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Abstract

Using a delay differential equations model we study the dynamics of a passively mode-

locked semiconductor laser with dual frequency coherent optical injection. The locking

regions where the laser pulse repetition rate is synchronized to the separation of the two

injected frequencies were calculated numerically and measured experimentally. Asymp-

totic analysis performed in the limit of the small injection field amplitude revealed the de-

pendence of the locking regions on the model parameters, such as optical bandwidth,

absorber recovery time and linear losses.

1 Introduction

Passively mode-locked (PML) semiconductor lasers are cost efficient sources of short optical

pulses with high repetition rates ranging from a few to hundreds of GHz [1]. Development of sta-

bilized semiconductor light sources is in a great demand for a wide range of applications, such

as optical telecommunications, frequency metrology, optical sampling, and clock recovery [2–5].

The optical spectrum of such lasers is a frequency comb with line spacing equal to the pulse

repetition rate. Due to the spontaneous emission noise and some technical factors these lasers

exhibit significant timing jitter, which limits their performance in a number of applications. For

stabilization of the pulse repetition frequency external radio-frequency (RF) modulation of the

reverse bias applied to the laser absorber section is used [6]. When the frequency of the

modulation is sufficiently close to the repetition rate, f0, of the free running PML semiconductor

laser, the pulse repetition rate synchronizes with this frequency. Such technique is called “hybrid

mode-locking” [7–13].

Hybrid mode-locked lasers were studied experimentally in [8,12,13,15] and theoretically in [13,

16]. It was demonstrated that the locking range increased almost linearly with the modulation

amplitude and with the absolute value of the reverse bias applied to the absorber section. Fur-

thermore, it was shown in Ref. [16], both theoretically and experimentally, that hybrid mode-

locking can be also achieved when the frequency of the external modulation is approximately

twice smaller than the pulse repetition frequency of a free-running laser, f0.

An efficient approach to improve characteristics of pulses emitted by PML lasers is based on

the use of optical injection from a single mode master laser [17–21]. When one of the slave

laser modes is locked to the external single frequency signal, the slave laser phase noise is re-

duced [18], undesired waveform instabilities are suppressed [20], and slave laser optical spec-

trum is narrowed [17,18]. However, single mode injection does not allow to control the repetition

rate of mode-locked pulses [17, 21]. On the other hand, neither hybrid nor active mode-locking

techniques influence the frequency noise of an individual line in the frequency comb [22,23].

An alternative approach to timing jitter suppression in PML lasers is based on the use of coher-

ent dual mode optical injection [14]. Here, a coherent output from a CW laser is sent through a

Mach-Zehnder amplitude modulator producing two coherent sidebands with a suppressed car-

rier frequency. These two sidebands are then injected into the PML laser. High quality optical
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frequency combs with narrow lines and small RF beating noise can be generated by inject-

ing two coherent tones into PML lasers. Semiconductor lasers with dual mode optical injection

were studied experimentally in [14,22,23]. It was shown that synchronization to coherent tones

resulted in both jitter and individual modal line width reduction for all locked modes.

In the present paper, using a set of delay differential equations similar to that derived in [24–26],

we perform a theoretical analysis of the dynamics of a dual mode optically injected PML laser.

We calculate numerically and estimate asymptotically the width of the locking range as a func-

tion of the injected field power and model parameters for the two following cases. In the first

case the frequency separation between two injected frequencies was varied at the fixed master

laser frequency. We will refer to the locking range obtained in this case as RF locking range. In

the second case the locking range was calculated by changing the master laser frequency while

keeping the value of the modulation frequency constant and equal (or multiple) to the pulse

repetition frequency of the free-running PML laser. We will call the locking range obtained in this

way the optical locking range. We also present the results of the experimental study of the effect

of dual mode optical injection on a 10-GHz PML quantum dot semiconductor laser. We demon-

strate theoretically and experimentally that the optical locking range can be much wider than

the RF locking range. We show that the optical locking range calculated numerically for nonzero

linewidth enhancement factors is wider than that obtained for zero linewidth enhancement fac-

tors and reaches the values, which are in qualitative agreement with experimental observations.

The structure of the paper is as follows. In Section 2 we introduce the model equations for an

optically injected PML laser and perform numerical estimation of the optical and RF locking

ranges. In Section 3 we discuss the results of the experimental study of a 10-GHz quantum

dot PML laser with dual mode optical injection. In Section 4 we perform an asymptotic analysis

of the model equations in the limit of small injection field amplitudes and obtain estimates for

the locking range width, which we use to analyse the dependence of the two locking ranges on

different model parameters. Concluding remarks are given in Section 5.

2 Model equations

Our analysis is based on a set of delay differential equations (DDE) describing time evolution

of the electric field amplitude at the entrance of the laser absorber section A(t), as well as

saturable gain G(t), and saturable absorption Q(t) in the gain and absorber sections of the

device, respectively. The DDE model was first derived in [24–26] and further generalized in [27]

under the approximation of unidirectional lasing in a ring cavity and Lorentzian shape of the

spectral filtering element. In the case of externally injected mode-locked laser this model can be

written in the following form:

dA
dt

= γ
√
κe

(1−iαg)G(t−T )−(1−iαq )Q(t−T )

2
+iνTA(t−T )

−γA + γEi(t),
dG
dt

= g0 − γgG− e−Q
(

eG − 1
)

|A|2,
dQ

dt
= γq(q0−Q)− s

(

1−e−Q
)

|A|2.

(1)

Here αg and αq are the linewidth enhancement factors in the gain and absorber sections, re-

spectively, the delay parameter T stands for the cold cavity round-trip time, γ is the spectral

filtering bandwidth, κ is the attenuation factor describing linear non-resonant intensity losses

per cavity round trip, and s is the ratio of the saturation intensities in the gain and absorber
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sections. The pump parameter g0 depends on the injection current in the gain region, q0 is the

unsaturated absorption parameter, γg and γq are the carrier relaxation rates in the amplifying

and absorbing sections, respectively. The parameter ν describes an additional detuning be-

tween the central frequency of the spectral filter and the closest cavity mode. The time variable

t is normalized to the cold cavity round trip time, so that the delay parameter in the field equation

is equal to unity, T = 1.

Let us assume that for vanishing injection amplitude, Ei(t) = 0, the model equations (1) have

a linearly-stable fundamental mode-locked solution

A(t) = A0(t)e
iΩt, G(t) = G0(t), Q(t) = Q0(t),

where A0, G0, and Q0 are time-periodic functions with the period T0 close to the cavity round

trip time T , f0 = 1/T0 is a corresponding repetition frequency, Ω is the detuning between

the reference frequency and the closest spectral line of the unperturbed mode-locked comb,

|Ω| ≤ πf0.

In a laser with dual mode injection, injected frequencies are close to a certain optical spectral

line of the free-running PML laser. Therefore, along this paper we assume that the optically

injected field Ei(t) is given by

Ei(t) = aei[Ω+π(2k+n)f0]t cos (πnft) ei2πδωt, (2)

where a is the injection amplitude, integers k and k + n are the numbers of two laser modes

with the frequencies close to the injected tones, nf is the frequency separation of the injected

tones, δf = f − f0 ≪ f0 describes small detuning between the frequency f and the pulse

repetition frequency of the uninjected laser, and δω is an additional small shift of the two injected

frequencies. It is noteworthy, that the experimental setup discussed later in Section 3 allows to

access both the detuning parameters, δf and δω.

Below we study theoretically the effect of dual-mode injection (2) on a PML laser with optical

spectrum symmetric or almost symmetric with respect to some reference frequency. For exam-

ple, for ν = π and αg,q = 0 in the model equations (1) the reference frequency coincides

with the central frequency of the spectral filtering element and is located exactly in the middle

between two adjacent longitudinal cavity modes of the PML laser, i.e. Ω = −πf0. Assuming

that at zero detunings the injection is also symmetric, 2k + n = 1, we rewrite expression (2) in

the form:

Ei(t) = a cos (πnft) ei2πδωt, n = 1, 3, 5, . . . (3)

2.1 Numerical calculation of the locking regions

In this section we present the results of numerical calculation of the boundaries of the domains

in the parameter space where the laser pulse repetition frequency of the PML laser is locked to

the external frequency f entering Eq. (2).

We consider a specific case of ν = π and symmetric or almost symmetric dual mode injection

with the frequencies Ω − πnf0 and Ω + πnf0, where n = 1 and n = 3. Typical calculated

optical spectra of the PML laser together with the indication of the frequencies of the optical

injection are shown in Fig. 1.

To calculate the locking regions of a PML laser with dual frequency injection we used the same

numerical procedure as in our previous studies of hybrid ML lasers [16]. First, to determine the
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Figure 1: Spectrum of the free-running PML semiconductor laser (black solid line) for αg =
αq = 0. Dashed (dashed-dotted) lines indicate the injection spectrum with n = 1 (n = 3) in

Eq. (3).

pulse repetition frequency of the free running PML laser, we integrated the model equations (1)

numerically with the parameter values given in Table 1 and zero external injection amplitude,

a = 0. Next, to calculate the RF locking range for each consequent value of the RF detuning δf
from an interval around δf = 0 we performed numerical integration of the model equations (with

the injection term (3) and δω = 0) over the time-interval 2800T taking the solution calculated at

the previous value of detuning δf as an initial condition. The boundaries of the RF locking range

were determined by changing the RF detuning δf for vanishing optical frequency detuning,

δω = 0. Similarly, the boundaries of the optical frequency locking range were calculated by

changing the value of optical frequency detuning δω for vanishing RF detuning, δf = 0. The

results of these simulations for n = 1 are shown in Fig. 2 where local maxima of the field

intensity time-trace |A(t)|2 are plotted against δω.

When the frequencies of the injected field come close enough to some modes in the mode-

locking comb (see Fig. 1), these modes become locked to the external injection and the pulse

repetition rate becomes equal to f . In the case of the injection into two adjacent modes, n = 1,

the intensity of the resulting mode-locked regime is strictly periodic with the period 1/f and all

the recorded intensity maxima have the same value at fixed detuning δω (or δf ). For frequency

detuning outside the locking interval we have observed regimes with irregular or quasi-periodic

pulsed laser intensity, which correspond to multiple intensity maxima at fixed detuning δω (or δf )

and, hence, a cloud of points in Fig. 2.

By estimating the locking range at different values of the injection field amplitude a we can

obtain the locking regions (Arnold tongues) in the space of three parameters: RF and optical

frequency detuning, δf and δω , and the injected field amplitude a. The boundaries of the two-

dimensional RF locking region calculated for vanishing optical frequency detuning δω = 0 are

shown in Fig. 3(a). Similarly, an optical frequency locking region calculated for vanishing RF

detuning δf = 0 is presented in Fig. 3(b). It can be seen from Fig. 3 that both the locking
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Table 1: Typical parameter values used in simulations

spectral filtering bandwidth γ 37.5

non-resonant field intensity attenua-

tion factor per cavity round-trip

κ 0.3

linewidth enhancement factor in the

gain section

αg 0, 2

linewidth enhancement factor in the

SA

αq 0, 1

pump parameter g0 1.25

unsaturated absorption q0 5

gain relaxation rate γg 0.025

SA relaxation rate γq 2.5

ratio of gain/absorber saturation inten-

sities

s 10

cold cavity round trip time T 1

detuning ν π/T

ranges grow almost linearly with the injection field amplitude a. Furthermore, our simulations

demonstrate that the optical frequency locking range shown in Fig. 3(b) is about ten times wider

than the RF locking range in Fig. 3(a). Solid curves in Fig. 3 correspond to the case of zero

linewidth enhancement factors, αg = αq = 0, while the dashed curves – to the case when

αg = 2 and αq = 1. One can see from this figure that in the case of vanishing α-factors both

optical and RF locking ranges are symmetric with respect to the zero frequency detuning. On

the contrary, in the case of non-vanishing α-factors (dashed lines) locking ranges are asym-

metric and shifted to the larger values of frequency detuning. This asymmetry is related to the

increase of the pulse repetition frequency of free-running PML laser with the injection amplitude

a and spectral shift of laser modes due to the non-vanishing α-factors. Similar asymmetry was

observed experimentally in a quantum-dot PML laser (see next section). Furthermore, it can be

seen from Fig. 3 that while the RF locking range has approximately the same width for zero and

nonzero α-factors, the optical locking range is larger in the case of non vanishing α-factors.

Apart from a PML laser with dual-tone injection into a pair of adjacent modes (n = 1) we have

considered the case of the optical injection into a pair of modes with the optical frequency sep-

aration close to 3 · 2πf0 (i.e., k = −1 and n = 3 in Eq. (2)). The spectrum of the free-running

PML and the two injected frequencies (dashed dotted lines) for this case are also presented in

Fig. 1. The boundaries of the RF locking region calculated for vanishing optical frequency detun-

ing δω = 0 and the boundaries of the optical locking domain obtained for vanishing RF detuning

δf = 0 are shown in Fig. 4(a) and Fig. 4(b) respectively. Other parameters are as in Fig. 3.

One can see from these figures that both RF and optical locking ranges have approximately the

same width in the case of vanishing α-factors (black curves in Fig. 4(a) and Fig. 4(b).) Further-

more, since the injected frequencies are symmetric with respect to the zero frequency detuning

point both locking tongues are also symmetric with respect to this point. It follows from Fig. 4

that RF locking range in the case of non-vanishing α-factors is approximately ten times smaller

than optical locking range, see dashed curves in Fig. 4(a) and Fig. 4(b). As it can be seen from

Fig. 3, similarly to the case with n = 1 both locking ranges are asymmetric with respect to the

zero frequency detuning. Comparing Fig. 3 and Fig. 4 one can conclude that RF and optical

locking ranges have approximately the same width for the cases when the frequency separation

between the two injected frequencies is close to 2πf0 or 3 · 2πf0 and α-factors are not zero.
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with dual mode optical injection. Local maxima of the intensity timetrace and at a fixed injection

field amplitude a = 0.008. On the x axis is optical frequency detuning δω . RF detuning δf = 0.

A similar situation was encountered in our study of hybrid mode-locked lasers, see Ref. [16]. It

was demonstrated in this study that the locking range has approximately the same width when

the reverse bias applied to the laser absorber section is modulated with a frequency close to f0
and with a frequency approximately twice larger than f0.

3 Experiment

The experimental study of the locking combs was done for a quantum dot PML laser with a

10 GHz repetition rate. For the dual-tone injection, the light from the Agilent tunable laser

source was modulated by a Mach-Zehnder amplitude modulator driven via an amplified Ro-

hde&Schwarz SMR 60 signal generator to produce coherent tones. The diagram of the ex-

perimental setup is shown in Fig. 5. For the injection into two adjacent laser modes, the driver

frequency was set close to half the repetition rate of the slave laser, giving sidebands separation

close to the fundamental frequency of mode-locking, frep.

Injection-locking to a dual-tone source requires that both injected optical frequencies are close

to the respective longitudinal modes of the uninjected PML laser, and that the beating frequency

between the injected modes lies within a narrow locking range around the repetition rate of the

uninjected laser. Due to injection induced carrier density change leading to the refractive index

decrease the repetition rate of the injected laser was up-shifted from that of the uninjected

laser. The shift ranged from a few 10s up to 100s of MHz, depending on the device and bias

conditions. Stable operation was achieved over a range of ±10 MHz around the injected laser

repetition rate. The measured evolution of the injected mode-locked laser RF spectrum versus

modulator frequency, fmod, is shown in Fig. 6 (a). When the PML laser was locked to the dual-

tone injection, its timing jitter and RF linewidth reduced greatly and the pulse repetition rate

followed the injection tones frequency separation, F2.
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Figure 3: RF locking region at δω = 0 (a) and optical frequency locking region at δf = 0 (b).

Frequency separation of the injected tones is close to the laser free spectral range, n = 1. Solid

black (dashed red) curves mark the boundaries of the correspondingly shaded locking regions

for αg = αq = 0(αg = 2, αq = 1).

Fig. 6 (b) shows the RF locking range versus the injection power. The optical frequency of the

tunable laser was chosen optimal to achieve the largest RF locking range in these measure-

ments and kept constant with the injection power. Dual-tone injection-locking allowed tuning of

the injected laser pulse repetition rate over a 25 MHz.

For the optical locking range measurements the tones separation F2 was chosen in the middle

of the RF locking range, so that the RF detuning was close to zero, and the central wavelength

of the injection was varied. The evolution of optical and electronic spectra with the central wave-

length detuning are shown in Fig. 7 (a) and (b), respectively. When the PML laser was locked to

both the injected frequencies, its optical spectrum was narrowed, the repetition rate up-shifted,

as discussed above, and the RF noise reduced greatly. The optical frequency locking combs for

the case of the injection into two adjacent modes are shown in Fig. 8. The locking ranges were

measured in two parameter space: injection power and frequency detuning. The optical locking

range was much wider than the RF locking range discussed above and reached the values of a

few GHz.

To achieve higher frequency separations between the injected sidebands, we set the signal

generator at ∼ 15 GHz, which corresponds to F2 ∼ 3∗frep (see dashed-dotted lines in Fig.1).

Similarly to the injection of adjacent modes, dual-tone injection into a pair of third-neighbor
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Figure 4: RF locking region at δω = 0 (a) and optical frequency locking region at δf = 0 (b) in

a laser with two external frequencies injected into a pair of third-neighbor modes, n = 3. Solid

black (dashed red) curves mark the boundaries of the correspondingly shaded locking regions

for αg = αq = 0(αg = 2, αq = 1). Other parameters are as in Fig. 3.

Figure 5: Experimental setup for dual-tone coherent injection into a PML laser (PMLL). Inset

shows schematic diagram of the modulator optical spectrum with the suppressed carrier fre-

quency.
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Figure 6: (a) Evolution of the PML laser RF spectrum with frequency separation of two injected

tones. (b) Red dots indicate boundaries of the locking region on the plane of two parameters:

RF modulation frequency and injection power. Gain current: 100 mA; absorber bias: −6.0 V.

modes allowed timing jitter reduction, RF linewidth and modal optical linewidth, as well as optical

spectrum narrowing [17]. Fig. 9 shows the measured evolution of the injected laser RF spectrum

versus modulation frequency change for the F2 ∼ 3 ∗ frep. We scaled the abscissa to F2/3 in

order to show an RF locking range more clearly. When the laser was locked to the injected tones,

its repetition rate followed the fraction of the master tones frequency separation, F2/3, for ∼ 17
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MHz. Remarkably, the RF locking range was not significantly different from that obtained for the

smaller tone separation (see Fig.6). Similar outcome was achieved theoretically for non-zero

α-factors (see Fig.3 and see Fig.4).

4 Asymptotic analysis

In this section using an approach similar to that described in Ref. [28] we derive asymptotic

formula for RF and optical locking ranges. For simplicity of our analysis we consider the case

when the center of the spectral filtering profile is located exactly in the middle between two

cavity modes, νT = π in a laser with vanishing α-factors, αg,q = 0, and assume a “symmetric”

optical injection (3). Since in this case eiνT = −1, all the coefficients of the unperturbed system

Eqs. (1) with a = 0 are real, this system possesses a mode-locked solution with real amplitude

A = A0(t) and T0-periodic intensity |A0(t + T0)|2 = |A0(t)|2. However, instead of being

T0-periodic, the amplitude A0 is only 2T0-periodic in time. This is related to the fact that due to

the presence of the factor eiνT = −1 in the right hand side of the first equation in (1) every next

pulse has an inverted phase with respect to the previous one. Therefore, in the analysis below it

is convenient to consider the periodic mode-locked solution of the unperturbed problem on the

interval of the length 2T0. In the limit of small injection amplitude, a≪ 1, we look for a solution
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of Eqs. (1) in the form

A = eiϕ [A0(τ0 + θ) + aA1(τ0 + θ, τ1) + ...] , (4)

G = G0(τ0 + θ) + aG1(τ0 + θ, τ1) + ..., (5)

Q = Q0(τ0 + θ) + aQ1(τ0 + θ, τ1) + ..., (6)
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where ϕ and θ are functions of the “slow” time τ1 = at, τ0 = t is the “fast” time, real func-

tions A0(t), G0(t), and Q0(t) define a 2T0-periodic mode-locked solution of the unperturbed

Eqs. (1). Furthermore, we assume that the small frequency detuning parameters are of order a,

δω = a∆ω and δf = a∆f . Substituting these expressions into (1) and collecting the first order

terms in small parameter a we get the following linear system of DDEs for the 4-dimensional

vector ~ψ1 = (ReA1, ImA1, G1, Q1)
T

:

L̂ ~ψ1 = ~P (t)
dθ

dτ1
+ ~S(t)

dϕ

dτ1
− ~R, (7)

where the vectors ~P (t) and ~S(t) are given by:

~P = ~χθ + T
d2 ~ψ0

dt2
+ γT

d~ψ0

dt
, (8)

~S = ~χϕ(1 + γT ) + T
d~χϕ

dt
(9)

with ~ψ0 = (A0, 0, 0, 0)
T , and the linear operator L̂ is defined by

L̂ ~ψ = −∂
~ψ

∂t
+B(t)~ψ + C(t− T )~ψ(t− T ), (10)
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correspond to g0 = 1.25,g0 = 2 respectively. Other parameter values are as in Table 1.

with 2T0-periodic matrices B and C given in Appendix. The neutral modes

~χθ =
d

dt
(A0, 0, G0, Q0)

T ,

~χϕ = (0,−A0, 0, 0)
T ,

entering Eqs. (8) and (9) correspond to time and phase shift symmetries of Eqs. (1). Here T
denotes transposition. The neutral modes are eigenfunctions of the operator L̂ corresponding

to zero eigenvalues, L̂~χθ,ϕ = 0. Using (3) and neglecting second order terms in a we get the

following expression for the quantity ~R in the right hand side of (7):

~R = γ cos ν (cosµ, sinµ, 0, 0)T

with ν = nπf0(τ0 − θ) + nπ∆fτ1 and µ = 2π∆ωτ1 − ϕ.

According to the Fredholm alternative solvability of Eq. (7) requires the orthogonality of its right

hand side to the solutions ~χ†
θ,ϕ of the equation adjoint to the equation L̂ ~ψ = 0. This equation

reads

L̂† ~ψ† =
∂ ~ψ†

∂t
+BT (t)~ψ† + CT (t)~ψ†(t+ T ) = 0. (11)

Hence, using the biorthogonality property of the vectors ~χ and ~χ† we rewrite solvability condition
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Figure 12: Dependence of δω,LR/a on the model parameters. Black solid and dashed lines

correspond to g0 = 1.25,g0 = 2 respectively. Other parameter values are as in Table 1.

as a set of two differential equations governing slow time evolution of two phases, θ and ϕ:

dθ

dτ1
= c−1

θ

ˆ 2T0

0

χ†
θ1 cos ν cosµdτ0, (12)

dϕ

dτ1
= c−1

ϕ

ˆ 2T0

0

χ†
ϕ2 cos ν sinµdτ0, (13)

where the expressions for the coefficients cθ and cϕ are given in the Appendix. χ†
θ1 and χ†

ϕ2

are the components of the vectors ~χ†
θ(τ0) = (χ†

θ1, 0, χ
†
θ3, χ

†
θ4) and ~χ†

ϕ(τ0) = (0, χ†
ϕ2, 0, 0, 0),

respectively, which are the eigenmodes of L̂† defined by (11). For more details see Refs. [16,28].

After the coordinate change θ = (Θ +∆fτ1)/f0 and ϕ = Φ + 2π∆ωτ1 the system (12) and

(13) takes the form

dΘ

dτ1
= − ∆f + f0d

(n)
θ cos(Φ) cos(nπΘ + ξ

(n)
θ ), (14)

dΦ

dτ1
= −2π∆ω − d(n)ϕ sin(Φ) cos(nπΘ+ ξ(n)ϕ ). (15)

Expressions of the complex coefficients d
(n)
θ,ϕ and ξ

(n)
θ,ϕ with the index n describing the separation

of the injected modes are given in Appendix. From (14) and (15) we get the width of the optical

and RF locking ranges:

δω,LR = a
2π
|d(n)ϕ | and δf,LR = a

T0
|d(n)θ |. (16)

In Fig. 10 the half-width of the optical and RF locking ranges (16) are compared to those cal-

culated by direct numerical integration of Eq. (1) with αg,q = 0 and an optical injection given
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by Eq. (3) with n = 1 (Fig. 10a,b) and n = 3 (Fig. 10a,b). One can see that the asymptotic

relations (16) give a good approximation of the width of the locking range even for relatively

large injected field amplitudes a. Our numerical simulations and asymptotic analysis indicate

that optical-frequency locking range is about 10 times larger than RF locking range in the case

of the injection into a pair of adjacent modes (see Fig. 10). On the contrary, the widths of two

locking ranges become comparable for the dual-mode injection into a pair of third-neighbor

modes (see Fig. 1).

Asymptotic widths of the locking range characterize the ability of the PML regime to be locked

to the dual mode injection. The dependence of the optical and RF locking range widths on

the parameters of Eq. (1) is illustrated in Figs. 11 and 12, respectively. In particular, Figs. 11a

and 12a show the dependence of the locking range width on the absorber relaxation rate γq.
Experimentally it was demonstrated that the locking range increases with the absolute value

of the voltage applied to the absorber section [22]. On the other hand, it is known that the

absorber relaxation rate γq increases with the absolute value of the reverse voltage applied to

the absorber section. It can be seen from Figs. 11 and 12 that both the RF locking range and

optical frequency locking range have parabolic dependence on γq.

Our simulations indicate that the RF locking range is ten times smaller than the optical locking

range. It can be easily seen that the widths of the locking ranges decrease with the increase

of the parameters κ, s, and γ. A similar dependence of the locking range width on the model

parameters was observed in our study of hybrid mode-locking in semiconductor lasers in [16].

Finally, we note that similar asymptotic approach can be used to study the effect of noise on

pulse timing jitter and modal line width in a PML laser under the dual mode coherent optical

injection, which will be the subject of the future works. Asymptotic approach for pulse timing jitter

estimation in PML lasers with and without delayed optical feedback was developed in [29,30].

5 Conclusion

We have performed theoretical and experimental study of the locking characteristics of a PML

laser under the dual mode coherent optical injection. It has been demonstrated numerically

that the widths of the RF and optical locking ranges increase almost linearly with the injection

field amplitude. In the case of non-zero α-factors both the RF and optical locking ranges are

asymmetric with respect to the pulse repetition frequency of the free-running PML laser. This

asymmetry is related to the increase of the pulse repetition rate with the injection amplitude.

Our numerical simulations indicate that the optical locking range is ∼ 10-30 times larger than

the RF locking range for n = 1. We have also demonstrated numerically that the optical locking

range can be one order of magnitude larger than the RF locking range when the frequency

separation between two injected modes is close to the 3rd harmonic of the free-running PML

laser repetition frequency. The values of the locking ranges calculated in this case for non-zero

α-factors had similar values when compared to the injection locking of two adjacent modes.

The RF and optical locking ranges were measured in a 10-GHz quantum dot PML laser versus

the injection power. In qualitative agreement with the theoretical results, the measured optical

locking range was much wider than the RF locking range. Experiments demonstrated the optical

locking ranges widths reaching a few GHz and the RF tuning in the tens of MHz range. This is

in qualitative agreement with our theoretical results obtained in the case of non-zero α-factors.

Analytical estimates of the locking range width have been obtained using an asymptotic ap-
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proach in the limit of small injection amplitude. According to these estimates the width of the

optical and RF locking ranges has parabolic dependence on the absorber relaxation rate γq
and decreases with the decrease of the parameters γ, s, and κ, which describe the spectral

filtering bandwidth, the ratio of the saturation intensities in the gain and absorber sections, and

linear attenuation per cavity round trip, respectively. Similar dependence of the locking range

width on the parameters of the model equations was observed in our previous study of hybrid

mode-locked lasers [16].

Appendix

The matrices B(t) and C(t) in (10) are defined by the relations

B=









−γ 0 0 0
0 −γ 0 0

−hA0 0 −γg − eG0−Q0 |A0|2 h
2
|A0|2

−pA0 0 0 −γq − se−Q0|A0|2









,

with h = 2e−Q0(eG0 − 1) and p = 2s(1− e−Q0),

C=γ
√
κe

G0−Q0
2









1 0 1
2
A0 −1

2
A0

0 1 0 0
0 0 0 0
0 0 0 0









,

cθ = γ−1

(

1 + T

ˆ 2T0

0

d

dt

(

γA0 +
dA0

dt

)

χ†
θ1dt

)

,

cϕ = γ−1

(

1 + γT + T

ˆ 2T0

0

dA0

dt
χ†
ϕ2dt

)

,

where χ†
θ1 and χ†

ϕ1 are the components of the neutral modes of the adjoint linear operator L̂†

defined by Eq. (11).

The coefficients d
(n)
θ,ϕ and ξ

(n)
θ,ϕ in Eqs. (14)-(15) are given by

d
(n)
θ,ϕ = c−1

θ,ϕ

∣

∣

∣
F

(n)
θ,ϕ

∣

∣

∣
, ξ

(n)
θ,ϕ = arctan

ImF
(n)
θ,ϕ

ReF
(n)
θ,ϕ

,

where F
(n)
θ,ϕ are the Fourier coefficients of χ†

θ1(t) and χ†
ϕ2(t):

F
(n)
θ =

ˆ 2T0

0

χ†
θ1(t)e

−iπnf0tdt,

F (n)
ϕ =

ˆ 2T0

0

χ†
ϕ2(t)e

−iπnf0tdt.
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