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ABSTRACT. We show that the rescaled maximum of the discrete Gaussian Free Field (DGFF) in dimension
larger or equal to 3 is in the maximal domain of attraction of the Gumbel distribution. The result holds both
for the infinite-volume field as well as the field with zero boundary conditions. We show that these results
follow from an interesting application of the Stein-Chen method from Arratia et al. (1989).

1. INTRODUCTION

In this article we consider the problem of determining the scaling limit of the maximum of the discrete
Gaussian free field (DGFF) on Zd, d ≥ 3. Recently the maximum of the DGFF in the critical dimen-
sion d = 2 was resolved in Bramson et al. (2013). In this case, due to the presence of the logarithmic
behavior of covariances, the problem is connected to extremes of various other models, for example the
Branching Brownian motion and the Branching random walk. In d ≥ 3, the presence of long-range de-
pendence decaying polynomially changes the setting but the behavior of maxima is still hard to determine
(Chatterjee, 2014, Section 9.6). This dependence also becomes a hurdle in various properties of level
set percolation of the DGFF which were exhibited in a series of interesting works (Drewitz and Rodriguez
(2013), Rodriguez and Sznitman (2013), Sznitman (2012)). The behavior of local extremes in the critical
dimension has also been unfolded recently in the papers Biskup and Louidor (2013, 2014).

We consider the lattice Zd, d ≥ 3 and take the infinite-volume Gaussian free field (ϕα)α∈Zd with law P

on RZd
. The covariance structure of the field is given by the Green’s function g of the standard random

walk, namely E
[
ϕα ϕβ

]
= g(α− β), for α, β ∈ Zd. For more details of the model we refer to Section 2.

It is well- known (see for instance Lawler (1991)) that for α 6= β, g(α− β) behaves likes ‖α− β‖2−d

and hence for ‖α− β‖ → +∞, the covariance goes to zero. However this is not enough to conclude
that the scaling is the same of an independent ensemble. To give an example where this is not the case,
when VN is the box of volume N,

∑
α∈VN

ϕα is of order N1/2+1/d, unlike the i. i. d. setting (see for
example Funaki (2005, Section 3.4)).

The expected maxima over a box of volume N behaves like
√

2g(0) log N. An independent proof of this
fact is provided in Proposition 4 below; this confirms the idea that the extremes of the field resemble that
of independent N (0, g(0)) random variables. In this article we show that the similarity is even deeper,
since the fluctuations of the maximum after recentering and scaling converge to a Gumbel distribution.
Note that in d = 2 the limit is also Gumbel, but with a random shift (see Bramson et al. (2013, Theorem
2.5), Biskup and Louidor (2013)). The main results of this article is the following.

Theorem 1. Let A be a subset of Zd with |A| = Na. We set centering and scaling as follows:

bN =
√

g(0)

[√
2 log N − log log N + log(4π)

2
√

2 log N

]
and aN = g(0)(bN)−1 (1)

so that for all z ∈ R

lim
N→+∞

P

(
maxα∈A ϕα − bN

aN
< z
)

= exp(− e−z)

and the convergence is uniform in z.

Note that scaling and centering are exactly the same as in the i. i. d. N (0, g(0)) case, see for example
Hall (1982). As in d = 2, the argument depends on a comparison lemma. We show that in fact the proof
is an interesting application of a Stein-Chen approximation result. Not only does the result depend on the
correlation decay, but also crucially on the Markov property of the Gaussian free field. We use Theorem 1

a|A| denotes the cardinality of A.
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of the paper by Arratia et al. (1989) which approximates an appropriate dependent Binomial process with
a Poisson process, and gives some calculable error terms. In general showing that the error terms go to
zero is a non-trivial task. In the DGFF case, thanks to estimates on the Green’s function and the Markov
property, the error terms are negligible.
The techniques used for the infinite-volume DGFF allows us to draw conclusions also for the field with
boundary conditions. For n > 0 let N := nd; we consider the discrete hypercube VN := [0, n− 1]d ∩
Zd. We define therein a mean zero Gaussian field (ψα)α∈Zd whose covariance matrix (gN(α, β))α, β∈VN
is the Green’s function of the discrete Laplacian with Dirichlet boundary conditions outside VN (again for
a more precise definition see Section 2). The convergence result is the following:

Theorem 2. Let VN be as above and (ψα)α∈Zd be a DGFF with zero boundary conditions outside VN

with law P̃VN . Let the centering and scaling be as in (1). Then for all z ∈ R

lim
N→+∞

P̃VN

(
maxα∈VN ψα − bN

aN
< z
)

= exp(− e−z).

The core of the proof is an application of Slepian’s Lemma and a re-run of the proof of Theorem 1.
The structure of the article is as follows. In Section 2 we recall the main facts on the DGFF that will be
used in Section 3 to prove the main theorem.

2. PRELIMINARIES ON THE DGFF

Let d ≥ 3 and denote with ‖ · ‖ the `∞-norm on the lattice. Let ψ = (ψα)α∈Zd be a discrete Gaussian

Free Field with zero boundary conditions outside Λ ⊂ Zd . On the space Ω := RZd
endowed with its

product topology, its law P̃Λ can be explicitly written as

P̃Λ(d ψ) =
1

ZΛ
exp

− 1
2d

∑
α, β∈Zd : ‖α−β‖=1

(
ψα − ψβ

)2

∏
α∈Λ

d ψα

∏
α∈Zd \Λ

δ0(d ψα).

In other words ψα = 0 P̃Λ-a. s. if α ∈ Zd \Λ, and (ψα)α∈Λ is a multivariate Gaussian random variable
with mean zero and covariance (gΛ(α, β))α, β∈Zd , where gΛ is the Green’s function of the discrete

Laplacian problem with Dirichlet boundary conditions outside Λ. For a thorough review on the model
the reader can refer for example to Sznitman (2012). It is known (Georgii, 1988, Chapter 13) that the
finite-volume measure ψ admits an infinite-volume limit as Λ ↑ Zd in the weak topology of probability
measures. This field will be denoted as ϕ = (ϕα)α∈Zd . It is a centered Gaussian field with covariance

matrix g(α, β) for α, β ∈ Zd. With a slight abuse of notation, we write g(α− β) for g(0, α− β) and
also gΛ(α) = gΛ(α, α). It will be convenient for us to view g through its random walk representation: if
Pα denotes the law of a simple random walk S started at α ∈ Zd, then

g(α, β) = Eα

∑
n≥0

1{Sn=β}

 .

In particular this gives g(0) < +∞ for d ≥ 3.

A key fact for the Gaussian Free Field is its spatial Markov property, which will be used in the paper. The
proof of the following Lemma can be found in Rodriguez and Sznitman (2013, Lemma 1.2).
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Lemma 3 (Markov property of the Gaussian Free Field). Let ∅ 6= K b Zdb, U := Zd \K and define
(ϕ̃α)α∈Zd by

ϕα = ϕ̃α + µα, α ∈ Zd

where µα is the σ(ϕβ, β ∈ K)-measurable map defined as

µα =
∑
β∈K

Pα (HK < +∞, SHK = β) ϕβ, α ∈ Zd . (2)

Here HK := inf {n ≥ 0 : Sn ∈ K} . Then, under P, (ϕ̃α)α∈Zd is independent of σ(ϕβ, β ∈ K) and

distributed as (ψα)α∈Zd under P̃U .

As an immediate consequence of the Lemma (see Rodriguez and Sznitman (2013, Remark 1.3))

P
(
(ϕα)α∈Zd ∈ · |σ(ϕβ, β ∈ K)

)
= P̃U

(
(ψα + µα)α∈Zd ∈ ·

)
P− a. s.

where µα is given in (2), P̃U does not act on (µα)α∈Zd and (ψα)α∈Zd has the law P̃U .

2.0.1. Law of large numbers of the recentered maximum. Although this can be obtained directly by The-
orem 1, we think it is interesting to insert an independent proof of the behavior of the maximum of the
DGFF.

Proposition 4 (LLN for the maximum). Let VN := [0, n− 1]d ∩Zd, n := Nd > 0. The following limit
holds:

lim
N→+∞

E [maxα∈VN ϕα]√
2 log N

= g(0).

Proof. Observe first that under the assumptions of the theorem g(0) ≥ 1 (Lawler, 1991, Exercise 1.5.7).
The upper bound follows from Talagrand (2003, Prop. 1. 1. 3) with τ := g(0) and M := N. As for the
lower bound, we will use Sudakov-Fernique inequality (Adler and Taylor, 2007, Theorem 2. 2. 3). We first

need a lower bound for d(α, β) :=
√

E
[(

ϕα − ϕβ

)2
]
: we will apply here the bound

g(α) ≤
(

c
√

d
‖α‖

)d−2

, ‖α‖ ≥ d (3)

whose proof is provided in Sznitman (2011). The key to obtain the result is to use a diluted version of

the DGFF as follows. Consider V(k)
N := VN ∩ k Zd, where k := blog nc ∈ {1, 2, . . .} is a constant.

Without loss of generality we can assume also that n is large enough so that

g(0)−
(

c
√

d
blog nc

)d−2

> 0 ⇐⇒ n ≥
⌈

exp

(
c
√

d

g(0)
1

d−2

)⌉
(4)

Note the fact that

E

[
max
α∈VN

ϕ(α)
]
≥ E

max
α∈V(k)

N

ϕα

 . (5)

bA b B means that A is a finite subset of B.
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Now for α, β ∈ T := V(k)
N and k > d

d(α, β) =
√

2g(0)− 2g(α− β)
(3)
≥
√

2

√√√√g(0)−
(

c
√

d
‖α− β‖

)d−2

≥
√

2

√√√√g(0)−
(

c
√

d
blog nc

)d−2

=: ν(n, d)
(4)
> 0.

Notice also that limN→+∞ ν(n, d) =
√

2g(0). Hence by (5) and an application of Sudakov-Fernique
inequality

E [maxα∈VN ϕα]√
log N

≥ ν(n, d)

√
log |T|
log N

.

We obtain log |T| = d log
⌊n

k
⌋
(1 + o (1)) = d log

⌊
n

blog nc

⌋
(1 + o (1))c. It follows that log|T|

log N =
1 + o (1) and

lim
N→+∞

E [maxα∈VN ϕα]√
log N

≥
√

2g(0).

�

3. PROOF OF THE MAIN RESULT

The proof of the main result is an application of the Stein-Chen method. To keep the article self contained
we recall the result from Arratia et al. (1989).

3.1. Poisson approximation for extremes of random variables. The main tool we will use relies on
a two-moment condition to determine the convergence of the number of exceedances for a sequence
of random variables. Let (Xα)α∈A be a sequence of (possibly dependent) Bernoulli random variables of
parameter pα. Let W :=

∑
α∈A Xα and λ := E [W]. Now for each α we define a subset Bα ⊆ A which

we consider a “neighborhood” of dependence for the variable Xα, such that Xα is nearly independent from
Xβ if β ∈ A \ Bα. Set

b1 :=
∑
α∈A

∑
β∈Bα

pα pβ,

b2 :=
∑
α∈A

∑
α 6=β∈Bα

E
[
XαXβ

]
,

b3 :=
∑
α∈A

E [|E [Xα − pα | H1]|]

where
H1 := σ

(
Xβ : β ∈ A \ Bα

)
.

Theorem 5 (Theorem 1, Arratia et al. (1989)). Let Z be a Poisson random variable with E [Z] = λ and
let dTV denote the total variation distance between probability measures. Then

dTV(L(W), L(Z)) ≤ 2(b1 + b2 + b3)

and ∣∣∣P(W = 0)− e−λ
∣∣∣ < min

{
1, λ−1

}
(b1 + b2 + b3).

c f (N) = o (1) means limN→+∞ f (N) = 0.
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Let A b Zd with N := |A|, uN(z) := aNz + bN , and define for all α ∈ A

Xα = 1{ϕα>uN(z)} ∼ Be(p).

A standard tool to determine the asymptotic of p is Mills ratio:(
1− 1

t2

)
e−t2/2
√

2πt
≤ P (N (0, 1) > t) ≤ e−t2/2

√
2πt

, t > 0. (6)

This yields p ∼ N−1 exp(−z)d. We furthermore introduce W :=
∑N

α=1 Xα and see that E [W] ∼
e−z. Of course W is closely related to the maximum since {maxα∈A ϕα ≤ uN(z)} = {W = 0}. We
will now fix z ∈ R and λ := e−z. We are now ready to prove our main result.

Proof. Our main idea is to apply Theorem 5. The proof will first show that the limit is Gumbel, and in the
second part we will prove uniform convergence. To this scope we define, for a fixed but small ε > 0,

Bα := B
(

α, (log N)2+2ε
)
∩ A

where B(α, L) denotes the ball of center α of radius L in the `∞-distance. We draw below examples of

such neighborhoods when α ∈ ∂A :=
{

γ ∈ A : ∃β ∈ Zd \A, ‖β− γ‖ = 1
}

and α ∈ int(A) =
A \ ∂A.

(A) Bα when α ∈ int(A). (B) Bα when α ∈ ∂A.

FIGURE 1. Examples of Bα

d f ∼ g means that limN→+∞ f (N)/g(N) = 1.
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Convergence. The method is based on the estimate of three terms (cf. Subsec. 3.1).
i. b1 =

∑
α∈A

∑
β∈Bα

p2. Using Mills ratio we have

b1 ≤ cN(log N)d(2+2ε)

√g(0) e−
1

2g(0) uN(z)2

√
2πuN(z)

2

= N−1(log N)d(2+2ε) e−2z+o(1) = o (1) . (7)

ii. b2 =
∑

α∈A
∑

α 6=β∈Bα
E
[
XαXβ

]
. First we need to estimate the joint probability

P
(

ϕα > uN(z), ϕβ > uN(z)
)

.

Denote the covariance matrix

Σ2 =
[

g(0) g(α− β)
g(α− β) g(0)

]
Note that, for w ∈ R2, one has

wtΣ−1
2 w =

1
g(0)2 − g(α− β)2

(
g(0)

(
w2

1 + w2
2

)
− 2g(α− β)w1w2

)
.

Using 1 := (1, 1)t we denote by

∆i := uN(z)
(

1tΣ−1
2

)
i
=

uN(z)(g(0)− g(α− β))
g(0)2 − g(α− β)2 =

uN(z)
g(0) + g(α− β)

, i = 1, 2.

Exploiting an easy upper bound on bi-variate Gaussian tails (see Savage (1962)) we have

P(ϕα > uN(z), ϕβ > uN(z)) ≤ 1
2π

1
|det Σ2|1/2∆1∆2

exp
(
−uN(z)2

2
1tΣ−1

2 1
)

=
1

2π

(g(0) + g(α− β))2

(g(0)2 − g(α− β)2)1/2uN(z)2 exp
(
−uN(z)2

2
2(g(0)− g(α− β))
g(0)2 − g(α− β)2

)

≤ 1
4π log N

(
1 + g(α−β)

g(0)

)3/2

(
1− g(α−β)

g(0)

)1/2 N−
2g(0)

g(0)+g(α−β) (4π log N)
g(0)

g(0)+g(α−β) e−
2g(0)z

g(0)+g(α−β) +o(1)

≤

(
1 + g(α−β)

g(0)

)3/2

(
1− g(α−β)

g(0)

)1/2 N−
2g(0)

g(0)+g(α−β) e−
2g(0)z

g(0)+g(α−β) +o(1)

where in the second-to-last inequality we used uN(z)2 = b2
N + 2g(0)z + g(0)2z2/b2

N and the bound
of b2

N (Hall, 1982, Equation 3)

g(0)(2 log N − log log N − log 4π) ≤ b2
N ≤ 2g(0) log N.

Also note that for x 6= 0, g(‖x‖)/g(0) ≤ g(e1)/g(0) = 1− κ where κ := P0

(
H̃0 = +∞

)
∈

(0, 1) and H̃0 = inf {n ≥ 1 : Sn = 0}. Hence we have that

g(0)
g(0) + g(α− β)

≥ 1
2− κ

and
g(α− β)

g(0) + g(x− y)
≤ 1− κ.

We obtain thus

P
(

ϕα > uN(z), ϕβ > uN(z)
)
≤ (2− κ)3/2

κ1/2 N−
2

(2−κ) max
(

e−2z
1{z≤0}, e−2z/(2−κ)

1{z>0}

)
.
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We get finally for some constants c, c′ > 0 depending only on d and κ

b2 ≤ cN(log N)d(2+2ε) (2− κ)3/2

κ1/2 N−
2

(2−κ) max
(

e−2z
1{z≤0}, e−2z/(2−κ)

1{z>0}

)
≤ c′N−

κ
(2−κ) (log N)d(2+2ε) max

(
e−2z

1{z≤0}, e−2z/(2−κ)
1{z>0}

)
. (8)

Since κ/(2− κ) > 0 we have that b2 = o (1).
iii. b3 =

∑
α∈A E [|E [Xα − pα | H1]|]. It will be convenient to introduce also another σ-algebra which

strictly containsH1 = σ
(
Xβ : β ∈ A \ Bα

)
, that is

H2 = σ
(

ϕβ : β ∈ A \ Bα

)
.

Using the tower property of the conditional expectation and Jensen’s inequality

E [|E [Xα − p | H1]|] = E [|E [E [Xα − p | H2] | H1]|]
≤ E [E [|E [Xα − p | H2]| | H1]] = E [|E [Xα − p | H2]|] .

At this point we recognize, thanks to Corollary 3, that

E [Xα | H2] = P̃
Zd \(A\Bα)(ψα + µα > uN(z)) P− a. s.

where (ψα)α∈Zd is a Gaussian Free Field with zero boundary conditions outside A \ Bα. In addi-
tion, observe that gUα(α) ≤ g(0) (Lawler, 1991, Section 1.5). We will write more compactly Uα :=
Zd \(A \ Bα).

We will make use of the fact that µα is a centered Gaussian, and apply the same estimates of Popov and
Ráth (2013): first we make use of the strong Markov property. Denoting by S· ◦ θm = Sm+· the time shift
by m of the random walk, we observe that for β ∈ A \ Bα

g(α, β) = Eα

∑
n≥0

1{Sn=β}

 = Eα

∑
n≥0

1{Sn=β}

 ◦ θHA\Bα


= Eα

ESHA\Bα

∑
n≥0

1{Sn=β}

 = Eα

[
g
(

SHA\Bα
, β
)

, HA\Bα
< +∞

]
=

∑
γ∈A\Bα

Pα

(
HA\Bα

< +∞, SHA\Bα
= γ

)
g(γ, β). (9)

We can plug this in to obtain

Var [µα]

=
∑

β, γ∈A\Bα

Pα

(
HA\Bα

< +∞, SHA\Bα
= β

)
Pα

(
HA\Bα

< +∞, SHA\Bα
= γ

)
g(β, γ)

(9)=
∑

β∈A\Bα

Pα

(
HA\Bα

< +∞, SHA\Bα
= β

)
g(α, β) ≤ sup

β∈A\Bα

g(α, β)

≤ c
(log N)2(1+ε)(d−2)

(10)

by the standard estimates for the Green’s function

cd‖α− β‖2−d ≤ g(α, β) ≤ Cd‖α− β‖2−d (11)
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for some 0 < cd ≤ Cd < +∞ independent of α and β (Lawler, 1991, Theorem 1. 5. 4). Using the
estimate

P (|N (0, 1)| > a) ≤ e−a2/2, a > 0 (12)

we get that there exists a constant C > 0 such that

P
(
|µα| > (uN(z))−1−ε

)
≤ C exp

(
−(log N)(2d−5)(1+ε)

)
. (13)

Note that this quantity goes to zero since d ≥ 3. Hence

E
[∣∣∣P̃Uα(ψα + µα > uN(z))− p

∣∣∣] = E

[∣∣∣P̃Uα(ψα + µα > uN(z))− p
∣∣∣1n|µα|≤(uN(z))−1−ε

o]
+E

[∣∣∣P̃Uα(ψα + µα > uN(z))− p
∣∣∣1n|µα|>(uN(z))−1−ε

o] =: T1 + T2.

By (13) and the fact that d ≥ 3, we notice that NT2 = o (1). Therefore it is sufficient to treat the term
T1.

E

[∣∣∣P̃Uα(ψα + µα > uN(z))− p
∣∣∣1n|µα|≤(uN(z))−1−ε

o]
= E

[(
P̃Uα(ψα + µα > uN(z))− p

)
1n|µα|≤(uN(z))−1−ε

o 1{p<ePUα (ψα+µα>uN(z))}

]
+E

[(
p− P̃Uα(ψα + µα > uN(z))

)
1n|µα|≤(uN(z))−1−ε

o 1{p<ePUα (ψα+µα≤uN(z))}

]
=: T1,1 + T1,2. (14)

We will now deal with T1,2. The first one can be treated with a similar calculation using an upper bound

for the Mills ratio. We have on the event
{
|µα| ≤ (uN(z))−1−ε

}
p− P̃Uα(ψα + µα > uN(z))

≤
√

g(0) e−
uN (z)2

2g(0)

√
2πuN(z)

−

1−
( √

gUα(α)
uN(z)− µα

)2
√gUα(α) e

− (uN (z)−µα)2

2gUα (α)

√
2π(uN(z)− µα)

≤
√

g(0) e−
uN (z)2

2g(0)

√
2πuN(z)

1− (1 + o (1))
√

gUα(α)uN(z) e

„
1− g(0)

gUα (α)

«
uN (z)2

2g(0) + µαuN (z)
gUα (α) −

µ2
α

2gUα (α)√
g(0)(uN(z)− µα)



=
√

g(0) e−
uN (z)2

2g(0)

√
2πuN(z)

1− (1 + o (1))
√

gUα(α)uN(z) e

„
1− g(0)

gUα (α)

«
uN (z)2

2g(0) + uN (z)−ε

gUα (α) −
uN (z)−2−2ε

2gUα (α)√
g(0)uN(z)(1− uN(z)−2−ε)

 . (15)

Since the bound is non random, by bounding the indicator functions by 1,

E

[(
p− P̃Uα(ψα + µα > uN(z))

)
1n|µα|≤(uN(z))−1−ε

o 1{p<ePUα (ψα+µα≤uN(z))}

]
≤ (15).

Now

b3 ≤
∑
α∈A

(T1 + T2)
(13)
≤
∑
α∈A

T1 + o (1) =
∑
α∈A

T1,1 +
∑
α∈A

T1,2 + o (1) . (16)
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Then

T1,2 =
√

g(0) e−
uN (z)2

2g(0)

√
2πuN(z)

1− (1 + o (1))


√

gUα(α)uN(z) e

„
1− g(0)

gUα (α)

«
uN (z)2

2g(0) +o(1)√
g(0)uN(z)(1 + o (1))


 .

Observe that 1− g(0)
gUα (α) < 0 since g(0) > gUα(α). We observe further that (and we will prove it in a

moment)

Claim 6. supα∈A

(
1− g(0)

gUα (α)

)
uN(z)2 = o (1) .

Hence

e

„
1− g(0)

gUα (α)

«
uN (z)2

2g(0) = eo(1)

Therefore T1,2 = o (1) uniformly in α. This yields that

∑
α∈A

T1,2 ≤ N
√

g(0) e−
uN (z)2

2g(0)

√
2πuN(z)

o (1) = e−z+o(1) o (1) . (17)

Analogously,
∑

α∈A T1, 1 = o (1). Plugging (17) in (16), one obtains b3 = o (1). In particular, a

standard computation yields b3 ≤ c(log N)−1+2(d−2)(1+ε) for some c > 0.
We now only need to show Claim 6. By the Markov property we know

gUα(α) = g(0)−
∑

γ∈A\Bα

Pα

(
HA\Bα

< +∞, SHA\Bα
= γ

)
g(γ, α).

This shows that

0 ≤ g(0)
gUα(α)

− 1 ≤
supγ∈A\Bα

g(γ, α)
gUα(α)

.

Note that g(γ, α)
(11)
≤ Cd(log N)−2(d−2)(1+ε). Also, gUα(α) = Eα

[∑HA\Bα
n=0 1{Sn=α}

]
≥ 1 and

hence we have

0 ≤ g(0)
gUα(α)

− 1 ≤ c(log N)−2(d−2)(1+ε) (18)

from which it follows that(
1− g(0)

gUα(α)

)
uN(z)2 ≤ c(log N)−2(d−2)(1+ε)(log N + z + o (1)) = o (1) . (19)

Therefore the claim follows.

Uniformity of the estimates. We will now show our bound is uniform over z ∈ R considering separately
three regions: (−∞, z`), [z`, zr] and (zr, +∞) for some z` = z`(N) and zr = zr(N) to be explicited
below.
In first place we consider z` := − log log log N. We could have chosen any other function going
sufficiently slowly to ∞ with N in order to accommodate our previous estimates. In particular it is important
that

uN(z)2 = 2g(0) log N(1 + o (1)), z ∈ { z`, zr} . (20)

We evaluate then the error bound b1 + b2 + b3 at z := z` considering each summand.

i. b1 ≤ cN−1(log N)d(2+2ε) e−2z`+o(1) = o (1).
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ii. b2 ≤ c′N−κ/(2−κ)(log N)d(2+2ε) e−2z` = o (1).

iii. b3 requires some more care. We recall that b3 =
∑

α∈A T1 +
∑

α∈A T2. (13) remains true because
of (20), so

∑
α∈A T2 = o (1). Consequently we look at

∑
α T1 evaluated at z = z`.

√
g(0) e−

uN (z`)2

2g(0)

√
2πuN(z`)

1− (1 + o (1))
√

gUα(α)uN(z`) e

„
1− g(0)

gUα (α)

«
uN (z`)2

2g(0) + uN (z`)−ε

gUα (α) −
uN (z`)−2−2ε

2gUα (α)√
g(0)uN(z`)(1− uN(z`)−2−ε)


= N−1 e−z`+o(1)

(
1− (1 + o (1)) e

„
1− g(0)

gUα (α)

«
uN (z`)2

2g(0) +o(1)
(1 + o (1))

)
.

The estimate (19) is still valid, therefore(
1− g(0)

gUα(α)

)
uN(z`)2 = o(1).

Now the order of b3, exactly in the same fashion as before, yields

b3 ≤ cN
(

N−1 e−z`+o(1)
)

(log N)−1+2(d−2)(1+ε) = o (1) .

This in turn yields that∣∣∣∣P(max
α∈A

ϕα ≤ uN(z`)
)
− exp

(
− e−z`

)∣∣∣∣ = o (1) . (21)

For z < z` we notice that∣∣∣∣P(max
α∈A

ϕα ≤ uN(z)
)
− exp

(
− e−z)∣∣∣∣ ≤ P

(
max
α∈A

α ∈ A ≤ uN(z)
)

+ exp
(
− e−z)

≤ P

(
max
α∈A

ϕα ≤ uN(z`)
)

+ exp
(
− e−z`

)
=
(

P

(
max
α∈A

ϕα ≤ uN(z`)
)
− exp

(
− e−z`

))
+ 2 exp

(
− e−z`

)
.

By (21) we are able to conclude |P (maxα∈A ϕα ≤ uN(z))− exp (− e−z)| → 0 uniformly over z <
z`.
On the other hand for zr := log log log N observe that the same uniform estimates hold as above,
with an obvious change in the sign in the power log log log N. In particular b1, b2 and b3 all go to 0 for
N → +∞ and this entails

lim
N→+∞

∣∣∣∣P(max
α∈A

ϕα ≤ uN(zr)
)
− exp

(
− e−zr

)∣∣∣∣ = 0. (22)

Therefore if z > zr∣∣∣∣P(max
α∈A

ϕα ≤ uN(z)
)
− exp

(
− e−z)∣∣∣∣ = ∣∣∣∣1− exp

(
− e−z)+ P

(
max
α∈A

ϕα ≤ uN(z)
)
− 1
∣∣∣∣

≤
(
1− exp

(
− e−z))+

(
1− P

(
max
α∈A

ϕα ≤ uN(z)
))

≤ 2
(
1− exp

(
− e−zr

))
+
(

exp
(
− e−zr

)
− P

(
max
α∈A

ϕα ≤ uN(zr)
))

.
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The first bracket goes to 0 and the second one, by (22), is o (1) as well. We are therefore left with
z ∈ [z`, zr]. The uniformity in this case holds by the inequality

exp(−z) ≤ exp(|z|) ≤ log log N, z ∈ [z`, zr]. (23)

Plugging this in (7) and (8), this shows the uniformity for the terms b1 and b2. As for the term b3, we
observe that (19) still holds, so that Claim 6 is valid and we are able to conclude inserting (23) in (17). �

3.2. DGFF with boundary conditions: proof of Theorem 2. The idea of the proof is to exploit the
convergence we have obtained in the previous section. We will show a lower bound through a comparison
with i. i. d. variables, and an upper bound by considering the maximum restricted to the bulk of VN ,
concluding by means of a convergence-of-types result. We abbreviate gN(·, ·) := gVN(·, ·). For δ > 0
define (recall that VN = [0, n− 1]d ∩Zd, with N = nd)

Vδ
N :=

{
α ∈ VN : ‖α− γ‖ > δN1/d, γ ∈ Zd \VN

}
.

We begin with the easier lower bound.

Proof of Theorem 2: lower bound. We will need a lower and an upper bound on the limiting distribution of
the maximum. Let us start with the former. We use the shortcut P̃N := P̃VN . First we note that since the
covariance of (ψα) is non-negative, we can apply Slepian’s lemma for the lower bound. Let (Zα)α∈VN
be independent mean zero Gaussian variables with variance gN(α); then by Slepian’s lemma it follows
that

P̃N

(
max
α∈VN

Zα ≤ uN(z)
)
≤ P̃N

(
max
α∈VN

ψα ≤ uN(z)
)

,

where uN(z) = aNz + bN as before. Then we want to analyze P(maxα∈A Zα ≤ uN(z)). First fix
z ∈ R. Take N large enough such that −g(0)b2

N ≤ z (this is possible as b2
N → +∞). Now note that

P̃N

(
max
α∈VN

Zα ≤ uN(z)
)

=
∏

α∈VN

(1− P̃N(Zα > uN(z)))

(6)
≥
∏

α∈VN

1− e
− uN (z)2

2gN (α)

√
2πuN(z)

√
gN(α)

 ≥
1− e−

uN (z)2

2g(0)
√

2πuN(z)

√
g(0)


N

.

The last term converges to exp(− e−z) as N → +∞. This shows that for any fixed z ∈ R,

lim inf
N→+∞

P̃N

(
max
α∈VN

ψα ≤ uN(z)
)
≥ exp(− e−z).

�

We need some preliminary Lemmas for the upper bound. We begin with

Lemma 7. For any δ > 0 and α, β ∈ Vδ
N one has

g(α, β)− Cd

(
δN1/d

)2−d
≤ gN(α, β) ≤ g(α, β). (24)

In particular we have, gN(α, β) = g(α, β)
(

1 + O
(

N(2−d)/d
))

uniformly in α, β ∈ Vδ
N .
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Proof. It follows from Sznitman (2012, Proposition 1.6) that

gN(α, β) = g(α, β)−
∑

γ∈∂VN

Pα

(
H

Zd \VN
< ∞, SH

Zd \VN
= γ

)
g(γ, β).

Note that gN(α, β) ≤ g(α, β). Take any α, β ∈ Vδ
N : using the bounds (11),∑

γ∈∂VN

Pα

(
H

Zd \VN
< ∞, SH

Zd \VN
= γ

)
g(γ, β) ≤ sup

γ∈∂VN

g(γ, β) ≤ Cd sup
γ∈∂VN

‖γ− β‖2−d

which gives that

gN(α, β) ≥ g(α, β)− Cd

(
δN1/d

)2−d
. (25)

Hence the proof follows. �

The next Lemma will allow us to derive the convergence of the maximum in VN from that of the maximum
in Vδ

N .

Lemma 8. Let N ≥ 1, FN be a distribution function, and mN = (1− 2δ)dN. Let aN and bN be as
in (1). If limN→+∞ FN(amN z + bmN) = exp(− e−z), then

lim
N→+∞

FN(aNz + bN) = exp
(
− e−z+d log(1−2δ)

)
.

Proof. The proof follows from a convergence-of-types theorem (see Resnick (1987, Proposition 0.2)) if
we can show that

amN

aN
→ 1 and

bmN − bN

aN
→ d log(1− 2δ). (26)

It is easy to see that

amN

aN
∼
(

1 +
d log(1− 2δ)

log N

)1/2

→ 1.

To show the second asymptotics note that√
2g(0) log mN −

√
2g(0) log N =

[
d log(1− 2δ)

2 log N
+ O

(
1

(log N)2

)]√
2g(0) log N. (27)

Also observe that as N → +∞ one gets√
g(0)

[
log log(4πN)

2
√

2 log N
− log log(4πmN)

2
√

2 log mN

]

=
√

g(0)
2
√

2 log N

[
− log

(
1 +

d log(1− 2δ)
log N

)
+ o (1)

]
.

So using the above equation and (27) we get that

bmN − bN

aN
=

bmN − bN

g(0)

√
2g(0) log N(1 + o (1))→ d log(1− 2δ).

�

We have now the tools to finish with the upper bound.
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Proof of Theorem 2: upper bound. For the upper bound, we again use Theorem 5, but this time on Vδ
N .

We first observe that for any δ > 0

P̃N

(
max
α∈VN

ψα ≤ uN(z)
)
≤ P̃N

(
max
α∈Vδ

N

ψα ≤ uN(z)

)
.

We claim that

Claim 9. For any fixed z ∈ R and δ > 0, set mN :=
∣∣Vδ

N

∣∣ = (1− 2δ)dN. Then

lim
N→+∞

P̃N

(
max
α∈Vδ

N

ψα ≤ umN(z)

)
= exp(− e−z).

Note that by Lemma 8 and Claim 9 one can conclude that

P̃N

(
max
α∈Vδ

N

ψα ≤ uN(z)

)
= exp

(
− e−z+d log(1−2δ)

)
and thus

lim sup
N→+∞

P̃N

(
max
α∈VN

ψα ≤ uN(z)
)
≤ exp

(
− e−z+d log(1−2δ)

)
.

Letting δ → 0, the result will follow. To complete the proof of the Claim 9 we apply Theorem 5 and show
that b1, b2 and b3 → 0. To this end, define Yα = 1{ψα>umN (z)} and W̃ =

∑
α∈Vδ

N
Yα. We see that

using Mills ratio and Lemma 7 it follows that

λ̃ = E
[
W̃
]
∼ e−z .

As before we define for a fixed but small ε > 0,

B̃α := B
(

α, (log mN)2+2ε
)

, α ∈ Vδ
N.

We notice that for N large, B̃α ( VN. Recall that pα = P̃N (ψα > umN(z)) and b1 =
∑

α∈Vδ
N

∑
β∈eBα

pα pβ.
Exploiting the fact that for fixed z one can choose N large enough so that uN(z) > 0, from Lemma 7 it
again follows that

pα ≤
e−

umN (z)2

2g(0)
√

2πumN(z)

√
g(0).

By previous calculations and |Vδ
N| = mN we get that

b1 ≤ mN(log mN)d(2+2ε)

 e−
umN (z)2

2g(0)
√

2πumN(z)

√
g(0)


2

≤ cm−1
N (log mN)d(2+2ε) e−2z = o (1) .

As for b2 we consider the covariance matrix of
(
ψα, ψβ

)
Σ2 =

[
gN(α) gN(α, β)

gN(α, β) gN(β)

]
and hence we have

1tΣ−1
2 1 =

gN(α) + gN(β)− 2gN(α, β)
gN(α)gN(β)− gN(α, β)2 =

2
g(0) + g(α− β)

(
1 + O

(
N

2−d
d

))
.

Here the last line follows from an application of Lemma 7 again. Repeating the calculation of b2 as before
it follows that b2 → 0 as N → +∞.
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For b3 we use the Markov property which follows by the representation of gN . Observe that b3 =∑
α∈Vδ

N
ẼN

[∣∣∣ẼN[Yα − pα|H̃1]
∣∣∣]where H̃1 = σ

(
Yβ : β ∈ Vδ

N \ B̃α

)
. For H̃2 = σ

(
ψβ : β ∈ VN \ B̃α

)
⊇

H̃1 we can write for all α ∈ VN

ψα =
(

ψα − ẼN

[
ψα|H̃2

])
+ ẼN

[
ψα|H̃2

]
=: ξα + hα

where ξα is a DGFF on B̃α and hα is independent of ξα, measurable with respect to H̃2 and has the
random walk representation (Sznitman, 2012, Proposition 2.3)

hα =
∑

β∈VN\eBα

Pα

(
HVN\eBα

< +∞, SHVN\eBα
= β

)
ψβ, α ∈ VN.

This yields also that P̃N

(
(ψα)α∈VN ∈ · | H̃2

)
= P̃eBα

((ξα + hα)α∈VN ∈ · ) P̃N-a. s. and that

b3 ≤
∑

α∈Vδ
N

ẼN

[∣∣∣P̃N

(
ψα > umN(z) | H̃2

)
− pα

∣∣∣] =
∑

α∈Vδ
N

ẼN

[∣∣∣P̃eBα
(ξα + hα > umN(z) )− pα

∣∣∣] .

Mimicking the previous section, we have b3 ≤
∑

α∈Vδ
N

T̃1 +
∑

α∈Vδ
N

T̃2 with

T̃1 := E

[∣∣∣P̃eBα
(ξα + hα > umN(z))− pα

∣∣∣1n|hα|≤(umN (z))−1−ε
o] ,

T̃2 := E

[∣∣∣P̃eBα
(ξα + hα > umN(z))− pα

∣∣∣1n|hα|>(umN (z))−1−ε
o] .

By means of the Markov property, one can proceed as in (10) to have

Var [hα] ≤ sup
β∈VN\eBα

gN(α, β) ≤ Cd

(log mN)2(1+ε)(d−2)
, (28)

thus, the conclusion that
∑

α∈Vδ
N

T̃2 = o (1) follows as before combining (12) with (28). As for T̃1, we

again break it into two summands, T̃1, 1 and T̃1, 2, similarly to (14). It is possible to control these two terms
by means of Mills ratio (6), Lemma 7 and following line by line the steps done for the infinite-volume case
with B̃α instead of Uα. �
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