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Abstract
Finite element error estimates are derived for the incompressible Stokes equations with variable viscosity. 
The ratio of the supremum and the infimum of the viscosity appears in the error bounds. Numerical studies 
show that this ratio can be observed sometimes. However, often the numerical results show a weaker 
dependency on the viscosity.

1 Introduction

Let Ω ⊂ Rd, d ∈ {2, 3}, be a bounded domain with Lipschitz boundary ∂Ω. Then, the incompressible Stokes equations
with variable kinematic viscosity ν(x) ≥ νmin > 0 almost everywhere in Ω are given by

−2∇ · (νD(u)) +∇p = f in Ω,
∇ · u = 0 in Ω,

(1)

where u is the velocity field, D(u) = (∇u + ∇uT )/2 the velocity deformation tensor, p the pressure, and f represents
exterior forces acting on the fluid. In the analysis, the case of homogeneous Dirichlet boundary conditions

u = 0 on ∂Ω (2)

will be considered.
Problems of type (1) appear as subproblems in several applications. Our special interest comes from models for the sim-

ulation of mantle convection, e.g., see [3,11], where the viscosity takes large values (dynamic viscosity of order 1021 Pa s)
and viscosity variations of several orders of magnitude do appear. Also the simulation of non-Newtonian flow problems
might lead to systems of type (1), e.g., if these flows are modeled with a power law (Bingham model) or with pressure and
shear-dependent viscosity, e.g., see [7, 15] and also [5], where iterative methods for the solution of the discrete systems
were studied.

The goals of this note are twofold. First, it will be studied in which way the variable viscosity is reflected in finite element
error estimates. Second, numerical simulations will study in which situations the dependency on the viscosity predicted
by the error bounds, which are worst case estimates, can be observed. Concerning the first goal, classical approaches
for deriving finite element error estimates for the Stokes equations will be applied. Despite of intensively searching the
literature, we could find the presentation of finite element error analysis for incompressible flow problems with variable
viscosity only in [14], where the Oseen equations are studied. The Stokes equations are just a special case of the Oseen
equations. However, the results from [14] do not cover the results in the present note since both contributions have different
goals and use different analytical techniques. In addition, we like to mention that a finite element error analysis for a
coupled system with temperature-dependent viscosity is presented in [16].

This note is organized as follows. The weak formulation of the problem is formulated in Section 2. Section 3 presents 
the finite element error analysis and Section 4 contains numerical studies. The note finishes with a summary and 
outlook in Section 5.



2

2 The Continuous Problem

Let V = (H1
0 (Ω))d and Q = L2

0(Ω) be the standard spaces used in the classical analysis of the Stokes equations. The
subscripts mean that the functions from V posses a vanishing trace on ∂Ω and the functions from Q have integral mean
value zero.

A weak formulation of (1) and (2) reads as follows: Find (u, p) ∈ V ×Q such that

2(νD(u),D(v))− (∇ · v, p) = 〈f ,v〉V ′,V ∀ v ∈ V,
−(∇ · u, q) = 0 ∀ q ∈ Q. (3)

Here, V ′ = (H−1(Ω))d is the dual space of V . Denote b(v, q) = −(∇ · v, q) and let

Vdiv = {v ∈ V : b(v, q) = 0 ∀ q ∈ Q}

be the space of weakly divergence-free functions
Throughout the analysis, it will be assumed that ν ∈ L∞(Ω). If even ν ∈ H1(Ω), then the viscous term can be

reformulated in the following way

−2∇ · (νD(u)) = −2ν∇ · D(u)− 2D(u)∇ν = −ν∆u− 2D(u)∇ν.

Thus, compared with the standard Stokes equations, a variable viscosity introduces an additional first order term for the
velocity.

From the uniform positivity and the boundedness of ν it is clear that the classical theory for linear saddle point problems
[1, 2, 4] can be applied for proving that (3) possesses a unique solution. However, in performing this analysis there are two
straightforward possibilities for equipping V with an appropriate norm, the standard norm

|v|1 = ‖∇v‖0

and the norm which is induced by the bilinear form of the viscous term

‖v‖ν = ‖ν1/2D(v)‖0.

Lemma 2.1 (Norm equivalence.) Set νmax = ‖ν‖L∞(Ω), then it holds

ν−1/2
max ‖v‖ν ≤ ‖∇v‖0 ≤ CKν

−1/2
min ‖v‖ν , (4)

where CK is the constant from Korn’s inequality.

P r o o f. Korn’s inequality [6] gives the estimate

‖∇v‖0 ≤ CK‖D(v)‖0 ∀ v ∈ V.

Obviously it is

‖D(v)‖0 ≤
1

2

(
‖∇v‖0 + ‖∇vT ‖0

)
= ‖∇v‖0.

Combining these estimates yields

‖v‖ν = ‖ν1/2D(v)‖0 ≤ ν1/2
max‖D(v)‖0 ≤ ν1/2

max‖∇v‖0
≤ CKν

1/2
max‖D(v)‖0 ≤ CKν1/2

maxν
−1/2
min ‖ν

1/2D(v)‖0
= CKν

1/2
maxν

−1/2
min ‖v‖ν ,

such that (4) follows.

In [5], also a different choice than L2
0(Ω) for the pressure space was considered, namely

L2
ν =

{
q ∈ L2(Ω) : (q, ν−1) = 0

}
.

For this space, the norm ‖ · ‖ν for the velocity space, and a sufficiently smooth viscosity, a continuous inf-sup condition
was derived where the inf-sup constant depends on norms of the viscosity and the gradient of the inverse viscosity.
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3 Finite Element Error Analysis

In this note, the focus is on conforming discretizations of (3) which satisfy the discrete inf-sup condition, i.e., it holds
V h ⊂ V , Qh ⊂ Q, and

inf
qh∈Qh\{0}

sup
vh∈V h\{0}

b(vh, qh)

‖∇vh‖0‖qh‖0
≥ βis > 0. (5)

Since ‖vh‖ν is an equivalent norm to ‖∇vh‖0 in V h, also an inf-sup condition of the form

inf
qh∈Qh\{0}

sup
vh∈V h\{0}

b(vh, qh)

‖vh‖ν‖qh‖0
≥ βis,ν > 0 (6)

is satisfied. Using the norm equivalence (4), one obtains from (5)

βis‖qh‖0 ≤ sup
vh∈V h\{0}

b(vh, qh)

‖∇vh‖0
≤ 1

ν
−1/2
max

sup
vh∈V h\{0}

b(vh, qh)

‖vh‖ν
∀ qh ∈ Qh,

which shows that one can choose

βis,ν = ν−1/2
max βis. (7)

Let

V hdiv =
{
vh ∈ V h : b(vh, qh) = 0 ∀ qh ∈ Qh

}
be the space of discretely divergence-free functions. In the finite element error analysis, an estimate of the best approxima-
tion error in V hdiv appears. For some pairs of inf-sup stable finite element spaces, it is possible to construct a sequence of
discretely divergence-free functions which have the optimal order of convergence. If this approach is not possible, the best
approximation error in V hdiv can be estimated with the best approximation error in V h. Considering an arbitrary function
v ∈ Vdiv and equipping V h with the norm ‖ · ‖0, this estimate is known to has the form [4]

inf
vh∈V h

div

‖∇(v − vh)‖0 ≤
(

1 +
1

βis

)
inf

wh∈V h
‖∇(v −wh)‖0. (8)

It is possible to obtain an estimate for the ν-weighted norm just by using the norm equivalence (4) and (8). However, one
might even derive a better estimate.

Lemma 3.1 (Estimate of the best approximation in V hdiv in the ν-weighted norm.) Let v ∈ Vdiv be arbitrary, then

inf
vh∈V h

div

‖v − vh‖ν ≤

(
1 +

CK

βis,νν
1/2
min

)
inf

wh∈V h
‖v −wh‖ν . (9)

P r o o f. The proof follows the lines of [4, Chap. II, Theorem 1.1]. Let the operator Bh ∈ L(V, (Qh)′) be defined by

〈Bhv, qh〉(Qh)′,Qh = b(v, qh), ∀ v ∈ V, qh ∈ Qh.

The operator Bh is an isomorphism from
(
V hdiv

)⊥
(with respect to the inner product in V ) onto (Qh)′ and ‖Bhzh‖(Qh)′ ≥

βis‖∇zh‖0 for all zh ∈
(
V hdiv

)⊥
.

Let wh be an arbitrary element of V h Since Bh(v −wh) ∈ (Qh)′ then there exists a unique zh ∈
(
V hdiv

)⊥
such that

Bhzh = Bh(v −wh). (10)

Using the estimate of the L2(Ω) norm of the divergence by the same norm of the gradient, it follows that

‖∇zh‖0 ≤
1

βis
‖Bh(v −wh)‖(Qh)′ ≤

1

β is

‖∇(v −wh)‖0.
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Applying now the norm equivalence (4) and (7) yields

‖zh‖ν ≤ ν1/2
max‖∇zh‖0 ≤

1

βis,ν
‖∇(v −wh)‖0 ≤

1

βis,ν
CKν

−1/2
min ‖v −w

h‖ν .

Setting vh = zh+wh, one obtains with (10) that b(vh, qh) = b(v−wh, qh) + b(wh, qh) = b(v, qh) = 0 for all qh ∈ Qh,
which implies that vh ∈ V hdiv. The triangle inequality gives

‖v − vh‖ν ≤ ‖v −wh‖ν + ‖zh‖ν ≤

(
1 +

CK

βis,νν
1/2
min

)
‖v −wh‖ν .

As wh was chosen to be arbitrary, the statement of the lemma is proved.

Applying the simple scaling argument to (8) one gets the term CK(νmax/νmin)1/2 instead of 1 in the parentheses on the
right-hand side of (9).

The Galerkin finite element formulation of (3) reads as follows: Find (uh, ph) ∈ V h ×Qh such that

2(νD(uh),D(vh))− (∇ · vh, ph) = 〈f ,vh〉V ′,V ∀ vh ∈ V h,
−(∇ · uh, qh) = 0 ∀ qh ∈ Qh. (11)

The existence and uniqueness of a solution is again a direct consequence of the general theory of linear saddle point
problems, the uniform positivity of ν, and its boundedness.

Theorem 3.2 (Finite element error estimate for ‖u−uh‖ν .) Let Ω ⊂ Rd be a bounded domain with polyhedral Lipschitz
boundary and let (u, p) ∈ V × Q be the unique solution of the Stokes problem (3). Given a discretization with inf-sup
stable conforming finite element spaces V h × Qh and let uh ∈ V hdiv be the finite element solution for the velocity field.
Then the following error estimate holds:

‖u− uh‖ν ≤ 2

(
1 +

CK

βis,νν
1/2
min

)
inf

vh∈V h
‖u− vh‖ν +

CK

2ν
1/2
min

inf
qh∈Qh

‖p− qh‖0, (12)

where βis,ν depends on νmax like in (7).

P r o o f. The proof follows the classical way. Taking vh ∈ V hdiv as a test function in (3) and (11), observing that generally
V hdiv 6⊂ Vdiv, subtracting these equations and using (∇ · vh, qh) = 0 for all qh ∈ Qh gives

2(νD(u− uh),D(vh))− (∇ · vh, p− qh) = 0 ∀ (vh, qh) ∈ V hdiv ×Qh. (13)

Now, the error is split into an approximation error in V hdiv and a finite element remainder

u− uh = (u− Ihu)− (uh − Ihu) = η − φh.

Here Ihu ∈ V hdiv is an interpolant of u in V hdiv. Choosing φh ∈ V hdiv as test function in (13) leads to the estimate

‖φh‖2ν ≤
∣∣∣(νD(η),D(φh))

∣∣∣+
1

2

∣∣∣(∇ · φh, p− qh)∣∣∣ .
Both terms are estimated with the Cauchy–Schwarz inequality and for the second term also the norm equivalence (4) is
applied. One obtains∣∣∣(νD(η),D(φh))

∣∣∣ ≤ ‖ν1/2D(η)‖0‖ν1/2D(φh)‖0 = ‖η‖ν‖φh‖ν

and ∣∣∣(∇ · φh, p− qh)
∣∣∣ ≤ ‖∇ · φh‖0‖p− qh‖0 ≤ ‖∇φh‖0‖p− qh‖0

≤ CKν
−1/2
min ‖φ

h‖ν‖p− qh‖0.

Since these estimates hold for all Ihu and all qh, one gets with the triangle inequality

‖u− uh‖ν ≤ 2 inf
Ihu∈V h

div

‖u− Ihu‖ν +
CK

2ν
1/2
min

inf
qh∈Qh

‖p− qh‖0.

Now, estimate (12) follows by applying estimate (9).
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To see the dependency of the error bound on the viscosity in a clearer way, one can rewrite (12), using (4) and (7), in the
following form

‖u− uh‖ν ≤ 2ν1/2
max

(
1 +

CK
βis

(
νmax

νmin

)1/2
)

inf
vh∈V h

‖∇(u− vh)‖0 +
CK

2ν
1/2
min

inf
qh∈Qh

‖p− qh‖0.

With (4), one gets immediately the estimate

‖∇(u− uh)‖0

≤ 2CK

(
νmax

νmin

)1/2
(

1 +
CK
βis

(
νmax

νmin

)1/2
)

inf
vh∈V h

‖∇(u− vh)‖0 +
C2
K

2νmin
inf

qh∈Qh
‖p− qh‖0. (14)

One can perform an analogous proof as the proof of Theorem 3.2 to obtain an error estimate for ‖∇(u − uh)‖0 directly.
It turns out that the only change in the error bound is the factor in front of the best approximation error with respect to the
velocity, which is for the direct proof(

1 + C2
K

νmax

νmin

)(
1 +

1

βis

)
.

Altogether, the error bound for ‖∇(u− uh)‖0 becomes large if νmin is small or if the ratio νmax/νmin is large.
In the case V hdiv ⊂ Vdiv the pressure term on the left-hand side of (13) vanishes such that the pressure term in the

estimates (12) and (14) does not appear and only the dependency on νmax/νmin remains in the error bound. Another
approach which removes the pressure from the right-hand side of the estimate for the velocity was recently proposed
in [12]. It relies on using a projection of the test function for the right-hand side of the momentum equation into an
appropriate space of divergence-free functions. Whereas the approach presented in [12] is for a pair of non-conforming
finite element spaces, extensions to conforming spaces can be found in [13].

Theorem 3.3 (Finite element error estimate for ‖p− ph‖0.) Let the assumptions of Theorem 3.2 hold, then it is

‖p− ph‖0 ≤

(
1 +

2CK
βis

(
νmax

νmin

)1/2
)

inf
qh∈Qh

‖p− qh‖0

+
4νmax

βis

(
1 +

CK
βis

(
νmax

νmin

)1/2
)

inf
vh∈V h

‖∇(u− vh)‖0. (15)

P r o o f. It is

‖p− ph‖0 ≤ ‖p− qh‖0 + ‖ph − qh‖0,

where qh ∈ Qh is arbitrary. The finite element problem (11) can be rewritten as follows

b(vh, ph − qh) = 〈f ,vh〉V ′,V − 2(νD(uh),D(vh))− b(vh, qh). (16)

Since conforming finite element spaces are considered, all vh ∈ V h can be used as test function in the continuous problem
(3). Replacing 〈f ,vh〉V ′,V in (16) with the left-hand side of the continuous problem yields

b(vh, ph − qh) = 2(ν(D(u)− D(uh)),D(vh)) + b(vh, p− qh) ∀ qh ∈ Qh,vh ∈ V h.

With the discrete inf-sup condition (6), the Cauchy–Schwarz inequality, and the norm equivalence (4), one gets

‖ph − qh‖0 ≤ 1

βis,ν
sup

vh∈V h\{0}

2(ν(D(u)− D(uh)),D(vh)) + b(vh, p− qh)

‖vh‖ν

≤ 1

βis,ν
sup

vh∈V h\{0}

2‖u− uh‖ν‖vh‖ν + ‖∇vh‖0‖p− qh‖0
‖vh‖ν

≤ 1

βis,ν
sup

vh∈V h\{0}

2‖u− uh‖ν‖vh‖ν + CKν
−1/2
min ‖vh‖ν‖p− qh‖0

‖vh‖ν

≤ 1

βis,ν

(
2‖u− uh‖ν + CKν

−1/2
min ‖p− q

h‖0
)
.

Now the proof finishes by inserting (12) and using (4) and (7).
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The error bound (15) for the pressure is large for large values of νmax and large ratios νmax/νmin.
Finally, the error ‖u − uh‖0 will be studied. To this end, consider the dual Stokes problem: Find (φf̂ , ξf̂ ) ∈ V × Q

such that for given f̂ ∈ L2(Ω)

−2∇ · (νD(φf̂ )) +∇ξf̂ = f̂ in Ω,

−∇ · φf̂ = 0 in Ω,
(17)

with homogeneous Dirichlet boundary conditions and its weak form

2(νD(φf̂ ),D(v))− (∇ · v, ξf̂ ) = (f̂ ,v) ∀ v ∈ V,
−(∇ · φf̂ , q) = 0 ∀ q ∈ Q. (18)

It is assumed that the mapping (φf̂ , ξf̂ ) 7→ −2∇ · (νD(φf̂ )) +∇ξf̂ is an isomorphism from (H2(Ω))d ∩V ×H1(Ω)∩Q
to (L2(Ω))d. Then, (φf̂ , ξf̂ ) is called regular solution of (17).

Theorem 3.4 (Finite element error estimate for ‖u− uh‖0.) With the assumptions of Theorem 3.2 and (φf̂ , ξf̂ ) being
the regular solution of (17), the following error estimate for the L2(Ω) norm of velocity holds

‖u− uh‖0

≤
(

2‖∇(u− uh)‖0 +
1

νmax
inf

qh∈Qh
‖p− qh‖0

)
× sup
f̂∈L2(Ω)\{0}

1

‖f̂‖0

[(
1 +

1

βis

)
νmax inf

φh∈V h
‖∇(φf̂ − φ

h)‖0 +
1

2
inf

rh∈Qh
‖ξf̂ − r

h‖0
]
. (19)

P r o o f. Starting point of the proof is the definition of the L2(Ω) norm

‖u− uh‖0 = sup
f̂∈L2(Ω)\{0}

(f̂ ,u− uh)

‖f̂‖0
. (20)

Choosing v = u− uh in (18) gives

(f̂ ,u− uh) = 2
(
νD(φf̂ ),D(u− uh)

)
−
(
∇ · (u− uh), ξf̂

)
. (21)

Using the weak form of the Stokes problem (3) and the corresponding finite element problem (11), one finds for φh ∈
V hdiv ⊂ V and qh ∈ Qh arbitrary

2
(
νD(φh),D(u− uh)

)
= (∇ · φh, p) = (∇ · φh, p− qh).

Inserting this identity into (21) and expanding (21) with some terms which are zero leads to

(f̂ ,u− uh) = 2
(
νD(φf̂ − φ

h),D(u− uh)
)
−
(
∇ · (u− uh), ξf̂ − r

h
)

+(∇ · (φh − φf̂ ), p− qh)

for all φh ∈ V hdiv and qh, rh ∈ Qh. Applying now the Cauchy–Schwarz inequality, the estimate of the norm of the
divergence by the norm of the gradient, and the norm equivalence (4) leads to∣∣∣(f̂ ,u− uh)

∣∣∣
≤ 2‖φf̂ − φ

h‖ν‖u− uh‖ν + ‖∇(u− uh)‖0‖ξf̂ − r
h‖0 + ‖∇(φf̂ − φ

h)‖0‖p− qh‖0

≤
(

2‖∇(u− uh)‖0 +
1

νmax
‖p− qh‖0

)(
νmax‖∇(φf̂ − φ

h)‖0 +
1

2
‖ξf̂ − r

h‖0
)

for all φh ∈ V hdiv and qh, rh ∈ Qh. Inserting this estimate into (20) leads in a straightforward way to estimate (19).
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A discussion of the dependency of the error bound on the right-hand side of (19) on the viscosity is only meaningful if
the dependency of all norms in (19) on the viscosity is taken into account. In the discussion of the results of Theorems 3.2
and 3.3, it was assumed that (u, p) is independent of the viscosity, i.e., only f depends on the viscosity and f does not
appear in the estimates. However, one of the quantities ‖f̂‖0, ‖∇(φf̂ − φ

h)‖0, and ‖ξf̂ − rh‖0 has to depend on the

viscosity. A possible discussion of this topic can assume that f̂ is independent of the viscosity. Using φf̂ as test function
in (18) gives with the Cauchy–Schwarz inequality, the Poincaré inequality, and the norm equivalence (4)

‖∇φf̂‖0 ≤
C

νmin
‖f̂‖0.

Thus, the term ‖∇(φf̂ − φ
h)‖0 in (19) can be estimated to scale with ν−1

min. Using the Helmholtz decomposition, f̂ can

be decomposed into f̂ = w +∇r where w is divergence-free and ∇r is orthogonal to w with respect to the L2(Ω) inner
product. Inserting this decomposition into (17) gives

−2∇ · (νD(φf̂ )) +∇ξf̂ = w +∇r.

Thus, ξf̂ is balanced by r, i.e., it is independent of ν since f̂ was assumed to be independent of ν. One finds that only
‖∇(φf̂−φ

h)‖0 depends on ν and one can expect that the term in (19) with the dual velocity solution scales like νmax/νmin.

4 Numerical Studies

The goal of the numerical studies consists in checking if the errors show the dependency on the extremal values of the
viscosity as predicted by the error bounds. It should be emphasized that the error bounds are always worst case estimates
such that in concrete examples the dependency might be weaker.

For the numerical studies, analytical solutions were prescribed which do not depend on the viscosity. Let Ω = (0, 1)2

and

φ(x, y) = 1000x2(1− x)4y3(1− y)2,

then the velocity solution is given by u = (∂yφ,−∂xφ)T . Clearly, u is divergence-free and it satisfies homogeneous
Dirichlet boundary conditions. For the first three examples, the pressure was chosen to be

p(x, y) = π2
(
xy2 cos(2πx2y)− x2y sin(2πxy)

)
− 1

8
.

A number of different functions for the viscosity were studied:

ν1(x, y) = νmin + (νmax − νmin)x2(1− x)y2(1− y) · 721/16,

ν2(x, y) = νmin + (νmax − νmin) exp
(
−1013

(
(x− 0.5)10 + (y − 0.5)10

))
,

ν3(x, y) = νmin + (νmax − νmin)
(
1− exp

(
−1013

(
(x− 0.5)10 + (y − 0.5)10

)))
,

see Figure 1 for an illustration. The viscosity ν1 is smoothly varying, whereas ν2 and ν3 posses steep layers between νmin

and νmax. In most of the domain, ν2 takes values close to νmin and ν3 takes values close to νmax. Numerical results will
be presented for the case νmax = 1 and different values of νmin and the case νmin = 1 and different values of νmax.

Simulations were performed with the Taylor–Hood pair of finite element spaces P2/P1 on unstructured grids. The
coarsest grid, level 0, is presented in Figure 2. On the finest grid, level 8, there are 9 442 306 degrees of freedom for the
velocity and 1 180 929 degrees of freedom for the pressure. The linear systems of equations were first solved with the
sparse direct solver PARDISO [17]. Since in many cases the bad condition number of the matrices resulted in large round-
off errors, an iterative post-processing of the solution was performed. As iterative method, the flexible GMRES(restart)
method, with restart= 50, and with a coupled multigrid preconditioner, as described, e.g., in [8], was used. The iterations
were stopped if the Euclidean norm of the residual vector was less than 10−13. All simulations were performed with the
code MooNMD [9].

For brevity, only a few representative results will be presented here. More results, with different analytical solutions,
different viscosities, and different pairs of finite element spaces, can be found in [10].

Example 4.1 Smoothly varying viscosity ν1. Results for the smoothly varying viscosity are presented in Figure 3. One
can see in the left column of pictures that small values of νmin, for fixed νmax = 1, might lead indeed to an increase of
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Fig. 1 The different functions for the viscosity.

Fig. 2 Coarsest grid (level 0).

the velocity errors, see the results for νmin = 10−4 and νmin = 10−6. The differences of the corresponding errors for
these two values of νmin are around two orders of magnitude. This behavior corresponds to the worst case predictions of
the numerical analysis. The value of νmin has almost no influence on the pressure error. Large values of νmax, in the case
that νmin = 1 is fixed, have an impact on the pressure error, as it can be expected from the error bound (15). But in this
example, one cannot observe a notable impact of νmax on the velocity errors.

Example 4.2 Viscosity with steep layer ν2, mainly taking values close to νmin. Figure 4 presents the results for ν2.
Here, a dependency of the errors on the viscosity can be observed on all coarse grids. Often, the errors scale like ν−1

min (if
νmax = 1) or νmax (if νmin = 1). However, on finer grids, the impact of the extremal values of the viscosity on the errors
decreases. For these grids, one can draw similar conclusions as for Example 4.1. The most remarkable impact is again in
the velocity errors for νmax = 1, νmin ∈ {10−4, 10−6}. Even on level 8, the errors for these values are different by two
orders of magnitude, which is the difference predicted by the error bounds.

Example 4.3 Viscosity with steep layer ν3, mainly taking values close to νmax. The results for this example are presented
in Figure 5. Comparing with Example 4.2, ν3 is large where ν2 is small and vice versa. The part of the domain where the
viscosity takes large values is much larger for ν3 than for ν2. One can see the impact of this situation in the velocity errors
for small νmin and in the pressure error for large νmax. For ν3, the velocity errors for small νmin depend only weakly on
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Fig. 3 Example 4.1: Smoothly varying viscosity ν1 with νmax = 1 and different values of νmin (left), with νmin = 1 and different
values of νmax (right).

νmin (note the different scales of the ordinate for the velocity errors in Figures 4 and 5) and the pressure error for large
νmax depends stronger on νmax than for ν2.

Among the considered viscosities, ν3 is closest to the situation which occurs in the simulation of mantle convection. It
takes mainly large values and there are only few regions with steep gradients and with smaller values. The case of mantle
convection is reflected best by the right column of Figure 5. It can be seen that the velocity errors are mainly independent
of the viscosity and the pressure error depends strongly on νmax. Fortunately, only the velocity is needed in the other
equations for simulating mantle convection and the pressure does not play any role. Thus, one can expect accurate finite
element velocity solutions in spite of the large values and steep gradients of the viscosity.

Example 4.4 Viscosity with steep layer ν2, mainly taking values close to νmin, and p = 0. This example serves for
illustrating that the ratio νmax/νmin, which appears in the error bounds for the velocity (14) and (19), can be observed in
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Fig. 4 Example 4.2: Viscosity with steep layer ν2, mainly taking values close to νmin with νmax = 1 and different values of νmin (left),
with νmin = 1 and different values of νmax (right).

numerical simulations. To this end, the prescribed pressure in this example was p = 0 such that νmax/νmin appears as
factor in (14) and (19), since the best approximation error of the pressure is zero. Representative results obtained with ν2

are presented in Tables 1 and 2. The dependency of the errors on νmax/νmin can be clearly observed. For large ratios
νmax/νmin, even the linear dependency on this ratio, predicted as worst case in the analysis, can be seen. For completeness,
results for the pressure error are shown in Table 3. Here, the linear dependency on νmax as predicted by (15) is visible. In
addition, a slight increase of the errors for increasing ratios νmax/νmin can be seen.

5 Summary and Outlook

This note studied finite element methods for the Stokes equations with variable viscosity. Error bounds were derived which
depend on the ratio νmax/νmin. Numerical studies show that this ratio might be observed sometimes. However, also
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Fig. 5 Example 4.3: Viscosity with steep layer ν3, mainly taking values close to νmax with νmax = 1 and different values of νmin (left),
with νmin = 1 and different values of νmax (right).

Table 1 Example 4.4: Viscosity with steep layer ν2, p = 0, ‖∇(u− uh)‖0, level 5.

νmin | νmax 1 102 104 106

1 4.126828e-3 4.130606e-3 8.942451e-3 7.706366e-1
10−2 4.130606e-3 8.942451e-3 7.706366e-1 7.569407e+1
10−4 8.942451e-3 7.706366e-1 7.569399e+1 7.465854e+3
10−6 7.706366e-1 7.569399e+1 7.465874e+3 7.407314e+5

depending on the actual form of the viscosity, often the numerical results show a weaker dependency on νmax/νmin, such
that the derived estimates can be considered as worst case estimates. In the example whose viscosity function comes closest



12

Table 2 Example 4.4: Viscosity with steep layer ν2, p = 0, ‖u− uh‖0, level 5.

νmin | νmax 1 102 104 106

1 5.837456e-6 9.401190e-6 7.040169e-4 6.922841e-2
10−2 9.401190e-6 7.040170e-4 6.922841e-2 6.831881e+0
10−4 7.040170e-4 6.922841e-2 6.831875e+0 6.764145e+2
10−6 6.922841e-2 6.831874e+0 6.764165e+2 6.718501e+4

Table 3 Example 4.4: Viscosity with steep layer ν2, p = 0, ‖p− ph‖0, level 5.

νmin | νmax 1 102 104 106

1 8.097410e-5 6.521591e-4 7.316504e-2 7.526082e+0
10−2 6.521591e-6 7.316504e-4 7.526082e-2 7.564355e+0
10−4 7.316504e-6 7.526082e-4 7.564354e-2 7.614313e+0
10−6 7.526082e-6 7.564354e-4 7.614344e-2 7.925653e+0

to the situation appearing in mantle convection, the computed velocities showed errors which are almost independent of
νmax/νmin.

Future plans include the numerical analysis of models from mantle convection. Then one has to consider coupled
problems where the viscosity depends in a nonlinear way on the solution of the problem.
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