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Abstract. We study reaction-diffusion equations in cylinders with possibly
nonlinear diffusion and possibly nonlinear Neumann boundary conditions. We

provide a geometric Poincaré-type inequality and classification results for sta-

ble solutions, and we apply them to the study of an associated nonlocal prob-
lem. We also establish a counterexample in the corresponding framework for

the fractional Laplacian.
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1. Introduction

1.1. Boundary reactions and stable solutions. In this paper we study reaction-
diffusion equations, i.e. mathematical models in which the diffusion process is in
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balance with a nonlinear reaction. The diffusion is modeled by a (possibly nonlin-
ear) operator of elliptic type, and the reaction may occur on the domain as well as
on the boundary, via a Neumann condition. A typical example of reaction-diffusion
model is given by the Peierls-Nabarro model for atom dislocations in crystals, in
which the elastic force acting on the dislocation function is balanced through a
potential acting on the slip plane and thus producing a boundary reaction (see
e.g. [17] or Section 2 of [8] for a physical derivation of such model).

Other models which naturally produce reaction-diffusion equations concern the
distribution of chemical substances, such as in the case of the so called Fisher-KPP
equation (see [13] and [18]).

The domain that we will consider in this paper is a cylinder that is infinite in
one direction, namely the Cartesian product of a smooth domain Ω and (0,+∞).
Homogeneous Neumann conditions are prescribed along the lateral boundary ∂Ω×
{y}, for any y > 0, and possibly nonhomogeneous and weighted Neumann data
are given on the bottom of the domain Ω × {0}. The interest for this Neumann
type conditions in cylinder is also related to the representation of the powers of the
Laplacian in the spectral sense, see [19, 28, 29].

The main problem we address here is the classification of stable solutions, i.e.
solutions of the equation which correspond to a nonnegative second variation of
the associated energy functional (notice that, in particular, minimal solutions fall
into this category). The classification of stable solutions of elliptic equations with
homogeneous Neumann data goes back at least to the celebrated results in [7],
which show that the only stable solutions of semilinear equations in a domain
with homogeneous Neumann conditions are the constants, under suitable convexity
assumptions either on the domain or on the nonlinearity.

Our main results concern the extension of these type of classifications for reaction-
diffusion equations on cylindrical domains with reactive boundary conditions (in
this circumstances, as we will see, the stable solutions are not necessarily constant,
but will depend only on the “vertical” variable).

Related, but rather different in spirit, classification results for reaction-diffusions
in low-dimensional halfspaces have been obtained in [6, 24, 25, 5, 3, 22, 4] (in this
case, the stable solutions only depend on one “horizontal” variable).

Also, we will provide a geometric Poincaré-type formula, which can be seen as
the counterpart of an inequality obtained in [27] for elliptic equations.

Since the results obtained are related to fractional equations, we will firstly apply
our main results to a Neumann boundary value problem for the spectral Neumann
Laplacian. Afterwards, we provide a counterexample that prevents classification in
a related, but different, nonlocal setting.

Now we introduce the model under consideration in further details and give
precise statements of the results obtained.

1.2. The mathematical setting. The problem under investigation in this paper
is the following:

(1.1)





div(a(y, |∇u|)∇u) = g(y, u) in Ω× (0,+∞) =: C,
∂νu = 0 on ∂Ω× (0,+∞) =: ∂LC,
−a(y, |∇u|)∂yu = f(u) on Ω× {0} =: ∂BC.

Here and in the rest of the paper, the set Ω ⊂ Rn is a bounded and sufficiently
regular (say of class C4,α) domain. As for the forcing terms g and f , we suppose
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that g is continuous with respect to the first variable and locally Lipschitz with
respect to the second variable, and that f ∈ C2,α(R), for some α ∈ (0, 1) (we
remark that f locally Lipschitz would be sufficient for most of the result in the
paper, with the exception of Theorems 1.6 and 1.7).

The variables in the cylinder C are denoted by x ∈ Ω ⊂ Rn, and y ∈ (0,+∞).
In some cases, we will use the notation X := (x, y) ∈ C.

Moreover, in the whole of the paper we will assume the following structural
conditions on the function a: we assume that

a ∈ C((0,+∞)× [0,+∞)) ∩ C1((0,+∞)× (0,+∞)),

that

(1.2) a(y, t) > 0 and a(y, t) + tat(y, t) > 0

for any y > 0 and t > 0, that there exists C > 0 such that

(1.3) t |at(y, t)| 6 C a(y, t)

for any y > 0 and t > 0, and that

(1.4) lim
t→0

t at(y, t) = 0

for any y > 0.
Here and in what follows the subscript t stays for the derivative of a with respect

to the second variable. From the analytical point of view, condition (1.2) may be
seen as a rather general form of ellipticity (this will be detailed in Lemma 2.3).
Some examples of a(y, t) that we take into account are

a(y, t) = yϑ, with ϑ ∈ (−1, 1),

a(y, t) = yϑ(1 + t2)p/2, with ϑ ∈ (−1, 1) and p > 1,

a(y, t) =
yϑ√

1 + t2
, with ϑ ∈ (−1, 1) and |∇u| ∈ L∞(C).

In particular, our assumptions comprise the quasilinear equations of p-Laplace type
and mean curvature type, possibly weighted by Muckenhoupt weights. The case
a(y, t) = yϑ naturally arises in some extension problems for the spectral fractional
Laplacian with Neumann boundary condition, see [19, 28].

We now clarify the type of solutions that we are going to consider. We always
suppose that

u ∈ C(C) ∩ C2(Ω× (0,+∞)),

∇xu, D2
xu ∈ L2(Ω× {0}),

∂νu(x, y) = 0 for all (x, y) ∈ ∂Ω× [0,+∞), and for all R > 0

a(y, |∇u|)
(
|∇u|2 + |D2

xu|2 + |∇xuy|2 + |D3
xu|2 + |D2

xuy|2
)
∈ L1(Ω× (0, R)),

(1.5)

where ν = (ν̃, 0) ∈ Rn × R and ν̃ denotes the outer unit vector field on ∂Ω.
Here and in the rest of the paper, the notation ∇x stands for the gradient only

in the x variable (in particular, ∇xu is an n-dimensional vector field). The second
condition in (1.5) is intended in the sense that ∇xu and D2

xu have a L2 trace on
Ω×{0}. Notice also that the second and the third conditions in (1.5) do not require
u to be of class C1 near ∂Ω × {0}, since only the derivatives of u with respect to
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x are taken into account. We shall see that the previous assumptions are naturally
satisfied when (1.1) is seen as extension of a nonlocal boundary value problem.
Moreover, they can be directly checked in many concrete cases using the classical
regularity theory for elliptic equation (up to the boundary), for which we refer to
[1, 2].

Concerning the last equation in (1.1), under reasonable assumptions on a, g and
f it can be interpreted in the classical case as

(1.6) lim
y→0

f(u(x, y)) + a
(
y, |∇u(x, y)|

)
∂yu(x, y) = 0 for any x ∈ Ω.

In general we will not need such a regularity. On the contrary, we call solution of
(1.1) any function u satisfying (1.5) and such that (1.1) holds in the following weak
sense:

(1.7)
∫

C

a(y, |∇u|)∇u · ∇ϕ+
∫

C

g(y, u)ϕ =
∫

∂BC

f(u)ϕ

for any ϕ ∈ A, where
(1.8)

A :=
{
ϕ ∈W 1,1

loc (C)
∣∣∣∣
ϕ has bounded support in y, a(y, |∇u|) |∇ϕ|2 ∈ L1(C)
and ϕ|Ω×{0} ∈ L2(Ω)

}
.

It is clear that any classical solution is also a weak one, in the sense specified above.
Let us consider now the symmetric matrix

(1.9) B(y, η)ij := a(y, |η|)δij +
at(y, |η|)
|η| ηiηj for all i, j = 1, . . . , n+ 1,

where η = (η1, . . . , ηn+1), and we mean that the latter term is zero if η is zero.
The matrix B plays a role in the linearized equation (in a sense that will be

clarified in Lemma 2.7).
We write that u is a stable solution of (1.1) if it is a solution (in the sense of (1.7))

and if

(1.10) I(ϕ) :=
∫

C

〈B(y,∇u)∇ϕ,∇ϕ〉+
∫

C

gu(y, u)ϕ2 −
∫

∂BC

f ′(u)ϕ2 > 0

for any ϕ ∈ A.
Having introduced the main definitions and notation, we are in position to

present our main results, which are: a geometric Poincaré-type formula, the clas-
sification of stable solutions when Ω is convex, the classification of bounded stable
solutions in case of convex/concave boundary reaction f , and the application of
these results to nonlocal problems in Ω related to the spectral Neumann Lapla-
cian. Finally, we also present a counterexample for the fractional Laplacian with
point-wise Neumann boundary condition.

1.3. A Poincaré-type formula. The first result that we present is a weighted
Poincaré-type inequality. A weighted L2(C)-norm of any test function will be
bounded by a weighted L2(C)-norm of its gradient. The weights are non-negative
and possess a neat geometric interpretation. This type of Poincaré-type formulas
are indeed an extension of a celebrated result obtained in [27] for classical elliptic
equations. The precise statement in our framework is the following:
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Theorem 1.1. Let u be a stable solution of (1.1). Then, for any ψ ∈ C1(C) with
bounded support in y and such that ψxj ∈ A for any j = 1, . . . , n, we have

∫

C




n∑

j=1

〈B(y,∇u)∇uxj ,∇uxj 〉 − 〈B(y,∇u)∇|∇xu|, ∇|∇xu|〉


 ψ2

−
∫

∂LC

a(y, |∇u|)
(
∇u · ∂ν(∇u)

)
ψ2 6

∫

C

〈B(y,∇u)∇ψ, ∇ψ〉 |∇xu|2.
(1.11)

We remark that the weights in (1.11) have a simple, concrete interpretation
in terms of the level sets of the solution u. As a matter of fact, fixed y > 0,
if (x, y) ∈ {u = c}∩{∇xu 6= 0}, then the c-level set of u(·, y) in the vicinity of (x, y)
is a smooth (n−1)-dimensional manifold Sy in Ω×{y}, and we can therefore consider
the tangential gradient ∇Sy along Sy and the principal curvatures κ1, . . . , κn−1. In
this way, one can consider the norm of the second fundamental form, i.e.

K :=

√√√√
n−1∑

i=1

κi

and bound the weight on the left hand side of (1.11) in terms of these quantities.
More explicitly (see formula (1.20) in [25]), one has that on C ∩ {∇xu 6= 0} it

results
n∑

j=1

〈B(y,∇u)∇uxj ,∇uxj 〉 − 〈B(y,∇u)∇|∇xu|, ∇|∇xu|〉

= a(y, |∇u|) K0 +
at(y, |∇u|)
|∇u| K],

where

K0 :=
n∑

j=1

u2
xj y − (∂y|∇xu|)2 + K2 |∇xu|2 +

∣∣∇Sy |∇xu|
∣∣2

and K] :=
n∑

j=1

(∇u · ∇uxj )2 − (∇u · ∇|∇xu|)2.

Since ∇uxj = 0 = ∇|∇xu| for almost every point in {∇xu = 0}, this type of
inequalities has also a deep relevance for rigidity and symmetry results, as pointed
out by [11], see also [12, 24, 25].

1.4. Classification of stable solutions in convex domains. One of the main
goal of this paper is to classify stable solutions of (1.1) under suitable assumptions
either on the domain or on the nonlinearities. In this spirit, the first result that we
present concerns classification in convex domains.

Theorem 1.2. Let Ω ⊂ Rn be convex, and let u be a stable solution of (1.1)
satisfying the energy bound

(1.12)
∫

Ω×(0,R)

a(y, |∇u|) |∇xu|2 6 CR2,

for some constant C > 0 independent of R.
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Then there exist ω : (0,+∞)→ SN−1 and u0 : R× [0,+∞)→ R such that

u(x, y) = u0(ω(y) · x, y)

for any (x, y) ∈ C. In particular, the level sets of the function u(·, y) are parallel
(n− 1)-dimensional planes in Rn × {y} for any fixed y > 0.

In addition, if {∇xu = 0} = ∅ then the function ω(·) is constant.
Moreover, if n > 2 and the principal curvatures along ∂Ω are strictly positive,

then u depends only on y.

We remark that assumption (1.12) is satisfied, for instance, if a grows in y

at infinity as yϑ (with ϑ ∈ (−1, 1)) and |∇xu| has growth bounded by y
1−ϑ

2 ; in
particular, unbounded solutions may be also taken into account.

We also stress that, in general (and differently from the setting in [7]), it is not
possible to deduce, in the setting of Theorem 1.2, that the solution u is constant
(as a counterexample, one may consider the case in which u := y, a := 1, f := −1,
g := 0; clearly, u is stable being a harmonic function).

Notice that Theorem 1.2 yields 1-dimensional symmetry of possibly unbounded
stable solutions to (1.1) provided that Ω is convex and ∂Ω has strictly positive
principal curvature. It is possible to obtain the same result removing this last
assumption, but adding an integrability condition, as stated in the following result:

Theorem 1.3. Let Ω ⊂ Rn be convex, and let u be a stable solution of (1.1),
satisfying the integrability assumption

(1.13) a(y, |∇u|)
(
|∇u|2 + |D2

xu|2 + |∇xuy|2
)

+
∣∣gu(y, u)

∣∣ |∇xu|2 ∈ L1(C).

Then u depends only on y.

It is worth to observe that (1.13) can be considerably weakened when a(y, t) is
independent of t and g ≡ 0. This case is particularly interesting, as we will discuss
in the forthcoming Section 1.6. To this goal, we have the following result:

Proposition 1.4. Let Ω ⊂ Rn be convex. If a is independent of t and g ≡ 0, then
(1.13) is satisfied provided that

(1.14) a(y) |∇u|2 ∈ L1(C).

Notice that condition (1.14) is naturally satisfied when searching for solutions
to (1.1) by means of global variational arguments.

In the case of classical elliptic equations, a classification of stable solutions in
convex domains with homogeneous Neumann boundary data was given in [7]. In-
deed, our Theorems 1.2 and 1.3 may be seen as the extension of Theorem 2 of [7]
to the case of boundary reaction-diffusion equations.

In many concrete cases, once one knows that the solution only depends on y (as
given for instance by Theorem 1.3), then (1.1) simplifies and can be often explicitly
integrated. For instance, if u = u(y) and a = a(y) only depend on y, and g vanishes
identically, then (1.1) reduces to an ordinary differential equation which provides
the family of solutions

(1.15) u(y) = c− f(c)
∫ y

0

dζ

a(ζ)
,
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for c ∈ R. We also remark that in the model case in which a(y) = yϑ, with ϑ ∈
(−1, 1), the functions u of the form (1.15) that satisfy au2

y ∈ L1(C) are the con-
stants (see also Lemma 4.10 in [12] for classification results of ordinary differential
equations).

Moreover, we stress that, in general, stable solutions of (1.1) are not necessarily
constant. As an example, one can consider u(x, y) := e−y, a(y, t) := ey, f := 1
and g := 0 (notice that in this case (1.1), (1.5) and (1.13) are all satisfied; moreover,
since g ≡ 0 and f ′ 6 0, and recalling Lemma 2.3, then we see that u is stable, in
the sense of (1.10)). In this sense, Theorems 1.2 and 1.3 are optimal.

Though the statements of Theorems 1.2 and 1.3 are somehow similar, we prove
them by different methods. Indeed, the proof of Theorem 1.2 relies on the Poincaré-
type geometric inequality stated in Theorem 1.1 (by the choice of an appropriate
test function), while the proof of Theorem 1.3 is based on the relation between
maximum principles and stability conditions in view of a suitable spectral analysis.

1.5. Classification of bounded stable solutions for convex/concave non-
linearities. Now we address the problem of classifying stable solutions if the non-
linearity f is either convex or concave. To this aim, we shall make the assumption
that g ≡ 0. The precise result obtained is the following:

Theorem 1.5. Assume that

(1.16) at(y, t) 6 0 and g(y, t) = 0 for any t, y > 0.

Let u be a bounded and stable solution of (1.1), such that

a(y, |∇u|)|∇u|2 ∈ L1(C),

lim
R→+∞

1
R2

∫

Ω×(R,2R)

a(y, |∇u|) = 0

and a(y, |∇u|) ∂yu ∈ C(Ω× [0,+∞)).

(1.17)

If either f is strictly convex, or f is strictly concave, then u is constant in C.

We remark that Theorem 1.5 is proved here under the additional assumption
in (1.16), stating that a is nonincreasing with respect to the variable t. This as-
sumption is of course satisfied in all the cases in which a is independent of t, that is,
if one is considering semilinear reaction-diffusion equation. Nevertheless, we remark
that condition (1.16) is satisfied also in the case of important quasilinear reaction-
diffusion equations, such as the one driven by mean curvature-type operators, in
which

a(y, t) =
yϑ√

1 + t2
,

with ϑ ∈ (−1, 1). We think that it is an interesting open problem to decide for
which type of quasilinear reaction-diffusion equations similar statements hold true.

In the case of elliptic equations with inner reaction, the classification of stable
solutions with Neumann data under suitable convexity or concavity assumptions
on the nonlinear term was obtained in [7]. In this sense, our Theorems 1.5 is the
extension of Theorem 3 of [7] to the boundary reaction-diffusion equation in (1.1).
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1.6. Application to nonlocal Neumann problems. Now we discuss the classi-
fication of stable solutions in a problem driven by the square root of the Laplacian
in the spectral sense. For this scope, let {ϕk : k ∈ N ∪ {0}} and {λk : k ∈ N ∪ {0}}
be the eigenfunctions and the eigenvalues of −∆ in Ω with homogeneous Neumann
conditions on ∂Ω. We normalize the sequence of eigenfunctions in such a way that
they form an orthonormal basis of L2(Ω).

The Neumann Laplacian −∆N is the operator acting on an L2(Ω)-function

w(x) =
∞∑

k=0

wk ϕk(x),

where

wk :=
∫

Ω

w(x)ϕk(x) dx,

as

−∆Nw(x) :=
∞∑

k=0

λk wk ϕk(x).

Then, for s ∈ (0, 1), the s-Neumann Laplacian is given by

(1.18) (−∆N )sw(x) :=
∞∑

k=0

λsk wk ϕk(x).

With the language of the semigroups introduced in [28], it is possible to show that
(−∆N )s is a nonlocal operator.

From now on we focus on the case s = 1/2 and, given f ∈ C2,α(R), we consider
the semilinear equation

(1.19)

{
(−∆N )1/2v = f(v) in Ω
∂νv = 0 on ∂Ω.

The problem can be considered in weak sense, namely we consider the space

H1/2(Ω) :=

{
w =

+∞∑

k=0

wkϕk ∈ L2(Ω) s.t.
+∞∑

k=0

λ
1/2
k |wk|2 < +∞

}
.

Then we say that v is a solution of (1.19) if

v =
+∞∑

k=0

vkϕk ∈ H1/2(Ω)

and
+∞∑

k=0

λ
1/2
k vk ζk =

∫

Ω

f(v(x)) ζ(x) dx for any ζ =
+∞∑

k=0

ζkϕk ∈ H1/2(Ω).

We observe that the latter integral makes sense under some assumption on f or
on v. Since f is continuous and v will always be bounded in the sequel, it is weel
defined. Also, thanks to the results in [28, 29] (see also [19]), the previous nonlocal
problem is related to the following local one, with boundary reaction:

(1.20)





∆u = 0 in C

∂νu = 0 on ∂LC

−∂yu = f(u) on ∂BC.
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More precisely, let us define H(C) as the completion of H1(C) with respect to the
scalar product

(u1, u2)H(C) :=
∫

C

∇u1 · ∇u2 +
∫

Ω

u1u2,

where ui|Ω has to be understood in the sense of traces (notice that this is possible,
see Section 2 in [29]). It results that H(C) ⊃ H1(C) (notice in particular that
constant functions are in H(C) but not in H1(C); for this reason, H(C) is a more
suitable space than H1(C) to set (1.20) in weak sense). Then a weak solution v to
(1.19) can be defined as the trace over Ω of a function u ∈ H(C) such that

(1.21)
∫

C

∇u · ∇ϕ−
∫

Ω×{0}
f(u)ϕ = 0 for all ϕ ∈ H(C),

see again [29]. Notice that this setting falls exactly under the general setting con-
sidered in (1.1), with a ≡ 1 and g ≡ 0 (compare (1.21) with (1.7)).

In this framework, we say that a solution v ∈ H1/2(Ω) to (1.19) is stable if its
extension u ∈ H(C) in (1.20) is stable according to (1.10) (with B the identity
matrix and g ≡ 0), i.e.

(1.22)
∫

C

|∇ϕ|2 −
∫

Ω×{0}
f ′(u)ϕ2 > 0

for any ϕ ∈ A.

With this definition, we can prove the following classification theorems for stable
solutions to (1.19).

Theorem 1.6. Let Ω ⊂ Rn be convex, and let v ∈ H1/2(Ω) ∩ L∞(Ω) be a stable
solution to (1.19). Then v is constant.

Theorem 1.6 establishes that equation (1.19) in convex domains does not admit
noncostant stable solutions. The same conclusion holds, if, instead of the convexity
of Ω, we assume the convexity (or the concavity) of the nonlinearity f , according
to the following result.

Theorem 1.7. Let f be either strictly convex, or strictly concave, and let v ∈
H1/2(Ω) ∩ L∞(Ω) be a stable solution to (1.19). Then v is constant.

The previous results can be considered as the counterpart of those in [7] for
(1.19). Clearly, a natural question consist in finding easy and natural assumptions
on f or on v allowing to show that v is stable in the sense of (1.22). A very simple
condition consists in f ′ 6 0.

We also point out that, in our framework, Theorems 1.6 and 1.7 will be obtained
by using Theorems 1.3 and 1.5, respectively.

As a further remark, we observe that if v ∈ H1/2(Ω) ∩ L∞(Ω), then, by [29,
Theorem 3.5], we have that v ∈ C1(Ω). Therefore the boundary condition ∂νv = 0
on ∂Ω can be understood in classical sense.

We also mention that our focus on the case s = 1/2 is due to the fact that
we recalled and used some results contained in [29]. Once that similar results are
established for the case s 6= 1/2 (this is announced in [29]), our results would also
hold for the general case s ∈ (0, 1). Indeed, for s ∈ (0, 1), the extension problem
associated to the s-Neumann Laplacian will be of type (1.1) with a(y, t) = yϑ,
with ϑ ∈ (−1, 1), and g ≡ 0.
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1.7. A counterexample in a different nonlocal setting. In Section 1.6, we
have considered classification results for stable solutions of spectral versions of frac-
tional Laplacians (in the sense given by (1.18)).

In the literature, other nonlocal elliptic operators of fractional type have been
widely studied. Of particular interest is the integral version of the fractional Lapla-
cian, defined (up to normalizing constants), for any s ∈ (0, 1), as

(1.23) (−∆)sv(x) := pv
∫

Rn

v(x)− v(y)
|x− y|n+2s

dy.

As usual, pv stays for the principal value. We stress that the operators in (1.18)
and (1.23) are indeed different (see e.g. [23]).

In this setting, a natural fractional normal derivative at the boundary (see e.g.
[20]) is given by

(∂ν)sv(x) := lim
t→0+

v(x+ tν̃(x))− v(x)
ts

,

where ν̃(x) denotes the outer unit normal to ∂Ω at x ∈ ∂Ω.
With this, one may wonder whether “nice” and “stable” solutions to the equation

(1.24)

{
(−∆)sv = f(v) in Ω
(∂ν)sv = 0 on ∂Ω

in convex domains or with convex nonlinearities are necessarily constant, or, at
least, if they enjoy some rigid geometric properties.

While a suitable notion of stability should be introduced in this setting, the
further assumption that f ≡ 0 would imply stability in any reasonable definition,
thus the basic question boils down to determine any rigidity properties of solutions
of

(1.25)

{
(−∆)sv = 0 in Ω
(∂ν)sv = 0 on ∂Ω,

possibly in convex domains.

Quite surprisingly, we now show that no classification (and even no rigidity)
results hold true for equation (1.25). This phenomenon shows that the “right”
choice of fractional operator, endowed with the appropriate boundary conditions,
plays a crucial role in nonlocal problems.

In concrete, the result that we show is the following:

Example 1.8. Let s ∈ (0, 1), h ∈ C2(R) and ε ∈ (0, 1). Then, there exist δ1, δ2 ∈[
0, ε2
]

and v ∈ C2((−1− ε, 1 + ε)) ∩ C(R) such that

‖v − h‖C2((−1,1)) 6 ε,

(−∂2
x)sv(x) := pv

∫

R

v(x)− v(y)
|x− y|1+2s

dy = 0 for any x ∈ (−1− δ1, 1 + δ2),

(∂ν)sv(x) = lim
y∈(−1−δ1,1+δ2)

y→x

v(x)− v(y)
|x− y|s = 0 for any x ∈ {−1− δ1, 1 + δ2},

v′(−1− δ1) = v′(1 + δ2) = 0,
v has bounded support.
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We remark that the operator (−∂2
x)s is simply (−∆)s, as defined in (1.23), when

the domain is one-dimensional. Also, the “fractional” boundary derivative (∂ν)s

has nice regularity properties and natural applications in Pohozaev-type identities
and in rigidity results for overdetermined problems (see e.g. [15, 20, 21, 10, 26]);
nevertheless it cannot characterize solutions v of the fractional equation (1.24) in
convex domains, which, as stated in Example 1.8, at least for f ≡ 0, can have
essentially the same local qualitative properties of any prescribed function h.

1.8. Organization of the paper. The rest of the paper is organized as follows.
In Section 2, we collect some preliminary computations that are needed in the
proofs of the main results. In Section 3, we prove the Poincaré-type geometric
inequality stated in Theorem 1.1. The classification of solutions to (1.1) when Ω is
convex, together with the proofs of Theorems 1.2 and 1.3, is contained in Sections 4
and 5. The proof of Theorems 1.5, with the classification of stable solutions in case
of convex/concave nonlinearities, is contained in Section 6. Section 7 is devoted
to the study of classification results involving the spectral s-Neumann Laplacian
(−∆N )s. Section 8 contains the discussion related to Example 1.8.

2. Toolbox

In this section we collect several intermediate statements which will be used in
the proof of our main results.

2.1. Some inequalities coming from the Neumann condition. Next result
deals with the geometric analysis related to functions satisfying a Neumann condi-
tion.

Lemma 2.1. Let Ω ⊂ Rn be an open set with boundary of class C2. Let u ∈
C2(Ω× (0,+∞)), with ∂νu = 0 on ∂Ω× (0,+∞).

Assume that x̄ = (x̄′, x̄n) ∈ ∂Ω and that in a neighborhood of x̄ the domain Ω
can be written in normal coordinates as the epigraph of a function γ ∈ C2(Rn−1),
i.e.

Ω ∩Br(x̄) = {x = (x′, xn) ∈ Br(x̄) s.t. xn > γ(x′)},
for some r > 0, with γ(x̄′) = x̄n and ∇γ(x̄′) = 0. Then, for any y > 0,

∇u(x̄, y) · ∂ν (∇u(x̄, y)) = ∇xu(x̄, y) · ∂ν (∇xu(x̄, y))

= −
n−1∑

i,j=1

γxixj (x̄
′)uxi(x̄, y)uxj (x̄, y).

(2.1)

In particular, if Ω is convex, then

(2.2) ∇u(x̄, y) · ∂ν (∇u(x̄, y)) = ∇xu(x̄, y) · ∂ν (∇xu(x̄, y)) 6 0.

Proof. Up to a translation, we can assume that x̄ = 0. Thus, in the vicinity of the
origin we can write the unit normal vector as

ν(x, y) =
1√

|∇γ(x′)|2 + 1
(∇γ(x′),−1, 0) .

Therefore, the condition ∂νu(x, y) = 0, for x ∈ ∂Ω ∩Br, reads as
n−1∑

i=1

uxi
(
x′, γ(x′), y

)
γxi(x

′)− uxn
(
x′, γ(x′), y

)
= 0.
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So, taking the derivative with respect to xj with j = 1, . . . , n− 1, we obtain

n−1∑

i=1

uxixj
(
x′, γ(x′), y

)
γxi(x

′)

+
n−1∑

i=1

uxixn
(
x′, γ(x′), y

)
γxj (x

′) γxi(x
′) +

n−1∑

i=1

uxi
(
x′, γ(x′)

)
γxixj (x

′)

− uxjxn
(
x′, γ(x′)

)
− uxnxn

(
x′, γ(x′), y

)
γxj (x

′) = 0.

Hence, recalling that ∇γ(0′) = 0, we infer that
n−1∑

i=1

uxi(0, y)γxixj (0, y)− uxjxn(0, y) = 0,

which proves that, for any y > 0 and any j = 1, . . . , n− 1,

(2.3) uxjxn(x̄, y) =
n−1∑

i=1

uxi(x̄, y)γxixj (x̄, y).

Now we observe that

(2.4) ν(0, y) = −en and so uxn(0, y) = −∂νu(0, y) = 0.

By differentiating this identity in y, we deduce that

(2.5) uxny(0, y) = 0.

Moreover,

(2.6) uy(0, y) · ∂νuy(0, y) = −uy(0, y)uxny(0, y) = 0.

Therefore, using again (2.4), we see that
∇u(0, y) · ∂ν (∇u(0, y)) = −∇xu(0, y) · ∂xn (∇xu(0, y))

= −
n∑

i=1

uxi(0, y)uxixn(0, y) = −
n−1∑

i=1

uxi(0, y)uxixn(0, y).
(2.7)

Now we plug (2.3) into (2.7), and we deduce that

∇u(0, y) · ∂ν (∇u(0, y)) = −
n−1∑

i,j=1

γxixj (0
′)uxi(0, y)uxj (0, y).

From this and (2.6), we obtain (2.1). Formula (2.2) follows from (2.1) and the
convexity of Ω (which boils down to the convexity of γ). �

For completeness, we also recall the following result:

Lemma 2.2. Let n > 2. If Ω is convex, then ∂Ω is pathwise connected.

Proof. Fix Z ∈ Ω. Given two points A, B ∈ ∂Ω we will construct a path join-
ing A to B and lying on ∂Ω. For this, we consider the segment S that joins A
and B. Notice that S ⊆ Ω, by convexity. Given any X ∈ S, we can consider the
halfline r(X) that emanates from Z and passes through X. We remark that r(X)
must intersect ∂Ω, since Ω is bounded. This intersection point must be unique:
indeed, if there are two points Y1, Y2 ∈ ∂Ω∩r(X), since Bρ(Z) ⊂ Ω for some ρ > 0,
we have that the convex hull of Y1, Y2 and Bρ(Z) lies in Ω, and this contradicts
that both Y1 and Y2 are boundary point.
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Therefore, for any X ∈ S, we can define a continuous function π : S → ∂Ω, as
the intersection of r(X) with ∂Ω. Then, the image of S via π provides the desired
path lying on ∂Ω and joining A to B. �
2.2. Positive definiteness of B.

Lemma 2.3. For any y > 0 and η ∈ Rn+1 \ {0}, the matrix B(y, η) is positive
definite.

More precisely, the matrix B(y, η) has eigenvalues a(y, |η|) + |η| at(y, |η|) (with
multiplicity 1) and a(y, |η|) (with multiplicity n).

Proof. The second statement implies the first one, thanks to (1.2). So we focus on
the proof of the second statement. For this, we fix an orthonormal basis of Rn+1,
say {E1, . . . , En+1}, such that E1 := η/|η|. We will use this basis to diagonalize
the matrix B(y, η). Indeed, for any k = 2, . . . , n + 1, we have that E1 · Ek = 0.
Thus, for any i = 1, . . . , n+ 1

(
B(y, η)E1

)
i

=
n+1∑

j=1

B(y, η)ij
ηj
|η| = a(y, |η|) ηi|η| +

n+1∑

j=1

at(y, |η|)
|η|2 ηiη

2
j

=
(
a(y, |η|) + |η| at(y, |η|)

)
(E1)i,

while for any k = 2, . . . , n+ 1

(
B(y, η)Ek

)
i

= a(y, |η|)(Ek)i +
n+1∑

j=1

at(y, |η|)
|η| ηiηj(Ek)j

= a(y, |η|)(Ek)i + at(y, |η|) ηiE1 · Ek = a(y, |η|)(Ek)i. �
2.3. Some results available in the literature. Here we recall some known aux-
iliary statements, which will be needed in the proof of our main results (these
statements have been included for the facility of the reader, to make the paper
more self-contained).

The following is a variant of Lemma 10 in [24]. The proof can be easily obtained
modifying the argument therein, and thus is omitted.

Lemma 2.4. Let R > 0 and h : Ω × (0, R) → R be a nonnegative measurable
function. For any ρ ∈ (0, R), let

η(ρ) :=
∫

Ω×(0,R)

h.

Then ∫

Ω×(
√
R,R)

h(X)
y2

dX 6 2
∫ R

√
R

t−3η(t) dt+
η(R)
R2

.

Lemma 2.5 (Lemma 4.2 in [25]). In C ∩ {∇xu 6= 0}, it results

(2.8)
n∑

j=1

〈B(y,∇u)∇uxj , ∇uxj 〉 − 〈B(y,∇u)∇|∇xu|, ∇|∇xu|〉 > 0.

Corollary 2.6 (Corollary 4.3 and Theorem 4.4 in [25], and Lemma 2.11 in [12]).
Let U ⊂ C ∩ {∇xu 6= 0} be an open set. Suppose that

n∑

j=1

〈B(y,∇u)∇uxj ,∇uxj 〉 − 〈B(y,∇u)∇|∇xu|, ∇|∇xu|〉 = 0
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almost everywhere in U . Then there exist ω : (0,+∞) → SN−1 and u0 : R ×
(0,+∞)→ R such that

u(x, y) = u0(ω(y) · x, y).
In particular u0(·, y) is 1-dimensional for every y > 0 fixed.

In addition, if {∇xu = 0} = ∅ then the function ω(·) is constant.

2.4. The linearized equation. Now we consider the so-called linearized equation,
that is the equation satisfied by the derivatives of the solution in the variables x
(this equation is clearly related with the stability condition in (1.10)). The result
needed for our purposes is the following:

Lemma 2.7. Assume that u is a solution of (1.1). Then, for any j = 1, . . . , n, we
have that uxj satisfies
∫

C

[
〈B(y,∇u)∇uxj ,∇ψ〉+ gu(y, u)uxj ψ

]

−
∫

∂LC

[
a(y, |∇u|) (∇u · ∇ψ) νj + g(y, u)ψ νj

]

=
∫

∂BC

f ′(u)uxj ψ −
∫

∂Ω×{0}
f(u)ψ νj

for any ψ ∈ A and and such that ψxj ∈ A for any j = 1, . . . , n.

Proof. First, we observe that, for any j = 1, . . . , n,

∂xj

(
a
(
y, |∇u(x, y)|

))
=
n+1∑

k=1

at
(
y, |∇u(x, y)|

)uXk(x, y)uXkxj (x, y)
|∇u(x, y)| .

As a consequence, for any fixed j = 1, . . . , n and m = 1, . . . , n+ 1,
(
a(y, |∇u|)∇uxj + ∂xj

(
a(y, |∇u|)

)
∇u
)
m

= a(y, |∇u|)uXmxj + ∂xj
(
a(y, |∇u|)

)
uXm

=
n+1∑

k=1

a(y, |∇u|) δkm uXkxj +
n+1∑

k=1

at(y, |∇u|)
uXk uXm uXkxj

|∇u|

=
n+1∑

k=1

Bkm(y,∇u)uXkxj ,

where we have used (1.9). Therefore, for any j = 1, . . . , n,

(2.9) ∂xj
(
a(y, |∇u|)∇u

)
= B(y,∇u)∇uxj .

Using (2.9), we have the equality (in L1 sense)

a(y, |∇u|)∇u · ∇ψxj = ∂xj

(
a(y, |∇u|)∇u · ∇ψ

)
− 〈B(y,∇u)∇uxj ,∇ψ〉.

We wish now to use (1.7) with ϕ = ψxj (notice that this is possible since we are
supposing that ψxj ∈ A). To this aim, we use the Divergence Theorem to obtain

∫

C

a(y, |∇u|)∇u · ∇ψxj

=
∫

∂LC

a(y, |∇u|) (∇u · ∇ψ) νj −
∫

C

〈B(y,∇u)∇uxj ,∇ψ〉,
(2.10)



15

for any j = 1, . . . , n. In a similar way

(2.11)
∫

C

g(y, u)ψxj =
∫

∂LC

g(y, u)ψ νj −
∫

C

gu(y, u)uxj ψ.

Finally, using again the Divergence Theorem,

(2.12)
∫

∂BC

f(u)ψxj =
∫

∂Ω×{0}
f(u)ψ νj −

∫

∂BC

f ′(u)uxj ψ.

Notice that νj denotes the j component of ν = (ν̃, 0) and ν̃ is the outer unit normal
vector of ∂Ω in Rn.

We can now insert (2.10), (2.11) and (2.12) into (1.7) and obtain the desired
conclusion. �

As a consequence of Lemma 2.7, we can test the linearized equation against ψj :=
uxjϕ, where ϕ is a “nice” function with bounded support in y: in this case, the
particular choice of the test function and the Neumann condition provide some
additional simplifications, as stated in the following result:

Corollary 2.8. Assume that u is a solution of (1.1). Then
n∑

j=1

∫

C

[
〈B(y,∇u)∇uxj ,∇uxj 〉ϕ+ 〈B(y,∇u)∇uxj ,∇ϕ〉uxj

]

+
∫

C

gu(y, u) |∇xu|2 ϕ(2.13)

=
∫

∂LC

a(y, |∇u|)
(
∇u · ∂ν(∇u)

)
ϕ+

∫

∂BC

f ′(u) |∇xu|2ϕ

for any ϕ ∈ C1(C) with bounded support in y and such that ϕxj ∈ A, for any j =
1, . . . , n.

Proof. We use ψj := uxjϕ as test function in Lemma 2.7, observing that this is
possible by (1.5) and the assumptions on ϕ, and then we sum over j = 1, . . . , n.
First of all, for any x ∈ ∂Ω and y > 0, if ψj := uxjϕ then on ∂LC

n∑

j=1

ψj νj = ∇xu · ν ϕ = ∇u · ν ϕ = 0,

where we used the fact that the last component of ν is 0 on ∂LC. Since the normal
along ∂LC coincides with the one along ∂Ω by projection, we deduce from (1.5)
that

n∑

j=1

ψjνj = 0

also on ∂Ω× {0}. These considerations imply that
n∑

j=1

∫

∂LC

g(y, u)ψj νj = 0 and
n∑

j=1

∫

∂Ω×{0}
f(u)ψj νj = 0.(2.14)

We also observe that

a(y, |∇u|) (∇u · ∇ψj) νj
= a(y, |∇u|) (∇u · ∇uxj )ϕνj + a(y, |∇u|) (∇u · ∇ϕ)uxj νj
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on ∂LC, so that, using again the homogeneous Neumann condition,

(2.15)
n∑

j=1

∫

∂LC

a(y, |∇u|) (∇u · ∇ψj) νj =
n∑

j=1

∫

∂LC

a(y, |∇u|) (∇u · ∇uxj )ϕνj .

Plugging (2.14) and (2.15) into the formula in Lemma 2.7, the thesis follows. �

A refinement of Corollary 2.8, under additional integrability assumptions, goes
as follows:

Corollary 2.9. Let Ω be a convex domain, and let u be a solution of (1.1), satis-
fying the integrability assumption (1.13). Then

n∑

j=1

∫

C

〈B(y,∇u)∇uxj ,∇uxj 〉+
∫

C

gu(y, u) |∇xu|2

=
∫

∂LC

a(y, |∇u|)
(
∇u · ∂ν(∇u)

)
+
∫

∂BC

f ′(u) |∇xu|2.

Proof. We take φ := φR(y) to be a smooth nonnegative function such that φR(y) =
1 if y ∈ [0, R], φR(y) = 0 if y ∈ [2R,+∞) and |φ′R| 6 10/R. We apply Corollary 2.8
and we send R→ +∞, using assumption (1.13). More precisely, by (1.9) and (1.3),
we can bound |B(y,∇u)| by a(y, |∇u|), up to multiplicative constants; therefore

|B(y,∇u)|
(
|∇xu|2 + |D2

xu|2 + |∇xuy|2
)
∈ L1(C)

thanks to (1.13), and this allows us to pass to the limit as R → +∞ in the first
term on the left hand side in (2.13). As far as the second term, we use the fact that
gu(y, u)|∇xu|2 ∈ L1(C) and argue in a similar way. Finally, for the first term on the
right hand side of (2.13) we apply the Monotone Convergence Theorem, observing
that, thanks to the convexity of Ω, Lemma 2.1 implies that

a(y, |∇u|) (∇u · ∂ν(∇u)) 6 0 on ∂LC. �

3. A Poincaré-type geometric inequality: proof of Theorem 1.1

In this section we prove the geometric inequality of Poincaré type stated in
Theorem 1.1.

Completion of the proof of Theorem 1.1. We use Corollary 2.8 with ϕ := ψ2 and
ψ ∈ C1(C) with bounded support in y and such that ψxj ∈ A for any j = 1, . . . , n.
In this way, we have that

n∑

j=1

∫

C

[
〈B(y,∇u)∇uxj ,∇uxj 〉ψ2 + 2〈B(y,∇u)∇uxj ,∇ψ〉uxj ψ

]

+
∫

C

gu(y, u) |∇xu|2 ψ2

=
∫

∂LC

a(y, |∇u|)
(
∇u · ∂ν(∇u)

)
ψ2 +

∫

∂BC

f ′(u) |∇xu|2ψ2.

(3.1)

Now we use the fact that u is stable, and we choose |∇xu|ψ as test function in
the definition of stability (1.10) (we observe that this choice is admissible, thanks
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to (1.5)): in this way, we conclude that
∫

C

〈B(y,∇u)∇|∇xu|, ∇|∇xu|〉ψ2 +
∫

C

〈B(y,∇u)∇ψ, ∇ψ〉 |∇xu|2

+
∫

C

2〈B(y,∇u)∇|∇xu|, ∇ψ〉 |∇xu|ψ

+
∫

C

gu(y, u) |∇xu|2 ψ2 −
∫

∂BC

f ′(u) |∇xu|2 ψ2 > 0.

(3.2)

It is convenient to observe that

|∇xu| ∇|∇xu| =
1
2
∇|∇xu|2 =

1
2

n∑

j=1

∇u2
xj =

n∑

j=1

uxj∇uxj ,

and so we can rewrite (3.2) as
∫

C

〈B(y,∇u)∇|∇xu|, ∇|∇xu|〉ψ2 +
∫

C

〈B(y,∇u)∇ψ, ∇ψ〉 |∇xu|2

+
n∑

j=1

∫

C

2〈B(y,∇u)∇uxj , ∇ψ〉uxj ψ

+
∫

C

gu(y, u) |∇xu|2 ψ2 −
∫

∂BC

f ′(u) |∇xu|2 ψ2 > 0.

This expression and (3.1) have three terms in common, which can be simplified
appropriately, thus establishing (1.11). �

4. Classification in convex domains I: proof of Theorem 1.2

We claim that there exist ω : (0,+∞) → Sn−1 and u0 : R × [0,+∞) → R such
that

(4.1) u(x, y) = u0(ω(y) · x, y)

and that

(4.2) ∇u · ∂ν(∇u) = 0 on ∂LC.

Since (4.1) and (4.2) are valid if n = 1, we can suppose that n > 2.
Let R > 10 (to be taken arbitrarily large in the sequel). We consider a smooth

function τR : [0,+∞) → [0, 1] supported in [
√
R, R], such that τR = 1 in [

√
R +

1, R− 1] and |∇τR| 6 10. For any y > 0, we define

ψR(y) :=
∫ R

y

τR(ζ)
ζ

dζ.

Since τR vanishes in [0,
√
R] we have that ψR is smooth, continuous in [0,+∞) and

ψR(y) =
∫ R

√
R

τR(ζ)
ζ

dζ >
∫ R−1

√
R+1

τR(ζ)
ζ

dζ

=
∫ R−1

√
R+1

dζ

ζ
= log

R− 1√
R+ 1

> log
√
R

2
,

(4.3)

for any y ∈ [0,
√
R], as long as R is sufficiently large. In addition, since τR vanishes

also in [R,+∞), we have that ψR(y) = 0 for any y > R, hence ψR is compactly
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supported in [0,+∞). Finally, ψR ∈ C2(C) by the choice of τR. As a consequence,
we can use ψR as a test function in (1.11): this yields

∫

C




n∑

j=1

〈B(y,∇u)∇uxj ,∇uxj 〉 − 〈B(y,∇u)∇|∇xu|, ∇|∇xu|〉


 ψ2

R

−
∫

∂LC

a(y, |∇u|)
(
∇u · ∂ν(∇u)

)
ψ2
R 6

∫

C

〈B(y,∇u)∇ψR, ∇ψR〉 |∇xu|2.

(4.4)

Now we use (2.2), (2.8), (4.3), and the fact that ∇xu is constant almost everywhere
on {∇xu = 0}, by Stampacchia’s Theorem, to see that

∫

C




n∑

j=1

〈B(y,∇u)∇uxj ,∇uxj 〉 − 〈B(y,∇u)∇|∇xu|, ∇|∇xu|〉


 ψ2

R >

(
log
√
R

2

)2 ∫

Ω×(0,
√
R)




n∑

j=1

〈B(y,∇u)∇uxj ,∇uxj 〉 − 〈B(y,∇u)∇|∇xu|, ∇|∇xu|〉




(4.5)

and

−
∫

∂LC

a(y, |∇u|)
(
∇u · ∂ν(∇u)

)
ψ2
R

> −
(

log
√
R

2

)2 ∫

∂LC∩{y∈(0,
√
R)}

a(y, |∇u|)
(
∇u · ∂ν(∇u)

)
.

(4.6)

In this way we can estimate the left hand side in (4.4). As far as the right hand
side is concerned, by (1.3) we obtain

∫

C

〈B(y,∇u)∇ψR, ∇ψR〉 |∇xu|2 6 C1

∫

C

a(y, |∇u|) |∇ψR|2 |∇xu|2

6 C2

∫

Ω×(
√
R,R)

a(y, |∇u|) |τR(y)|2 |∇xu|2
y2

6 C2

∫

Ω×(
√
R,R)

a(y, |∇u|) |∇xu|
2

y2
,

for some C1, C2 > 0. So, by using Lemma 2.4 with h := a(y, |∇u|) |∇xu|2 and
recalling (1.12), we conclude that

∫

C

〈B(y,∇u)∇ψR, ∇ψR〉 |∇xu|2

6C3

∫ R

√
R

[∫

Ω×(0,t)

a(y, |∇u|) |∇xu|2
]
dt

t3
+
C3

R2

∫

Ω×(0,R)

a(y, |∇u|) |∇xu|2

6C4

∫ R

√
R

dt

t
+ C4 6 C5 log

√
R,

(4.7)
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provided that R is large enough, for some constants C3, C4, C5 > 0. Thus we

insert (4.5), (4.6) and (4.7) into (4.4), we divide by
(

log
√
R
2

)2

and we deduce

∫

Ω×(0,
√
R)




n∑

j=1

〈B(y,∇u)∇uxj ,∇uxj 〉 − 〈B(y,∇u)∇|∇xu|, ∇|∇xu|〉




−
∫

∂LC∩{y∈(0,
√
R)}

a(y, |∇u|)
(
∇u · ∂ν(∇u)

)
6 C6 logR
(

log
√
R
2

)2 .

Since the latter term is infinitesimal as R→ +∞, the previous estimate implies

∫

C




n∑

j=1

〈B(y,∇u)∇uxj ,∇uxj 〉 − 〈B(y,∇u)∇|∇xu|, ∇|∇xu|〉




−
∫

∂LC

a(y, |∇u|)
(
∇u · ∂ν(∇u)

)
6 0,

and as a consequence

(4.8)




n∑

j=1

〈B(y,∇u)∇uxj ,∇uxj 〉 − 〈B(y,∇u)∇|∇xu|, ∇|∇xu|〉


 = 0 in C

and
a(y, |∇u|)

(
∇u · ∂ν(∇u)

)
= 0 on ∂LC,

thanks to (2.2) and (2.8). This establishes (4.2) (recall also (1.2)).
Also, by (4.8) and Corollary 2.6, we obtain that (4.1) holds.
In addition Corollary 2.6 gives that, if {∇xu = 0} = ∅ then the function ω(·) is

constant, as desired.

Now we suppose that ∂Ω has positive principal curvatures and n > 2. We claim
that

(4.9) u is constant along ∂Ω× {ȳ},
for any fixed ȳ > 0. To prove it assume by contradiction that u(p, ȳ) 6= u(q, ȳ)
for some p, q ∈ ∂Ω. By Lemma 2.2, we know that we can connect p to q with a
continuous path σ : [0, 1] → ∂Ω. Let ζ(t) := u(σ(t), ȳ). Then ζ(0) 6= ζ(1), and
therefore there exists t̄ ∈ (0, 1) such that ζ̇(t̄) 6= 0. That is

(4.10) 0 6= ζ̇(t̄) = ∇xu(σ(t̄), ȳ) · σ̇(t̄).

We let x̄ := σ(t̄). Up to a change of coordinates, we may suppose that the exterior
normal of ∂Ω at x̄ coincides with −en, hence, near x̄ the domain Ω can be written
in normal coordinates as the epigraph of a function γ ∈ C2(Rn−1). The fact that
the principal curvatures of ∂Ω are positive implies that

(4.11) the Hessian of γ is positive definite.

On the other hand, by (4.2) and (2.1), we have that

0 = −∇u(x̄, ȳ) · ∂ν (∇u(x̄, ȳ)) =
n−1∑

i,j=1

γxixj (x̄
′)uxi(x̄, ȳ)uxj (x̄, ȳ).
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This and (4.11) give that uxi(x̄, ȳ) = 0 for any i = 1, . . . , n − 1. By the Neumann
condition and the choice of the coordinate system, we also know that uxn = −∂νu =
0 in (x̄, ȳ). Hence ∇xu(x̄, ȳ) = 0, in contradiction with (4.10); this proves (4.9).

Now we show that

(4.12) u is constant in Ω× {ȳ},
for any fixed ȳ > 0. For this, we let c(ȳ) be the value attained by u along ∂Ω×{ȳ},
as given by (4.9). We also let ω(ȳ) as in (4.9) and we take a vector $(ȳ) orthogonal
to ω(ȳ).

Then we take a point x0 ∈ Ω. We consider the straight line

{x0 +$(ȳ) t, t ∈ R}.
Since the domain Ω is bounded, such a line must intersect somewhere the boundary
of Ω, i.e. there exists t0 such that x0 +$(ȳ) t0 ∈ ∂Ω. Therefore, by (4.9),

(4.13) u
(
x0 +$(ȳ) t0, ȳ

)
= c(ȳ).

On the other hand, by (4.1),

u
(
x0 +$(ȳ) t0, ȳ

)
= u0

(
ω(ȳ) ·

(
x0 +$(ȳ) t0

)
, ȳ
)

= u0

(
ω(ȳ) · x0, ȳ

)
= u(x0, ȳ).

This and (4.13) give that
u(x0, ȳ) = c(ȳ).

Since this holds for any point x0 ∈ Ω, we have established (4.12), and thus com-
pleted the proof of Theorem 1.2.

5. Classification in convex domains II: proof of Theorem 1.3

Now we address the proof of Theorem 1.3. For this goal, we need a detailed
study of functions which attain the minimum of the stability functional I introduced
in (1.10). After this, we will use the geometric observations exposed in Section 2
and suitable test functions to complete the proof of Theorem 1.3.

5.1. Rigidity of minimal solutions. In this part, we study the rigidity properties
of the minimizers of the stability functional I, as defined in (1.10). To this aim, we
introduce

(5.1) A∗ :=

{
ϕ ∈W 1,1

loc (C)

∣∣∣∣∣
a(y, |∇u|)

(
ϕ2 + |∇ϕ|2

)
+ |gu(y, u)|ϕ2 ∈ L1(C)

and ϕ|Ω×{0} ∈ L2(Ω)

}
.

With respect to the space A defined in (1.8), we replace the requirement that ϕ has
bounded support in y with an integrability condition. From now on, we assume
that u is a stable solution of (1.1), according to (1.10).

Lemma 5.1. Let I be defined by (1.10). Then I(ϕ) > 0 for every ϕ ∈ A∗.

Proof. We proceed by approximation in the following way: let τR be a smooth
function such that

τR(t) =

{
1, if 0 < t 6 R,
0, if t > 2R,
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and |τ ′R| 6 C/R for some C > 0. Given ϕ ∈ A∗, the function ϕR(x, y) :=
ϕ(x, y) τR(y) belongs to A, and hence can be used as a test function in the sta-
bility assumption (1.10). Therefore

(5.2) I(ϕR) > 0.

In order to obtain the desired result, we aim at passing to the limit as R → +∞.
The details go as follows. First of all, we recall (1.9) and (1.3), to point out that

∣∣B(y, η)
∣∣ 6 C1

(
a(y, |η|) + at(y, |η|) |η|

)
6 C2 a(y, |η|),

for some C1, C2 > 0. As a consequence

(5.3) lim
R→+∞

1
R2

∫

Ω×(R,2R)

∣∣B(y,∇u)
∣∣ϕ2 6 lim

R→+∞
C2

R2

∫

C

a(y, |∇u|) ϕ2 = 0,

where we used the integrability conditions in (5.1).
Now, from (5.2) we infer that

0 6
∫

C

〈B(y,∇u)∇ϕ,∇ϕ〉 τ2
R +

∫

C

〈B(y,∇u)∇τR,∇τR〉ϕ2

+ 2
∫

C

〈B(y,∇u)∇ϕ,∇τR〉ϕ τR + gu(y, u)ϕ2τ2
R −

∫

∂BC

f ′(u)ϕ2.

(5.4)

Let ε > 0 (to be taken arbitrarily small in the sequel); we use a weighted Hölder
inequality to observe that
∫

C

〈B(y,∇u)∇ϕ,∇τR〉ϕ τR

6 ε
∫

C

〈B(y,∇u)∇ϕ,∇ϕ〉 τ2
R + Cε

∫

C

〈B(y,∇u)∇τR,∇τR〉ϕ2

for some Cε > 0. Plugging this into (5.4), we obtain

0 6 (1 + ε)
∫

C

〈B(y,∇u)∇ϕ,∇ϕ〉τ2
R +

1 + Cε
R2

∫

Ω×(R,2R)

∣∣B(y,∇u)
∣∣ϕ2

+
∫

C

gu(y, u)ϕ2τ2
R −

∫

∂BC

f ′(u)ϕ2.

Recalling (5.3) and the definition of A∗, we can pass to the limit as R → +∞,
concluding that

0 6 (1 + ε)
∫

C

〈B(y,∇u)∇ϕ,∇ϕ〉+
∫

C

gu(y, u)ϕ2 −
∫

∂BC

f ′(u)ϕ2.

Since ε > 0 has been arbitrarily chosen, the thesis follows. �

In light of the previous result, we write that ϕ ∈ A∗ is a minimizer for I if
I(ϕ) 6 0 (equivalently, by Lemma 5.1, if I(ϕ) = 0). First, we show that minimizers
satisfy a suitable reaction-diffusion equation, both in the weak and in the strong
sense:

Lemma 5.2. Assume that I(ϕ) 6 0, for some ϕ ∈ A∗. Then
∫

C

〈B(y,∇u)∇ϕ,∇ζ〉+
∫

C

gu(y, u)ϕζ −
∫

∂BC

f ′(u)ϕζ = 0,

for any ζ ∈ A∗.
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Proof. For any ε ∈ R and any test function ζ, we have that I(ϕ+ εζ) > 0 > I(ϕ),
and therefore, dividing by ε and sending ε→ 0, we obtain the desired result. �
Lemma 5.3. Assume also that I(ϕ) 6 0, for some ϕ ∈ A∗∩C2(C)∩C1(Ω× [α, β]),
for any β > α > 0 Then, ϕ is a solution of

n+1∑

i,j=1

Bij(y,∇u)∂2
XiXjϕ+ ∂XiBij(y,∇u)∂Xjϕ− gu(y, u)ϕ = 0 in C,(5.5)

with ∂νϕ = 0 on ∂LC,(5.6)

where we recall that X = (x, y) ∈ Rn+1.

Proof. We use Lemma 5.2. Indeed, by taking ζ supported inside C, we obtain (5.5).
By taking ζ supported near any given point of ∂LC, we conclude that also (5.6)
holds. �

With this, we are in the position of obtaining a strict sign for nonnegative mini-
mizers, up to the boundary, in the spirit of a strict comparison principle, according
to the following result:

Corollary 5.4. Assume that I(ϕ) 6 0 for ϕ ∈ A∗ ∩ C2(C) ∩ C1(Ω × [α, β]), for
any β > α > 0. Assume in addition that ϕ(x, y) > 0 for any (x, y) ∈ C.

Then either ϕ(x, y) > 0 for any x ∈ Ω and y > 0, or ϕ(x, y) = 0 for any x ∈ Ω
and any y > 0.

Proof. Suppose that ϕ(xo, yo) = 0 for some xo ∈ ∂Ω and yo > 0. Then, we
look at the equation satisfied by ϕ in Ωα,β , where Ωα,β is a smooth domain that
contains Ω× (α, β) and is contained in Ω× (α/2, β) with 0 < α < yo < β. Indeed,
we define

M := sup
(x,y)∈Ωα,β

∣∣gu(y, u(x, y))
∣∣ < +∞,

aij(x, y) := Bij(y,∇u(x, y)
)
,

bj(x, y) :=
n+1∑

i=1

∂XiBij

(
y,∇u(x, y)

)

c(x, y) := −M − gu(y, u(x, y)).

Notice that c 6 0 and aij defines an elliptic matrix on Ω× (α, β), for fixed α and β,
thanks to Lemma 2.3. Moreover, by (5.5)

n+1∑

i,j=1

aij∂
2
XiXjϕ+

n+1∑

j=1

bj∂Xjϕ+ cϕ = −Mϕ 6 0.

Notice that aij , bj , c ∈ C(Ωα,β), thanks to (1.5). Also, we have that ϕ attains
its minimum in Ωα,β at (xo, yo). As a consequence, by the Hopf Lemma (see e.g.
Corollary 1.6 in Chapter 2 of [16]), either ϕ vanishes identically in Ωα,β or 0 6=
∂νϕ(xo, yo). The latter possibility cannot hold, in light of (5.6), and therefore ϕ
must, in this case, vanish identically in the domain Ωα,β . Since α can be taken as
close to 0 as we wish and β can be taken arbitrarily large, this implies that ϕ must
vanish everywhere in Ω× (0,+∞). �

As a matter of fact, we can strengthen Corollary 5.4 by removing the sign as-
sumption on ϕ. Namely, we have that:
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Proposition 5.5. Assume that I(ϕ) 6 0 for ϕ ∈ A∗ ∩C2(C) ∩C1(Ω× [α, β]), for
any β > α > 0. Then, one and only one of these three possibilities holds true:

• ϕ(x, y) > 0 for any x ∈ Ω and y > 0,
• ϕ(x, y) < 0 for any x ∈ Ω and y > 0,
• ϕ(x, y) = 0 for any x ∈ Ω and any y > 0.

Proof. We claim that

(5.7) either ϕ > 0 or ϕ 6 0 in C.

To prove this, we consider ϕ+ := max{ϕ, 0} and ϕ− := max{−ϕ, 0}. We observe
that ϕ± ∈ A∗. Thus, by Lemma 5.2,

I(ϕ±) =
∫

C

〈B(y,∇u
)
∇ϕ±, ∇ϕ±〉+

∫

C

gu(y, u) (ϕ±)2 −
∫

∂BC

f ′(u) (ϕ±)2

=
∫

C

〈B(y,∇u
)
∇ϕ, ∇ϕ±〉+

∫

C

gu(y, u)ϕϕ± −
∫

∂BC

f ′(u)ϕϕ± = 0.

Hence, using again Lemma 5.2, we have that, for any ζ ∈ C∞0 (C),
∫

C

〈B(y,∇u
)
∇ϕ±, ∇ζ〉+

∫

C

gu(y, u)ϕ± ζ = 0.

Therefore, the function ϕ± is a weak solution to

div
(
B(y,∇u)∇ϕ±

)
= gu(y, u)ϕ± in C,

according to the notation of Chapter 8 in [14] (in particular, formula (8.5) there is
a consequence of Lemma 2.3 here and formula (8.6) applies here with bi := ci := 0
and d := gu(·, u)). Consequently, by Theorem 8.20 in [14], for any point Xo ∈ C

and any R > 0 such that B4R(Xo) ⊂ C,

sup
BR(Xo)

ϕ± 6 CR inf
BR(Xo)

ϕ±,

for some CR > 0. This implies that if ϕ± vanishes somewhere in C, then it must
vanish identically in C, thus completing the proof of (5.7).

Thanks to (5.7) we can now exploit Corollary 5.4 (applying this to ϕ if ϕ > 0 or
to −ϕ if ϕ 6 0). From this, we obtain the desired result. �

With this preparatory work, we are now in the position of finishing the proof of
Theorem 1.3:

Completion of the proof of Theorem 1.3. By (1.5) and the integrability assumption
(1.13), we have that uxj ∈ A∗ for every j = 1, . . . , n. Thus, by Lemma 5.1, we have
that I(uxj ) > 0. On the other hand, using Corollary 2.9 and Lemma 2.1,

n∑

j=1

I(uxj ) =
∫

∂LC

a(y, |∇u|)
(
∇u · ∂ν(∇u)

)
6 0,

so that necessarily I(uxj ) = 0 for any j = 1, . . . , n. Therefore, by Proposition 5.5,
we deduce that either uxj never vanishes in Ω×(0,+∞), or uxj vanishes identically
in C. But the first possibility cannot occur: to see this, let us slide a hyperplane
normal to ej till it touches ∂Ω at some point x?j .

By construction, the normal of ∂Ω at x?j is ej , hence the homogeneous Neumann
condition ∂νu = 0 on ∂LC implies that 0 = ∂νu(x?j , 1) = uxj (x

?
j , 1). This shows

that the first above-mentioned possibility cannot occur, and as a consequence uxj
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vanishes identically in C. Since this is valid for any j = 1, . . . , n, this implies that u
does not depend on x. �

We conclude this section by proving Proposition 1.4.

Proof of Proposition 1.4. Recall that a does not depend on t and g ≡ 0. We fix R >
3, to be taken as large as we wish at the end of this proof. We take φ ∈ C∞(C) such
that φ(x, y) = 1 if y ∈ [3, R], φ(x, y) = 0 if y ∈ [0, 2] ∪ [R + 1,+∞) and |∇φ| 6 2.
We test (1.7) against

ϕ := φ2∆xu = φ2 (ux1x1 + · · ·+ uxnxn),

we have that

(5.8)
∫

C

2a(y)φ∆xu∇u · ∇φ+
∫

C

a(y)φ2∇u · ∇∆xu = 0.

By the Divergence Theorem,
∫

C

a(y)φ2∇u · ∇∆xu

=
n+1∑

i=1

∫

C

divx
(
a(y)φ2 uXi ∇xuXi

)
−
n+1∑

i=1

∫

C

a(y)∇x
(
φ2 uXi

)
· ∇xuXi

=
n+1∑

i=1

∫

∂LC

a(y)φ2 uXi ∂νuXi

−
n+1∑

i=1

∫

C

2a(y)φuXi∇xφ · ∇xuXi −
n+1∑

i=1

∫

C

a(y)φ2 |∇xuXi |2.

(5.9)

Also, using the convexity of Ω and (2.2), we have that
n+1∑

i=1

a(y)φ2 uXi ∂νuXi = a(y)φ2∇u · ∂ν(∇u) 6 0.

Combining this with (5.9), we obtain that
∫

C

a(y)φ2∇u · ∇∆xu

6 −
n+1∑

i=1

∫

C

2a(y)φuXi∇xφ · ∇xuXi −
n+1∑

i=1

∫

C

a(y)φ2 |∇xuXi |2.
(5.10)

Notice that

a(y) |φ| |uXi | |∇xφ| |∇xuXi | 6
a(y)

8
φ2|∇xuXi |2 + C a(y) |uXi |2|∇xφ|2

for some C > 0. By plugging this into (5.10), we deduce that
∫

C

a(y)φ2∇u · ∇∆xu 6 C
∫

C

a(y) |∇u|2|∇φ|2 − 3
4

∫

C

a(y)φ2 |D2
X xu|2.

This and (5.8) imply

(5.11)
∫

C

2a(y)φ∆xu∇u ·∇φ+C

∫

C

a(y) |∇u|2|∇φ|2− 3
4

∫

C

a(y)φ2 |D2
X xu|2 > 0.
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Furthermore

a(y) |φ| |∆xu| |∇u| |∇φ| 6
a(y)

8
φ2 |D2

X xu|2 + C a(y) |∇u|2 |∇φ|2,

for some C > 0, and so (5.11) becomes

C

∫

C

a(y) |∇u|2|∇φ|2 − 1
2

∫

C

a(y)φ2 |D2
X xu|2 > 0,

up to renaming C. By our assumptions on φ, we thus obtain that
∫

Ω×[3,R]

a(y) |D2
X xu|2 6

∫

C

a(y)φ2 |D2
X xu|2 6 C

∫

C

a(y) |∇u|2,

up to renaming C. We stress that C is independent of R, thus, taking R as large
as we wish, we conclude that

(5.12)
∫

Ω×[3,+∞)

a(y) |D2
X xu|2 6 C

∫

C

a(y) |∇u|2 < +∞,

where the latter step follows from (1.14).
Also, the integrability condition in (1.5) gives that

∫

Ω×(0,3]

a(y) |D2
X xu|2 < +∞.

By combining this information with (5.12), we obtain that
∫

C

a(y) |D2
X xu|2 < +∞,

as desired. �

6. Classification of stable solutions for convex/concave
nonlinearities: proof of Theorems 1.5

We now address the case in which f satisfies suitable convexity or concavity
assumption. In this setting, we need some preliminary work in order to detect the
sign of the nonlinearity at the maximum or at the minimum. We stress that, in
this section, we always suppose that u is a bounded stable solution to (1.1), and
that assumptions (1.16) and (1.17) are in force.

6.1. Detecting the sign of the nonlinearity. A classical tool in partial differ-
ential equations is the use of various forms of maximum and comparison principles
in order to check the sign of the nonlinearities at the points in which solutions of
elliptic equations attain their extremal values. In our setting, we adapt these type
of strategies, with the aim of detecting the sign of f at the extremal values for
solutions of the reaction-diffusion equation (1.1). This goal will be accomplished
in Corollary 6.2. For this, we need an auxiliary result, which locates the extremal
values at the bottom boundary of the domain.

Lemma 6.1. Let v(x) := u(x, 0). Then

min
x∈Ω

v(x) = inf
(x,y)∈C

u(x, y).
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Proof. We argue by contradiction and we suppose that

b+ := min
x∈Ω

v(x) > inf
(x,y)∈C

u(x, y) = b−.

As a consequence, there exists

(6.1) ` ∈ (b−, b+) .

We define w(x, y) :=
(
`− u(x, y)

)+, and we observe that

0 6 w 6 `− inf
(x,y)∈C

u(x, y) < b+ − b−,

so that w ∈ L∞(C). We claim that

(6.2) {u < `} ⊂ Ω× (0,+∞) =⇒ w = 0 on ∂BC.

To prove this, suppose by contradiction, that there exists a sequence (xk, yk) ∈
{u < `} with yk → 0 as k → +∞. Then, up to subsequence, we have that xk → xo,
for some xo ∈ Ω, and by the continuity of u (recall (1.5))

` > lim
k→+∞

u(xk, yk) = u(xo, 0) = v(xo) > min
x∈Ω

v(x) = b+.

This is in contradiction with (6.1), and hence it proves (6.2).
Now we take a smooth function τR : [0,+∞)→ [0, 1] such that τR = 1 in [0, R],

τR = 0 in [2R,+∞) and |τ ′R| 6 10/R. We use (1.7) with ϕ := wτR (notice that
such function lies in A, thanks to (1.5)): in this way, and recalling (1.16) and (6.2),
we obtain that

0 =
∫

C

a(y, |∇u|)∇u · ∇w τR +
∫

C

a(y, |∇u|)∇u · ∇τR w

= −
∫

C

a(y, |∇u|) |∇w|2 τR +
∫

C

a(y, |∇u|)∇u · ∇τR w.
(6.3)

Now we use the positivity of a and the boundedness of w to see that
∣∣∣∣
∫

C

a(y, |∇u|)∇u · ∇τR w
∣∣∣∣

6 ‖w‖L∞(C)

√∫

C

a(y, |∇u|) |∇u|2
√∫

C

a(y, |∇u|) |∇τR|2

6 ‖w‖L∞(C)

√∫

C

a(y, |∇u|) |∇u|2
√

C

R2

∫

Ω×(R,2R)

a(y, |∇u|),

and this quantity is infinitesimal as R → +∞, thanks to (1.17). Using this and
the Dominated Convergence Theorem, we can pass to the limit into formula (6.3),
obtaining

0 6 −
∫

C

a(y, |∇u|) |∇w|2.

This implies that ∇w vanishes identically, and so w is constant. Thus, recall-
ing (6.2), we conclude that w vanishes identically, and therefore u(x, y) > ` for
any (x, y) ∈ C. Accordingly, we have that b− > `, in contradiction with (6.1). �
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Corollary 6.2. Under the previous notation, let

c := min
x∈Ω

v(x) = inf
(x,y)∈C

u(x, y).

Then f(c) 6 0.

Proof. Let x? ∈ Ω be a minimum point for v, and let us assume by contradiction
that f(c) > 0. By continuity (see (1.17)), there exists y? > 0 such that

a
(
y, |∇u(x?, y)|

)
∂yu(x?, y) 6 −f(c)

2
for all y ∈ (0, y?].

Since a(y, t) > 0 for any y > 0 and t > 0, for every y ∈ (0, y?]

∂yu(x?, y) 6 −f(c)
2

1
a
(
y, |∇u(x?, y)|

) .

Hence, for any yo ∈
(
0, y?2

]

u(x?, y?)− u(x?, yo) =
∫ y?

yo

∂yu(x?, y) dy

6 −f(c)
2

∫ y?

yo

dy

a
(
y, |∇u(x?, y)|

) 6 −f(c)
2

∫ y?

y?/2

dy

a
(
y, |∇u(x?, y)|

) =: −b?,

and b? > 0. Taking the limit as yo → 0, we infer that

inf
(x,y)∈C

u(x, y)−min
x∈Ω

v(x) 6 u(x?, y?)− v(x?) = u(x?, y?)− u(x?, 0) 6 −b?,

in contradiction with Lemma 6.1. �

6.2. Classification of stable solutions in the case of convex/concave non-
linearities and end of the proof of Theorem 1.5. With the previous prelim-
inary work, we are now in the position of completing the proof of Theorem 1.5.
The proof will borrow an idea of [7], that is to test the equation against a vertical
translation of the solution (in this way, comparing the equation with the linearized
equation, the nonlinearity is compared with its derivative, hence convexity comes
naturally into play).

Completion of the proof of Theorem 1.5. We suppose that f is convex.
For any ϕ ∈ A, we define

J(ϕ) := −
∫

C

at(y, |∇u|)
|∇u|

(
∇u · ∇ϕ

)2
.

By (1.9),

〈B(y,∇u)∇ϕ,∇ϕ〉 = a(y, |∇u|) |∇ϕ|2 +
at(y, |∇u|)
|∇u|

(
∇u · ∇ϕ

)2(6.4)

Accordingly, and being g ≡ 0, the stability of u implies that

(6.5)
∫

C

a(y, |∇u|)|∇ϕ|2 − J(ϕ)−
∫

∂BC

f ′(u)ϕ2 = I(ϕ) > 0,

for any ϕ ∈ A. Let c := infC u, and let us consider a smooth function τR : [0,+∞)→
[0, 1] such that τR = 1 in [0, R], τR = 0 in [2R,+∞) and |τ ′R| 6 10/R. We exploit



28

first (6.5) with ϕ(x, y) :=
(
u(x, y)− c

)
τR(y), and we obtain that

0 6
∫

C

a(y, |∇u|) |∇u|2 τ2
R +

∫

C

a(y, |∇u|) |∇τR|2 (u− c)2

+ 2
∫

C

a(y, |∇u|) (u− c) τR∇u · ∇τR − J
(
(u− c) τR

)
−
∫

∂BC

f ′(u)(u− c)2.

(6.6)

Now we use1 (1.7) with ϕ :=
(
u(x, y)− c

)
τ2
R(y):

0 =
∫

C

a(y, |∇u|) |∇u|2 τ2
R + 2

∫

C

a(y, |∇u|) (u− c) τR∇u · ∇τR

−
∫

∂BC

f(u) (u− c).
(6.7)

Subtracting (6.7) from (6.6), we obtain

0 6
∫

C

a(y, |∇u|) |∇τR|2 (u− c)2 − J
(
(u− c) τR

)

−
∫

∂BC

(
f ′(u)(c− u) + f(u)

)
(c− u).

(6.8)

Now we use the convexity of f to see that

f(u) + f ′(u) (c− u) 6 f(c).

Since f is strictly convex, the inequality is strict provided {u 6= c} 6= ∅. Moreover,
by Corollary 6.2, we know that u > c, therefore

(6.9)
(
f(u) + f ′(u) (c− u)

)
(c− u) > f(c) (c− u),

with strict inequality if {u 6= c} 6= ∅.
We also observe that, by (1.16), −J((u− c)τR) 6 0. Plugging this and (6.9) into

(6.8), we conclude that

0 6
∫

C

a(y, |∇u|) |∇τR|2 (u− c)2 −
∫

∂BC

f(c) (c− u),(6.10)

with strict inequality if ∂BC∩ {u 6= c} 6= ∅. The previous inequality is satisfied for
every R > 0. Passing to the limit as R→ +∞, we have
(6.11)

0 6 lim
R→+∞

∫

C

a(y, |∇u|) |∇τR|2 (u− c)2 6 lim
R→+∞

C

R2

∫

Ω×(R,2R)

a(y, |∇u|) = 0,

thanks to (1.17), the boundedness of u, and our choice of τR. Coming back to
(6.10), this gives

0 6
∫

∂BC

f(c) (u− c)

with strict inequality if {u 6= c} 6= ∅. But recalling that f(c) 6 0 and u > c in C,
thanks to Corollary 6.2, we have that the right hand side is nonpositive, so that the
previous inequality cannot be strict; hence {u 6= c} ∩ ∂BC = ∅, i.e. u is constant
on ∂BC.

1As a curiosity, we stress that the choice of the test function exploited to obtain (6.6) is not
the same as the one exploited to obtain (6.7).
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To complete the proof, we come back to (6.7). Using the fact that u = c on ∂BC,
the last integral there vanishes, so that

0 =
∫

C

a(y, |∇u|) |∇u|2 τ2
R + 2

∫

C

a(y, |∇u|) (u− c) τR∇u · ∇τR(6.12)

for every R > 0. Moreover
∣∣∣∣
∫

C

a(y, |∇u|)(u− c)τR∇u · ∇τR
∣∣∣∣ =

∣∣∣∣∣

∫

Ω×(R,2R)

a(y, |∇u|)(u− c)τR∇u · ∇τR
∣∣∣∣∣

6 1
2

∫

Ω×(R,2R)

a(y, |∇u|)|∇u|2 +
1
2

∫

Ω×(R,2R)

a(y, |∇u|)(u− c)2|∇τR|2 → 0

as R→ +∞, where we used the first integrability assumption in (1.17) and (6.11).
Therefore, passing to the limit as R→ +∞ into (6.12), we deduce by the Monotone
Convergence Theorem that ∫

C

a(y, |∇u|) |∇u|2 = 0,

i.e. u is constant in the whole C. �

7. Application to nonlocal problems with Neumann boundary
conditions

Proof of Theorems 1.6 and 1.7. Let v ∈ H1/2(Ω) ∩ L∞(Ω) be a solution to (1.19).
Then, by [29], v is the trace on Ω× {0} of a weak solution u ∈ H(C) to (1.20):





∆u = 0 in C

∂νu = 0 on ∂LC

−∂yu = f(u) on ∂BC.

By Proposition 1.4, any such solution is such that

|D2
xu|2 + |∇xuy|2 ∈ L1(C),

so that assumption (1.13) is satisfied. Moreover, arguing as in Theorem 3.5-part 4
in [29] (recalling that f ∈ C2,α(R) and Ω is of class C4,α, and using higher order
Schauder estimates), one sees that u ∈ C3,α(C). In particular, we obtain that u is
a classical, stable solution of (1.20), and satisfies all the assumptions in (1.5).

As a consequence, if Ω is convex we are in position to apply Theorem 1.3, de-
ducing that u depends only on y. Therefore, v = u(·, 0) has to be constant.

On the other hand, if f is either strictly convex, or strictly concave, Theorem
1.5 implies in the same way that v is constant. �

8. A counterexample

Now we prove the statement given in Example 1.8

Proof of Example 1.8. We let ε ∈ (0, 1) and h∗ ∈ C2(R) be such that h∗(x) = h(x)
for any x ∈ [−1, 1], h∗(x) = 2x if |x| ∈

[
1 + ε

11 , 1 + 2ε
11

]
, and h∗(x) = −2x if |x| ∈[

1 + 3ε
11 , 1 + 4ε

11

]
.

Then, by Theorem 1.1 in [9], there exists v ∈ C2((−2, 2)) ∩ C(R) which is
compactly supported, such that (−∆)sv = 0 in (−2, 2) and ‖v − h∗‖C2((−2,2)) 6 ε.
In particular,

‖v − h‖C2((−1,1)) = ‖v − h∗‖C2((−1,1)) 6 ε.
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Moreover, if x ∈
[
1 + ε

11 , 1 + 2ε
11

]
, we have that

v′(x) > h′∗(x)− ‖v − h∗‖C1((−2,2)) > 2− ‖v − h∗‖C2((−2,2)) > 1.

Similarly, if x ∈
[
1 + 3ε

11 , 1 + 4ε
11

]
, we have that v′(x) 6 −1.

As a consequence, there exist δ1, δ2 ∈
[
ε

11 ,
4ε
11

]
such that v′(−1−δ1) = v′(1+δ2) =

0. In particular, for any x ∈ {−1− δ1, 1 + δ2},

lim
y∈(−1−δ1,1+δ2)

y→x

v(x)− v(y)
|x− y|s = 0.

Then, v satisfies the desired result. �
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