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Abstract

The stability of two-dimensional Poiseuille flow and plane Couette flow for
concentrated suspensions is investigated. Linear stability analysis of the two-
phase flow model for both flow geometries shows the existence of a convectively
driven instability with increasing growth rates of the unstable modes as the par-
ticle volume fraction of the suspension increases. In addition it is shown that
there exists a bound for the particle phase viscosity below which the two-phase
flow model may become ill-posed as the particle phase approaches its maximum
packing fraction. The case of two-dimensional Poiseuille flow gives rise to base
state solutions that exhibit a jammed and unyielded region, due to shear-induced
migration, as the maximum packing fraction is approached. The stability charac-
teristics of the resulting Bingham-type flow is investigated and connections to the
stability problem for the related classical Bingham-flow problem are discussed.

1 Introduction

It is well-known since the work by Orszag [25] that two-dimensional Poiseuille flow
of Newtonian fluids have a critical Reynolds number of Re ≈ 5772.22 beyond which
point the flow becomes linearly unstable. The linear stability analysis of parallel shear
flows, such as Poiseuille and Couette flow is based on the study of the spectrum of
the associated initial boundary value problem for the Orr-Sommerfeld equation, de-
scribed in detail for example in Drazin and Reid [7]. This analysis does not reveal all
the unstable behavior seen in experiments as some nonlinear instabilities do seem
to be initiated by linear transient growth of certain modes, which is possible since
the eigenfunctions of the Orr-Sommerfeld boundary value problem are not orthogonal
as discussed in Trefethen et al. [34]. Some of these modes have time to grow large
enough to serve as finite amplitude perturbation and eventually lead to a nonlinear,
possibly three-dimensional, instability. While the literature on these fundamental hy-
drodynamic instabilities as well as their route to turbulence is quite extensive, much
less is known if non-Newtonian fluids or multiphase liquids are considered [3, 12, 13].

For the two-phase model equations for concentrated suspensions, which is the focus
of this study, it has been shown in Ahnert et al. [1] that as the maximum packing frac-
tion is approached, plane Poiseuille flow gives rise to jammed and unyielded regions.
This emerging Bingham-type flow structure is a result of shear-induced migration, a
phenomenon first discovered by Leighton and Acrivos [19]. Hence, of particular in-
terest is the effect of yield stress on the stability properties of Bingham fluids. One
of the first studies on the effect of the yield stress on the stability properties can be
found in Frigaard et al. [10]. Their analysis was based on the corresponding boundary
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value problem for the Orr-Sommerfeld equation for a Bingham fluid, which has first
been derived there. Further discussions by Frigaard et al. [11] and more recently by
Metivier et al. [23] and Georgievskii [13] showed that the stability properties for plane
Poiseuille flow depend critically on the choice of boundary conditions at the yield sur-
face for the associated eigenvalue problem. Using symmetric boundary conditions for
the velocity at the yield surface the well-known critical Reynolds number Re = 5772.22
is approached as the Bingham number B → 0. On the other hand Métivier et al. [23]
noted that for their non-symmetric boundary conditions all modes are stable, also as
B → 0. This indicates that the Orr-Sommerfeld-Bingham equation is not a canonical
generalization of the standard Orr-Sommerfeld equation.

Guided by these investigations, we revisit the formulation of the boundary value prob-
lem for the Orr-Sommerfeld-Bingham equations and discuss its implications for the
derivation to the eigenvalue problem for the two-phase flow of plane Couette and
Poiseuille flow. In particular we show that for the two-phase Poiseuille flow model for
concentrated suspensions the conditions at the yield surface of the corresponding
eigenvalue problem are non-symmetric. The stability analysis of the resulting bound-
ary value problem carried out in this study thus constitutes a next step in complexity for
the investigation of the dynamical behavior of two-phase flow models with yield-stress.
The analysis will moreover serve to assess the necessary conditions to address the
problem of well-posedness of the two-phase flow model.

The problem of well-posedness is in fact an inherent property of even the simplest
multiphase model equations for suspension flow and many other applications, since
its first derivations from an averaging method pioneered by Drew and Passmann [9]
and Ishii [15]. Nevertheless, such models have found widespread applications and us-
ing various forms of regularizations their study started the development of a number
of numerical schemes described for example in Stewart and Wendroff [32]. The prob-
lem of ill-posedness has recently been reviewed from an engineering perspective by
Lhuillier et al. [20]. Further mathematical investigations have been pursued by Keyfitz
et al. [16, 17, 18] in a series of articles, where they showed for simple cases of two-
phase flows that the ill-posedness of the initial boundary value problem is connected
to a loss of hyperbolicity in the principal part of the equations. They have begun to
generalize the theory for conservation laws in order to connect the arising singular
behavior with the existence of a so-called singular shock. The present study is in-
tended to lay the groundwork for future studies concerning the existence of singular
shocks in concentrated suspensions.

After the formulation of the two-phase flow model and the derivation of the eigenvalue
problem in Section 2, our investigations will focus on the stability analysis of the Cou-
ette flow problem in Section 3. This problem is instructive since we can simplify the
resulting eigenvalue problem considerably and derive criteria for an ill-posedness in
the system that is related to the competition between the solid phase viscosity and
the collision pressure. The study of these special cases is then used for the design of
a reliable numerical scheme for the general eigenvalue problem.

In addition to the ill-posedness we also find a convection induced instability via a
Kelvin-mode ansatz and show that in general, the growth of the unstable mode is
transient. However, as the particle volume fraction of the suspension increases the

2



growth rates of the unstable modes increase as well, so that it can become strong
enough to possibly trigger finite-amplitude, nonlinear instabilities.

For the two-dimensional Poiseuille flow, considered in Section 4, simplifications of
the resulting eigenvalue problem, that allow analytical work are not possible. Here,
our numerical parameter studies show that the ill-posedness as well as the transient
growth property occur again, however for different parameter values. The main differ-
ence to the Couette flow is that for Poiseuille flow there are volume fractions for which
unyielded region emerge. The stability of the corresponding yielding surface is the
final topic of our investigations. For the derivation of the associated boundary value
problem we found it helpful to revisit the formulation of the eigenvalue problem for the
Orr-Sommerfeld-Bingham equation. We conclude in Section 5 with an outlook.

2 Governing equations for two-phase flow

2.1 Formulation of the model

We consider a two-phase flow model of a suspension consisting of solid particles fully
dispersed in a liquid medium, that has been derived in Ahnert et al. [1]. Its deriva-
tion is based on an ensemble average process of the incompressible Navier-Stokes
equations along the lines of Drew et al. [8] with constitutive laws based on the work
by Boyer et al. [4], that were meant to unify liquid suspension and granular rheology
and enable us to capture the behavior of concentrated suspensions.

In order to state the model, we define some quantities first. Let φj denote the volume
fraction of phase j, uj = (uj, vj) the velocity, pj the pressure, τ j the shear-stress and
γ̇j = ∇uj + (∇uj)T the shear rate, where j ∈ {s, f} and the indices s and f denote

the solid or liquid phase, respectively. We use the usual norm ‖A‖ =
(
1
2
·A : A

) 1
2

for symmetric tensors. The dimensional model contains the liquid viscosity µf , the
densities ρj and the permeabilityK, for details see [1]. Using the scales U0 for velocity,
L for length as well as (U0µf )/L for the pressure and the stresses, the governing
equations of the two-phase model are

φs + φf = 1, (2.1a)
∂tφf +∇ · (φfuf ) = 0, (2.1b)
∂tφs +∇ · (φsus) = 0, (2.1c)

Re[∂t(φfuf ) +∇ · (φfuf ⊗ uf )]−∇ · (φfτ f ) + φf∇pf = −Da
φ2
s

φf
(uf − us),

(2.1d)

Re

r
[∂t(φsus) +∇ · (φsus ⊗ us)]−∇ · (φsτ s) +∇pc + φs∇pf = Da

φ2
s

φf
(uf − us),

(2.1e)
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where the Reynolds number, Darcy’s number and the relative density are defined as

Re =
ULρf
µf

, Da =
L2

K
, r =

ρf
ρs
. (2.2)

The non-dimensionalized constitutive laws are a Newtonian stress for the liquid, i.e.

τ f = γ̇f . (2.3a)

For the solid phase, either ‖γ̇s‖ > 0, then we require

τ s = ηs(φs)γ̇s, (2.3b)
pc = ηn(φs)‖γ̇s‖, (2.3c)

with

ηs(φs) = 1 +
5

2

φsc
φsc − φs

+ µc(φs)
φs

(φsc − φs)2
, (2.3d)

µc(φs) = µ1 +
µ2 − µ1

1 + I0φ2
s(φsc − φs)−2

, (2.3e)

ηn(φs) =

(
φs

φsc − φs

)2

, (2.3f)

or γ̇s = 0, and then we let

φs = φsc (2.3g)

and leave τ s undefined, but impose the inequality

‖τ s‖ ≤ µ1pc. (2.3h)

The parameters µ1, µ2, I0 are experimentally determined material parameters of the
friction law for dense suspensions and φsc is the maximum packing fraction, see [4]
and [1] for details.

For future reference we note that (2.1a)-(2.1c) imply the incompressibility condition

∇ · (φfuf + φsus) = 0 . (2.4)

2.2 Stability problem

For the cases of plane Couette flow and two-dimensional Poiseuille flow, stationary
solutions of system (2.1) are derived in [1]. The variables defining these base states
depend on y only except for the pressure Pf , which is a linear function of x only. The
base state variables are Uj , Vj , Φj , Pf , Pc and because Vj = 0 for parallel shear flows
we obtain

Γj =

(
0 ∂yUj

∂yUj 0

)
, Tf =

(
0 ∂yUf

∂yUf 0

)
, Ts = ηs(Φs)

(
0 ∂yUs

∂yUs 0

)
. (2.5)
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We denote the perturbation variables by lower-case letters with a tilde. Linearizing
about the base states by using the ansatz

φj = Φj + δφ̃j, uj = Uj + δũj, vj = δṽj, (2.6a)

γ̇j = Γj + δ ˜̇γj, pf = Pf + δp̃f , pc = Pc + δp̃c, (2.6b)

τ j = T j + δτ̃ j, (2.6c)

where j ∈ {f, s} denote solid and liquid phase and δ denotes the small perturbation
parameter, we obtain to order δ the linearized system

φ̃f + φ̃s = 0, (2.7a)

∂tφ̃f + ∂x(Φf ũf + φ̃fUf ) + ∂y(Φf ṽf ) = 0, (2.7b)

∂tφ̃s + ∂x(Φsũs + φ̃sUs) + ∂y(Φsṽs) = 0, (2.7c)

Re[∂t(φ̃fUf + Φf ũf ) + ∂x(2ΦfUf ũf + φ̃fUf
2) + ∂y(ΦfUf ṽf )]− ∂x(Φf τ̃f 11)

(2.7d)

−∂y(Φf τ̃f 12 + φ̃fTf 12) + Φf∂xp̃f + φ̃f∂xPf = −Da

[
2Φsφ̃s

Φf

(Uf − Us)−

Φs
2

Φf
2 φ̃f (Uf − Us) +

Φs
2

Φf

(ũf − ũs)
]
,

Re [∂t(Φf ṽf ) + ∂x(ΦfUf ṽf )]− ∂x(Φf τ̃f 12 + φ̃fTf 12) (2.7e)

−∂y(Φf τ̃f 22) + Φf∂yp̃f = −Da

[
Φs

2

Φf

(ṽf − ṽs)
]
,

Re

r
[∂t(φ̃sUs + Φsũs) + ∂x(2ΦsUsũs + φ̃sUs

2) + ∂y(ΦsUsṽs)]− ∂x(Φsτ̃s11) (2.7f)

−∂y(Φsτ̃s12 + φ̃sTs12) + ∂xp̃c + Φs∂xp̃f + φ̃s∂xPf = Da

[
2Φsφ̃s

Φf

(Uf − Us)−

Φs
2

Φf
2 φ̃f (Uf − Us) +

Φs
2

Φf

(ũf − ũs)
]
,

Re

r
[∂t(Φsṽs) + ∂x(ΦsUsṽs)]− ∂x(Φsτ̃s12 + φ̃sTs12) (2.7g)

−∂y(Φsτ̃s22) + ∂yp̃c + Φs∂yp̃f = Da

[
Φs

2

Φf

(ṽf − ṽs)
]
,

which is amenable to normal mode analysis and thus we make the ansatz for the
perturbation

{φ̃j, ũj, ṽj, p̃f} = {φ̂j(y), ûj(y), v̂j(y), p̂f (y)} eiαx+ct. (2.8)
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Note that with this choice of ansatz functions an unstable mode fulfills that the real
part R(c) > 0. Plugging the ansatz into system (2.7) yields

−cφ̂s + iα(Φf ûf − φ̂sUf ) + ∂y(Φf v̂f ) = 0, (2.9a)

cφ̂s + iα(Φsûs + φ̂sUs) + ∂y(Φsv̂s) = 0, (2.9b)

Re[c(−φ̂sUf + Φf ûf ) + iα(2ΦfUf ûf − φ̂sUf 2) + ∂y(ΦfUf v̂f )] (2.9c)

−iα(Φf τ̂f 11)− ∂y(Φf τ̂f 12 − φ̂sTf 12) + iαΦf p̂f − φ̂sPf ,x = −Da

[
2Φsφ̂s

Φf

(Uf − Us)

+
Φs

2

Φf
2 φ̂s(Uf − Us) +

Φs
2

Φf

(ûf − ûs)
]
,

Re[c(Φf v̂f ) + iα(ΦfUf v̂f )]− iα(Φf τ̂f 21 − φ̂sTf 21) (2.9d)

−∂y(Φf τ̂f 22) + Φf∂yp̂f = −Da

[
Φs

2

Φf

(v̂f − v̂s)
]
,

Re

r

[
c(φ̂sUs + Φsûs) + iα(2ΦsUsûs + φ̂sUs

2) + ∂y(ΦsUsv̂s)
]

(2.9e)

−iα(Φsτ̂s11)− ∂y(Φsτ̂s12 + φ̂sTs12) + iαp̂c + iαΦsp̂f + φ̂sPf ,x = Da

[
2Φsφ̂s

Φf

(Uf − Us)

+
Φs

2

Φf
2 φ̂s(Uf − Us) +

Φs
2

Φf

(ûf − ûs)
]
,

Re

r

[
c(Φsv̂s) + iα(ΦsUsv̂s)

]
− iα(Φsτ̂s21 + φ̂sTs21) (2.9f)

−∂y(Φsτ̂s22) + ∂yp̂c + Φs∂yp̂f = Da

[
Φs

2

Φf

(v̂f − v̂s)
]
,

with

γ̂j =

(
2iαûj ∂yûj + iαv̂j

∂yûj + iαv̂j 2∂yv̂j

)
, (2.10a)

τ̂f = γ̂f , (2.10b)

τ̂s = η′s(Φs)φ̂sΓs + ηs(Φs)γ̂s, (2.10c)

p̂c = η′n(Φs)φ̂s|Γs|+ ηn(Φs)
∂yUs
|∂yUs|

(∂yûs + iαv̂s). (2.10d)

Discretization of system (2.9) yields a generalized eigenvalue problem of the form

cEψ = Aψ, (2.11)

with matrices E,A and where ψ denotes the vector of our variables. The matrix E
is singular, thus we have infinite eigenvalues c as part of the solution, which create
spurious eigenvalues depending on the numerical scheme in use. The singularity of
E stems from the incompressibility condition (2.4), which is eliminated by substitution
of the velocity of the liquid phase

ûf =
−1

iαΦf

(
−iαφ̂sUf + ∂y(Φf v̂f ) + iα(Φsûs + φ̂sUs) + ∂y(Φsv̂s)

)
, (2.12)
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and the pressure by

p̂f =
−1

iαΦf

(
Re
[
c(−φ̂sUf + Φf ûf ) + iα(2ΦfUf ûf − φ̂sUf 2) + ∂y(ΦfUf v̂f )

]
(2.13)

− iα(Φf τ̂f 11)− ∂y(Φf τ̂f 12 − φ̂sTf 12)− φ̂s∂xPf

+ Da
[2Φsφ̂s

Φf

(Uf − Us) +
Φs

2

Φf
2 φ̂s(Uf − Us) +

Φs
2

Φf

(ûf − ûs)
])
.

We note that similar approaches are known from the derivation of the Orr-Sommerfeld
equation, where usually the stream function is introduced, which can then be used to
eliminate the differential algebraic character from the single phase equations, cf. [10,
21]. The remaining equations are

cφ̂s + iα(Φsûs + φ̂sUs) + ∂y(Φsv̂s) = 0, (2.14a)

Re[c(Φf v̂f ) + iα(ΦfUf v̂f )]− iα(Φf τ̂f 21 − φ̂sTf 21) (2.14b)

−∂y(Φf τ̂f 22) + Φf∂yp̂f = −Da
Φs

2

Φf

(v̂f − v̂s),

Re

r

[
c(φ̂sUs + Φsûs) + iα(2ΦsUsûs + φ̂sUs

2) + ∂y(ΦsUsv̂s)

]
(2.14c)

−iα(Φsτ̂s11)− ∂y(Φsτ̂s12 + φ̂sTs12) + iαp̂c + iαp̂fΦs + ∂xPf φ̂s = Da

[
2Φsφ̂s

Φf

(Uf − Us)

+
Φs

2

Φf
2 φ̂s(Uf − Us) +

Φs
2

Φf

(ûf − ûs)
]
,

Re

r

[
c(Φsv̂s) + iα(ΦsUsv̂s)

]
− iα(Φsτ̂s21 + φ̂sTs21) (2.14d)

−∂y(Φsτ̂s22) + ∂̂ypc + ∂yp̂fΦs = Da
Φs

2

Φf

(v̂f − v̂s).

For the case when the solid phase reaches maximum packing fraction φs = φsc, the
momentum equations (2.14c) and (2.14d) lose their validity and condition γ̇s = 0 tells
us that the solid phase is confined to rigid motions. Hence, in this case we drop the
two momentum equations and set

φ̂s = 0, Φs = φsc, ûs = 0, v̂s = 0. (2.15)

This in turn also eliminates (2.14a) and the equation for the unyielded region becomes

Re[cΦf v̂f + iαΦfUf v̂f ]− iαΦf τ̂f 21 − ∂y(Φf τ̂f 22) + Φf∂yp̂f = −Da
Φs

2

Φf

v̂f . (2.16)

This equation for the unyielded region will only be needed in the Poiseuille flow com-
putation, as the Couette flow does not contain an unyielded region.
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3 Plane Couette flow

Consider a planar flow of a fluid confined between two walls at y = 0 and y = L,
where we usually choose L = 1. The boundary conditions at the lower wall are

us = uf = 0 at y = 0, (3.1a)

and for the upper wall are

us = uf =

(
L
0

)
at y = L. (3.1b)

System (2.1) allows the derivation of an explicit solution for the plane Couette flow
with base states [1]

Us(y) = Uf (y) = y, Pf = C1, Φs = C2, (3.2)

where C1 ∈ R and C2 ∈]0, φsc[ are free parameters.

Using the boundary conditions (3.1) in our ansatz (2.6a) and (2.8) yields

ûs = v̂s = v̂f = 0 at y = 0 and L. (3.3a)

The incompressibility condition (2.12) together with v̂s = v̂f = 0 yields

Φf∂yv̂f + Φs∂yv̂s = 0 at y = 0 and L. (3.3b)

3.1 Numerical solution of the spectrum

We use a finite-difference method for the numerical solution of the system above and
use a central scheme of second order for all variables. The pure convection equation
of the volume fraction (2.14a) showed an odd-even decoupling, which has been solved
using a staggered grid approach.

The system (2.14) with boundary conditions (3.3), yielding the generalized eigenvalue
problem for c, can then be solved using standard solvers. Details of the numerical
approximation are given in Appendix B.

Compared to the classical problems for the Orr-Sommerfeld equation, the study of the
spectrum for our system (2.14), (3.3) is more complicated as it depends on additional
parameters, which are Da, I0, µ1, µ2, C1, C2, φsc and α. Guided by physically relevant
values for the parameters, our numerical parameter studies revealed two character-
istic classes of instabilities. Figure 1 shows two spectra for two exemplary choices of
parameters, where the parameter values differ in the values of µ1. One observes that
nearly all eigenvalues have negative real parts and, consequently, are stable. On the
other hand, we could identify multiple unstable modes in the system, which fall into
two classes.
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R(c)
×10

7

-4 -2 0

I(c)

×10
4

-3

0

3

R(c)
×10

7

-10 -5 0

I(c)

×10
6

-3

0

3

Figure 1: Shown are the two-phase plane Couette flow spectra with parameters cho-
sen as Re = 1, Da = 100, I0 = 0.005, µ2 = µ1, φsc = 0.63, Φs = 0.99φsc, where
µ1 = 0.32 (left) and µ1 = 1 (right). Both spectra contain unstable eigenvalues near
the origin.

0 1
-1

0

1

φ̂s

0 1

ûs

0 1

v̂f

0 1

v̂s

0 1
-1

0

1

φ̂s

0 1

ûs

0 1

v̂f

0 1

v̂s

Figure 2: Top: An unstable mode of first class for µ1 = 0.32 with the rest of the
parameters as in Figure 1. The mode is symmetric, highly oscillatory and posses only
a negligible dependence on φs. Bottom: An unstable mode of second class for µ1 = 1
with the rest of the parameters as in Figure 1. The mode is non-symmetric and shows
amplifications in all quantities.

Figure 2 shows exemplary modes from the two classes. The unstable mode shown in
Figure 2 (Top) is observable for µ1 < 1/2 and its modes are symmetric, highly oscil-
latory and show zero values in φ̂s. Most interestingly, as we will show in the following
section, the eigenvalues of these modes can grow with α without bounds, which hints
at an ill-posedness in the model. The unstable mode shown in Figure 2 (Bottom)
occurs as C2 approaches φsc. Its modes have a non-symmetric shape and the eigen-
values have positive real parts, which suggests an instability of the base state. These
two cases are analyzed in detail in the following sections.
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3.2 Collision pressure induced ill-posedness

Our numerical parameter studies show that the system may lose its well-posedness
as soon as

µ1 <
1

2
. (3.4)

In this case our numerical studies show that the positive real part R(c) of the eigen-
values grow to infinity as Φs → φsc for increasing α. As can be seen in Figure 2 from
the corresponding eigenvector, the ill-posedness occurs even for φ̂s = 0. Further, our
numerical results showed that the quadratic velocity terms ΦfUf ûf , ΦfUf v̂f , ΦsUsûs
and ΦsUsv̂s in (2.13) and (2.14) have a negligible influence on the mode.

These properties can be used to reduce the system (2.7) further so that we can study
and understand the origin of the ill-posedness analytically. Hence, in (2.7) we set
φ̃s = 0 and neglect the squared velocity parts yielding

∂x(Φsũs + Φf ũf ) + ∂y(Φsṽs + Φf ṽf ) = 0,

(3.5a)

Re ∂t(Φf ũf )− ∂x(Φf τ̃f 11)− ∂y(Φf τ̃f 12) + Φf∂xp̃f + Da

[
Φs

2

Φf

(ũf − ũs)
]

= 0,

(3.5b)

Re ∂t(Φf ṽf )− ∂x(Φf τ̃f 12)− ∂y(Φf τ̃f 22) + Φf∂yp̃f + Da

[
Φs

2

Φf

(ṽf − ṽs)
]

= 0,

(3.5c)

Re

r
∂t(Φsũs)− ∂x(Φsτ̃s11)− ∂y(Φsτ̃s12) + ∂xp̃c + Φs∂xp̃f −Da

[
Φs

2

Φf

(ũf − ũs)
]

= 0,

(3.5d)

Re

r
∂t(Φsṽs)− ∂x(Φsτ̃s12)− ∂y(Φsτ̃s22) + ∂yp̃c + Φs∂yp̃f −Da

[
Φs

2

Φf

(ṽf − ṽs)
]

= 0.

(3.5e)

Eliminating the pressure and one of the velocities through the incompressibility con-
ditions, this set of equation allows the standard Fourier ansatz

{ũs, ṽs, ṽf} = {ûs, v̂s, v̂f}eiαx+iβy+ct, (3.6)

yielding the 3× 3 matrix system of the form

(A− cI)u = 0, (3.7)

which is equivalent to

det(A− cI) = 0, for u 6= 0, (3.8)

where an instability fulfills R(c) > 0. Equation (3.8) is a polynomial of third order in c
that can be solved using computer algebra [22].
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The mechanism of the ill-posedness can be observed most clearly in the simple case
when Da = 0, α = β. For simplicity we also choose Re = 1, µ2 = µ1, r = 1 and
drop the 5/2-term in the viscosity. A closed form solution for the eigenvalues can be
derived, which yields the following amplification factors

c1 = −2α2, (3.9a)

c2 = −2α2 (φsc − Φs)
2 + µ1Φs

(φsc − Φs)2
, (3.9b)

c3 = 2α2 (1− 2µ1)Φs(1− Φs)− 2(φsc − Φs)
2

(φsc − Φs)2
. (3.9c)

It is now easily observed that the amplification factors c1 and c2 are always negative,
i.e. are stable and correspond to the liquid and particle viscosity damping, respec-
tively. The third amplification c3 is always negative for µ1 ≥ 1/2, but will always be-
come positive for µ1 < 1/2 and grows without bound when Φs → φsc. Hence, the
ill-posedness is rooted in a competition between the collision pressure term and the
particle viscosity and grows like

c3 ∼
2α2

(φsc − Φs)2
. (3.10)

This eigenvalue grows without bound for increasing α and Φs → φsc. Thus, it is nec-
essary to set µ1 ≥ 1/2 in order for the problem to be well-posed.

For the general case with Darcy’s number set to zero and α 6= β, the amplification
factors are

c1 = −α
2 + β2

Re
, (3.11a)

c2 = −rηs
α2 + β2

Re
, (3.11b)

c3 = 2r
(1− Φs)(αβηn − Φsηs(α

2 + β2))− Φs
2(α2 + β2)

ΦsRe(−Φs + Φsr + 1)
. (3.11c)

Now, the necessary condition for well-posedness is

αβηn − Φsηs(α
2 + β2) ≤ 0 for all Φs, (3.12)

which can be rewritten as

−1

2
ηn (α− β)2 +

(
α2 + β2

)(
ηn −

1

2
Φsηs

)
≤ 0 for all Φs, (3.13)

which shows that the worst case scenario is obtained for α = β and gives the nec-
essary criterion, that the particle viscosity must be at least half in size of the collision
pressure for all possible choices of parameters. In case of equality ηn = 1

2
Φsηs the

mode is stable, since the −Φs(α
2 + β2) term has a stabilizing influence, which origi-

nates from the liquid viscosity.
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For the cases when Da > 0 the eigenmodes are given by

c1 =
1

2(Φs − 1)2Re

(
f1 − (α2 + β2)(Φs − 1)2(1 + ηsr)

+
√

(α2 + β2)2(Φs − 1)4(1− ηsr)2 − Φsf1 − 2(α2 + β2)(Φs − 1)2(rηs − 1)f2

)
,

c2 =
1

2(Φs − 1)2Re

(
f1 − (α2 + β2)(Φs − 1)2(1 + ηsr)

−
√

(α2 + β2)2(Φs − 1)4(1− ηsr)2 − Φsf1 − 2(α2 + β2)(Φs − 1)2(rηs − 1)f2

)
,

c3 = 2r
(1− Φs)(αβηn − Φsηs(α

2 + β2))− Φs
2(α2 + β2)

ΦsRe(1− Φs + Φsr)
− r Da Φs

(Φs − 1)2Re(1− Φs + Φsr)
,

where

f1 = DaΦs(Φs(r − 1)− r),
f2 = DaΦs(Φs(r + 1)− r),

with f1 < 0 for physically relevant density ratios are between zero and one. It shows
that the cases Da > 0 contain terms that have only a slightly stabilizing effect of
order O(Da), which is not able to compete with the singular terms in ηn and ηs and
thus they do not change the result in an asymptotic sense for Φs → φsc, unless Da
is artificially chosen to have a specific singular behavior as the maximum packing
fraction is approached, see for example [14] for recent numerical work on related
model equations.

Figure 3 shows the singular behavior of the dispersion relation. Comparison between
the analytic expression (3.11c) and numerical result for different Da values show good
agreement although the numerical results do not use simplifications, e.g. boundary
conditions are non-periodic and nonlinear terms are not eliminated in the computa-
tions. In particular, the comparison shows that different Da values hardly change the
dispersion curve.

3.3 Convection induced instability

If µ1 ≥ 1/2 the unstable modes that previously caused the collision pressure induced
ill-posedness become stable, however, other unstable modes become apparent. An
example of such a mode is shown in Figure 2 (Bottom). In contrast to the case when
µ1 < 1/2, the unstable modes in this case have small positive real parts that do not
grow with α, their modes are non-symmetric and show significant amplifications in φ̂s.
Additionally, if we force φ̂s = 0 they vanish. Moreover, our parameter studies showed
that the instability arises also for vanishing inertial terms. So we set Re = 0 and the

12
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Figure 3: Shown is the dispersion relation of the collision pressure induced ill-
posedness for the plane Couette flow with parameters as in Figure 2(Top). The an-
alytic curve is computed by equation (3.11c). Comparison of the numerical and the
analytical result shows good matching although the numerical simulation uses non-
periodic boundary conditions. The curves for different values of Da are nearly identi-
cal, showing the minor influence of the momentum coupling term on the ill-posedness.

linearized system (2.14) gives

∂tφ̃s + Us∂xφ̃s + Φs∂xũs + Φs∂yṽs = 0, (3.15a)
∂x(Φf ũf ) + ∂y(Φf ṽf ) + ∂x(Φsũs) + ∂y(Φsṽs) = 0, (3.15b)

−∂x(Φf τ̃f 11)− ∂y(Φf τ̃f 12 + φ̃fTf 12)+Φf∂xp̃f = (3.15c)

−Da

[
2Φsφ̃s

Φf

(Uf − Us)−
Φs

2

Φf
2 φ̃f (Uf − Us) +

Φs
2

Φf

(ũf − ũs)
]
,

−∂x(Φf τ̃f 12 + φ̃fTf 12)− ∂y(Φf τ̃f 22) + Φf∂yp̃f = −Da

[
Φs

2

Φf

(ṽf − ṽs)
]
, (3.15d)

−∂x(Φsτ̃s11)− ∂y(Φsτ̃s12 + φ̃sTs12)+∂xp̃c + Φs∂xp̃f = (3.15e)

Da

[
2Φsφ̃s

Φf

(Uf − Us)−
Φs

2

Φf
2 φ̃f (Uf − Us) +

Φs
2

Φf

(ũf − ũs)
]
,

−∂x(Φsτ̃s12 + φ̃sTs12)− ∂y(Φsτ̃s22) + ∂yp̃c + Φs∂yp̃f = Da

[
Φs

2

Φf

(ṽf − ṽs)
]
. (3.15f)

A direct use of the Fourier ansatz is not helpful for this system, as the convective
term Usφ̃s,x would introduce derivatives in the wave-number α. However, the base
state Us = Uf = y makes it suitable for a Kelvin-mode ansatz [33], which consists of
two steps - firstly, using the method of characteristics and, secondly, using a Fourier
transformation. The method of characteristics eliminates the convective part, but in-
troduces time dependencies in previously stationary parts of the equation. Eventually,
the spatial coordinates of the system are transformed into Fourier modes, yielding an
ordinary differential equation in time, that can be studied in order to understand the
stability properties of the original system.
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Therefore, we first use the transformation

ξ = x− yt and y = y, (3.16)

followed by a Fourier ansatz in space only, that is

{φ̃s, ũs, ṽs, ṽf} = {φ̂s(t), ûs(t), v̂s(t), v̂f (t)}eiαξ+iβy, (3.17)

which gives the system

0 = ∂tφ̂s + Φs((iβ − tiα)v̂s + iαûs), (3.18a)

ûf =
−1

iαΦf

(iαΦsûs + (iβ − tiα)(Φf v̂f + Φsv̂s)), (3.18b)

p̂f =
−1

iαΦf

(2α2Φf ûf − (iβ − tiα)(Φf ((iβ − tiα)ûf + iαv̂f )− φ̂s) + Da
Φs

2

Φf

(ûf − ûs)),

(3.18c)

−iα(Φf ((iβ − tiα)ûf + iαv̂f )−φ̂s)− 2Φf (iβ − tiα)2v̂f (3.18d)

+ Φf (iβ − tiα)p̂f + Da
Φs

2

Φf

(v̂f − v̂s) = 0,

−iαΦsηs2iαûs − (iβ − tiα)(Φsηs((iβ − tiα)ûs + iαv̂s) + Φsη
′
sφ̂s + φ̂sηs) + iαpc

(3.18e)

+ iαΦsp̂f −Da
Φs

2

Φf

(ûf − ûs) = 0,

−iα(Φsηs((iβ − tiα)ûs + iαv̂s)+Φsη
′
sφ̂s + φ̂sηs)− 2Φsηs(iβ − tiα)2v̂s (3.18f)

+Φs(iβ − tiα)p̂f −Da
Φs

2

Φf

(v̂f − v̂s) + (iβ − tiα)pc = 0.

This is of the form (
A11 A12

A21 A22

)(
φ̂s
u

)
=

(
−φ̂s,t

0

)
. (3.19)

Thus, using the negative Schur complement S = −(A11 − A12A
−1
22 A21) of A22 we get

the ordinary differential equation

φ̂s,t(t) = S(t)φ̂s(t), (3.20)

with solution to (3.20)

φ̂s(t) = φ̂s(0) · e
∫ t
0 S(T ) dT , (3.21)

so we expect a perturbation to grow for times t with R(S(t)) > 0 and to shrink for
R(S(t)) < 0.

Interestingly, it is possible to obtain analytic expressions for S for special cases. If we
set Da = 0 and denote f1 = Φs − 1, f2 = α2 + f 2

3 and f3 = β − tα, then using
computer algebra [22], we obtain

S =
f1

[
ηn(ηs + η′sΦs)(α

2 − f 2
3 )2 + ηsΦsf2[2αf3(ηs + η′sΦs)− η′nf2]

]
− 2ηsΦs

2f2αf3

2ηsf2

[
f1 (Φsηsf2 − ηnαf3)− f2Φs

2
] .

(3.22)
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From a theoretical point of view, the Kelvin-mode ansatz first transforms a non-Hermitian
differential operator into a Hermitian operator, which allows for a spectral analysis. By
the spectral theorem a Hermitian operator has only real eigenvalues, the eigenfunc-
tions are orthogonal and form a complete set. Hence, the Schur complement S is
always real and combinations of modes α and β only occur in even orders. Contrary
to the analytic approach, the numerical eigenvalues computed by the full problem
posses nonzero imaginary parts.

As one is interested in the growth of an initial perturbation φ̂s(0), it is conventional to
discuss the growth factor defined as [29, 30]

G(t) = sup
φ̂s(0)6=0

∣∣∣∣∣ φ̂s(t)φ̂s(0)

∣∣∣∣∣ =
∣∣∣e∫ t0 S(T ) dT ∣∣∣ . (3.23)

Figure 4 shows the typical behavior of the growth factor for a range of parameter
choices.

Moreover, the long time limit of S with the constitutive laws (2.3) and µ1 = µ2 can be
computed as

lim
t→∞

S =
(1− Φs)Φs(7φsc

2 − 2Φs
2)

[2Φs(µ1 + Φs)− 9Φsφsc + 7φsc
2][2µ1(Φs − 1)Φs − (Φs − φsc)(−7φsc + Φs(2 + 5φsc))]

.

This expression is negative as long as 0 < Φs < φsc and zero for Φs ∈ {0, φsc}, which
shows the growth factor G always becomes zero for t→∞. The expression for µ1 6=
µ2 is more involved, but contains the same behavior. Thus, for all other parameters
fixed and t → ∞, the value of S becomes always negative for our constitutive laws
(2.3).

Yet, this convergence is not uniform in α and β because using the transformation
β = C1α with C1 ∈ R, the Schur complement becomes

S =
f1[ηn(ηs + η′sΦs)(1− f̃ 2

3 )2 + ηsΦsf̃2(2f̃3(ηs + η′sΦs)− η′nf̃2)]− 2ηsΦs
2f̃2f̃3

2ηsf̃2(f1(Φsηsf̃2 − ηnf̃3)− f̃2Φs
2)

,

(3.24)

where f̃2 = 1 + f̃ 2
3 and f̃3 = C1 − t, which is independent of β and α. Thus, only the

mode ratio C1 is of significance for the damping of a perturbation.

Remark

We note that this observation may point to a process that transforms the transient into
infinite growth. It is well-known that nonlinearities transport perturbations from one
mode to another, see e.g. [27]. This process is generally referred to as energy cas-
cade [27] and is also known to occur in multiphase models [3]. Thus, a perturbation
being transported to bigger ratios, such that f̃3 stays constant over time, can grow
infinitely large in magnitude. In order for f̃3 to stay constant the ratio C1 must grow
linear in time, which requires a change of frequency of the perturbation. This means
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an observable instability might shift its Fourier modes from low to high frequencies
over time, which is a mechanism able to produce shocks as is known from the inviscid
Burgers equation [24]. Alternatively to a creation of a shock, the highest frequencies
might be damped by another nonlinear effect, which in turn might result in a turbu-
lent behavior, that transports perturbations into smaller structures, which are being
damped when they approach a critical length scale [27]. This would correspond to the
well-known Kolmogorov’s hypothesis for single phase media [27].

t
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Figure 4: Growth factor for a typical parameter choice of α = 5, β = 8, φsc = 0.63, µ1 =
µ2 = 1,Re = 0 and different solid volume fractions and Darcy’s numbers. The tran-
sient growth behavior can obtain huge values, depending on how close Φs is to the
maximum packing value. For the stated constitutive laws of ηn and ηs and for long
times t the growth is always damped, i.e. G → 0 for t → ∞. Nonzero Darcy’s num-
bers have a stabilizing effect, but do not eliminate the instability completely.

3.3.1 Comparison with the full system

In order to understand the stability behavior of the full system, we have to under-
stand the connection between the growth factor S(t) and the unstable modes seen in
the finite-difference approximation of the full system, considered in their appropriate
spaces.

S depends on the Fourier modes α, β and on time t, whereas the finite-difference
numerical approximation depends on the Fourier modes α, c and the spatial variable
y. Considering the frozen system at t = 0, we would have a constant growth c = S(0).
This in turn together with equation (3.21) implies our growth is of the form

φ̂s = φ̂s(0)ect, (3.25)

but this and equation (3.17) implies

φ̃s = φ̂s(0)ect+iαx+iβy. (3.26)

Now, the ansatz for the FDM is

φ̃s = φ̂s(y)ect+iαx. (3.27)
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Suppose φ̂s(y) is a periodic function, then rewriting φ̂s(y) as a Fourier series on a
domain [0, L] yields

φ̃s =
∞∑

k=−∞

φ̂s(k)ect+iαx+iy2πk/L, (3.28)

where φ̂s(k) represents the k-th Fourier coefficient. Comparison of (3.26) and (3.28)
shows, that our FDM computes the frequencies

β =
2πk

L
, (3.29)

with k ∈ Z and L the domain size. In order for a direct comparison to work, we there-
fore need to change the boundary conditions (3.3) to periodic boundary conditions
and have to consider small domain sizes L. For large L the non-periodic base state
Us = y has a dominant influence on the solution, which makes a direct compari-
son of the non-periodic numeric and periodic analytic results impossible. If the non-
periodicity becomes dominant we do not see single frequencies, but rather a sum of
several modes next to the boundaries, which always occur in pairs - one on each wall
- see Figure 2 (Bottom). In this case the real part of the maximum amplification is
always smaller than S(0), hinting at a damping effect of the boundary.

If we set the collision pressure to zero and use Newtonian viscosity, i.e. ηn = η′n =
η′s = 0 and ηs = 1, then we still get S > 0 for some time. Hence, this instability is
not driven by a collision pressure or a viscosity driven effect, but rather caused by the
convection of the flow.

Analytic results for nonzero Darcy’s number could not be derived. Nevertheless, nu-
merical solutions for Da > 0 showed the momentum coupling term has a stabilizing
effect, but is not capable to completely eliminate this instability. Even for very large
Darcy’s numbers, i.e. Da > 10000, a small transient growth is observable, cf. Figure
4.

Remark

A possible physical explanation of the instability is a resistance to high volume frac-
tions in the model. For fluid region with near maximum packing a small perturbation
is enough to disperse the densely packed particles. However, this instability is of a
highly nonlinear nature for Φs ≈ φsc, as a small change in Φs induces a large change
in viscosity and particle pressure.

4 Poiseuille flow

Two-dimensional Poiseuille flow is another seemingly simple example for a fluid flow.
However, in contrast to Couette flow, it contains four major complications. First, the
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base state is not given in closed form anymore, so a stability analysis is much harder.
Second, it does contain a plug-flow region, where the linearized set of equations
change. Third, the conditions at the yield surface are non-trivial and are derived here
explicitly. Last, the well-known loss-of-hyperbolicity problem [18, 20] that is connected
to the ill-posedness, enters as soon as the velocities of the solid and liquid phases
are different, which is the case for Poiseuille, but not for Couette flow.

4.1 Bingham flow revisited

One of the signatures of our two-phase flow model is that it contains a yield-stress
similar to the classical (single-phase) Bingham fluid. Moreover, the stability proper-
ties of the Poiseuille flow of a Bingham fluid is a well-studied and intensely analyzed
problem, see the review by Frigaard et al.[11] and the discussion in [10, 23, 26]. In ad-
dition, our derivation of the yield-surface boundary conditions of the two-phase model
is guided by the derivation for the classical Bingham model.

It is therefore instructive to revisit the problem of Poiseuille flow for a Bingham fluid, in
particular to specify and motivate the yield-surface conditions for the stability problem
in the two-phase flow case.

Let us consider the governing equation for the Bingham flow, which are the Navier-
Stokes equations with a yield-stress constitutive law [10], i.e.

∇ · u = 0, (4.1a)
∂tu+ (u · ∇)u = ∇ · (τ − pI) , (4.1b)

with

τ =
1

Re

(
1 +

B

|γ̇|

)
γ̇ for |τ | ≥ B/Re, (4.1c)

γ̇ = 0 for |τ | < B/Re. (4.1d)

The boundary conditions for Poisseuille flow are the no-slip boundary conditions

u = 0 at y ∈ {−1, 1} (4.2)

and continuity of the velocity and normal shear-rates at the yield-surface

JuK = Jγ̇ · nK = 0 at y = ±yB. (4.3)

These equations have been non-dimensionalized by scaling the length by 2L, the
velocity by U0, the time by 2L/U0 and stress by ρU2

0 , which introduces the Reynolds
number Re = ρU0L/µ0 and the Bingham number B = τ0L/(µ0U0), where ρ, µ0

and τ0 denote the density, viscosity and yield-stress, respectively. Then, making the
assumption of independence of time t and streamwise direction x of the velocities and
stress, one can derive the non-dimensionalized base state [10]

UB =

1, for 0 ≤ |y| < yB

1−
(
|y|−yB
1/2−yB

)2
, for yB ≤ |y| ≤ 1/2

, (4.4)
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where yB = − B
ReP

and P < 0 is the pressure gradient. Using linearization and
a normal-mode ansatz, one derives the Orr-Sommerfeld-Bingham equation for the
mode v̂, cf. [10]

iαRe
(
(UB − c)

(
∂yyv̂ − α2v̂

)
− v̂∂yyUB

)
= ∂yyyyv̂ − 2α2∂yyv̂ + α4v̂ − 4α2B∂y

(
∂yv̂

|∂yUB|

)
,

(4.5a)

with boundary conditions

v̂ = ∂yv̂ = 0 at y = ±1/2, (4.5b)
v̂ = ∂yv̂ = 0 at y = ±yB, (4.5c)

∂yyv̂ = ± −2iαh

(1/2− yB)2
at y = ±yB. (4.5d)

For a derivation of the base state, the Orr-Sommerfeld-Bingham equation and the
boundary conditions see Appendix A.

The boundary value problem (4.5) has been implemented using a finite difference
method with a central scheme, see Appendix B for details on the scheme. Since the
problem contains a singularity at the yield-surface y = yB, we also implemented
a shooting method with Riccati transformation as used in [10]. Both methods gave
accurate results, but the finite difference method creates a generalized eigenvalue
problem, that can be solved with the help of standard solvers, giving the whole discrete
spectrum at once. While the shooting method avoids spurious eigenmodes, it is much
harder to find all the relevant eigenmodes.

We note first that for the range of values of B, Re and α discussed in the literature,
no unstable mode was found, in agreement with Métivier et al. [23]. However, inspired
by the analysis of the Orr-Sommerfeld system [25], the symmetric boundary condition
∂yv̂ = 0 = ∂yyyv̂ has also been studied by Frigaard et al. [10]. Using these sym-
metric boundary conditions the well-known critical Reynolds number Re = 5772.22 is
approached as B → 0, while for the boundary conditions (4.5) all modes are stable
also as B→ 0, as noted by Métivier et al. [23] which shows that the Orr-Sommerfeld-
Bingham equation is not a canonical generalization of the standard Orr-Sommerfeld
equation.

Figure 5 shows the results for the classical Bingham model. As can be seen from the
spectrum, no eigenvalue has a positive real part, thus the model is linearly stable.

4.2 Two-phase flow model

4.2.1 Base state

The Poiseuille flow ansatz is to consider a stationary problem with no-slip boundary
conditions

us = uf = 0 at y = ±1/2, (4.6)
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Figure 5: Shown is the real and imaginary part of the most unstable mode for B = 10,
Re = 5772.22 and α = 1 as well as the part of the spectrum with the most unstable
modes. (top and bottom, left side) The dispersion relation of the most unstable mode
(bottom, right side).

where all quantities, except for the pressure depend only on y, i.e.

φf = φf (y), φs = φs(y), uf = uf (y), us = us(y), pf = pf (x, y), (4.7)

and, for simplicity, demand the solution to have exactly one plug-flow for 0 ≤ |y| ≤ yB.
At the yield-surface, we demand continuity of the solid and liquid velocities and the
normal shear rates similar to the Bingham flow case, i.e.

JusK = JufK = Jγ̇s · nK = Jγ̇f · nK = 0 at y = ±yB. (4.8)

Note, we did not assume continuity of the tangential shear rates or solid volume frac-
tion, since this would overdetermine the system. For parallel shear flows conditions
(4.8) imply these continuities, which is used in the derivation of the base states. The
base state for the two-phase model has been derived in [1] and it yields a linear liquid
pressure Pf (x) = p1x and a constant collision pressure with free parameters p1 < 0
and pc > 0. We denote by YB the base state solution of the yield-surface yB.

In order to solve for the solid volume fraction and velocities, we use the transformation

y =

(
YB −

1

2

)
ζ +

1

2
, (4.9)

define the shorthand notation

N(Φs) ≡
Φs ηs(Φs)

ηn(Φs)
, (4.10)
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and get the boundary value problem

1

YB − 1
2

∂ζ


(

1
YB− 1

2

∂ζN + Φs p1

)
(1− Φs)

Da Φs
2

 =
p1
(
(YB − 1

2
)ζ + 1

2

)
+N

1− Φs

+
1

ηn
,

(4.11a)

∂ζYB = 0, (4.11b)

for the volume fraction base state Φs and YB with boundary conditions

0 = ∂ζN +

(
YB −

1

2

)
Φs p1 at ζ = 0, (4.11c)

Φs = φsc at ζ = 1, (4.11d)

∂ζΦs = −
2(YB − 1

2
)

5(1− φsc)
Da

1
2φsc(p1YB + µ1)

tanh

(
Da

1
2 φsc

1−φsc YB

) +
2

5

(
YB −

1

2

)
p1 at ζ = 1. (4.11e)

These results can be used in

pc = −ηn(Φs)∂yUs, (4.11f)

Uf =
(∂yN + Φsp1)(1− Φs)

Da Φs
2 + Us, (4.11g)

for the fluid region y > YB with no-slip boundary condition and

Φs = φsc, (4.11h)
∂yUs = 0, (4.11i)

∂yUf =
p1y

1− φsc
, (4.11j)

in the plug-flow region with boundary conditions

JUsK = JUfK = 0 at y = YB, (4.11k)

which yields the solution for the base states of the Poiseuille flow. Figure 6 shows an
exemplary base state with a plug-flow region at the center of the channel.

4.2.2 Boundary conditions for the stability problem

The linearized reduced two-phase system solves for the unknowns φ̂s, v̂s, ûs and v̂f ,
where the last denotes the linearized y-component of velocity of the liquid phase
for both - in the jammed and the liquid region. The corresponding equations have
maximum orders of 0, 2, 2, and 4 + 4. Adding the free-boundary conditions at yB, we
get a minimum number of 13 conditions.

The boundary condition for the plane Poiseuille flow are the no-slip boundary condition
at the wall

uf = us = 0 at y = 1/2, (4.12)
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Figure 6: Shown is the multiphase base state with parameters chosen as p1 = −10,
Da = 1000, I0 = 0.005, µ1 = 1,µ2 = 1.5, φsc = 0.63 and pc = 1.

symmetry around the center of the channel

∂yuf = 0 at y = 0, (4.13)

and continuity of the velocities and shear rates at the yield-surface

JufK = JusK = Jγ̇s · nK = Jγ̇f · nK = 0 at y = yB. (4.14)

Just as in the plane Couette flow case, cf. (3.3), the no-slip conditions (4.12) yield

v̂f = ûs = v̂s = 0 and Φf∂yv̂f + Φs∂yv̂s = 0 at y = 1/2. (4.15)

The symmetry condition (4.13) at the channel center yields

∂yv̂f = 0 at y = 0. (4.16)

Differentiation of equation (2.9a) by y, the symmetry condition ∂yûf = 0 implies

∂yyv̂f = 0 at y = 0. (4.17)

For the conditions at the yield-surface y = yB we note that for any quantity s with base
state S and Fourier-transformed perturbation δŝ, linearizing a condition

JsK = 0 (4.18)

at the yield surface leads to the expression

J∂ySKh̃ = −JŝK, (4.19)

where yb = Yb + δh̃. Therefore, the continuity condition (4.14) gives

JũjK = J∂yUjKh̃, JṽjK = J∂yVjKh̃, J˜̇γsK = J∂yΓsKh̃, J˜̇γfK = J∂yΓfKh̃
(4.20a)

and using the knowledge of the base states (e.g. continuity of ∂yUf ), we obtain

JũjK = 0, JṽjK = 0, (4.20b)

22



at the yield surface y = yB for j ∈ {f, s}.

This implies the boundary conditions

ûs = 0, v̂s = 0, Jv̂fK = 0, (4.21)

at the yield-surface y = yB. We have, due to the continuum hypothesis (4.14) of the
normal shear rates the representation

s(
∂yûs + iαv̂s

∂yv̂s

){
= −

s(
∂yyUs

0

){
h̃,

s(
∂yûf + iαv̂f

∂yv̂f

){
= −

s(
∂yyUf

0

){
h̃.

(4.22a)

Due to γ̇s = 0 in Ωs, we have

∂yv̂s = 0, J∂yv̂fK = 0 at y = yB (4.23a)

as well as the free-boundary conditions

J∂yûsK = −J∂yyUsKh̃ at y = yB. (4.23b)

Using v̂s = ûs = ∂yv̂s = 0 the solid transport equations yields

φ̂s = 0 at y = yB. (4.24)

In summary, we have derived the required 13 conditions, i.e. the wall boundary con-
ditions

v̂f = ûs = v̂s = 0, and Φf∂yv̂f + Φs∂yv̂s = 0, at y = 1/2, (4.25a)

the symmetry conditions

∂yv̂f = ∂yyv̂f = 0 at y = 0, (4.25b)

the yield-surface conditions

ûs = v̂s = 0, (4.25c)
Jv̂fK = 0, (4.25d)
∂yv̂s = J∂yv̂fK = 0, (4.25e)

φ̂s = 0, (4.25f)

at the plug-flow region boundary y = yB and the free-boundary condition

J∂yûsK = −J∂yyUsKh̃, at y = yB. (4.25g)

For the numerical investigations of the above model we combine our experience with
the solution of the stability problem for the Couette flow problem as well as for the
classic Bingham problem, and expand our finite-difference code to also deal with the
singularity at the yield-surface in the two-phase Poiseuille flow. The employed scheme
details are described in Appendix B. We note first, that the two-phase Poiseuille flow
also shows a collision pressure induced ill-posedness as well as a convection induced
instability.
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4.2.3 Collision pressure induced ill-posedness

The collision pressure induced ill-posedness from Section 3.2 can be seen in numer-
ical solutions starting at a ratio of φsηs/ηn smaller than 1/4. This is in contrast to the
Couette flow, where the ill-posedness is already seen for a ratio of 1/2 in the simula-
tions. This can be explained by looking at the analytic criterion (3.13), which shows
that the ill-posedness occurs more likely in regions, where φs is close to maximum
packing fraction. An unstable mode originates at the boundary of the plug-flow re-
gion, where the volume fraction is highest, but it is damped at the outer region, where
the volume fraction is far from the maximum packing fraction. Figure 7 shows such
a mode. Note the spike next to the plug-flow region, which shows that the growth is
strongest there.
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Figure 7: Top: A collision pressure induced growth mode for Poiseuille flow with pa-
rameter values Da = 100,Re = 1, φsc = 0.63, pc = 1, p1 = −10, α = 1000, µ1 =
µ2 = 0.1. Shown are the real value (solid line) and the absolute value (dashed line)
of the mode. As for Couette flow the contribution of φ̃s is negligibly small. The veloc-
ity modes spike next to the yield surface yB and decays rapidly to zero towards the
channel boundary y = 0.5, shown here only until y = 0.02. This demonstrates that
the instability originates in the region of the highest particle concentration, as sug-
gested by the analytic criterion (3.13). Bottom: A convection induced growth mode or
Poiseuille with parameter values as above, except µ1 = µ2 = 1, α = 10. In contrast
to the collision pressure induced instability, φ̃s exhibits the highest amplifications ex-
tending from the channel wall to the yield surface. To observe the small amplifications
of the velocity modes we show only the region between [-0.1,0.1].

This suggest that the sufficient ratio between the viscosity of the solid phase and the
collision pressure to suppress this ill-posedness depends on the base state. Thus,
the normal mode analysis does not yield a sufficient criterion, as in (3.13) for general
flows.
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Figure 8: Shown is the dispersion relation of the collision pressure induced ill-
posedness for the Poiseuille flow with parameters as in Figure 7. The analytic curve
is computed by equation (3.11c) with Φs = 0.62, which has been only derived for the
plane Couette flow. Since numeric and analytic results match well, we believe this
instability has the same origin as explained in the plane Couette flow case.

4.2.4 Convection induced instability

Unless µ1 is set too small, such that the collision pressure induced ill-posedness can
be observed, unstable modes have real parts, which are of order one and have a
similar signature as the convection induced unstable modes from Section 3.3. Figure
7 (Bottom) shows an exemplary unstable mode of that kind. Just as in the Couette
flow case they appear in pairs and are strongest for the region between wall and
plug-flow, where the velocities still change considerably, but φs is already near the
maximum packing fraction. This is to be expected, since a high volume fraction and
strong shearing are driving this instability.

We further note that large Reynolds and small Darcy numbers increase the convection
induced instabilities, but seem not to introduce new instable modes for the Poiseuille
flow case.

4.3 Comparison of single- and multi-phase stability

The single-phase Bingham flow and the multi-phase model showed different stability
behavior. As discussed in Section 4.1, the Bingham flow is unconditionally linearly
stable when used with the correct boundary conditions. For the multi-phase model
of Section 4.2 we found two instabilities: the collision pressure induced ill-posedness
and the convection induced instability.

However, the Bingham flow depends on only two parameters, i.e. the Reynolds num-
ber Re and the Bingham number B. The Reynolds number arises in both models, but
the Bingham number is just contained in the single phase model. As the Bingham
number B has a direct influence on the size of the plug-region and the stress it plays
a similar role as the viscosity of the solid phase ηs and maximum packing parameter
φsc in the multiphase mode. Yet, it seems to miss the ability to model the competition
relative to the collision pressure ηn.

25



Both multi-phase model instabilities originate in mechanisms not contained in the
single-phase model - the ill-posedness originates in the competition of the solid stress
and solid pressure and the convection driven instability stems from the transport of
particles due to convection. The Reynolds number does not play a significant role in
either of the instabilities, which is similar to the single phase model.

5 Conclusion

In this work, we studied the stability properties of a multiphase model for concentrated
suspensions for Couette and Poiseuille flow.

Our linear stability analysis showed two instabilities exhibited by the proposed model
in case of plane Couette flow: a collision pressure driven ill-posedness and a convec-
tion induced instability. An analytic ansatz showed that the ill-posedness stems from a
competition between the solid phase viscosity and the collision pressure and poses a
necessary stability condition on the size of the solid phase viscosity compared to the
collision pressure. This has been reaffirmed by comparison between numerical and
analytical results. Yet, the criterion depends on the base state, so we currently do not
know a sufficient value that holds for general flows.

The convection driven instability has been analyzed using a Kelvin-mode ansatz. The
resulting time dependent ordinary differential equations showed a transient instability.
We note that this might prohibit an experiment from showing the Couette or Poiseuille
flow base state, because of the onset of turbulence or the occurrence of shocks for
highly concentrated suspensions. The consequence of the convection driven instabil-
ity for the studied base states can best be analyzed using a direct numerical simula-
tion of the full model, which will be part of our future work. We also plan on further
analyzing the optimality of criterion (3.13) for general flows.

In case of the Poiseuille flow, we also retrieved the multi-phase instabilities and com-
pared the multiphase model to the stability of the Bingham flow. We also note here,
that since Poiseuille flow for our two-phase model contains different velocities of the
solid and liquid phase, the problem of loss-of-hyperbolicity might arise here too. Our
numerical studies therefore focused on cases with large velocity differences between
solid and liquid phases, as one would expect this transition to occur in those cases.
However, as has been shown in [28, 31], while the loss-of-hyperbolicity and the asso-
ciated ill-posedness can only be observed in the long-wave limit and additionally with
fine meshes, our numerical results did not yield new unstable modes, even for rather
small wave numbers, such as α < 0.01. It remains to be shown if this picture changes
for higher resolutions, smaller viscosity terms or perhaps also different base states.
It would thus be interesting to see if for our two-phase flow model the ill-posedness
can also be connected to the existence of a singular shock, such as has been seen
in applications detailed in Carpio et al. [5] or Bell etal. [2], but more recently also in
connection with other operators studied by Zhou et al. [35] and Cook et al. [6].
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A Bingham-Orr-Sommerfeld boundary conditions

A.1 Base state

In order to derive the Poiseuille flow, we make the ansatz

u = (UB(y), VB(y)), p = Px, (A.1)

and split our domain into a plug-flow and a fluid region, i.e. Ω = Ωf ∪ Ωs.

The continuum equation (4.1) immediately gives VB(y) = 0. This yields

γ̇ =

(
0 ∂yUB

∂yUB 0

)
in Ω, τ =

1

Re

(
1 +

B

|∂yUB|

)(
0 ∂yUB

∂yUB 0

)
in Ωf , (A.2)

and thus |τ | = |τ12|. The equation of motion (4.1) yields P = ∂yτ12 and after integra-
tion

τ12 = Py + c1, (A.3)

which tells us the stress is a linear function of y in Ωf .

The linear behavior of τ12 in Ωf allows for exactly one plug-flow. This can be seen
by considering a region with two plug-flows and a fluid region in between. There are
two cases. Either the stress τ 12 in the fluid region goes from −τ0 to τ0 and is by its
definition no fluid region or it starts and finishes at the same value, which due to the
linearity can only be true for |τ | = τ0 again connecting the two plug-flow regions with
a solid region. On the other side, there must be at least one plug-flow region, as we
know from Newtonian flows with no-slip boundary conditions, the stress crosses the
zero at the channel center. Thus, as we have exactly one plug-flow region, we will call
its upper and lower boundaries h−, h+ ∈ (−1/2, 1/2), respectively.

Integration of equation (A.3) together with |γ̇| = 0 in Ωs and boundary conditions (4.5)
give the system

UB(y) = Re P
y2

2
+ c±2 y + c±3 , (A.4a)

UB(±1/2) = 0, (A.4b)
UB,y(h

±) = 0, (A.4c)
UB(h+) = UB(h−), (A.4d)

with

h+ = −h− = yB = − B

Re P
, (A.5)

and solution

UB(y) =

{
1
2
Re P ((|y| − yB)2 − (yB − 1/2)2) for |y| ≥ yB

−1
2
Re P(yB − 1/2)2 for |y| < yB

. (A.6)
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Choosing

U0 = − µ0

ρL

1

2
P(yB − 1/2)2 (A.7)

gives

UB(y) =

{
1− (|y|−yB)2

(1/2−yB)2
for yB ≤ |y| ≤ 1/2

1 for |y| < yB
(A.8)

as our base state.

Figure 9 shows the base state for the single phase Bingham model as computed from
the relation above.

y
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Figure 9: The base state for the single phase Bingham model with parameters chosen
as Re = 5772.22 and B = 1.

A.2 Linear stability problem

We linearize around the basic flow, i.e. u = UB + δũ.

Let us define

η(U) =
1

Re

(
1 +

B

|γ̇|

)
, (A.9)

then

η(UB + δũ) = η(UB) + δ
∑
i,j

γ̇ij(ũ)
∂η

∂γ̇ij
(UB) +O(δ2) (A.10)

= η(UB)− δ1

2

∑
i,j

γ̇ij(ũ)γ̇ij(UB)
B

Re |γ̇(UB)|3
+O(δ2)

= η(UB) + δη′ +O(δ2),

where

η′ ≡ −1

2

∑
i,j

γ̇ij(ũ)γ̇ij(UB)
B

Re |γ̇(UB)|3
. (A.11)
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Further, we have

τij = η(UB + δũ)γ̇ij(UB + δũ) (A.12)
= η(UB)γ̇ij(UB) + δ(η′γ̇ij(UB) + η(UB)γ̇ij(ũ)) +O(δ2)

= τij(UB) + δτ ′ij +O(δ2),

where

τ ′ij ≡ η′γ̇ij(UB) + η(UB)γ̇ij(ũ), (A.13)

and

τ(UB + δũ) = τ(UB) + δ
1

2

∑
i,j τ

′
ij(ũ)τij(UB)√
τ(UB)

+O(δ2). (A.14)

Thus, the yield criterion is also perturbed and we need to make the ansatz H =
±yb ± δh for the position of the yield surface.

Linearizing the equations of motions via u = UB + δũ, p = Px + δp̃ and subtracting
the base state as well as using the continuum equation, yields

∇ · ũ = 0, (A.15a)

∂tũ+ UB∂xũ+ ṽ∂yUB = −∂xp̃+
∆ũ

Re
+

2B∂xxũ

Reγ̇(UB)
, (A.15b)

∂tṽ + UB∂xṽ = −∂yp̃+
∆ṽ

Re
+

B2∂yyṽ

Reγ̇(UB)
+

2B∂yṽ

Re
∂y

(
1

γ̇(UB)

)
. (A.15c)

Inserting the ansatz (which differs slightly from the ansatz used elsewhere in this
paper to obtain the results found in the literature)

(ũ, ṽ, p̃) = (û(y), v̂(y), p̂(y))eiα(x−ct) (A.16)

into the linearized equations gives

iαû+ ∂yv̂ = 0, (A.17a)

−iαcû+UBiαû+ v̂∂yUB = −iαp̂− α2û

Re
+
∂yyû

Re
− 2Bα2û

Re|∂yUB|
, (A.17b)

−iαcv̂ +UBiαv̂ = −∂yp̂−
α2v̂

Re
+
∂yyv̂

Re
+

2B∂yyv̂

Re|∂yUB|
+

2B∂yv̂

Re
∂y

(
1

|∂yUB|

)
.

(A.17c)

Eliminating all û through v̂ via the continuum equation results in

c ∂yv̂ − UB ∂yv̂ + v̂∂yUB = −iαp̂− αi ∂yv̂

Re
+
i ∂yyyv̂

αRe
− 2Bαi ∂yv̂

Re|∂yUB|
, (A.18a)

−iαcv̂ + UBiαv̂ = −∂yp̂−
α2v̂

Re
+
∂yyv̂

Re
+

2B∂yyv̂

Re|∂yUB|
+

2B∂yv̂

Re
∂y

(
1

|∂yUB|

)
.

(A.18b)

Finally, eliminating p̂ via rewriting the first equation and inserting into the second gives
the so-called Orr-Sommerfeld-Bingham equation

iαRe[(UB − c)(∂yyv̂ − α2v̂)− v̂ ∂yyUB] =
(
∂yy − α2

)2
v̂ − 4α2B ∂y

(
∂yv̂

|∂yUB|

)
.

(A.19)
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A.2.1 Boundary conditions

The no-slip boundary condition at the wall yields

v̂(±1/2) = 0, ∂yv̂(±1/2) = 0, (A.20)

with usage of the continuum equation.

At the yield surface, we have due to the normal shear rate continuity

0 = γ̇i2(UB + δũ, yB + δh) = γ̇i2(UB,±yB)± δh ∂yγ̇i2(UB,±yb) + δγ̇i2(ũ,±yB)
(A.21)

= ± δh ∂yγ̇i2(UB,±yb) + δγ̇i2(ũ,±yB),

and thus

γ̇i2(ũ,±yB) = ∓h ∂yγ̇i2(UB,±yb), (A.22)

because γ̇i2(UB,±yb) = 0.

Hence, we have

∂yṽ(x,±yB, t) = 0, (A.23a)

∂yũ(x,±yB, t) + ∂xṽ(x,±yB, t) = ∓h ∂yγ̇12(UB,±yb) =
±2h

(1/2− yB)2
. (A.23b)

This yields with normal mode ansatz and usage of the continuum equation

∂yv̂ = 0, ∂yyv̂ − α2v̂ =
∓iα2h

(1/2− yB)2
. (A.24)

In the plug-flow bulk region (x, y) ∈ Ωs, we have

0 = γ̇(x, y) (A.25)

= ∇(UB(x, y) + δũ(x, y)) +∇(UB(x, y) + δũ(x, y))T ,

and to order O(δ)

∂xũ(x, y) = 0, (A.26a)
∂yṽ(x, y) = 0, (A.26b)

∂yũ(x, y) + ∂xṽ(x, y) = 0. (A.26c)

Using the normal mode ansatz, this becomes

û(x, y) = 0, (A.27a)
∂y v̂(x, y) = 0, (A.27b)
v̂(x, y) = 0. (A.27c)
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Now using the continuity of u at the yield surface, we get

0 = Ju(x, yB + δh̃)K = Ju(x, yB) + δh̃ ∂yUB(x, yB) + δũ(x, yB)K (A.28)

= UB(x, yB)+ −UB
−(x, yB) + δh̃ ∂y(UB

+(x, yB)

−UB
−(x, yB)) + δ(ũ+(x, yB)− ũ−(x, yB)).

Using UB
+(yB) = UB

−(yB), we get

h̃ ∂y
(
UB

+(x, yB)−UB
−(x, yB)

)
+ (ũ+(x, yB)− ũ−(x, yB)) = 0. (A.29)

We have ∂y
(
UB

+(x, yB)−UB
−(x, yB)

)
= 0, so

ũ+(x, yB) = ũ−(x, yB), (A.30)

and since ũ− = û−(y)eiα(x−ct) = 0 due to û−(y) = 0, we have

ũ+(x, yB) = 0. (A.31)

Overall we have the boundary conditions

v̂ = ∂yv̂ = 0 at y = 1/2, (A.32a)
v̂ = ∂yv̂ = 0 at y = yB, (A.32b)

∂yyv̂ =
−iα2h

(1/2− yB)2
at y = yB. (A.32c)

B Numerical scheme

The basic idea of the scheme is to use neighboring half points for the approximation
of the derivatives. Suppose we have mesh points xi ∈ R with constant width h =
xi+1 − xi and suppose we have a function f(x) with fi := f(xi). Let us further define
the half-points xi+1/2 := (xi + xi+1)/2 and fi+1/2 := (fi+1 + fi)/2 then we define the
discrete derivatives as

∇hfi+1/2 = (fi+1 − fi)/h, (B.1a)
∇hfi = (fi+1/2 − fi−1/2)/h =(fi+1 − fi−1)/(2h), (B.1b)
∇2
hfi = (∇hfi+1/2 −∇hfi−1/2)/h =(fi+1 − 2fi + fi−1)/h

2, (B.1c)
∇2
hfi+1/2 = (∇hfi+1 −∇hfi)/h =(fi+2 − fi+1 − fi + fi−1)/(2h

2), (B.1d)
∇3
hfi = (∇2

hfi+1/2 −∇2
hfi−1/2)/h =(1/2fi+2 − fi+1 − fi−1 + 1/2fi−2)/h

3,
(B.1e)

∇3
hfi+1/2 = (∇2

hfi+1 −∇2
hfi)/h =(fi+2 − 3fi+1 + 3fi − fi−1)/h3, (B.1f)

∇4
hfi = (∇3

hfi+1/2 −∇3
hfi−1/2)/h =(fi+2 − 4fi+1 + 6fi − 4fi−1 + fi−2)/h

4,
(B.1g)

which is just the standard central scheme of second order for entire points.

For the multiphase model we additionally used a staggered grid scheme, where the
velocities ûs, v̂f , v̂s live on entire points and the volume fraction on half points, i.e.
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ûsi := ûs(xi) and φ̂sj := φ̂s(xj+1/2). This approach evades a decoupling of odd and
even points in the volume fraction, that has been observed when using the standard
central scheme for the transport equation (2.14a) in the multiphase model.

After discretization of system (2.14) and possibly equation (2.16), we receive two
matrices. The first matrix contains the spatial derivatives and the second matrix the
discretization for the time mode c, so that we get a system of the form

Av = cBv, (B.2)

which has been solved using the generalized eigenvalue solvers in Matlab.

The boundary conditions are implemented using the ghost-point method and they are
explicitly eliminated before solving the generalized eigenvalue problems. This circum-
vents the appearance of pseudo-eigenvalues stemming from the ghost-points, which
can be of any value, even infinity and do not give new insight into the stability of the
system.

As the system is complex and its implementation prone to errors, we looked for a pos-
sible validation method. We first tested our scheme for the Newtonian Couette-flow
problem leading to the corresponding well-studied Orr-Sommerfeld equation [25] as
well as for the non-Newtonian case leading to the Orr-Sommerfeld-Bingham equa-
tion [10].

For another independent validation we neglect the convective term ∂x(Usφ̂s) and set
Re = 0. Then the Couette flow permits an analytic solution. Using the Fourier ansatz
eikx+i`y−imt in system (2.7), we are able to derive an algebraic system. The derived
algebraic system and the numerical approximation show excellent agreement.
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