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Abstract

In this paper we study an optimal control problem for a doubly nonlinear evolution equation
governed by time-dependent subdifferentials. We prove the existence of solutions to our equation.
Also, we consider an optimal control problem without uniqueness of solutions to the state system.
Then, we prove the existence of an optimal control which minimizes the nonlinear cost functional.
Moreover, we apply our general result to some model problem.

1 Introduction

The present paper is concerned with an optimal control problem without uniqueness of solutions to
a doubly nonlinear evolution equation governed by time-dependent subdifferentials in a real Hilbert
space H .

In our optimal control problem, for each control f , the state system (P; f ) is as follows:

State system (P; f ):

(P; f )

{
∂ψt(u′(t)) + ∂ϕ(u(t)) + g(u(t)) 3 f(t) in H for a.e. t ∈ (0, T ),
u(0) = u0 in H,

(1.1)

where 0 < T <∞, u′ = du/dt in H , ψt : H → R ∪ {∞} is a time-dependent proper, l.s.c. (lower
semi-continuous), convex function for each t ∈ [0, T ], ϕ : H → R ∪ {∞} is a time-independent
proper, l.s.c., convex function, ∂ψt and ∂ϕ are their subdifferential in H , g(·) is a single-valued Lips-
chitz operator in H , f is a given H-valued control function and u0 ∈ H is a given initial data.

In this present paper, we consider the optimal control problem without uniqueness of solutions to the
state system (P; f ). To this end, let V be a real Hilbert space such that the embedding V ↪→ H
is dense and compact. Then, we study the following optimal control problem without uniqueness of
solutions to (P; f ):

Problem (OP): Find the optimal control f ∗ ∈ F such that

J(f ∗) = inf
f∈F

J(f).

HereF := W 1,2(0, T ;H)∩L2(0, T ;V ) is the control space and J(f) is the cost functional defined
by

J(f) := inf
u∈S(f)

πf (u), (1.2)

where f ∈ F is the control, S(f) is the set of all solutions to (P; f ) with the control function f . Also,
u is a solution to the state system (P; f ) and πf (u) is its functional defined by

πf (u) :=
1

2

∫ T

0

|u(t)− uad|2Hdt+
1

2

∫ T

0

|f(t)|2V dt+
1

2

∫ T

0

|ft(t)|2Hdt, (1.3)

where uad ∈ L2(0, T ;H) is a given target profile and | · |H (resp. | · |V ) is the norm of H (resp. V ).
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There is vast literature on optimal control problems to (parabolic or elliptic) variational inequalities.
For instance, we refer to [5, 10, 11, 17, 18, 19, 23]. In particular, Lions [18] and Neittaanmäki et al.
[19, Section 3.1.3.1] discussed the singular control problems, which is the class of control problems
characterized by not well-posed state systems.

The theory of nonlinear evolution equations are useful in the systematic study of variational inequali-
ties. For instance, many mathematicians studied the nonlinear evolution equation of the form:

u′(t) + ∂ϕt(u(t)) 3 f(t) in H for a.e. t ∈ (0, T ), (1.4)

where ϕt(·) : H → R∪ {∞} is a proper, l.s.c. and convex function. For various aspects of (1.4), we
refer to [11, 14, 20, 22]. In particular, Hu–Papageorgiou [11] studied the optimal control problems to
(1.4).

Also, doubly nonlinear evolution equations were studied. For instance, Kenmochi–Pawlow [15] studied
the following type of doubly nonlinear evolution equations:

d

dt
∂ψ(u(t)) + ∂ϕt(u(t)) 3 f(t) in H for a.e. t ∈ (0, T ), (1.5)

whereψ(·) : H → R∪{∞} is a proper, l.s.c. and convex function. The abstract results of doubly non-
linear evolution equations (1.5) can be applied to elliptic-parabolic equations. Therefore, from the view
point of (1.5), Hoffmann et al. [10] studied optimal control problems for quasi-linear elliptic-parabolic
variational inequalities with time-dependent constraints. Also, Kadoya–Kenmochi [12] studied the op-
timal sharp design of elliptic-parabolic equations.

On the other hand, Akagi [1], Arai [2], Aso et al. [3, 4], Colli [8], Colli–Visintin [9], Senba [21] investi-
gated the following type of doubly nonlinear evolution equations (cf. (1.1)):

∂ψt(u′(t)) + ∂ϕ(u(t)) 3 f(t) in H for a.e. t ∈ (0, T ). (1.6)

However, there was no result of optimal control for (1.1) and (1.6) since (1.1) and (1.6) are not well-
posed state systems, in general. Therefore, by arguments similar to Kadoya et al. [13], more precisely,
using the cost functional defined by (1.2) and (1.3), we establish the abstract theory of the optimal
control problem (OP) without uniqueness of solutions to the state system (1.1).

The plan of this paper is as follows. In the next Section 2, we state the main result in this paper. In
Section 3, we first give the sketch of the proof of solvability for (1.1). Also, we prove the convergence
result (Proposition 3.1) of solutions to (P; f ). Moreover, we prove the main result (Theorem 2.1) on
the existence of the optimal control to (OP). In the final Section 4, we apply our abstract result to a
parabolic PDE with Neumann boundary condition.

Notations

Throughout this paper, let H be a real Hilbert space with the inner product (·, ·) and norm | · |H ,
respectively. Also, let V be a real Hilbert space with the norm | · |V such that the embedding V ↪→ H
is dense and compact.

Let us here prepare some notations and definitions of subdifferential of convex functions. To this end,
letE be a real Hilbert space with the inner product (·, ·)E . Then, for a proper (i.e., not identically equal
to infinity), l.s.c. and convex function φ : E → R ∪ {∞}, the effective domain D(φ) is defined by

D(φ) := {z ∈ E; φ(z) <∞}.
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The subdifferential of φ is a possibly multi-valued operator in E and is defined by z∗ ∈ ∂φ(z) if and
only if

z ∈ D(φ) and (z∗, y − z)E ≤ φ(y)− φ(z) for all y ∈ E.

The next proposition is concerned with the closedness of maximal monotone operator ∂φ in E.

Proposition 1.1 (cf. [7, Lemma 1.2]) Let E be a real Hilbert space with the inner product (·, ·)E . Let
φ : E → R∪{∞} be a proper, l.s.c. and convex function. Also, let [zn, z

∗
n] ∈ ∂φ and [z, z∗] ∈ E×E

be such that
zn → z weakly in E and z∗n → z∗ weakly in E as n→∞.

Suppose that
lim sup
n→∞

(zn, z
∗
n)E ≤ (z, z∗)E.

Then, it follows that [z, z∗] ∈ ∂φ and limn→∞(zn, z
∗
n)E = (z, z∗)E .

For various properties and related notions of the proper, l.s.c., convex function φ and its subdifferential
∂φ, we refer to a monograph by Brézis [6].

2 Main Theorem

We begin by defining the notion of a solution to (P; f ).

Definition 2.1 Given f ∈ L2(0, T ;H) and u0 ∈ H , the function u : [0, T ]→ H is called a solution
to (P;f) on [0, T ], if the following conditions are satisfied:

(i) u ∈ W 1,2(0, T ;H).

(ii) There exist functions ξ ∈ L2(0, T ;H) and ζ ∈ L2(0, T ;H) such that

ξ(t) ∈ ∂ψt(u′(t)) in H for a.e. t ∈ (0, T ),

ζ(t) ∈ ∂ϕ(u(t)) in H for a.e. t ∈ (0, T )

and
ξ(t) + ζ(t) + g(u(t)) = f(t) in H for a.e. t ∈ (0, T ).

(iii) u(0) = u0 in H .

Now, we give the assumptions on ψt, ϕ and g.

(A1) For each t ∈ [0, T ], ψt(·) : H → R ∪ {∞} is a proper, l.s.c. and convex function. Also,
ϕ(·) : H → R ∪ {∞} is a proper, l.s.c. and convex function.

(A2) There exists a positive constant C1 > 0 such that

ψt(z) ≥ C1|z|2H , ∀t ∈ [0, T ], ∀z ∈ D(ψt).

(A3) There exists a positive constant C2 > 0 such that

|z∗|2H ≤ C2(ψt(z) + 1), ∀[z, z∗] ∈ ∂ψt, ∀t ∈ [0, T ].
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(A4) There are functions α ∈ W 1,2(0, T ) and β ∈ W 1,1(0, T ) satisfying the following property: for
any s, t ∈ [0, T ] with s ≤ t and z ∈ D(ψs), there exists z̃ ∈ D(ψt) such that

|z̃ − z|H ≤ |α(t)− α(s)|
(

1 + ψs(z)
1
2

)
,

ψt(z̃)− ψs(z) ≤ |β(t)− β(s)| (1 + ψs(z)) .

(A5) There exists a positive constant C3 > 0 such that

ϕ(z) ≥ C3|z|2H , ∀z ∈ D(ϕ).

(A6) For each r > 0, the level set {z ∈ H;ϕ(z) ≤ r} is compact in H .

(A7) g : H → H is a single-valued Lipschitz operator. Namely, there is a positive constant Lg > 0
such that

|g(z1)− g(z2)|H ≤ Lg|z1 − z2|H , ∀zi ∈ H (i = 1, 2).

Remark 2.1 The assumption (A4) is the standard time-dependence condition of convex functions (cf.
[14, 20, 22]).

By a slight modification of [1, 3], we can prove the following existence result for problem (P;f ). We give
a sketch of its proof in Section 3.

Proposition 2.1 (cf. [1, Theorem 3.2], [3, Theorem 2.1]) Assume (A1)–(A7). Then, for each u0 ∈
D(ϕ) and f ∈ L2(0, T ;H), there exists at least one solution u to (P;f ) on [0, T ]. Moreover, there
exists a positive constant N0 > 0, independent of u0, such that∫ T

0

ψt(u′(t))dt+ sup
t∈[0,T ]

ϕ(u(t)) ≤ N0

(
ϕ(u0) + |f |2L2(0,T ;H) + 1

)
. (2.1)

Remark 2.2 Colli [8, Theorem 5] and Colli–Visintin [9, Remark 2.5] showed several criteria for the
uniqueness of solutions to the following type of doubly nonlinear evolution equations:

∂ψ(u′(t)) + ∂ϕ(u(t)) 3 f(t) in H for a.e. t ∈ (0, T ). (2.2)

For instance, if ∂ϕ is linear, positive, self-adjoint in H and ∂ψ is strictly monotone in H , we can show
the uniqueness of solutions to (2.2). However, ∂ψt and ∂ϕ in (1.1) are nonlinear and not self-adjoint,
and hence, the uniqueness question to (1.1) is still open.

Now, we state the main result of this paper, which is directed to the existence of an optimal control to
(OP) without uniqueness of solutions to (P;f ).

Theorem 2.1 Assume (A1)–(A7) and u0 ∈ D(ϕ). Let uad be an element in L2(0, T ;H). Then,
(OP) has at least one optimal control f ∗ ∈ F such that

J(f ∗) = inf
f∈F

J(f).
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3 Proof of Main Theorem 2.1

In this section, we give the sketch of the proof of Proposition 2.1 by arguments similar to Akagi [1] and
Aso et al. [3]. Moreover, we prove Theorem 2.1.

Throughout this section, we suppose that all the assumptions of Theorem 2.1 hold.

Sketch of the proof of Proposition 2.1.
By arguments similar to Akagi [1] and Aso et al. [3], we can prove Proposition 2.1. In fact, for each
λ ∈ (0, 1], we consider the following approximate problem for (P;f ), denoted by (P;f )λ:

(P; f )λ


λu′λ(t) + ∂ψt(u′λ(t)) + ∂ϕλ(uλ(t)) + g(Jϕλ uλ(t)) 3 f(t) in H

for a.e. t ∈ (0, T ),
uλ(0) = u0 in H,

where ∂ϕλ and Jϕλ := (I + λ∂ϕ)−1 denote the Yosida approximation and the resolvent of ∂ϕ ,
respectively.

By Cauchy–Lipschitz–Picard’s existence theorem and the fixed point argument for compact operators
(e.g. the Schauder’s fixed point theorem), we can prove the existence of solutions uλ to (P; f )λ on
[0, T ].

From the standard calculation, we can establish a priori estimate (cf. (2.1)) of solutions uλ to (P; f )λ
with respect to λ ∈ (0, 1]. Therefore, by the limiting procedure of solutions uλ to (P; f )λ as λ→ 0, we
can construct the solution to (P; f ) on [0, T ] satisfying the boundedness estimate (2.1). For a detailed
argument, see [1, Sections 4 and 5] or [3, Sections 3 and 4], for instance. �

Here, let us mention the result of the convergence of solutions to (P; f ), which is a key proposition to
proving Theorem 2.1.

Proposition 3.1 Assume (A1)–(A7). Let {fn} ⊂ L2(0, T ;H), {u0,n} ⊂ D(ϕ), f ∈ L2(0, T ;H)
and u0 ∈ D(ϕ). Assume that

fn → f strongly in L2(0, T ;H), (3.1)

u0,n → u0 in H and ϕ(u0,n)→ ϕ(u0) (3.2)

as n → ∞. Let un be a solution to (P;fn) on [0, T ] with initial data u0,n. Then, there exist a subse-
quence {nk} ⊂ {n} and a function u ∈ W 1,2(0, T ;H) such that u is a solution to (P;f ) on [0, T ]
with initial data u0 and

unk
→ u in C([0, T ];H) as k →∞. (3.3)

Proof. From the bounded estimate (2.1), (A2), (A5) and the level set compactness of ϕ (cf. (A6)),
we derive that there are a subsequence {nk} of {n} and a function u ∈ W 1,2(0, T ;H) such that
nk →∞,

unk
→ u weakly in W 1,2(0, T ;H),

in C([0, T ];H),

weakly-∗ in L∞(0, T ;H)

 (3.4)

as k →∞. Hence, we observe from (3.2) and (3.4) that u(0) = u0 in H .

Now, let us show that u is a solution of (P; f) on [0, T ] with initial data u0. Since unk
is a so-

lution of (P; fnk
) on [0, T ] with initial data u0,nk

, there exist functions ξnk
∈ L2(0, T ;H) and

ζnk
∈ L2(0, T ;H) such that

ξnk
(t) ∈ ∂ψt(u′nk

(t)) in H for a.e. t ∈ (0, T ), (3.5)
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ζnk
(t) ∈ ∂ϕ(unk

(t)) in H for a.e. t ∈ (0, T ), (3.6)

ξnk
(t) + ζnk

(t) + g(unk
(t)) = fnk

(t) in H for a.e. t ∈ (0, T ). (3.7)

Then, it follows from (2.1) and (A3) that

{ξnk
} is bounded in L2(0, T ;H). (3.8)

Therefore, taking a subsequence if necessary (still denote it by {nk}), we observe that:

ξnk
→ ξ weakly in L2(0, T ;H) for some ξ ∈ L2(0, T ;H) as k →∞. (3.9)

Also, it follows from (A7) and (3.4) and that

g(unk
)→ g(u) in C([0, T ];H) as k →∞. (3.10)

Therefore, we infer from (3.1), (3.7), (3.8) and (3.10) that

{ζnk
} is bounded in L2(0, T ;H).

Hence, taking a subsequence if necessary (still denote it by {nk}), we observe that:

ζnk
→ ζ weakly in L2(0, T ;H) for some ζ ∈ L2(0, T ;H) as k →∞. (3.11)

Thus, we infer from (3.1), (3.7), (3.9), (3.10) and (3.11) that:

ξ + ζ + g(u) = f in L2(0, T ;H). (3.12)

Also, from (3.4), (3.6), (3.11) and the demi-closedness of maximal monotone operator ∂ϕ (cf. Propo-
sition 1.1), we infer that

ζ ∈ ∂ϕ(u) in L2(0, T ;H), (3.13)

which implies that ζ(t) ∈ ∂ϕ(u(t)) in H for a.e. t ∈ (0, T ).

Now, we show that
ξ(t) ∈ ∂ψt(u′(t)) in H for a.e. t ∈ (0, T ). (3.14)

From (3.1), (3.2) and (3.4)–(3.13) we observe that

lim sup
k→∞

∫ T

0

(ξnk
(t), u′nk

(t))dt

= lim sup
k→∞

∫ T

0

(fnk
(t)− ζnk

(t)− g(unk
(t)), u′nk

(t))dt

= lim sup
k→∞

[∫ T

0

(fnk
(t)− g(unk

(t)), u′nk
(t))dt−

∫ T

0

d

ds
ϕ(unk

(s))ds

]

≤
∫ T

0

(f(t)− g(u(t)), u′(t))dt+ lim sup
k→∞

(−ϕ(unk
(T )) + ϕ(u0,nk

))

≤
∫ T

0

(f(t)− g(u(t)), u′(t))dt− ϕ(u(T )) + ϕ(u0)

=

∫ T

0

(f(t)− g(u(t))− ζ(t), u′(t))dt

=

∫ T

0

(ξ(t), u′(t))dt,
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thus, we observe from Proposition 1.1, namely, the closedness of maximal monotone operator ∂ψt

that
ξ ∈ ∂ψt(u′) in L2(0, T ;H),

which implies that (3.14) holds. Therefore, we observe that u is a solution of (P; f) on [0, T ] with initial
data u0. Thus, the proof of this proposition has been completed. �

Now, let us prove the main Theorem 2.1 in our paper, which is the existence of an optimal control to
(OP).

Proof of Theorem 2.1.
Note that we show the existence of an optimal control to (OP) without uniqueness of solutions to state
problem (P; f )

Also note from (1.2) and (1.3) that J(f) ≥ 0 for all f ∈ F . Let {fn} ⊂ F be a minimizing sequence
such that

d∗ := inf
f∈F

J(f) = lim
n→∞

J(fn).

Then, we observe that {J(fn)} is bounded. Therefore, by the definition (1.2) of J(fn), for each n
there is a solution un ∈ S(fn) such that

πfn(un) < J(fn) +
1

n
.

Hence, we observe that {πfn(un)} is bounded. Thus, by the definition of πfn(un) (cf. (1.3)) and by the
Aubin’s compactness theorem (cf. [16, Chapter1, Section 5]), there are a subsequence {nk} ⊂ {n}
and a function f ∗ ∈ F such that

fnk
→ f ∗ weakly in W 1,2(0, T ;H),

weakly in L2(0, T ;V ),

in L2(0, T ;H)

 (3.15)

as k →∞,

Now, taking a subsequence if necessary, we infer from Proposition 3.1 that there is a solution u∗ to
(P;f ∗) on [0, T ] with initial data u0 satisfying

unk
→ u∗ in C([0, T ];H) as k →∞. (3.16)

Therefore, it follows from (3.15)–(3.16), u∗ ∈ S(f ∗) and the weak lower semicontinuity of L2–norm
that

d∗ = inf
f∈F

J(f) ≤ J(f ∗) = inf
u∈S(f∗)

πf∗(u)

≤ πf∗(u
∗) =

1

2

∫ T

0

|u∗(t)− uad|2Hdt+
1

2

∫ T

0

|f ∗(t)|2V dt+
1

2

∫ T

0

|f ∗t (t)|2Hdt

≤ lim inf
k→∞

πfnk
(unk

)

≤ lim inf
k→∞

{
J(fnk

) +
1

nk

}
= lim

k→∞
J(fnk

) = d∗.

Hence, we have d∗ = inff∈F J(f) = J(f ∗), which implies that f ∗ ∈ F is an optimal control to
(OP). Thus, the proof of Theorem 2.1 has been completed. �
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4 Application

In this section, we apply Theorem 2.1 to the simple model problem as follows:

(SMP)p


A(t, ut)− div

(
|∇u|p−2∇u

)
+ g(u) 3 f(t) in Q := (0, T )× Ω,

∂u

∂ν
= 0 on Σ := (0, T )× Γ,

u(0) = u0 a.e. in Ω,

where 0 < T < ∞, Ω is a bounded domain in RN (1 ≤ N < ∞), the boundary Γ := ∂Ω of Ω
is smooth if N > 1, g is Lipschitz on R, p is a positive number with p ≥ 2, ν is an outward normal
vector on Γ and u0 is a given initial data. Also, A(t, ·) is the given time-dependent function defined by

A(t, z) :=


z − c(t), if z − c(t) ≥ 1,

1, if 0 < z − c(t) < 1,
[−1, 1] , if z = c(t),
−1, if − 1 < z − c(t) < 0,

z − c(t), if z − c(t) ≤ −1,

where c(·) is a given smooth function on [0, T ].

To apply the abstract result to (P;f ), we put H := L2(Ω) and V := H1(Ω) with usual real Hilbert
space structures. Define a function ϕ on H by

ϕ(z) :=


1

p

∫
Ω

|∇z(x)|pdx+ C4, if z ∈ W 1,p(Ω),

∞, otherwise ,

Also, for each t ∈ [0, T ], define a function ψt on H by

ψt(z) :=

∫
Ω

Â(t, z(x))dx for all z ∈ H := L2(Ω),

where Â(t, ·) is the primitive of A(t, ·) such that Â(t, ·) ≥ 0 for all t ∈ [0, T ].

It is not difficult to show that the assumptions (A1)–(A7) are satisfied. For instance, put z̃ = z −
c(s) + c(t), α(t) :=

∫ t
0
|c′(τ)|dτ and β(t) ≡ 0 for (A4) (cf. [14, Chapter 3]). Therefore, by applying

Theorem 2.1, we can consider the control problem (OP) without uniqueness of solutions to (SMP)p.
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