =0
This behavior is in agreement with the result of [5] where the authors show
that the grad-div stabilized Taylor-Hood approximation to the evolutionary
Navier—Stokes equations converges to the Scott—Vogelius solution as the stabi-
lization parameter tends to infinity. The Scott—Vogelius element pair provides
point-wise mass conservation. In the numerical tests of [5] the grad-div stabi-
lized Taylor-Hood approximation with large stabilization parameter is shown
to provide excellent mass conservation for the Navier—Stokes approximation.
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The next step in the error analysis consists in obtaining a bound for the
pressure error. This bound is derived as usual on the basis of the discrete
inf-sup condition (7).

As a first step, a bound for ||0;ep||—1 is needed. By definition, it is

0
18sen]|—1 = sup [{9en, #)|
peH ()20 IVello

where (-, -) denotes the corresponding duality pairing. To start with, the bound

of ||0zep| -1 is reduced to a bound of ||A;1/28teh||o. From [1, Lemma 3.11] it
is known that

10cenll—1 < Chlldvenllo + CIIA™ 21 denlo, (31)

where IT is the Leray projector introduced in Section 2. Applying [1, (2.15)],
one obtains

|A 2 dyenllo < Chlldrenllo + 1Ay, *renlo, (32)

with Aj, defined in (9). From (31), (32), using the symmetry of Ay, (10), and
the inverse inequality (8), it follows that

|0renll—1 < Chldvenllo + C|| A, *0renllo
= Ch|| 4,24, P dsenllo + Cl1 AL *drenllo
= Ch|V (4, dren)llo + C|l A, P orenllo
< C[|4,*venfo- (33)

Next, a bound for ||A;1/28teh||o will be derived. Projecting the error equation
(25) onto the discretely divergence-free space V3V and using integration by
parts, one gets

(Bteh, 'Uh) + V(Veh, V’Uh) + ((b . V)eh + aep, ’l)h) + [L(v -ep, V- ’Uh)
= (0t(u — sp),vn) + (b~ V)(u — s1) + a(u — s1,),v5) (34)
+u(V - (u—sp),V-vp)— (p—mh, V- vp),

where 7, is the L? projection of p onto Q. Recalling definition (12) one has
(p—mh, V-vp) = (Dr(p — 73),v), such that

Oren, = —vApen — Hi?iv((b -Ven + aeh) — pBren + H’(Tﬁv ((’%(u B Sh)>
HIT (b~ V) (e — 1) + au — s1)) + uB(u — s) (35)
—Dh(p - 7Th)~
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With (11), the Cauchy—Schwarz inequality, (6), and (10), one obtains for all
vy € V;;ﬁv

|(Byon, Ay Pwy)|

14, Byonllo = sup
wp, EVAY w, £0 lwnllo
—1/2
Vo V(4 )
wy, €VAY w), £0 wrllo
—1/2
o IVl A )l
 wh €V w,£0 lwnllo
—1/2
< sup IV - wnllo| V(A" *w) o
N wp EVAY wp, #0 HwhHO
V-
_ ap IVwalolwnlle _ G (56
wh VAN iy, £0 l[wnllo

The same argument applied to HA;l/QDh (p — 7)o gives
1452 Do =m0 < llp = 7. (37)
For g € L?(£2)?, the definition (13) and the symmetry of A, allows to write

(A;l/zﬂ,‘fi"g, vp) = (g, A;l/th) for all v, € V4V, Taking v), = A;l/zﬂgi"g €
V&V in this relation and applying (10) yields

—1/2 iv —-1/2 ,—1/2 iv —1/2 iv
1A, 2TV gl2 < gl -1V (A, 2 A, 2 1 g) o = llgll-1 1A, 2 1T gllo

and, hence,
14, T gl < llgll-1 Vg € L3 ()% (38)

Next, A;l/Q is applied to (35). Using (36), (37) and (38), one gets
||A;:1/28t€h||0
<[4 enllo+ (b V)en + aen]| -1 + pllV - enllo + |0 (w — s1)]| -1 (39)
(b V)(w = sp) + a(w — sp)l| -1 + pl|V - (w = sn)llo + [Ip — 74 ]lo-
Taking the square of (39) and integrating on (0,t) yields

/ AT 20,00 ()3 ds

<c ( / A 2 en(s) 7 ds + / (- V)en+ aen)()IP ds
w2 [ 7@ ds+ [ s o)1 s
+/0t I — m) (3)112 ds+/0t 1((b- 9)(w — 1) + s — sp) ()], ds
s [ 19w s 0l ds). (10)
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It will be proved that all the terms on the right-hand-side of (40) are
O(h?F). To this end, it will be assumed as before that the initial error ||e;, (0)]|o
is of order O(h*). Then, the desired asymptotic behavior is obtained for the
first and third terms directly from (28). Comparing with the bound in (28),
an extra factor p = O(1) multiplies the third term.

For the second term in (40), the definition of the H~!({2) norm, integrating
by parts and Poincaré’s inequality leads to

/ 1(b- V)en + aen)(s)2, ds < C(1+a?) / len(s)[12 ds,
0 0

such that the desired order of convergence can be again deduced from (28).
Concerning || 0;(u— sp)| -1, the definition of the H~1(£2) norm and Poincaré’s
inequality are applied to bound this term by C||0:(u — sp)llo. Now, (22) is ap-
plied (see Remark 1) and with hypothesis (27), the estimate for ||0;(u — sp,)]|| -1
is O(h*). Once this term is bounded, it is clear that the integral of its square
is also bounded

t
/0 10s( — s ()12, ds < Ch™ Dyul2a s

To bound ||V - (w — sp)||o, estimate (22) is used again. Arguing as for the
second term, one obtains

/0 1B~ V) (u — sn) +alu — 1)) ($)]?, ds
<C(1+a?) / I — 1)(5)]2 ds.

The bound for this term is concluded by applying (22). Combining the esti-
mates for (40) with (33), and recalling that « = 1/T, it follows that

/0 104 (en) ()12, ds = O(2*). (41)

Theorem 2 Let the assumptions of Theorem 1 hold, letv <1 andl =k —1,
then

Ip = ul2aq0ae) < € (L ) 12 (ol + (o) )
+ O (14 ) (T + ) [l vy + T+ 00l o))
+C (117 W2l gy, (42)

where C = C (B, |bll Lo 0,25 ) -



13

Proof Using the discrete inf-sup condition (7) and (25), one obtains

Bollpn — mallo < vl[Venllo + [I(b- V)en + aen| -1 + ||0ten]| -1 + pl|V - exnllo
+[0¢(w = sp)|| -1 + [[(b- V)(u — sn) + a(u — sp)|| -1
+ul|V - (w = sp)llo + lp — 7 llo + [|2a]lo-

Squaring both sides of this inequality and integrating on (0,t¢) one has

g [ |<pth—wh><s>||3 .o

< C(/O v*[[Ven(s)ll5 ds+/0 (b~ V)en + aen) ()%, ds
o [ ety ds et [ 17 en ol ds
+/Ot 195 (2w — s1,) ()12 der/Ot (b~ V)(u— sp) + alu— sp,))(s)]|, ds
s /Otlv(u—sh)(s)ll?) ds+/0t|(p—7rh)(s)||% ds+/0t ||lh(s)|(2)>.

Arguing exactly as for the estimates of the right-hand side of (40), using
estimates (41) for f(f 10s(en)(s)]|%1 ds, (23) to bound the last term, and finally
the triangle inequality, then (42) is proved.

Remark 5 Neither the analysis of this section nor the analysis of the fully
discrete case in next section require the assumption Q;, C H*(£2).

In addition, the analysis works for inf-sup stable divergence-free pairs of
finite element spaces, like the Scott—Vogelius pair on barycenter-refined grids,
without grad-div stabilization. Proving the error bound for the velocity with
such elements, the term (Vp, e) = —(p, V-ep,) in (25) vanishes since V-ep, = 0.
To get the error bound for the pressure, the term (p—mp,, V-v;,) vanishes when
(34) is projected onto V3V, Thus, in the case of stable divergence-free elements
estimates with v-independent constant (for a sufficiently smooth solution) are
also achieved.

4 Fully discrete cases

This section studies fully discrete cases. First, in Section 4.1, the backward
Euler scheme is considered as temporal discretization and then BDF2 in Sec-
tion 4.2. Finally, the Crank—Nicolson scheme is analyzed in Section 4.3. Error
estimates for both velocity and pressure errors are derived.

Consider a decomposition of the time interval [0, 7] with equidistant steps
Tsuchthat 0 =ty <t;...<ty=Tand t, =t,—1+7,n=1,...,N.
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4.1 Backward Euler method

The backward Euler method, together with an inf-sup stable finite element
discretization, applied to (1) reads as follows: Find (U, P}") € V}, X @}, such
that for all (’Uh,qh) e Vy x Qh

~n ~n—1
Uu,-U ~n ~n ~
(h — »%)+v<vvmh)+<<b'v>vh,vz>—<v-vh,P;;>

V- Upqn)+ (VUL Vvp)=(Ffvn), n=1,....N, (43)

~ 0
where U, is a finite element approximation of @y. Using the notation (U7}, P7’) =
e“"t"(UZ, P), a direct calculation yields

~n ~n—1
et (U, -U, )=Up-U""+a Uy
=Uy-U ' +a* Uy — o' r(Uy - U,

where o = (1 — e~ ") /7 = a4+ C7. Using this relation in (43) it follows that
(U}, Py) satisfies

U n n ,n XTI
(PR o)+ 0(U3, Vou) + (- V)0 o) + (07U 1)

—a* (U = U on) = (Voop, P + (V- U, qn) + u(V - U,V - o)
:(fn>vh)7 TL:17...,N, (44)

for all (vpn,qn) € Vi X Qp. Let s} = sp(t,) be the solution of the discrete
Stokes problem (17) with right-hand side (21) corresponding to t,, and denote
el = U} — s} € VAV, Subtracting the equation for s from (44) gives

n—1

(S5 00 )+ v(Vef Ton) + (- et on) + (e vn)
~(Von, Bl = 17) + (V- €f,qu) + p(V - €5,V o) — (e, — ey~ vp)
— <5‘tsﬁ - SZ_;Z_l,vh) + (O (u™ — s7),vp) (45)
+((b- V) (u™ — s}) + (qu™ — a*s) 1), vy)
(V- (u" = 85),V-vn) + (VP*,vn),  Vor € Va, qn € Qn.

A direct calculation shows that

1 1 _ 1 _
(ef — ent ef) = SlleRld = S lep I3+ 5llek — ep 3
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Using this relation, taking v, = el in (45), using (4), e} € V,3V, integration
by parts, the Cauchy—-Schwarz and Young’s inequality yields

1 _ _
> (lerlls — ller =115 + ller — er t13) + vlIVerls + a*llenll§ + ullv - erl3
1 st —gnt *
<aeh e tep) + o ok - Bt 4 e
@ 0
1 n ny||2 a* n|2
‘*‘5”‘%(“ _sh)HO"’_ZHehHO (46)

1 n n n * QM— o n
+— b V)" = s7) + (au” — a5 )+ - lleh

+ul|V - (u" = sp)IF + Z”V ceplls + ;Hp -7l + ZHV ~enlls-

With the notations

2

) 1 ST — 8”71

A e R
1

T3 = (b V)(u" — sh) + (au” —asi )],

1
Ty = V- (u" = sp)lls + ;Ilp" =I5
estimate (46) can be written in the form

1 _ _ w a*
o (lerllg = llen™"1IG + ler; — en™'1I5) +vIIVerlls + SV - erlls + 7 llenlld
<a*(ef —ep el + T8+ To + Ty + Ty

Observing that

-1
lep — eI

—1 T
o’ (ef —eftef) < 12 @) llep I3

and assuming

* 1
<%f = r<—=—11 (47)
one gets

1 _ I a*
5= (lerlls — lles HE) +viIVerls + SV -enlls + g\\e’ﬁllg

< TP+ T9 +T9 + T} (48)

Observe that (47) holds if 7 < log(4/3)T, since oo = 1/T.
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After summation of the discrete times j = 1,...,n, one obtains

n n . . a* .
e+ 3 (219l 13 + 4V - 15 + ekl
j=1
< ||e2||3+2TZ(Tf+Tg+Tg+Tg). (49)
j=1

The terms on the right-hand side have to be bounded. Applying (22) together
with Remark 1 and recalling that o* ~ o = 1/T yields

T) < CTh?*|dwu(t;)|?,  j=1,...,N. (50)

To bound T2j , a sequence of inequalities is used applying a Taylor series ex-
pansion with reminder in integral form, the Cauchy—Schwarz inequality, the
triangle inequality, Remark 1 for the second derivative, and the Poincaré—
Friedrichs inequality (5)

; sl -8t ’ 1 b ’
Ty < CT ||9ys)y — 2—L—| =CT— / (t —t;—1)0usn dt
T tiq
0 J 0
1 tj tj
<ors ([T -t ar) [ sl
tj—1 tj—1

tj 2]
< CTT/ |0 sn |2 dt < CTT/ |Opul? dt, j§=1,...,N. (51)

ti—1 tj—1
The first part of Tg is bounded by applying (22)

I(b- V) — s} < Ch¥ju(t)Zyr,  G=1....N. (52

To bound ||(au™ — a*s}'")||2 one can proceed as follows. Denoting 35 (t) =
e*sp(t), a direct calculation leads to the representation
~n ~n—1 n n—1
_ ot Sy — 8 sp—s _ _
atsp Tl =t Zh o Zh Ch _ omtnguEn — Oysh + T3 + Tf'
T T
= asp + TE T

where
~n ~n—1 n n—1
_ sy — 8 . s} —s
TP =e o (2—h— — 0,5 ), Ty =os) — —b—
T T
Since ||T2* + T¢'||, can be bounded similarly to 74", for n = 1,..., N, one gets
5 6 110 Yy 25 ) )
n * n—1\2
[(au" —a*s,™ )5

tn tn
< ou” — sp)|2+Cr ( / |2 di + / a2 dt) (53)

tn—1 tn—1
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Together with (52) it follows that, for j =1,...,N

)

, t
7§ < CTH*ult)) I+ CTr [ (10wl + 0wl de

ti—

Finally, applying (22) gives
ullV - (W = si)I§ < Cub® flu(t) 74
Likewise, using (14) yields

1|| g j||2<0h2kH (t5)II%
=lp?” = mll5 < C—Ilp(t;) Ik
I h1l0 U 7k

such that
T < CP* (pllu(t) i +n M p@)IR),  G=1,...,N.
Collecting all estimates, one gets from (49) forn=1,..., N,

n *
el +7 > (2v1Vel 3+l - elif + 5 led )
j=1

< (1813 + OT72 (0wl o, o) + 100l o)

+CRM(T + p)7 Z”U )] %

+CR* |~ TZIIP Hk+TTZ||3tu )i

k=1 j=1

(55)

Theorem 3 Let (u,p) € V x Q be the solution of (1) and let ([727]3,7) €

Vi X Qp be the backward Euler approzimation solving (43) forn =1,..

., N.

Assume that ||€)]o = O(h¥), l =k —1, v < 1, 7 < log(4/3)T (so that (47)
holds) and that the solution is sufficiently reqular such that all norms appearing
in the formulation of this theorem are well defined. Then, the following error

estimate holds

|at.) - O,

(7 (st -8 7 - (s

< C"”L”“(IIUonc +lata)li) + CTr2|alf2 0.0, 1)
n

+ Ch(T + p)r ZHU i
j=1

+ R [ Tr Yy |oca(ty)li +n~'r Y lI6(t)II7

Jj=1

-a),)

(56)
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Proof Estimate (56) is obtained applying the triangle inequality and using
(22) and (55).

The bound for the error in the pressure can be obtained along the lines of
the proof for the time-continuous case. Considering (45) and simplifying the
terms (a*e},vy) — o (e}l — e}~ ' vy) to (a*e] ', vy), then one obtains with

the the discrete inf-sup condition (7)

Boll Py — mh llo

e _en—l
<v|[Vepllo+[[b- Ve +aep -1 + | "] +ullV-eqlo
-1
n—1

st —s )
Oysjp — —" + (b V)(u" = sp)l-1

0 — 7)1 + ]
-1

Hlow" —a*sy o1+ pl|V - (u” = sP)llo + 1P = 7illo + 1L llo,  (57)
and, consequently

n
Bor Y _I1P) = milis

=1

n n n
j j j—1
< C[VQT > IVerlls+7> lIb-VeplZi+ 7> llatel [
j=1 =1 j=1

i i1
€, — €

n
+7
n
+7 Z
j=1

n n
73 low? —ars) I et Y IV (= s
j=1 j=1

n n
+2TY Ve g+ 7> 10w — )2,
1 j=1 j=1

2

J o oJ—1
8t8j _ Sh = Sh
h T

+7Y (- V)(u —s7)]%,
1 Jj=1

S S nz;;ua]. 69)
j=1 j=1

The first, third, and fifth terms on the right-hand side above are already
bounded in (55). Since the bound ||(b- V)el |2, < C|le} |3 is satisfied, one
can also apply (55) to estimate this term. For terms ranging from the sixth
to the ninth on the right-hand side of (58), one can first bound ||-||_; by |||,
and then apply the bounds (50) to (53). To bound the tenth term on the
right-hand side above, (54) is used. For the last two terms one can apply (14)
and (23). Altogether, to conclude the estimate, it only remains to bound the
fourth term on the right-hand side of (58). The estimate of this term follows
with the same arguments as in the time-continuous case. First, one applies

J Jj—1
_1/2 [ €, — €y,
4h/<hTh >

J Jj—1
e, — €
—h “h <C

-1

T

0
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and then one derives the estimate

J Jj—1
—1/2 €;, — €y
h
T
0

1/2 j j j—1 j
<v|4,%elllo+ (b~ Ve, + el M1+ ul|V - elllo

n n—1 X
S B (b V) (W — s))]|
-1

0n (s — s])l|1 + ] dus)

. - , o
Hl(aw” — s )1+ pllV - sy llo + [Ip7 = 3 lo-

From this inequality, one gets the bound for the fourth term on the right-hand
side of (58) in the same way as for the other terms.

Theorem 4 Let the assumptions of Theorem 8 hold, then the following error
estimate for the pressure is valid

i~ 2
30| Bi-ae)|| < rliaol + CT + e ale o i
=1

+CR* (T + p) (1 + p)7 leu ] (59)

j=1
n

+ R (T(1+ w7 Y 0t + (1 + i) an )
Jj=1
4.2 BDF2

As in the case of the backward Euler method, (ﬁz,f’ﬁ) denotes the fully
discrete approximation at time ¢,, n = 2,..., N, which satisfies for BDF2
1 1 2 ~ TN ~ N ~n NTL
- (D +5D )Uh, on | + (VU Vo) + ((b- VYU, vn) — (V - vp, B
V- Upoan) + (V-0 V-vp) = (F on). (60)

Here, D is the backward difference for a sequence (y,))_;, i.e., Dy, = yn —
Yn—1, = 1,..., N. Note that D%y, = yp — 2Un—1 + Yn_o, for n = 2,..., N,
such that

1 2 ~n—1 ~n—2
D+§D thfUh72Uh 7Uh 5 n:2,...,N.

It will be assumed that T},lL is obtained by one step with the backward Euler

~0
method and that U, is an appropriate finite element approximation of .
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Recall that (U}, P)') = e“"t"(ﬂ':, 13}?), such that a straightforward calcu-
lation yields

~n—2

3~ ~n-1 1 3 U 1U
e_atn(i n =20, o ):<§ h=2 Z_1+§ 2_2)
1
+ T(Qa*UZ_l — ia**Uﬁ_z), (61)

where a* = (1 — e~ ?7)/7, as in the case of the backward Euler method,
and a** = (1 — e~297) /7. For the last two terms on the right-hand side one
can write

1
20°U — Sa UL

1
=a*Uy —a* (U} - U 4 UZfQ) + (a* - ia**)U;’Q

1
= o*'U} — DU + (a* - ia**)UZ_Q.
Now, observe that 7(a* — a**/2) = 1/2 — e™7 + 1/2e~?" that is, a second
backward difference of e~ at ¢t = 0, and, thus

T (a* - ;a**) = B, (62)

where 3 = e~?¢a?/2 for some ¢ € (0,27). Thus, (61) can be written in the
form

3~n ~n—1 1 ~n-2 3 1
e~ tn (§Uh —20,  +3U, ) :(§UZ‘ —oUn? 4 §UZ_2) (63)
+7 (U} — " DU} + BrU?).
Then, arguing as in the case of the backward Euler method, one finds for
BDF2 that e} = U}, — s} € V;3iV satisfies

1 1
<T (D+5D%)ei ) + (Ve Von) + ((b- V)ef, vn) + (a"efl, vp)

—(Vwop, P —13) +(V-ep,qn) + (V- ey, V-vp)
—a*(D%ejy, vp) + Br(e) %, vn)
1 1
- ((ats;;) -~(p+ 2D2)sg,vh) + (D (u" — ), vn) (64)
+((b-V)(u" = s3) + (au™ — a*(sp — D232) — ﬁTSZfQ, vp)
+u(V - (u" = sy), V-vy) + (Vp",vh), Yon € Vi, qn € Qn.

Observe that there are the following differences between (64) and (45). In
the first term on both left- and right-hand sides, the first divided differences
appearing in (45) are replaced by (D + D?/2)/7. Also, the last term on the
left-hand side in (45), (e} — e~ ', vy), is replaced by the last two terms on
the left-hand side in (64). The rest of the terms in (45) is the same as in
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(64). Finally, in the fourth term on the right-hand side in (45), the difference
au™ — a*sy ! is replaced by au™ — a* (s — D%s}) — Brs} "% in (64).

Due to the similarities between both expressions, now only the terms which
are different to (45) will be considered in detail. Taking v;, = €} in (64), a

direct calculation reveals that

((D+3D%)eii.eir) =5 leills + § llei: + DeRlls + S 11D% 13
1 n— 1 n— n—
- ZHeh HIg - ZHeh Y+ Dep g (65)
The last two terms on the left-hand side of (64) can be estimated from below
as follows

—a*(DPe}, ef) + frlel 2, ef)

A w22 BY ponpz B
> e (@24 5) lerlls = w5 llep 2113
[D%eilly a0t
> — e - el - Telle IR, (66)

where the last inequality is true only if 7 is sufficiently small, i.e., if
B ) <L
20/ 7 16
holds. Since in view of (62), 76/a* =1 —a*/(2a*) =1 —-(1+e%7)/2 =
(1 — e 27)/2, one finds that (67) holds if 5(1 — e~*") < 1/4, which, since
a =1/T is assumed, holds if 7 < log(20/19)T". ‘

For the fourth term on the right-hand side of (64), using (63) with U7,
and f]il replaced by sfl and :9?1 = e si, respectively, for j =n—2,n—1,n,
one can write

T(a* + (67)

1 1 1 1
o (s} — Dsp) + prs; 2 = e~ = (D + S D)3} — — (D + 5D%)s}.

Thus, it is

2 -2 —atn 9 =
au” — o*(sp — D?sy) — Brs;, ~ = au" —e ¥ 03, + Oysy + 15 + T¢'
= au" — s}) + T + T3,

where

1 1 1 1
T = e~ ,(30) — e~ Otn = (D n 5D2)s§z, o = (D + 51)2) s — 0,8l

- =

(68)
Consequently, when taking v;, = e} in (64) the fourth term on the right-hand
side can be bounded in the following way

* 2
n * (oM n n— a ny 2 « n|2
(0" 0" (5§~ D?sf) ~Brsii 2, ef) < S[R3 +8 % ™ — s3T5, (69)
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where
mn 8 n mn
T56 = JHT5 +T¢' 13- (70)

Then, arguing as in the case of the backward Euler method and using (65),
(66), and (69), one gets for BDF2, instead of (48),

1 _ _ _
(IR I3 + llep + DeRl — lleg I8 — llef ™" + Deg ) + vl|Vep |3

It n a n a n— n rmn i n n
+ §||V ~enllg + §||eh||(2) < T6||eh 26+ T + T3 + T3 + Tj + T,
(71)
where T7* and T are as in the case of the backward Euler method,
2
. 1 1 1
Tn — — n-*(D 7D2) n
2 Oé* 8tsh T + 2 sh 07
i 1 n n o? n n |2
I3 = (b V)" — s+ 8% fur — sp
and T} is defined in (68) and (70).
Multiplying (71) by 47, summing up, and rearranging terms gives
leqll+ > _ (v Veplli + - llenlls + 2V - e} 5)
=2
a*
<llenlls + llex + Dey, 5 + 7= (llexlls + lex ) (72)
+4r Y (T + TS + T + T + Td).
j=2
A direct calculation shows that
a*
lexllg + lley, + Dex g + 7= (lellg + llexlls)
a* o
< (775 ekt + (3475 ) Nl < € (lek + i) - (7
In view of (52) and (22) one has that
1] < OTR*|u(ty)lliy, 4=2,-..,N. (74)

A Taylor series expansion yields for TQJ
2

)

T
J
T <0

/ (2(t —ti_1)} — 5(t - tj_g)z) Opesn(t) dt
tj—o
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j =2,...,N, where z; = max(z,0) for z € R. With the Cauchy-Schwarz
inequality, one obtains for j =2,... N,

. T tj 1 2 tj )
ij <ol ( [ (a0t - Ge-2) dt) | lowsateiz

t; t;
< CTrd / [Dsesn(t)|2 dt < CT7T? / B (t)||5 dt. (75)

tj72 tj72
Since a similar bound is valid for TZ, and the bounds (50) and (54) on T}* and

T} computed in the case of backward Euler method also apply in the present
case, from (72) — (75), it follows for n = 2,..., N, that

lerlE+r > (4vvel I} + llehlE + 201V - 1)

Jj=2

< C (lehl3 + 1e213) + OT7* (I0uewlaqo 1) + 10wl 01,00

O (4 w3 )R + 773 00u(r))]7) (76)
j=1

j=1

T n
+Ch2kﬁz lp(¢5) 13-

j=1

Finally, one has to show that He}LH?) = O(h?¢ + 74). The first step is
performed with the backward Euler scheme. To prove the needed order with
respect to time, it will be exploited that the length of the first time interval is
just 7. Starting from (45) with n = 1 and taking v, = e}, the first and third
term on the right-hand side of (45) are estimated with the Cauchy—Schwarz
and Young’s inequality

1 0 1 0
sy — 8
Oyst — Zh hoel) <or
h P »Ch =

Byst — Sh — Sh
h

S|
Lo1g2
. + g lenlls,

and
((b-V)(u' = s3,) + (au' —a*s}), ;)

a® . 1
< CT|(6- V)@ = sp)[5 + T llenlls + 2rllou’ — a”sp 5 + e 5.
All other terms in (45) are bounded as in (46). Arguing in the same way as
after (45), now instead of (48), one arrives at the estimate

1,1 p o
o= (Sllehl3 = ehlz) + vIverld + £ 1V - ehlld + ik 3

< T+ 27Ty + Ty + 2775 + T

where 1
Ty = §||(b'V)(u1 — sl Tap = [lau! —a*spl[5.
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Taking into account the bounds on T, T, T} given in (50), (51), and (54),
respectively, as well as (52) and (53), one obtains
a*
lebi2r (21915 + 5 bl + v - ek 13)
<2|lepll§ + CTh*" (lu(ts) |74 + 10cu(ta) R + lp(t)17)
ot [ (ol +ouul?) d.
0

The estimate of the last term on the right-hand side provides an additional
factor 7 from the length of the first interval

)
[ 0wl at < 7 10wl o

< CT4(||8ttuH§/2(O7T7H1) + Hat“uHZLQ(O’Tle))

In the second step || - ||r~(0,r,z1) < C| - [|a1(0,7,51) Was used, which is a
consequence of the Sobolev inequality || ||z 0,7y < C||-[|1(0,r)- Analogously,
one obtains

)
[ ol de < 7 10l e o )
0

< 07'4(Hattﬁui2(0;r,Hl) + Haﬁt&Hiz(O»ﬂHl)).

Inserting the estimates for the first step into (76) yields forn =1,..., N,

n *
lexl3+r > (w19e) 3 + S-lleh 3 + 24117 - €] 1)

Jj=2

<Cllef 3 + O (0wl Fa(o oy + 10r@l 01,1

+ CT (lallpogo oy + 1o 0,00

+ R (T + )y flalt)lf o+ T7 ) ll0vulty) 1}
j=1

Jj=1

+ChP* > Ipt) 17 (77)

Jj=1

From this estimate, arguing as for the backward Euler scheme, one gets the
following theorem.

Theorem 5 Let (@,p) € V X Q be the solution of (1), which should be suffi-
ciently smooth such that all norms appearing in the formulation of this theorem
are well defined, and let (ﬁz, ﬁ,?) € Vi, x Qp, be the BDF2 approximation solv-
ing (60) forn = 2,...,N. Assume that ||€}|| = Oh¥), | = k-1, v < 1,
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7 < log(20/19)T (so that (67) holds) and that the backward Euler method is
used for the first step. Then, the following error estimate holds

[T =atellg + 7 X (V@ = w5+ V- (@5 - ate) ;)

< Ch** (ol + 1a(ta)l7) + CTT 1@ 3 (0,1, 111

n
+Ch* | (T + p)7 Z ||k+1+TTZH3t DE

j=1
+Ch* 'TZE:IMJ )Mz- (78)

The estimate for the pressure error is performed also along the same lines
as for the backward Euler scheme. It starts from (64). For convenience, the
term (a*el,vy) —a*(D2e}, vp,)+B7(e) 2, vy) in (64) is expressed in the form

1
(a*el,vp) — o (D%e}, vy) + Br(e) 2, vy) = (2@*62 T —a*ep? 'uh> .

2
Then the arguments used for the backward Euler method are valid for BDF2
if one replaces the occurrences of (e — e}~ ')/r, (sZ /1, o 65‘ and
a*si! by (D + D?/2)/7e}, (D + D?/2)s%/7, 2a%e) ™" — a**e}l 7/2, and

a*(sp — D?s}) — Brs) 2, respectively. Thus, instead of (57), for the BDF2
one gets

Boll Bt = millo < |2 (D + 5D%)er|  +viVerlo+lib- Verll_,

1 _
+ [[2a%ei” 1—5a**ez 2|y + V- eillo + 10w = s3]l

1
8#32 — ;(D + §D2)SZ

+| +|- V) = sl
+ Hau” —a*(s) — D?s}!) — BTS 2H L (79)
Tl - @ = 8o + 16" — o + I .

Since [|b-Vej|_, < Clef|l, and o = a*(1 +e77) < 2a*, it follows that

1 _ _
Ib- Vep|_, \m* Wt geen | < Oleillo + ekl + lleh M)
Using also the fact that [|-||_, < C|- ||07 the truncation errors, i.e., the terms

ranging from the sixth to the tenth on the right-hand side of (79) can be
bounded as in the estimate for the velocity. Applying in addition (77) yields

n
87 |18 - il
j=2
n

n 1 1 112
<oy |-+ 30%eh| " +or Yo" - ml + 1R IE) + 7
=2 i=2
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where T7 can be bounded by the right-hand side of (77). Since the second
sum on the right-hand side can be bounded by applying (14) and (23), it only
remains to bound the first sum. Again, arguing as in the case of the backward
Euler method, ||’7' (D+ D?/2)el H , can be bounded in terms of (the square

of) those terms on the right-hand side in (79) ranging from the second until
the eleventh. It follows that, for n = 2,..., N, one finds

g5r 3 I1B =il
j=2
~ 112
< Clleflg + T + ) (Iullys o,y + 1l s 0 1o pen))
+CT( + w7 (10ueullFe o, ey + 190tz o ) )

+ORPF [ (T + ) (1 + p)7 leu i + T+ )7 leatu )%
Jj=1 j=1

+Ch?*(1 + ) ZHp

Now, the estimate for the pressure follows with the same arguments as before.

Theorem 6 Let the assumptions of Theorem 5 hold. Then, the following
bound holds for the approximation to the pressure using BDF2

LT 2
o3| B -],
j=2

< Ch?M|lauo|[; + CT (1 + )T @l Fps 0,0, 001

+CR* (T + p) (1 + p)r leu M + T+ p)r leatu )3
j=1 j=1

+Ch¥* (1 + pt Z p(t; (80)

4.3 Crank—Nicolson scheme

The Crank—Nicolson scheme is perhaps the most popular time integrator
among the schemes considered here. The analysis of this scheme is more in-
volved than the analysis of the two other methods. For instance, it is more
difficult to estimate the convective term, which will be performed here with a
special family of test functions, see (95).

The Crank—Nicolson method, together with an inf—sup stable finite element

discretization, applied to (1) reads as follows: Find (Uh, P 1/2) e Vi xQn
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such that for all (v, qn) € Vi, X Qp,

~n ~n—1 ~n ~n—1
Uu, -U U U
<h h ,’Uh> +v (Vh +2 h ,Vvh>
T

~n—1
U U Sn—
o BT ) 5
~n—1
u,+U,
+ <V 1127Qh+[LV"Uh) (81)
~n ~n—1
(f +7 )
f?vh b
~0
n =1,...,N, where U, is a finite element approximation of o, tp—1/2 =
t, —7/2,n=1,...,N, and for a function v = v(t), the notation v? = v(t;)

is used. To simplify notation, in the sequel the superscript in the convection

field will be omitted. It will be assumed that (V - f]g, qn) = 0 for all g5, € Qp,
so that taking vy, = 0 in (81), it follows that

(V-Up,q.)=0, VYgn€Qn, n=0,...,N. (82)

For g = f— 08— (b-V)a— Vp, let (@,0) be the solution of (16), and
let (éh, ln) be the corresponding Galerkin approximation in V; x Q. Using
V4" = 0and mtegratlon by parts, one finds with a straightforward calculation
that the error &) = Uh — 35 e VIV n=0,..., N, satisfies for all (vp,q) €
Vi X Qn,

~n __ ~n—1 ~n—1 ~n—1
(S5 ) oo (P2 ) (0o 7 )
T

—(V o, P2 - (v-e”eh L qh + 1V - vh)

(TTzsl/,vh)Jr(n 2 v .v,), n=1,...,N, (83)

where 7?2_1/2 denotes the orthogonal projection of p(t,_1,2) onto Qp,

rn—l/? o rn—1/2

n—1/2
123 — T + 7y

n—1/2
+ 73 ,

n—1/2  n—-1/2 n—1/2
Tas =Ty +rs
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and
n—1/2 8{&” 4 8tﬁn_1 a — an—l
r = — ,
! 2 T
P12 _u’— T 3, - gt
2 T T ’
_ én 4 gn—l /a’n +,&n71
o /2 _ (b~V)% + (b'v)f’
_ gn _'_énfl ,an _|_,an—1
2 2
P
o 2 _ b 2h D +2P A 12

Since (V- 8}, qp) = 0 for all g, € Qp, and in view of (82), it follows that
(V-er,qn) =0, Yaqn € Qn, n=0,...,N. (84)

Using similar arguments to those applied in (51) and (75), one shows that

n—1/2

Iy ™l = 72

HatttﬁHm(tn,l,tmLz) : (85)

With (22) and Remark 1, one obtains

n—1/2 Lot - hE
1212 = T/tnl(atu—atsh)dt < O 10 e, gy (56)
and
n—1/2 —1/2 ~n ~n—
5™l + g ™2 llo < COU A+ wRF (™ r + 18" fl541)- (87)

Applying a Taylor series expansion and (23) gives

1
n—1/2 ~n—j ~n—q ~
15 2 llo = € [ BF S U@ lrsr + 1577 M) + 722106l 226 0, 22)

§=0
(88)
The following formulae are valid for a,b,u,v € R
b
au—bv:CH_ (u—v)+(a—b)u+v,
2 2
b _
(MH—bU:a+ (u+v)+(a—b)u v
2 2
By applying them, one obtains with straightforward calculations
~n ~n—1 n_ p,n—1 n n—1
e—on‘,L,l/z €n h _ (1 +B 2)eh € —|—Oé* €n +eh ,
T T 2
n ~n—1 n n—1 n__ ,n—1
g=atn-1/2Eh *;h = (14 pr2) % +2eh R N C)
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where
. 2sinh(ar/2) = cosh(at/2) —1
- T I - 7_2 bl
and, as before, e” = ¢%ne"” n = 0,...,N. Observe that a* — o and 8 —

a?/8, as T — 0.
Now, the terms on the left-hand side of (83) will be considered. Setting

o = Temtnos, (90)

it follows that

ey —ep )
—1 2 2 12

i (T e et ) = 14 a7l - e IR

T

2

én 4 ~n—1 B .
o (VL Vel ) = S0+ 5T (el + e B

+50"len +en G, (91)

2
T —
+ @ v(IVeRlls - Ive 1),

én +én—1 . B - . B
i (V- S V(e e ) = F0+ BT - e + e IF92)

2

T —
+ o IV - eqlls = 1V - ex = 1),

én+én ! n n— T2 * n _n—
(0D ) = G Ve @3)

The last term has to be canceled by an appropriate choice of the test function.
To this end, inner products with e} — ezfl will be considered. One has

~n ~n—1
€n + €n n n—1

i (0 FEF ) = (14 ) (b Vet ) 00

Now, the test function vy, € V4 in (83) is chosen as a linear combination of
(ep +e; ') and (e} — e} ") such that the terms on the right-hand sides of
(93) and (94) cancel each other. For this purpose, use ¢, = 0 and define

)

n—1

vh =" ((ef + e} " +pley — e} (95)
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Direct calculations show

~n—1
eh — € n n—1 T
PYn ( - yE€p — € = Fu

“(lei —en"13)

T x n n—
+5a”p(llerlls — len"15),  (96)

[\

~n ~n—1 2
eh +e n n— T * n n—
oo (VI Ve - e 1)) = Taru(ITeR I - Ve )

2
T * n n—
+a p(IV(er — e IE). (97)

éh+ e g o "
oo (V- LI T e - e ) ) = Tatul9 - €l - 19 e )

2
-
+ @ pullV - (el —ep” I3 (98)

With the Cauchy—Schwarz inequality and Young’s inequality, one obtains for
vy, defined in (95)

n—1/2 T * n n— T * n n—
(e o)) < Za”lef + e 3 + Za (e — e R)
+7Cy [l /2 28, (99)
where
1 a*r?
Ch=—+——77-—+=, (100)

a*  4(1+4 p7r2)?

such that the first two terms on the right-hand side in (99) cancel with one
half of the corresponding terms in (91) and (96). In the same way, one gets

n— T n n—
|52V - on) < (14 B7) |V - (et + e S

(a*)27_3
+ 16(1+ﬁ Q)MHV (eh eh )”0
+ 7Cy|e™tn-1/2r 23, (101)
where
2
Cyp=—" | 102
27 u(+pr2) (102)

so that the first two terms on the right-hand side in (101) cancel with one half
of the sum of the corresponding terms in (92) and (98). The pressure term on
the left-hand side of (83) vanishes since vj, € V;4V because of (84).
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Taking (v, qn) as specified in (95), summing from 1 to n, and ignoring
some non-negative terms on the left-hand side yields

n

(14872 | llehld + 5 X2 (vIVeh + e IR+ £1V - (e + 7))
j=1

< (1472 ||eh | + E3 (103)

m
+7 Y (Callemtmrrariag P8 + Calle=ot=eris V2R,
n=1
where C; and C are the constants in (100) and (102) and
2 *
2 &7 02 02 @ 02
5 =0 T (20 9l + 2019 - €31+ 1= el )

For « = 1/T and 7 < T, it is a simple calculation to check that C; < CT and
Cy < Cp~! where C' < 2. In view of (85) — (88) and since e~ ®%i-1/2 < 1, one
obtains

P32 (Culle el 23 4 Calle bl )3)

J

n

—

< 0{74 (T 10wl 20,1, 12y + 17" Hattﬁlli?(O,tn,L%) (104)

+Th2k||atﬁ’||%2(0,t”,Hk)
[ AT ) ] h%TZIﬁjlli+1+uth’“TZIIﬁjIIi}-
=0 =0

For « = 1/T and 7 < T, one has a* < 2asinh(1/2) < C and 1 + 72 <
cosh(1/2) < C. Then, it follows from (103) and (104) that

n T o ; i I ; -
leg 3+ 2 3 (vIVee], + el I+ LIV - (e + el 7)IE) (105)
j=1

< llenlld + C{Tz(VIIVe?LH% +ullV - enllg + llenld)

~ 112 — ~112
! (T 0wl 200, 12y + 17 ||attp||L2(o,tn,L2>)
+TR* 0l F 20,0, 1)

[ R ) W S +u‘1h2kTZ||ﬁjIIi}-

Jj=0 Jj=0

Applying the triangle inequality and (22), the following result is obtained.
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Theorem 7 Let (@,p) € V X Q be the solution of (1), which should be suffi-
ciently smooth such that all norms appearing in the formulation of this theorem
are well defined, and let (INJZ,?,’:) € Vi, x Qp be the Crank—Nicolson approx-
imation solving (81) form =1,...,N. Let a« = 1/T and p > 0, assume that
(V- 02,%) = 0 for all qn € Qp, and that for some positive constant C it is
el + hl|Vedll < ChE Y ugllgt1, I =k —1, v <1, and 7 < T. Then, there
ezist a positive constant C' > 0 independent of v, u, 7, and T such that the
following error estimate holds forn=1,..., N,

2

|a(t.) = Tnlls +7> v
j=1

v (ﬁ(tj) ta(tj-1) U, + ﬁif)

2 2
0
Y atty) + ) Un+0n |
. u J u j—1 _ h h
+TZu \Y ( 5 0 )
Jj=1 0
< Cth{(l + )72 |Tol7 41 + 1@t 7 + TOal 7o, prr)
ARV EY A EDDI DD M}
3=0 §=0
+0r! {T ||a“tm|22(0,tn,fl2) +pt ||atti5HiQ(o,tn,L2)} : (106)

Since p and p~! appear on the right-hand side of (106), one finds again that

u = O(1) is the appropriate asymptotic choice.

For estimating the errors in the pressure, denote P,:Lil/z = e ln-1/2 13,771/2
and 77271/2 = e‘o‘tnfl/Qﬁ'Z*l/z. Some of the terms that have been ignored on
the left-hand side in (103) are those arising from (97) and (98), together with
one half of the sum of those in (91) and (96). If they are included in the
previous computation, after dividing by (1 + 872), one gets also that

R VA R RS j_flz)
4(”572)7;(%%,1 12+ lle], — 7113

T ; i ; i
+ 075 D _(vIVie, — e 5+ ullV - (€], — el )IF) <R, (107)

Jj=1

where R is the right-hand side of (105) and p is defined in (95). Multiply-
ing (83) by 4™ from (90) and using the inf-sup condition (7) yields with a
straightforward calculation

~n __ ~n—1
Borl| Bp ™2 — w3 < anehﬁ + Ro, (108)

-1

h
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where
én+én—1 én+én—1
Ro=v | S G| o, [ S
0 0
ey +ep! —1/2 n—1/2
b I e s . (109
0

Since &} — &}~! € VIV, the first term on the right-hand side of (108) can be
bounded, applying the same arguments as in (33) and (10), by C’||A,71/27n(é2—
€ 1) /7lo. Taking v = e — e} in (83), applying the same estimates that
led to (108), and applying Poincaré’s inequality it is easy to show that the
first term on the right-hand side of (108) is bounded by C' Ry, so that

7| Py — 2 <8y CRo.

Squaring both sides of this inequality, dividing by 7, and using (89) to express

n—1

the first three terms on the right-hand side of (109) in terms of e} and e}
gives with a direct calculation
P[P =T < ofr(1 4 870 (Ve + e I
2 - _
11b11%, lles: + e M+ 121V - (e + ep)I)
7 (flemot el 2 + et )
a2 (2 1V ek — eI+ bl ek — e 13
+2IV - (et — epDIE) | (110)
where ||-||—1|| < C||||, has been used. Terms of the same form as on the right-

hand side of (110) were estimated in (104), (105), and (107). Applying these
estimates and summing from 1 to n gives

Y NPT TR = o+ Y.
j=1

Using the triangle inequality and the estimate for the L? projection leads to
the following theorem.

Theorem 8 Let the assumptions of Theorem 7 hold. Then, there exists a
constant C > 0 such that the following bound holds for the approximation to
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the pressure computed with the Crank—Nicolson method (81)

o ~ ]
o[ B At )|| < OB TS (12l + (1 027 ol
=1

j=1

+ T(1+ )00l 20,0, 0y + (0" + )7 D 1517
j=0

n

+ [TA+p)?+ (" + w1+ p?)] TZ\lﬁjlli+1 (111)

~ 12 — ~112
+ 07'4(1 + [L) {T ||8tttuHL2(O,tmL2) + u 1 HattpHL2(O,tn,L2)} .

5 Numerical Studies

This section will present a few numerical results which support the error es-
timates from Section 4. Comparisons of numerical results with and without
grad-div stabilization can be already found in the literature, e.g., see [10], and
will be omitted here for the sake of brevity. To this end, the Oseen problem
(2) was considered in 2 = (0,1)? and in the time interval [0,5] with different
parameters v and « and with the prescribed solution

_ sin(rz — 0.7) sin(7wy + 0.2)
u = cos(?) (COS(ME —0.7) cos(my +0.2) )’

p = cos(t)(sin(x) cos(y) + (cos(1) — 1) sin(1)).

The right-hand side, the Dirichlet boundary condition, and the initial condition
were chosen in accordance to the prescribed solution.

For all simulations, the Taylor-Hood pair of finite elements P»/P; on uni-
form grids was used (triangles with diagonals from bottom left to top right).
The coarsest grid in space (level 3) consisted of 128 mesh cells (578 velocity
degrees of freedom, 81 pressure degrees of freedom). On this grid, the length of
the time step 79 was used. Refining the spatial grid once uniformly, the length
of the time step was reduced by the factor of four for the backward Euler
scheme and the factor of two for BDF2 and the Crank—Nicolson scheme. With
this approach, one expects second order convergence for the terms on the left-
hand side of the error estimates (56), (59), (78), (80), (106), and (111). Results
will be presented for 79 = 0.05 for the backward Euler scheme and 79 = 0.5
for BDF2 and the Crank—Nicolson method. With these choices two situations
are illustrated: in the results of the backward Euler scheme the spatial error
is dominant and in the results of the other schemes, the temporal error is of
more importance. Qualitatively the same results were obtained for all schemes
in the respective other situation.

Numerical studies concerning the choice of the grad-div stabilization pa-
rameter for the steady-state Oseen equations and the Taylor—-Hood element
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error
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—k 2 HV(“*“A)”Ll(n,s;L’)
X=X |lp=pill 20,522

08 #1/2HV'(“*“J)HLZ(U,.S,LT)

5
level

Fig. 1 Backward Euler scheme, error reduction of the errors from estimates (56) and (59),
several parameters.

Q2/Q1 can be found in [20]. In all studies, the best choice of this parameter
was below 1, approximately one order. Because of these results and also based
on our own experience, the value of the stabilization parameter was set to be
¢ = 0.25 in the simulations. All simulations were performed with the code
MooNMD [18].

Results for the backward Euler scheme are presented in Figure 1. The sec-
ond order convergence can be seen for all errors but v*/2||V(u — up) | 2(0,5:02)
in the case ¥ = 107% and o = 0, where the order of error reduction increases
with increasing level but it is not yet two. Note that the error bound (56) is
for the linear combination of three errors for the velocity. For small v, this
combination is dominated by p'/2(|V - (u — wp)||22(0,5;2) such that this lin-
ear combination converges with the predicted order. The independence of the
error of the divergence and the pressure on v can be observed very well.
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v=1,a=0 v=10"%a=0

-- R

=0 [|(u—w) )|z

w—t Hv(ufuh)HLl(ﬂ,S;L']
X=X lp—plll 2, 5.2

[c ] #1”2Hv'(“*“/)HLzm,s,L")

level

Fig. 2 BDF2, error reduction of the errors from estimates (78) and (80), several parameters.

Numerical results for the BDF2 scheme can be seen in Figure 2. The behav-
ior for @ > 0 compared with o« = 0 is very similar to the backward Euler scheme
such that the presentation of the corresponding results is omitted. To illustrate
the behavior for small v, results for v = 107°, a = 0 are presented here. One
can observe clearly the reduced order convergence of 1/2||V (w—up)||£2(0,5.22)
on coarser grids and the tendency to become second order on finer grids. All
other errors converge at least of second order already on coarser grids. Again,
the pressure error and the error of the divergence are independent of v.

For the results obtained with the Crank—Nicolson scheme, see Figure 3, the
same comments apply as for the results computed with BDF2.

6 Conclusions and future research

This paper studied the effect of grad-div stabilization added to the Galerkin
method for the transient Oseen equations. The error analysis was performed
for the continuous-in-time case and several fully discrete cases (backward Euler
method, BDF2 formula, Crank—Nicolson schemes). Optimal convergence of the
L2 norms of the divergence of the velocity and the pressure were proved for
sufficiently smooth solutions with error constants independent of the viscosity.

A change of variable allowed to transform the original equations into new
ones having a non-vanishing reaction term. Thanks to this change, the analysis
could be performed equally well for dissipative methods, such as the backward
Euler method and BDF2, and for the non-dissipative Crank—Nicolson scheme.
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error

error

e
Ila=w)(5)]l2
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W () [ 50
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Fig. 3 Crank—Nicolson, error reduction of the errors from estimates (106) and (111), several
parameters.

Discontinuous pressure approximations are covered by the analysis. In par-
ticular, the analysis is valid for the case of inf-sup stable divergence-free mixed
finite elements.

The extension of the analysis of this paper to the Navier-Stokes equations
is part of the current research of the authors [11].
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