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Abstract

This work concerns the inverse scattering problems of imaging unknown/inaccessible scatterers
by transient acoustic near-field measurements. Based on the analysis of the migration method, we
propose efficient and effective sampling schemes for imaging small and extended scatterers from
knowledge of time-dependent scattered data due to incident impulsive point sources. Though the in-
verse scattering problems are known to be nonlinear and ill-posed, the proposed imaging algorithms
are totally “direct” involving only integral calculations on the measurement surface. Theoretical justi-
fications are presented and numerical experiments are conducted to demonstrate the effectiveness
and robustness of our methods. In particular, the proposed static imaging functionals enhance the
performance of the total focusing method (TFM) and the dynamic imaging functionals show analo-
gous behavior to the time reversal inversion but without solving time-dependent wave equations.

1 Introduction

The inverse scattering theory of acoustic waves and the corresponding reconstruction methods have
been extensively studied in recent years. Considerable developments have been achieved to the inverse
scattering problem of determining the location and shape of a scattering object from the knowledge of
acoustic scattered waves corresponding to time-harmonic incident waves. Those methods are usually
referred to as the frequency-domain methods in the literature; see, e.g., [3, 6, 8, 13, 15, 33] and the
references therein.

Among various frequency-domain methods for inverse scattering problems, we are particularly interested
in the so-called sampling-type methods. The core of a sampling-type method is a certain imaging/indicator
functional, which is obtained by using the measurement data and can be used to indicate whether a
point (or a line, or a surface) in the space belongs to the interior of exterior of the scatterer. In general,
the imaging functionals are easily computed without iterations required, though the inverse scattering
problems are known to be nonlinear and ill-conditioned. Moreover, the sampling-type methods usually
require very little a priori information of the unknown/inaccessible target scatterer. Due to its practical
importance, the sampling-type methods has drawn a great deal of interest in the literature, and examples
include the linear sampling method [14], the factorization method [32, 33], the point source and probe
method [40, 42], the enclosure method [28], the MUSCI-type method [3, 5, 6] and the recent one-shot
and orthogonality sampling methods [31, 36, 37, 41], among others. Generally, the frequency-domain
sampling methods could work with the data corresponding to only a single frequency. Alternatively, if
multifrequency measurement data are available, one may also resort to the multifrequency version of the
sampling-type methods, see e.g. [1, 9, 19, 24, 43].

However, in diverse practical applications such as sonar detection, geophysical exploration, medical imag-
ing and nondestructive testing, dynamic measurement data are usually easy to obtain. Therefore, imaging
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unknown/inaccessible scatterers through the time-dependent acoustic waves is a topic of significant inter-
est to these areas. There exist a number of reconstruction algorithms in the time domain such as the time
reversal techniques [17, 16, 22, 23], the reversed time migration [10], the boundary control method [39]
and the generalized polarization tensors [2]. For sampling type methods using dynamic measurements,
we refer to the point source method [38], the probe method [12], the linear sampling method [20], the en-
closure method [29], the multiple signal classification (MUSIC) method [34] and the total focusing method
(TFM) arising from nondestructive evaluation [18, 21, 26]. Note that the TFM is sometimes described as
the “gold standard” in the classical beamforming, and it shares the same idea of the so-called Kirschhoff
migration widely used in geophysics. Both of them form the image with the superposition of the scattered
signals incited by each transducer. They are robust to measurement noise but sensitive to medium noise
[4] . In a series of works [4, 11, 25, 23], correlation-based imaging schemes have been justified to recover
the position of a point reflector in a noisy environment.

The goal of this paper is to show that the TFM and Kirschhoff migration can be used for imaging not only
acoustic scatterers with small inclusions but also the shape of regular-size/extended penetrable and im-
penetrable scatterers with multiple components, including cracks. The proposed method can be regarded
as a strengthened version of the total focusing method or Kirschhoff migration in a stationary medium.
To our best knowledge, they have been so far applied to the reconstructions of point-like scatterers only.
Using synthetic data, in this work we apply for the first time the newly developed strengthened versions of
TFM to imaging crack-like and regular-size/extended scatterers with multiple components. In particular,
the newly proposed dynamic imaging/indicator functionals show analogous behavior of the time reversal
inversion but without having to solve time-dependent wave equations. The promising and salient features
of our time-domain sampling method can be summarized as follows. First, the imaging/indicator function-
als are formulated directly from the time domain data. No Fourier or Laplace transform is needed on the
algorithm level. Second, the imaging schemes do not require the strong a priori information of the physical
properties of the scatterer, and apply to both penetrable medium and impenetrable obstacle. There is no
need to know the type of boundary conditions of an impenetrable obstacle. Third, the imaging schemes
are explicit because the imaging indicators do not rely on any matrix inversion or forward solution pro-
cess. Hence, the method is very robust with respect to measurement noise. Finally, the method is very
easy to implement with computational efficiency. Only cheap integrations are involved in calculating the
imaging/indicator functionals. In this work, we shall present some mathematical analysis in justifying the
indicator behavior of the proposed imaging functionals in the scenario with point-like scatterers. Exten-
sive numerical experiments in two and three dimensions are conducted to demonstrate the feasibility and
robustness of our methods. Using the correlation-based algorithms [4, 23, 11, 25], we believe that our
approach also applies to extended scatterers in a random medium.

The rest of the paper is organized as follows. In the next section we give a brief description of the for-
ward and inverse scattering problems that we are concerned with. Single-source and multi-source indica-
tor/imaging functionals are introduced in Section 3. The behavior of the imaging indicators for point-like
scatterers will also be analyzed in this section. Section 4 is devoted to numerical experiments and the
paper is concluded in Section 5.
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2 Problem setting

Let D ⊂ RN(N = 2, 3) be an open bounded domain with the Lipschitz boundary ∂D and connected
exterior RN\D. D represents a stationary scatterer for our study. It is assumed that the exterior RN\D
is an isotropic and homogeneous background medium with a constant phase velocity c0 ∈ R+. Let
Γi ⊂ RN\D be a closed Lipschitz surface on which point sources emit incident waves for the probing
of the scatterer. Throughout, we assume that the incident wave uiχ(x, t ; y) with x, y ∈ RN , t > 0 is
a monopole emitted at the source location y ∈ Γi with a temporal pulse signal χ : R → R such that
χ(t) ≡ 0 for t < 0. That is, uiχ(·, · ; y) is a causal solution to the following wave propagation problem in
the free space

∆u(x, t)− c−2
0 ∂ttu(x, t) = −δ(x− y)∂tχ(t) in RN × R+, (1)

u(·, 0) = ∂tu(·, 0) = 0 in RN , (2)

where δ is the Dirac delta distribution. In particular, if χ(t) is chosen as the Heaviside functionH(t), then
it is well known that the unique solution to problem (1)–(2) is given by

Φ(x, t; y) :=


H(t− c−1

0 |x− y|)
2π
√
t2 − c−2

0 |x− y|2
, N = 2,

δ(t− c−1
0 |x− y|)

4π|x− y|
, N = 3,

which is called the fundamental solution to the wave equation.

Since the excitation signals of Gaussian type are commonly used in a number of practical applications, in
this paper we assume that χ(t) is a causal Gaussian-modulated sinusoidal pulse of the form

χ(t) :=

{
sin(ωt) exp(−σ(t− τ0)2), t ≥ 0,

0, t < 0,
(3)

where ω > 0 is the center frequency, σ > 0 is the frequency bandwidth parameter, and τ0 > 0 is
the time-shift parameter concerning the pulse peak time. In terms of the center frequency ω, the center
wavelength of χ(t) is defined by 2πc0/ω.

Given an incident point source ui(·, · ; y), y ∈ Γi, the direct/forward obstacle scattering problem is to find
the scattered field us(·, · ; y) satisfying the wave equation

∆us − c−2
0 ∂ttu

s = 0 in (RN\D)× R+, (4)

the initial conditions
us(·, 0) = ∂tu

s(·, 0) = 0 in RN , (5)

and the boundary condition
B(ui + us) = 0 on ∂D × R+.

The impenetrable obstacle D is referred to as sound-soft (resp. sound-hard) if the pressure (resp. the
normal velocity) of the total wave u = ui + us vanishes on the boundary ∂D. Another practical scenario
is the one where the pressure and the normal velocity of the total wave is proportional on the boundary,
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which leads to the impedance boundary condition. Thus the differential operator B, depending on the
physical property of an impenetrable scatterer, takes the form

Bu :=


u|∂D×R+ , if D is sound-soft,

∂νu|∂D×R+ , if D is sound-hard,

(∂νu− λc−1
0 ∂tu)|∂D×R+ , if D is of impedance-type ,

where ν is the unit outward normal vector to ∂D and λ ∈ C(∂D) is a nonnegative surface impedance
function.

If the scatterer is penetrable, then the direct scattering problem can be modelled by the following medium
scattering problem: find the scattered field us(·, · ; y) satisfying the wave equation

∆us − n(x)∂ttu
s = −(1− n(x))∂ttu

i in RN × R+, (6)

and the initial conditions (5). In (6), the space-variable function n(x) := c2
0/c

2(x) is the so called re-
fractive index, where the sound speed c(x) > 0 is a piecewise continuous function such that c(x) − c0

has compact support. Then the geometry of the scatterer D is characterized by the compact support of
n(x)− 1. Without loss of generality, we assume that c0 ≡ 1 in the rest of this paper.

In the present study, the scatterer D does not necessarily occupy a simply connected domain but can be
practically very general where D may consist of a finite number of disconnected components such that
different components possess different shapes, sizes and/or physical properties (penetrable or impene-
trable). In what follows, the relative size of each scatterer component is interpreted in terms of the center
frequency of the incident pulse. Let L ∈ N, and let Ωj, 1 ≤ j ≤ L, be bounded simply connected C2

domains in RN containing the origin. We assume that each reference domain Ωj is of the unit size, i.e.,

diam(Ωj) = O(1), 1 ≤ j ≤ L.

For ρj ∈ R+, 1 ≤ j ≤ L, we define ρjΩj := {ρjx | x ∈ Ωj} and set

Dj = zj + ρjΩj, zj ∈ RN , 1 ≤ j ≤ L,

where zj is the location of the j-th component Dj for 1 ≤ j ≤ L. Thus the scatterer D is defined by the
union of these components

D :=
L⋃
j=1

Dj. (7)

A component Dj is referred to as a small or point-like scatterer component if its relative/characteristic
size is much smaller than the center wavelength of the incident pulse, i.e.,

ωρj � 2π. (8)

A component Dj is referred to as an extended scatterer component if its relative/characteristic size is
comparable to the center wavelength of the incident pulse, i.e.,

ωρj ∼ 2π.
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Note that an extended scatterer component may be “partially small”, for example,Dj is a rectangular box
which has a small width in proportion to the length or height. If the corresponding reference shape Ωj of
an extended scatterer component Dj has a large shape ratio (in terms of the width/length/height), then
Dj is referred to as a segment-like or crack-like component, otherwise it is referred to as a regular-size
component.

If the scatterer consists of multiple point-like and/or extended components, then these components are
assumed to be sparsely distributed, i.e.,

ωdist(zj, zj′)� 2π, ∀ j 6= j′, 1 ≤ j, j′ ≤ L. (9)

It is remarked that under the assumption (9), the multiple scattering effects between different scatterer
components can be neglected. Nevertheless, we would like to emphasize that the sparsity assumption
would be only needed for the purpose of theoretical analysis. Our numerical examples in Section 4 show
that the proposed imaging schemes work for the more general case with different scatterer components
being relatively closer to each other. In particular, as long as the distance between different components
is bigger than one center wavelength, the proposed imaging schemes would yield satisfactory reconstruc-
tions.

Let Γ be the closed measurement surface (possible equal to Γi) such that the scatterer is located inside
the domain enclosed by Γ. Let T0 and T denote the lower and upper bound of the finite time window for
collecting data, respectively. The forward scattering problem can be stated as follows: Given the incident
wave ui(·, · ; y), y ∈ Γi and the scattererD, find the corresponding scattered wave us(x, t; y) for x ∈ Γ
and T0 ≤ t ≤ T . For the well-posedness of the forward problem and the numerical methods for solving
time-dependent scattering problems, we refer to [7, 35] and the lecture notes by Wilcox [44].

In this paper we will study the inverse problem of recovering the locations of the point-like scatterers
and the shape of the extended scatterers from knowledge of the incident wave ui(·, · ; y) and the time-
dependent scattered data

{us(x, t; y) | x ∈ Γ, y ∈ Γi, T0 ≤ t ≤ T}.

In general, the starting time T0 ≥ 0 can be chosen as the time of the first arrival of the scattered field
on Γ and the terminal time T can be chosen such that the scattered energy inside Γ can be considered
as negligible when t > T . For ease of exposition, we shall assume below that T0 = 0. We refer
to [30] for an overview of the uniqueness and stability results in inverse penetrable and impenetrable
obstacle scattering. In particular, a lower bound of the terminal time T was estimated in [30, Theorem
5.1] for ensuring uniqueness in determining a sound-soft or sound-hard stationary obstacle with a single
boundary measurement data.

3 Indicator and imaging functions

In what follows, given the scattered data, the corresponding time-reversed data is defined by

utr(x, t; y) :=

{
us(x, T − t; y), 0 ≤ t ≤ T,

0, t < 0,
(10)
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for x ∈ Γ and y ∈ Γi. Denote by G ⊂ RN a bounded probe region containing the unknown scatterer
D. For example, one may assume that G is a sub-domain of the region enclosed by Γ.

3.1 Single-source indicators

Let the source position be located at y ∈ Γi. In the present study, we propose the static indicator function
with a single point source wave as follows:

I(z; y) :=

∫ T

0

(∫
Γ

utr(x, τ − |z − x|; y) ds(x)

)2

dτ, (11)

where z ∈ G denotes the sampling point. A dynamic indicator function Ĩ(z, t; y) is defined as

Ĩ(z, t; y) :=

∫ t

0

(∫
Γ

utr(x, τ − |z − x|; y) ds(x)

)2

dτ (12)

for z ∈ G and t ∈ (0, T ). Obviously, Ĩ(z, t; y)|t=T coincides with the stationary indicator I(z; y) defined
in (11). The above single-source indicators can be used to image multiple point-like scatterers and cracks
by plotting the function z → I(z; y) or z → Ĩ(z, t; y). It is worthy mentioning that these indicators
are in spirit similar to the total focusing method proposed in [26] but modified to improve the resolution
of the original TFM. Our inspirations are taken from the recent direct sampling methods [41, 37, 31] in
the frequency domain. The indicator function of TFM with a single point source takes the form (see e.g.
[26, 21, 18]):

ITFM(z; y) :=

∣∣∣∣∫
Γ

us (x, t0 + |y − z|+ |x− z|; y) ds(x)

∣∣∣∣ (13)

where t0 ≥ 0 is the peak time of the incident pulse (see (3)). The indicators (11) and (12) differ from
(13) in the extra integrations with respect to the parameter τ over (0, T ) or (0, t) and in the square of
the integrand. Compared to the above mentioned direct sampling methods in the frequency domain, our
indicators involve no inner product and the sampling point is coded in the time variable of the scattered
signal. The behavior of the indicator functions (11) and (13) for point-like scatterers is given in the following
theorem.

Theorem 1. Let D ⊂ RN be a union of point-like scatterers defined by (7) and (8), and let zj, j =
1, · · · , L, be the exact locations of the scatterer components. Then there exists an open neighborhood of
zj , neigh(zj), j = 1, · · · , L, such that zj is a local maximizer of I(z; y) and ITFM(z; y) in neigh(zj).
The point zj is also the local maximizer of the dynamic indicator I(z, t; y) provided t > T−t0−|zj−y|.

Proof. The proof depends on the travel time of the acoustic waves inside the probe region. We first
suppose L = 1, i.e., D consists of a single point-like scatterer located at z1 ∈ R3 only. This suggests
that the scattered signal can be regarded as an impulsive source wave emitted from z1. Recall that
the sound speed has been assumed to be c0 = 1 in the background medium. The wave crest of the
incident pulse generated by (3) arrives at the surface {x ∈ RN | |x − y| = a} when t = a + t0 and
will touch the scatterer at t = |z1 − y| + t0. Hence, the wave crest of the scattered signal arrives at
{x ∈ RN | |x− z1| = b} when t = t0 + |z1 − y|+ b for some b > 0, and will touch the measurement
point x ∈ Γ when t = t0 + |y − z1|+ |x− z1|. Consequently, we obtain for z ∈ neigh(z1) that

us (x, t0 + |y − z1|+ |x− z1|; y) ≥ us (x, t0 + |y − z|+ |x− z|; y)

6



Algorithm Locating a multiple point-like scatterers

Step 1 For a collection of unknown point-like scatterers D, select an appropriate source
position y and start to send the incident pulse of the form (3) at an initial time t = 0.

Step 2 Collect the scattered data us(·, ·; y) at the measurement points and recording time
steps between t = 0 and the (sufficiently long) terminal time t = T .

Step 3 Select a grid of sampling points in a region containing D. For each sampling point
z, calculate the static indicator I(z; y) defined in (11) (alternatively, in addition for
each recording time t, calculate the dynamic indicator Ĩ(z, t; y) defined in (12) ).

Step 4 Locate all the significant local maximizers of I(z; y) at the sampling grid (alterna-
tively, find the stages of t when the significant local maximizers of Ĩ(z, t; y) at the
sampling grid appear, then locate all the local maximizers at these stages), which
represent locations of the scatterer components of D.

uniformly in all x ∈ Γ. This proves the relation ITFM(z1; y) ≥ ITFM(z; y) for all z ∈ neigh(z1) when
j = 1. If D consists of several components, the multiple scattering effect between the different point-like
scatterers can be neglected due to the assumption (9). Then, by arguing in the same manner one can
prove that zj is the local maximizer of ITFM(z; y) in neigh(zj).

Due to the Gaussian pulse excitation (3) and the sparsity assumption (9), the indicator function I(z; y)
can be reformulated as

I(z; y) =
L∑
j=1

Ij(z; y), Ij(z; y) :=

∫ tj+ε

tj−ε

(∫
Γ

utr
j (x, τ − |z − x|; y) ds(x)

)2

dτ

for some ε > 0 sufficiently small, with tj := T − (t0 + |zj − y|) for j = 1, · · · , L. Here utr
j denotes the

time-reversed scattered data emitted from the j-th scatterer component, which is defined analogously to
(10). Observing that

Ij(zj; y) ≥ Ij(z; y) for z ∈ neigh(zj); Ij(zm; y) = 0 for m 6= j, (14)

we conclude that

I(zj; y) ≥ I(z; y) for all z ∈ neigh(zj).

Finally, the behavior of the dynamic indicator (12) follows from (14) and the expression

Ĩ(z, t; y) =
∑

0<tj<t

Ij(z; y).

The proof is complete.

Based on Theorem 1, we can readily formulate the scheme for imaging a collection of point-like scatterers.

We end up this section with the following remark.

Remark 1. Compared to the TFM, the integral with respect to τ in (11) or (12) is necessary because of
the Gaussian pulse excitation (3) and the possible existence of multiple scatterer components. Combining

7



this with the square of the integrand in (11) and (12) may improve the imaging resolution of the original
TFM. The dynamic indicator shows analogous behavior of the time reversal inversion but without solving
time-dependent wave equations. Moreover, it could be used to locate point-like scatterers with weak
scattering strength; see Section 4.1 for numerical examples.

3.2 Multi-source indicators

In this section we consider the superposition of single-source indicators for imaging the location and
shape of general extended scatterers by sending multiple impulsive point sources. Since the values of
(11) at a fixed sampling point z may vary significantly from source to source, a normalization should
be taken into account in order to rescale their magnitudes into the same order and thus balance their
contributions to the superposition. Recall that Γi denotes the position of the incident point sources. We
define the normalized static and dynamic indicators as (cf. (11) or (12))

I(z) :=

∫
Γi

I2(z; y)

max
z∈G

I2(z; y)
ds(y), z ∈ G, (15)

and

Ĩ(z, t) :=

∫
Γi

Ĩ2(z, t; y)

max
z∈G

Ĩ2(z, t; y)
ds(y), z ∈ G, 0 < t ≤ T, (16)

respectively, where I(z; y) and Ĩ(z, t; y) are the single-source indicators defined in Section 3.1. Mean-
while, we propose another dynamic indicator as following

ĨNEW(z, t) :=
Λ̃2(z, t)

max
z∈G

Λ̃2(z, t)
, z ∈ G, 0 < t ≤ T, (17)

with

Λ̃(z, t) :=

∫ t

0

∫
Γi

(∫
Γ

utr(x, τ − |z − x|; y) ds(x)

)2

ds(y)dτ. (18)

Note that this new indicator ĨNEW(z, t) differs from Ĩ(z, t) in the orders of normalization and the inte-
gration over Γi. Our numerics show that ĨNEW(z, t) yields more geometrical information of the unknown
scatterer than Ĩ(z, t). To compare with the TFM, we still need the indicator of the multi-source TFM, given
by

ITFM(z) =

∫
Γi

ITFM(z; y)ds(y), z ∈ G. (19)

Motivated by the imaging scheme for point-like scatterers, we can analogously formulate the scheme for
imaging extended scatterers. Moreover, based on the proof of the Theorem 1 , it is quite reasonable to
expect that the values of above multi-source indicators are relatively large when the sampling point z
tends to the boundary of the scatterer, namely, the multi-source indicators are capable of imaging general
extended scatterers. This will be confirmed in our numerical tests in Section 4.3 and 4.4. However, a
theoretical justification of the behavior of these indicators is fraught with difficulties and we shall further
explore it in our future work.
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Figure 1: The incident pulse function. (a) temporal pulse. (b) Fourier spectrum.

4 Numerical examples

In this section we will give several two and three dimensional numerical examples to demonstrate the
feasibility and the effectiveness of the proposed methods. In the following examples, the pulse

χ(t) := sin(6t) exp (−1.6(t− 3)2)

was injected at each source point as excitation. The incident pulse function χ(t) and its wavenumber
spectrum (via Fourier transform) are depicted in Figure 1. The center frequency and the center wavelength
of χ(t) are 6 and π/3, respectively.

The scattered data were generated using the finite element method and the unbounded exterior domain
is truncated by an absorbing boundary condition. The mesh of the forward solver is successively refined
until the relatively error of the successive measured scattered data is below 0.1%. To test the stability of
the proposed reconstruction scheme, artificial random noise was also added to the synthetic data. The
noisy data is given according to the following formula:

usε := us(1 + εr),

where ε is the noise level and r are uniform random numbers ranging from−1 to 1. In all the examples in
the sequel, the scattered data computed by the finite element method was contaminated using ε = 0.1
before the inversions, namely, the measured data with 10% noise was used.

Now we specify the discretization in details. Suppose that we have Ni ∈ N distinct source points
yj ∈ Γi, j = 1, · · · , Ni. Let’s specify the discretization details of the indicator (11) for a source point
yj . Suppose that we have Nm equidistantly distributed receivers xm ∈ Γ,m = 1, · · · , Nm and Nt

equidistant recording time steps tn ∈ [0, T ], n = 1, · · · , Nt. Then the scattered data is a Nm × Nt

array U s whose (m,n)-th entry is us(xm, tn; yj). The time-reversed data array U tr is obtained by re-
arranging U s by the order of elements flipped left to right along the rows, namely, the (m,n) entry
of U tr is us(xm, tNt−n+1; yj). Afterwards an interpolation is performed at each row of U tr to find the
values of time-reversed data at the query time steps, i.e., the data utr(xm, tn − |z − xm|; yj),m =
1, · · · , Nm, n = 1, · · · , Nt. The integrals in the indicator function are approximated using the trape-
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zoidal rule. Hence, the discretized version of indicator (11) can be written as follows

I(z; yj) :=
T

Nt − 1

Nt∑
n=1

(
hx

Nm∑
m=1

utr(xm, tn − |z − xm|; yj)

)2

, j = 1, · · · , Ni,

where hx denotes the distance between two adjacent receivers. Obviously, once the discretized indicator
for each single point source is available, the indicator for multiple sources defined in (15) is obtained by
direct summation of the normalized single-source indicators, i.e.,

I(z) := hy

Ni∑
j=1

I2(z; yj)

max
z∈G

I2(z; yj)
, z ∈ G, (20)

where hy denotes the distance between two adjacent point sources.

The discretized indicator function of the total focusing method can be obtained in the same manner, i.e.
(cf. (19) )

ITFM(z) := hxhy

∣∣∣∣∣
Ni∑
j=1

Nm∑
m=1

us(xm, t0 + |yj − z|+ |xm − z|; yj)

∣∣∣∣∣ , z ∈ G,

where t0 = argmaxt>0|χ(t)| ≈ 2.88 is used in the following examples. The dynamic indicator functions
(16) and (17) can also be discretized similarly, so we omit the detailed expressions. Finally, we use a
uniformly distributed 100 × 100 sampling grid over G := [−2.5, 2.5]2, or 60 × 60 × 60 sampling
grid over G := [−3, 3]3 to plot the discretized and normalized indicator function as our reconstructed
images. One can also choose a smaller probe region than G depending on the the first arrival time of
each receiver.

In the following numerical examples, if not otherwise specified, we use stationary indicator functions that
are scaled to the range [0, 1] for the sake of comparison.

4.1 Reconstruction of point-like scatterers with a single source

In the first example, we aim to reconstruct a collection of point-like scatterers using a single point source.
The single source point is chosen as (−3, 0). Synthetic scattered data were collected with terminal time
T = 16 and 800 recording time steps. The 48 equidistantly distributed measurement points were placed
on the boundary of a square with side length 6 around the sampling region. The true scatterer consists of
a sound-soft square with side length 0.1 located at (−1, 2), a sound-soft disk with radius 0.05 located at
(0.5,−1.5), a sound-hard disk with radius 0.2 located at (1.5, 0) and a penetrable medium square with
side length 0.3 located at (−2,−1). The sound speed inside the medium square is 5.

Figure 2 gives the settings of the forward scattering problems and the reconstructions using full and limited
aperture observations. We compare the numerical performance of the proposed indicator (11) and the
total focusing method (13). As can be seen from Figure 2 (b) (c), with full aperture data acquisition, a local
maximum can be clearly visualized at the location of each scatterer component, which is in accordance
with our theoretical analysis. Using partially measured data, Figure 2 (e) (f) show that the location of
the small scatterers can be less precisely captured than using the full data; cf. Figure 2 (b) (c). In this
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Figure 2: Reconstruction of small scatterers. Top row: full aperture case. Bottom row: limited aperture
case. Left column: geometry settings. The source point is denoted by the small red circle, while the
receivers are denoted by the small blue stars. The sound-soft, sound-hard obstacles and the inhomo-
geneous medium are coloured in black, blue and yellow, respectively. The black dashed line depicts the
boundary of the sampling region. Middle column: images of I(z; y)/maxz{I(z; y)}. Right column: im-
ages of ITFM(z; y)/maxz ITFM(z; y). We take y = (−3, 0).
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Figure 3: Reconstruction of small scatterers using the dynamic indicator Ĩ(z, t)/maxz Ĩ(z, t). Top row:
full aperture case of Figure 2 (a). Bottom row: limited aperture case of Figure 2 (d). These snapshots are
captured at: (a) t = 4.22. (b) t = 6.86. (c) t = 8.06. (d) t = 6.86. (e) t = 7.76. (f) t = 9.02.

case it is typical that the point spread functions are somehow elongated, due to the lack of information in
inversions. The bottom-left scatterer component can be more clearly imaged in Figure 2 (e) (f), because
its location is closer to the receivers than others.

Figure 3 illustrates the evolutionary behaviour of the dynamic indicator function (12) by showing the
snapshots of the reconstructions at some special stages. As can be seen from Figure 3, the dynamic
indicator exhibits a selective focusing property such that the global maximum point of the indicator flows
from one scatterer position to another. An advantage of this capability is that, in our view, the retrieval
of relatively weak scatterer components (for instance the sound-hard scatterer in this example) may be
readily achieved compared to the stationary plots. For a comparison, we refer to Figure 3 (b) vs. Figure 2
(b) (c), and Figure 3 (d) (e) (f) vs. Figure 2 (e). Note that the bottom-left scattering component does not
appear in Figure 3 (a)-(f), because the terminal time t in our dynamic indicator is not taken sufficiently
large (see Proposition 1 for the indicator behavior).

4.2 Reconstruction of crack-like scatterers with at most two sources

In this section, the exact scatterer is chosen as a crack-like object which has a rectangular shape with
height 0.1 and width 2 such that it is “partially small”. The impedance boundary condition with λ = 0.1 is
imposed on the boundary of the scatterer. Synthetic scattered data were collected with terminal recording
time T = 12 and 600 recording time steps. We aim to test the sensitivity of the reconstructions to the
orientation of this slender rectangle using a single source and the effect of normalization involved in (15)
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for two incident sources.

In the extreme case that the orientation of the crack coincides with the radical direction of the point source
(see Figure 4 (a)), only the locations of the endpoints can be retrieved using the single source scheme
(11), whereas the center part is invisible; see Figure 4 (b) (c). With such images one would probably argue
that the exact scatterer consists of two disconnected point-like objects only rather than a crack. From the
physical perspective, this “misleading” result is due to the weak scattering from the center part of the
crack. If we fix the crack and change the point source location, or alternatively, fix the source location but
adjust the crack orientation, then the center part of the crack could be recovered; see Figure 4 (e) (f) and
Figure 4 (h) (i). However, the true scatterer seems to be two adjacent and parallel straight cracks rather
than a single one, as can be seen from Figure 4 (e) and Figure 4 (h). From the physical point of view, a
possible explanation to this effect is that the close twins in the reconstruction are originated from the close
opposite side of the crack. Evidently, the proposed single-source indicator could be used for recovering a
crack-like scatterer and gives better images than the TFM.

We remark that the single-source indicators have been scaled to [0,1] in Figure 4 (b) (h). It is shown
in Figure 5 (b) (d) that the exact magnitudes of the indicators due to different source locations may
vary significantly. Figure 6 highlights the effect of normalization in the case of two sources where single-
source indicators are summarized. Without normalization, the contribution of a certain source to the
superposition might be overwhelmed by other sources (see Figure 6 (b)).

4.3 Reconstruction of regular-size scatterers with multi-sources

In this example, the underlying scatterer consists of a disc component (c = 5) and an L-shaped compo-
nent (c = 3). Because of the insufficient information obtained, measurements due to a few point source
may expose the incapability of imaging the full geometrical features of an extended scatterer. Hence, we
employ multiple excitation points to illuminate the unknown scatterer from different directions in order to
capture more geometrical details of the target object.

In Figure 7 we compare the reconstructions using the three multi-source indicators proposed in Section
4.3. For regular-size scatterers, it seems that the indicator I(z) and the total focusing method ĨTFM(z)
provide images with almost the same resolution. However, the indicator ĨNEW(z, t) for some sufficiently
large t could yield better results than I(z) and ĨTFM(z), especially in recovering the concave part of
the L-shaped component which cannot be illuminated by some point source waves and where multiple
scattering occurs. However, all indicators show the incapability of precisely imaging the concave part.
Figure 8 illustrates the snapshots of the dynamic indicator ĨNEW(z, t). It is concluded from Figure 8 (a)-
(d) that the boundaries of the underlying scatterer that are far-away from point sources can be earlier
retrieved than other parts, which is in agreement with the theoretical analysis performed in Theorem 1 for
point-like scatterers.

4.4 Reconstruction of regular-size scatterers in three dimensions

The last example is devoted to the reconstruction of a three-dimensional regular-size scatterer. To our
knowledge, this is the first numerical realization of the proposed schemes and the TFM for imaging three-
dimensional regular-size scatterers.

13



-2 0 2

-3

-2

-1

0

1

2

3

(a)

-2 -1 0 1 2

-2

-1

0

1

2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b)

-2 -1 0 1 2

-2

-1

0

1

2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c)

-2 0 2

-3

-2

-1

0

1

2

3

(d)

-2 -1 0 1 2

-2

-1

0

1

2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(e)

-2 -1 0 1 2

-2

-1

0

1

2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(f)

-2 0 2

-3

-2

-1

0

1

2

3

(g)

-2 -1 0 1 2

-2

-1

0

1

2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(h)

-2 -1 0 1 2

-2

-1

0

1

2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(i)

Figure 4: Reconstruction of cracks. Row 1–3: examples of the cracks with different orientations, respec-
tively. The source point is denoted by the small red circle and the receivers are denoted by the small
blue stars. Left column: exact cracks. Middle column: images of I(z; y)/maxz{I(z; y)}. Right column:
images of ITFM(z; y)/maxz{ITFM(z; y)}.
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Figure 5: Reconstruction of a crack using different sources. The geometry settings are shown in (a) and
(c), respectively. The reconstructions are, respectively, the images of I(z; y) with y = (−3, 0) in (b) and
y = (0, 3) in (d).
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Figure 6: Reconstruction of cracks using two sources. (b) the image of I(z; y1) + I(z; y2) with
y1 = (−3, 0), y2 = (0, 3). (c) the image of the normalized indicator I(z; y1)/maxz I(z; y1) +
I(z; y2)/maxz I(z; y2). The geometry setting is shown in (a).
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Figure 7: Reconstruction of regular scatterers using different indicator functions with 64 sources. (a)
geometry settings. The source points are denoted by the small red circles and the receivers are denoted
by the small blue stars. (b) image of I(z)/maxz I(z). (c) image of ITFM(z)/maxz ITFM(z). (d) image
of ĨNEW(z, t)/maxz ĨNEW(z, t) with t = 5.86.
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Figure 8: Reconstruction of regular scatterer using the dynamic indicator ĨNEW(z, t)/maxz ĨNEW(z, t).
These snapshots are captured at: (a) t = 3.78, (b) t = 4.74, (c) t = 5.06 and (d) t = 5.86.

In this example, the exact scatterer consists of two penetrable disconnected cubes with sound speed
c = 2 inside. We use 56 sources to emit the incident pulse and 56 receivers to collect the scattered
data. The recording time array has 300 time steps with terminal time t = 19. The true scatterer and the
sources/receivers are illustrated in Figure 9 (a) (b).

To view the reconstruction, we present both the slice plot and the iso-surface plot of the volumetric in-
dicator functionals. In the slice plots, the images are drawn with two slices through the center of the
cubes along the xz- and xy-plane. In the iso-surface plots, the images are drawn according to suitable
iso-surface levels which are chosen by trial and error. See Figure 9 (c)-(f) for the reconstructions.

5 Conclusion

We propose several non-iterative reconstruction methods to solve inverse scattering problems for time-
dependent acoustic waves. Some preliminary mathematical analysis for point-like scatterers is carried out
and the effectiveness of the static and dynamic indicators is illustrated via a variety of numerical examples
in two and three dimensions. The proposed imaging schemes can be regarded as the strengthened total
focusing method. For the first time we examine the performance of such direct sampling schemes for
recovering crack-like and regular-size scatterers. Our future work consists of the mathematical justification
of the indicator behaviors for imaging regular-size scatterer and the extension of the approach to the more
practical case of elastodynamic wave equations.
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Figure 9: Reconstruction of two disconnected cubes. (a) geometry setting. The small red balls denote the
locations of sources and receivers. (b) exact scatterer. (e) slice plot of ITFM(z)/maxz{ITFM(z)}. (d) iso-
surface plot of ITFM(z)/maxz{ITFM(z)} with iso-surface level 0.45. (e) slice plot of I(z)/maxz{I(z)}.
(f) iso-surface plot of I(z)/maxz{I(z)} with iso-surface level 0.7.
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