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Abstract

In this paper we investigate linear parabolic, second-order boundary value

problems with mixed boundary conditions on rough domains. Assuming only

boundedness/ellipticity on the coefficient function and very mild conditions on

the geometry of the domain – including a very weak compatibility condition

between the Dirichlet boundary part and its complement – we prove Hölder

continuity of the solution in space and time.

1 Introduction

This paper is concerned with parabolic initial-boundary value problems including mixed

boundary conditions of the type

u′(t, x)− div(µ(x)∇u)(t, x) = f(t, x), in (0, T )× Ω, (1)

u(t, x) = 0, on (0, T )×D,
µ(x)(∇u)(t, x) · ν(x) = 0, on (0, T )×Υ,

u(0, x) = u0, in Ω,

where D ⊂ ∂Ω and Υ = ∂Ω \ D are Dirichlet and Neumann boundary parts for the

domain Ω ⊂ Rd with outer normal vectors ν and d ≥ 2. We show that both for all f ∈
Ls((0, T );Lp(Ω)), with p ∈ (d

2
,∞) and for all f ∈ Ls((0, T );W−1,q

D (Ω)), with q ∈ (d,∞),

and s sufficiently large, the problem is well-posed and there exists a β > 0 such that the

solution satisfies u ∈ Cβ((0, T )×Ω), that is the solution is Hölder continuous in space and

time.

Hölder continuity is one of the classical features in the theory for parabolic equations,

where we refer to the initial work of Nash and Moser, [Nas], [Mos2], [Mos1] and to the

extensive theory for parabolic initial-boundary value problems developed in the monograph

[LSU]. One of the main reasons for proving Hölder estimates is their usefulness in the

investigation of nonlinear problems. In [LSU, p. 9] the domain Ω is assumed to be ‘piecewise

C1 with nonzero interior angles’. In the standard work of Lieberman [Lie], the domain is

assumed to be Lipschitz. The main novelty of our results lies in reducing the assumptions

on the parts D and Υ of the boundary ∂Ω to include rough settings. For the Dirichlet part

D, we merely require the outer volume condition (see e.g. [KS, Chapter II Theorem B.4]),

which is classical for the elliptic pure Dirichlet problem. In particular, the domain may

be rough in that the inner volume condition is not required. The second achievement is

that we can considerably weaken the conditions on the relative boundary of the Dirichlet

and Neumann boundary part in that we replace the geometrical condition established in

[Grö] (compare also [GKR] [HiR], [Gri1], [Gri2]) by a measure theoretic one. Roughly

speaking, it states that in balls around points in the intersection D ∩ Υ, the Dirichlet

boundary part is not rare (in a certain quantitative sense) with respect to the boundary

measure, see (2) below. This reflects the fact that Hölder continuity for the elliptic Dirichlet

problem also requires only a measure theoretic assumption [Sta]. Our framework is thus

much broader than the classical one and allows for interesting new cases. In particular,

the Dirichlet boundary part need not be (part of) a continuous boundary in the sense of
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Figure 1: The light coloured part of the boundary carries Dirichlet boundary conditions,

the dark coloured part has Neumann boundary conditions.

[Gri, Definition 1.2.1.1] and the domain is not required to ‘lie on one side of the Dirichlet

boundary part’, see Figure 1.

Under these more general assumptions on the geometry, we essentially reproduce the

classical parabolic Hölder theory in [LSU], however, in our case, in the standard Hölder

spaces, but with the coefficients independent of time. This rests on the fact that our

prescribed Dirichlet data are identically zero, whereas in [LSU], more general data are

admitted.

Our paper is an extension of the results provided in [ER2], where the geometric setting

was developed and where Hölder regularity for the elliptic problem as well as Gaussian

Hölder kernel bounds on the semigroup were proved. We show that space-time Hölder

continuity for the parabolic problem with f ∈ Ls((0, T );Lp(Ω)) follows essentially by em-

ploying maximal parabolic regularity and interpolation.

The second main point of this paper is to study the case f ∈ Ls((0, T );W−1,q
D (Ω))

and provide a similar result. A motivation for including distributional right-hand-sides is

given at the beginning of Section 3 and we refer to Section 2 for a precise definition of

W−1,q
D (Ω). The method of proof transfers from the Lp-setting to the W−1,q

D -setting due to

an abstract relation of the fractional powers of the elliptic operator considered in Lp and

in W−1,q
D , respectively, see Lemma 4.7. We prove this property under slightly less general

assumptions on D and on the coefficient function µ, cf. Assumptions 4.1 and 4.3.

The outline of the paper is as follows. In Section 2 we provide basic definitions, the main

assumptions and preliminary results. In Section 3 we study problem (1) in Ls((0, T );Lp(Ω))

and prove that solutions are Hölder continuous in space and time. In Section 4 a similar

result is proved for f ∈ Ls((0, T );W−1,q
D (Ω)).
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2 Preliminary results

Fix d ∈ {2, 3, . . .}. Let Ω ⊂ Rd be a bounded domain and let D be a closed subset of ∂Ω.

We define

C∞D (Ω) := {w|Ω : w ∈ C∞c (Rd) and suppw ∩D = ∅}.
Note that if D = ∂Ω, then C∞∂Ω(Ω) = C∞c (Ω). For all p ∈ [1,∞), we denote the closure

of C∞D (Ω) in W 1,p(Ω) by W 1,p
D (Ω), where W 1,p(Ω) is the usual complex Sobolev space of

order 1. If p ∈ (1,∞], then the space W−1,p
D (Ω) is the anti-dual of W 1,p′

D (Ω) in Lp(Ω), where

p′ is the conjugate index for p, so 1
p

+ 1
p′ = 1. The domain Ω remains fixed throughout the

paper, and hence we omit Ω in the notation of all function spaces. For example, we write

Lp instead of Lp(Ω).

We always assume that the coefficient function µ : Ω → Rd×d is bounded, measurable

and satisfies the ellipticity condition, that is, there exists a µ > 0 such that

Re
d∑

i,j=1

µij(x) ξi ξj ≥ µ |ξ|2

for almost all x ∈ Ω and for all ξ ∈ Cd, where µij(x) denote the matrix coefficients of µ(x)

in Euclidean coordinates. We define the sesquilinear form l : W 1,2
D ×W 1,2

D → C by

l(u, v) =

∫

Ω

d∑

i,j=1

µij (∂iu) (∂jv).

Then l is closed and sectorial. Next we define A : W 1,2
D → W−1,2

D by

〈Au, v〉 = l(u, v).

If q ∈ (2,∞), then define the operator Aq : Dom(Aq)→ W−1,q
D by

Dom(Aq) = {u ∈ W 1,2
D : Au ∈ W−1,q

D }

and Aqu = Au for all u ∈ Dom(Aq). We consider Aq as an unbounded operator in W−1,q
D .

Similarly, let A be the m-sectorial operator associated with l in L2.

Remark 2.1. If Ω satisfies suitable regularity conditions, then the elements u ∈ Dom(A)

satisfy the conditions u|D = 0 in the sense of traces and ν · (µ∇u) = 0 on ∂Ω \ D in

a generalized sense, cf. [Cia, Chapter 1.2], [GGZ, Chapter II.2]) or [Lio, Chapter 3.3.2].

Thus, the operator A realizes mixed boundary conditions and provides solutions for (1) in

a generalized sense.

We call D the Dirichlet (boundary) part and

Υ := ∂Ω \D

the Neumann (boundary) part of ∂Ω.

It is easy to see that the form l satisfies the Beurling–Deny criteria (see [EMR, Corol-

lary 2.17], [HKR, Section 2.3] or [Ouh, Section 4.3]). Hence the semigroup S generated by

3



−A extends consistently to a contraction semigroup Sp in Lp(Ω) for all p ∈ [1,∞] and Sp

is a C0-semigroup for all p ∈ [1,∞). Let −Ap denote the generator of Sp. If p ∈ (2,∞)

then Dom(Ap) = {u ∈ Dom(A) ∩ Lp(Ω) : Au ∈ Lp(Ω)} and if p ∈ [1, 2) then Ap is the

closure of A. If no confusion is possible, then we write S = Sp.

We denote by

E = {x = (x̃, xd) : −1 < xd < 1 and ‖x̃‖Rd−1 < 1}

the open cylinder in Rd. Its lower half is denoted by E− = {x ∈ E : xd < 0} and

P = E ∩ {x ∈ Rd : xd = 0}

is its midplate. Furthermore, for all n ∈ N and x ∈ Rn let Bn
R(x) denote the ball in Rn

with radius R and centre x. By Hn we denote the n-dimensional Hausdorff measure. We

denote the volume of a measurable subset F ⊂ Rd by |F | and the volume of a measurable

subset F ⊂ Rd−1 by mesd−1(F ).

Let Ω ⊂ Rd be open, M ⊂ ∂Ω and α ∈ (0, 1]. Then, following [KS, Definition II.C.1]

and [LSU, Section 1.1], we say that M is of class (Aα) if

|Bd
R(x) \ Ω| ≥ α |Bd

R(x)|

for all R ∈ (0, 1] and x ∈ M . It is not hard to see that the boundary of any Lipschitz

domain is of class (Aα) for a suitable α > 0. Finally, let us recall the concept of a positive

operator, cf. [Tri, Subsection 1.14.1].

Definition 2.2. A densely defined operator B on a Banach space X is called positive, if

there is a c > 0 such that

‖(B + λ)−1‖L(X) ≤
c

1 + λ

for all λ ∈ [0,∞).

We next introduce three assumptions on the domain Ω and its boundary ∂Ω. Recall

that Υ = ∂Ω \D is the Neumann part of ∂Ω.

Assumption 2.3. For all x ∈ Υ there is an open neighbourhood Ux and a bi-Lipschitz

map φx from a neighbourhood of Ux onto an open subset of Rd, such that φx(Ux) = E,

φx(Ω ∩ Ux) = E−, φx(∂Ω ∩ Ux) = P and φx(x) = 0.

Assumption 2.4. There is an α > 0 such that the set D is of class (Aα).

Assumption 2.5. Let ∂Υ be the boundary of Υ in ∂Ω. For all x ∈ ∂Υ, there are c0 ∈ (0, 1)

and c1 > 0 such that

mesd−1{z̃ ∈ Bd−1
R (ỹ) : dist(z̃, φx(Υ ∩ Ux)) > c0R} ≥ c1R

d−1 (2)

for all R ∈ (0, 1] and ỹ ∈ Rd−1 with (ỹ, 0) ∈ φx(∂Υ ∩ Ux), where Ux and φx are as in

Assumption 2.3.

We would like to remark on two consequences of these assumptions.
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Remark 2.6. Assumptions 2.3 and 2.4 exclude the presence of cracks in Ω as these cracks

would include boundary points which satisfy neither the (Aα)-condition nor do they allow

for a Lipschitz chart satisfying Assumption 2.3.

Remark 2.7. Assumption 2.5 implies the ‘lower bound’ in the Ahlfors–David condition

(cf. [JW, Chapter II]), i.e. there is a č1 > 0 such that

Hd−1(D ∩Bd
R(x)) ≥ č1R

d−1

for all x ∈ D and R ∈ (0, 1]. See also [ER2, Lemma 5.4].

In the sequel we collect results of foregoing papers which will enable us to prove

parabolic Hölder estimates. The following result was shown in [ER2, Theorem 1.1].

Theorem 2.8. Let Ω ⊂ Rd be a bounded domain and D a closed subset of the boundary

∂Ω. Suppose that Assumptions 2.3, 2.4 and 2.5 are valid. Then for all q ∈ (d,∞) there

exists a κ > 0 such that Dom(Aq) ⊂ Cκ.

The next theorem concerns properties of Ap and the semigroup S generated by −A.

Theorem 2.9. Let Ω ⊂ Rd be a bounded domain and D a closed subset of the boundary

∂Ω. Suppose that Assumption 2.3 holds true. Then one has the following.

(a) For all p ∈ (1,∞) and λ0 > 0 the operator Ap + λ0 has a bounded H∞-calculus. In

particular, Ap + λ0 is a positive operator with bounded imaginary powers.

(b) If p ∈ (1,∞), then Ap has maximal parabolic Ls((0, T );Lp)-regularity.

(c) The semigroup S has a kernel K satisfying Gaussian upper bounds. Stronger: for

all ω > 0 there are b, c > 0 such that

|Kt(x, y)| ≤ c t−d/2 e−b
|x−y|2

t eωt (3)

for all x, y ∈ Ω and t > 0.

(d) For all ω > 0 there exists a c > 0 such that

‖St‖L(Lp,Lr) ≤ ct−
d
2

( 1
p
− 1
r

)eωt (4)

for all t ∈ (0,∞) and p, r ∈ [1,∞] with p ≤ r.

Proof. Since Sp is a contraction semigroup, Statement (a) follows from [Cow, LX, LeM]

and Statement (b) from [Lam].

By [ER1, Theorem 3.1] there are b, c, ω > 0 such that (3) is valid for all x, y ∈ Ω and

t > 0. Hence there are c, ω > 0 such that (4) is valid for all t ∈ (0,∞) and p, r ∈ [1,∞]

with p ≤ r. Since S is a contraction semigroup on L2, the bounds on ‖St‖L(L2,L∞) can be

improved by using [Ouh, Lemma 6.5] and there exists a c > 0 such that ‖St‖L(L2,L∞) ≤
ct−d/4(1 + t)d/4 for all t > 0. Duality gives that there exists a c > 0 such that

‖St‖L(L1,L∞) ≤ ct−d/2(1 + t)d/2 ≤ cε−d/2t−d/2eεdt/2

for all t > 0 and ε ∈ (0, 1]. Since |Kt(x, y)| ≤ ‖St‖1−ε
L(L1,L∞)|Kt(x, y)|ε the Gaussian bounds

of [ER1, Theorem 3.1] give Statement (c). Then Statement (d) follows directly from

Statement (c).
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The last two statements in the following theorem are corollaries to the results in [ER2].

Theorem 2.10. In addition to the assumptions of Theorem 2.9, suppose that Assump-

tions 2.4 and 2.5 are valid. Then one has the following.

(a) The kernel K of the semigroup S satisfies Gaussian Hölder kernel bounds, i.e. there

are κ∗, b, c, ω > 0 such that

|Kt(x, y)−Kt(x
′, y′)| ≤ c t−d/2

( |x− x′|+ |y − y′|
t1/2

)κ∗
e−b

|x−y|2
t eωt (5)

for all x, x′, y, y′ ∈ Ω and t > 0 with |x− x′|+ |y − y′| ≤ t1/2.

(b) There exists a c > 0 such that

‖St‖L(Lp,Cκ) ≤ c t−
d
2p
−κ

2 eωt

for all p ∈ [1,∞], κ ∈ (0, κ∗] and t ∈ (0,∞), where κ∗ and ω are as in (a).

(c) Let κ∗ be as in (a). Then

Dom
(
Aθp
)
↪→ Cκ.

for all p ∈ [1,∞), κ ∈ (0, κ∗] and θ ∈ ( d
2p

+ κ
2
,∞).

Proof. Statement (a) was shown in [ER2, Theorem 7.5]. We next show Statement (b).

Let u ∈ Lp and let x, x′ ∈ Ω with 0 < |x− x′| ≤ 1. Let t > 0. We consider two cases.

Case 1. Suppose that |x− x′| ≤ t1/2.

Then (5) implies that

|(Stu)(x)− (Stu)(x′)| ≤
∫

Ω

|Kt(x, y)−Kt(x
′, y)| |u(y)| dy

≤ c
( |x− x′|

t1/2

)κ ∫

Ω

t−d/2e−b
|x−y|2

t eωt|u(y)| dy

≤ c
( |x− x′|

t1/2

)κ
t−

d
2p eωt‖u‖Lp ,

where the last step follows from the Hölder inequality.

Case 2. Suppose that |x− x′| ≥ t1/2.

Then trivially,

|(Stu)(x)− (Stu)(x′)| ≤ 2‖Stu‖L∞ ≤ 2ct−
d
2p eωt‖u‖Lp ≤ 2c

( |x− x′|
t1/2

)κ
t−

d
2p eωt‖u‖Lp ,

where in the second step (4) was used with r =∞.

A combination of both cases implies Statement (b).

Statement (c) follows from Statement (b) and the integral representation

B−θ =
1

Γ(θ)

∫ ∞

0

tθ−1e−tB dt,

(see [Paz, (2.6.9)]), applied to B = Ap +ω+ 1. We obtain Dom((Ap +ω+ 1)θ) ↪→ Cκ. But

Dom((Ap + ω + 1)θ) = Dom
(
Aθp
)

with equivalent norms.

Remark 2.11. By Theorem 2.9(a) the operator Ap+1 admits bounded imaginary powers.

Hence

Dom(Aθp) = [Lp,Dom(Ap + 1)]θ

by [Tri, Theorem 1.15.3], if in addition θ < 1. So [Lp,Dom(Ap)]θ ↪→ Cκ by Theorem 2.10(c).
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3 Hölder regularity for parabolic problems in Lp

We interpret parabolic problems of the form (1) as the abstract Cauchy problems associated

to A. Our first theorem is the following.

Theorem 3.1. Adopt the notation and assumptions as in Theorem 2.10. Let κ∗ be as in

Theorem 2.10(a). Let T > 0 and write J = (0, T ). Let p ∈ (d
2
,∞), κ ∈ (0, κ∗], θ ∈ (0, 1)

and s ∈ (1,∞). Suppose that
d

2p
+
κ

2
< θ < 1− 1

s
.

Then there are c > 0 and β ∈ (0, 1) such that the following is valid. Let f ∈ Ls(J ;Lp) and

u0 ∈ Xs,p := (Lp,Dom(Ap))1− 1
s
,s. Then any solution u of the equation

u′ + Au = f ∈ Ls(J ;Lp), u(0) = u0, (6)

belongs to Cβ(J ;Cκ) and

‖u‖Cβ(J ;Cκ) ≤ c(‖f‖Ls(J ;Lp) + ‖u0‖Xs,p),

where β = 1− 1
s
− θ.

Note that

Cβ(J ;Cκ) ⊂ Cmin(β,κ)(J × Ω).

In preparation for the proof of this theorem, we first recall the notion of maximal

parabolic regularity.

Definition 3.2. Let s ∈ (1,∞) and let X be a Banach space. Assume that B is a densely

defined closed operator inX. Let T > 0 and set J = (0, T ). We say thatB satisfies maximal

parabolic Ls(J ;X) regularity, if there is an isomorphism which maps every f ∈ Ls(J ;X)

to the unique function u ∈ W 1,s(J ;X) ∩ Ls(J ; Dom(B)) satisfying

u′ +Bu = f, u(0) = 0.

Remark 3.3. We recall the following results associated to Definition 3.2.

• The property of maximal parabolic Ls(J ;X) regularity of an operator B is indepen-

dent of the summability index s ∈ (1,∞) and the choice of T for the interval J , cf.

[Dor]. We will say for short that B admits maximal parabolic regularity on X.

• If an operator satisfies maximal parabolic regularity on a Banach space X, then its

negative generates an analytic semigroup on X, cf. [Dor]. In particular, a suitable

left half-plane belongs to its resolvent set.

• Let X be a Banach space and let s ∈ (1,∞) and T > 0. Set J = (0, T ). Let B be

an operator in X which admits maximal parabolic regularity. Then there exists a

c > 0 such that for all f ∈ Ls(J ;X) and u0 ∈ (X,Dom(B))1− 1
s
,s there exists a unique

u ∈ W 1,s(J ;X) ∩ Ls(J ; Dom(B)) such that

u′ +Bu = f, u(0) = u0.
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Moreover,

‖u‖W 1,s(J ;X)∩Ls(J ;Dom(B)) ≤ c(‖f‖Ls(J ;X) + ‖u0‖(X,Dom(B))
1− 1

s ,s
),

cf. [Ama3, Proposition 2.1 (i)⇒(iii)].

The space of maximal parabolic regularity allows for the following embedding results.

Lemma 3.4. Let X, Y be Banach spaces and assume that Y is continuously embedded

into X. Let T > 0 and set J = (0, T ).

(a) If s ∈ (1,∞), then

W 1,s(J ;X) ∩ Ls(J ;Y ) ↪→ C(J ; (X, Y )1− 1
s
,s).

(b) If s ∈ (1,∞) and θ ∈ (0, 1− 1
s
), then

W 1,s(J ;X) ∩ Ls(J ;Y ) ↪→ Cβ(J ; (X, Y )θ,1),

where β = 1− 1
s
− θ.

Proof. The first part of the lemma is proved in [Ama1, Chapter III, Theorem 4.10.2].

In order to prove (b), we first note that

‖w(t1)− w(t2)‖X = ‖
∫ t2

t1

w′(t) dt‖X ≤
∫ t2

t1

‖w′(t)‖X dt

≤
(∫ t2

t1

‖w′(t)‖sX dt
)1/s

|t1 − t2|1−1/s

≤
(∫

J

‖w′(t)‖sX dt
)1/s

|t1 − t2|1−1/s

≤ ‖w‖W 1,s(J ;X)|t1 − t2|1−1/s

for all w ∈ W 1,s(J ;X) and t1, t2 ∈ J with t1 < t2. Moreover, since 0 < θ < 1 − 1
s
, the

reiteration theorem [Tri, Theorem 1.10.2] gives

(X, Y )θ,1 = (X, (X, Y )1− 1
s
,s)λ,1,

where λ := θ
1− 1

s

< 1. Then β = (1− λ)(1− 1
s
) and

‖w(t1)− w(t2)‖(X,Y )θ,1

|t1 − t2|β
≤ ‖w(t1)− w(t2)‖1−λ

X

|t1 − t2|β
( 2∑

j=1

‖w(tj)‖(X,Y )
1− 1

s ,s

)λ

≤
(‖w(t1)− w(t2)‖X

|t1 − t2|1−
1
s

)1−λ
2
(
sup
t∈J
‖w(t)‖(X,Y )

1− 1
s ,s

)λ

≤ 2cλ ‖w‖W 1,s(J ;X)∩Ls(J ;Y ),

where c is the norm of the inclusion in Statement (a).
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Remark 3.5. As (a), also (b) in Lemma 3.4 is known, cf. [Ama2, Theorem 3], but our

proof is elementary.

Proof of Theorem 3.1. By Theorem 2.9(b) the operator Ap has maximal parabolic reg-

ularity in Lp. Therefore the third point in Remark 3.3 gives that the solution u of (6)

belongs to the space W 1,s(J ;Lp) ∩ Ls(J ; Dom(Ap)) with the estimate

‖u‖W 1,s(J,Lp)∩Ls(J ;Dom(Ap)) ≤ c(‖f‖Ls(J ;Lp) + ‖u0‖Xs,p)

for a suitable c > 0. Putting X := Lp and Y := Dom(Ap), Lemma 3.4(b) gives u ∈
Cβ(J ; (Lp,Dom(Ap))θ,1) including the estimate

‖u‖Cβ(J ;(Lp,Dom(Ap))θ,1) ≤ c1 ‖u‖W 1,s(J,Lp)∩Ls(J ;Dom(Ap)) ≤ c c1(‖f‖Lr(J ;Lp) + ‖u0‖Xs,p) (7)

for a suitable c1 > 0. Since Ap + 1 is a positive operator on Lp, we have the continuous

embedding

(Lp,Dom(Ap))θ,1 = (Lp,Dom(Ap + 1))θ,1 ↪→ Dom
(
(Ap + 1)θ

)
= Dom(Aθp)

by [Tri, Theorem 1.15.2(d)]. This, combined with (7) and Theorem 2.10(c), gives the

claim.

4 Hölder regularity for parabolic problems in W−1,q
D

The treatment of parabolic equations in Lp spaces is quite common; let us therefore start

this section with some motivation for the consideration of parabolic equations in W−1,q
D . If

the right hand side of the equation (considered at any time point) has a Lebesgue density

in the domain and if the boundary condition is either homogeneous or purely Dirichlet,

then, e.g. Lp spaces are adequate. Naturally, spaces of type W−1,q come into play when

the right-hand side is given by a distributional object, as e.g. surface charge densities

or thermal sources, concentrated on a (d − 1)-dimensional surface. These spaces may

also be adequate for studying inhomogeneous Neumann boundary conditions, see [Lio,

Chapter 3.2], for example, if the right-hand-side in the first equation in (1) is given by

f ∈ Ls(J ;Lm0) and 0 on the right hand side of the third equation in (1) is replaced by

a function g ∈ Ls(J ;Lm1(Υ)) with suitable m0(d, q),m1(d, q) ∈ [1,∞), one can define

F ∈ Ls(J ;W−1,q
D ) by

F (t)(φ) =

∫

Ω

f(t)φ+

∫

Υ

g(t)φ|Υ, for all φ ∈ W 1,q′
D ,

and choose F as the right-hand-side in the abstract Cauchy problem (see (9) below). Note

also that in general, one cannot replace the condition f ∈ Ls(J ;W−1,q
D ), where q ∈ (d,∞),

by f ∈ Ls(J ;W−1,2
D ), because this would not necessarily yield the regularity which is

needed in particular for the treatment of non-linear problems. The aim of this section is

to show that for all q ∈ (d,∞) the solutions of the parabolic problem in W−1,q
D are Hölder

continuous in space and time.

In order to state the main result of this section, we must introduce additional assump-

tions on D and µ.
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Assumption 4.1. Either D = ∅ or D satisfies the Ahlfors–David condition: There are

constants c0, c1 > 0 and rAD > 0, such that

c0R
d−1 ≤ Hd−1(D ∩Bd

R(x)) ≤ c1R
d−1 (8)

for all x ∈ D and R ∈ (0, rAD].

Remark 4.2. Assumption 4.1 means the following.

(a) The set D is a (d− 1)-set in the sense of Jonsson/Wallin [JW, Chapter II].

(b) On the set ∂Ω ∩
(⋃

x∈∂Υ Ux
)
, the measure Hd−1 equals the surface measure σ which

can be constructed via the bi-Lipschitz charts φx given in Assumption 2.3, cf. [EG,

Subsection 3.3.4 C] or [HaR, Section 3]. In particular, (8) implies that σ
(
D ∩(⋃

x∈∂Υ Ux
))
> 0, if ∂Ω 6= D 6= ∅.

Assumption 4.3. Dom
(
(A+ 1)

) 1
2 = W 1,2

D .

Remark 4.4. Assumption 4.3 is not known for arbitrary non-symmetric coefficient func-

tions under our general assumptions on the geometry of Ω and D. But many special cases

are available:

(a) If Assumption 4.3 is satisfied for some coefficient function µ, then it is also true for

the adjoint coefficient function, cf. [Kat, Theorems 1 and 2].

(b) Assumption 4.3 is always fulfilled if the coefficient function µ takes its values in the

set of real symmetric d× d-matrices.

(c) For results on non-symmetric coefficient functions, see [AKM]. By a recent result in

[EHT, Theorem 4.1], Assumption 4.3 is valid in our geometric setting, if the domain

Ω itself is a d-set, cf. [JW, Chapter II].

Let us now state the second main result of this paper.

Theorem 4.5. Adopt the notation and assumptions as in Theorem 2.10 and, in addition,

adopt Assumptions 4.1 and 4.3. Let κ∗ be as in Theorem 2.10(a). Moreover, let q ∈ (d,∞),

κ ∈ (0, κ∗], θ ∈ (0, 1) and s ∈ (1,∞) be such that d
2q

+ κ
2

+ 1
2
< θ < 1 − 1

s
. Then there

exists a c > 0 such that the following is valid. Let f ∈ Ls(J ;W−1,q
D ) and u0 ∈ Xs,−1,q :=

(W−1,q
D ,Dom(Aq))1− 1

s
,s. Then any solution u of the equation

u′ +Aqu = f, u(0) = u0, (9)

belongs to Cβ(J ;Cκ) and

‖u‖Cβ(J ;Cκ) ≤ c(‖f‖Ls(J ;W−1,q
D ) + ‖u0‖Xs,−1,q),

where β = 1− 1
s
− θ.

For the proof of this theorem, we need some additional results from [ABHR, Section 11].

Theorem 4.6. Adopt Assumptions 2.3, 4.1 and 4.3. Let q ∈ [2,∞). Then one has the

following.
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(a) Aq + 1 is a positive operator in W−1,q
D .

(b) (Aq + 1)−1/2 provides a topological isomorphism between W−1,q
D and Lq.

(c) Aq admits maximal parabolic regularity in W−1,q
D .

We exploit Theorem 4.6 for the proofs of the following lemmas.

Lemma 4.7. Adopt the notation and assumptions as in Theorem 2.10 and, in addition,

adopt Assumptions 4.1 and 4.3. If θ ∈ (1
2
, 1), ς ∈ [1,∞] and q ∈ (2,∞) then

(W−1,q
D ,Dom(Aq))θ,ς = (Lq,Dom(Aq))θ− 1

2
,ς .

Proof. Theorem 4.6(b) gives Dom((Aq + 1)1/2) = Lq, which implies that Dom(Aq + 1) =

Dom((Aq + 1)1/2). By Theorems 2.10(b) and 4.6(a) both operators, Aq + 1 and Aq + 1, are

positive in W−1,q
D and Lq, respectively. By [Tri, Subsection 1.10.1 and Theorem 1.15.2(d)]

the space Dom(Aq + 1)1/2 belongs to the class J(1
2
)∩K(1

2
) between the spaces W−1,q

D and

Dom(Aq) and the space Dom(Aq + 1)1/2 belongs to the class J(1
2
) ∩ K(1

2
) between the

spaces Lq and Dom(Aq + 1). Therefore the reiteration theorem for real interpolation [Tri,

Theorem 1.10.2] gives

(W−1,q
D ,Dom(Aq))θ,ς = (Dom((Aq + 1)1/2),Dom(Aq + 1))2θ−1,ς

= (Lq,Dom((Aq + 1)1/2))2θ−1,ς

= (Lq,Dom(Aq + 1))θ− 1
2
,ς

as requested.

Lemma 4.8. Adopt the notation and assumptions as in Theorem 2.10 and, in addition,

adopt Assumptions 4.1 and 4.3. Let κ∗ be as in Theorem 2.10(a), κ ∈ (0, κ∗] and θ ∈ (0, 1)

with θ > d
2q

+ κ
2

+ 1
2
. Then

(W−1,q
D ,Dom(Aq))θ,1 ↪→ Cκ.

Proof. If follows from Lemma 4.7 and [Tri, Theorem 1.15.2(d)] that

(W−1,q
D ,Dom(Aq))θ,1 = (Lq,Dom(Aq + 1))θ− 1

2
,1 ⊂ Dom((Aq + 1)θ−

1
2 ).

Now an application of Theorem2.10(c) gives the claim.

Proof of Theorem 4.5. By Theorem 4.6(c), the solution satisfies u ∈ W 1,s(J,W−1,q
D ) ∩

Ls(J ; Dom(Aq)) and there is a suitable c > 0 such that

‖u‖W 1,s(J,W−1,q
D )∩Ls(J ;Dom(Aq)) ≤ c(‖f‖Ls(J ;W−1,q

D ) + ‖u0‖Xs,−1,q).

Next Lemma 3.4 gives

W 1,s(J ;W−1,q
D ) ∩ Ls(J ; Dom(Aq)) ↪→ Cβ(J ; (W−1,q

D ,Dom(Aq))θ,1).

Then the theorem is a consequence of Lemma 4.8.
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[HKR] Hömberg, D., Krumbiegel, K. and Rehberg, J., Optimal control of a

parabolic equation with dynamic boundary condition. Appl. Math. Optim. 67

(2013), 3–31.

[JW] Jonsson, A. and Wallin, H., Function spaces on subsets of Rn. Math. Rep.

2, No. 1 (1984).

[Kat] Kato, T., Fractional powers of dissipative operators, II. J. Math. Soc. Japan 14

(1962), 242–248.

[KS] Kinderlehrer, D. and Stampacchia, G., An introduction to variational in-

equalities and their applications. Pure and Applied Mathematics 88. Academic

Press, New York, 1980.

[LSU] Ladyzhenskaya, O. A., Sollonnikov, V. A. and Ural’tseva, N. N.,

Linear and quasilinear elliptic equations of parabolic type. Translations of Math-

ematical Monographs 23. Amer. Math. Soc., Providence, RI, 1968.
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dérivées partielles. Dunod, Paris; Gauthier-Villars, Paris, 1968.

[Mos1] Moser, J., On the regularity problem for elliptic and parabolic differential equa-

tions. In Partial differential equations and continuum mechanics, 159–169. Univ.

of Wisconsin Press, Madison, Wis, 1961.

[Mos2] , A Harnack inequality for parabolic differential equations. Commun. Pure

Appl. Math. 17 (1964), 101–134. Correction to: “A Harnack inequality for

parabolic differential equations”, Comm. Pure Appl. Math. 20 (1967), 231–236.

[Nas] Nash, J., Continuity of solutions of parabolic and elliptic equations. Amer. J.

Math. 80 (1958), 931–954.

[Ouh] Ouhabaz, E.-M., Analysis of heat equations on domains, vol. 31 of London

Mathematical Society Monographs Series. Princeton University Press, Princeton,

NJ, 2005.

[Paz] Pazy, A., Semigroups of linear operators and applications to partial differential

equations. Applied mathematical sciences 44. Springer-Verlag, New York etc.,

1983.

[Sta] Stampacchia, G., Le Problème de Dirichlet pour les équations elliptiques du
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