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Abstract

A boundary control problem for the pure Cahn–Hilliard equations with possibly singular
potentials and dynamic boundary conditions is studied and first-order necessary conditions
for optimality are proved.

1 Introduction

The simplest form of the Cahn–Hilliard equation (see [3, 12, 13]) reads as follows

∂ty −∆w = 0 and w = −∆y + f ′(y) in Ω× (0, T ), (1.1)

where Ω is the domain where the evolution takes place, and y andw denote the order parameter
and the chemical potential, respectively. Moreover, f ′ represents the derivative of a double well
potential f , and typical and important examples are the following

freg(r) = 1
4
(r2 − 1)2 , r ∈ R (1.2)

flog(r) = ((1 + r) ln(1 + r) + (1− r) ln(1− r))− cr2 , r ∈ (−1, 1), (1.3)

where c > 0 in the latter is large enough in order that flog be nonconvex. The potentials
(1.2) and (1.3) are usually called the classical regular potential and the logarithmic double-well
potential, respectively.

The present paper is devoted to the study of the control problem described below for the initial–
boundary value problem obtained by complementing (1.1) with an initial condition like y(0) = y0

and the following boundary conditions

∂nw = 0 and ∂ny + ∂tyΓ −∆ΓyΓ + f ′Γ(yΓ) = uΓ on Γ× (0, T ) (1.4)

where Γ is the boundary of Ω. The former is very common in the literature and preserves mass
conservation, i.e., it implies that the space integral of y is constant in time. The latter is an
evolution equation for the trace yΓ of the order parameter on the boundary, and the normal
derivative ∂ny and uΓ act as forcing terms. This condition enters the class of the so-called dy-
namic boundary conditions that have been widely used in the literature in the last twenty years,
say: in particular, the study of dynamic boundary conditions with Cahn–Hilliard type equations
has been taken up by some authors (let us quote [5, 9, 14, 18, 19, 24] and also refer to the
recent contribution [8] in which also a forced mass constraint on the boundary is considered).

The dynamic boundary condition in (1.4) contains the Laplace-Beltrami operator ∆Γ and a non-
linearity f ′Γ which is analogous to f ′ but is now acting on the boundary values uΓ. Even though
some of our results hold under weaker hypotheses, we assume from the very beginning that f ′
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and f ′Γ have the same domain D. The main assumption we make is a compatibility condition
between these nonlinearities. Namely, we suppose that f ′Γ dominates f ′ in the following sense:

|f ′(r)| ≤ η |f ′Γ(r)|+ C (1.5)

for some positive constants η and C and for every r ∈ D. This condition, earlier introduced
in [4] in relation with the Allen–Cahn equation with dynamic boundary conditions (see also
[11]), is then used in [9] (as well as in [6] and [10]) to deal with the Cahn–Hilliard system. This
complements [14], where some kind of an opposite inequality is assumed.

As just said, this paper deals with a control problem for the state system described above, the
control being the source term uΓ that appears in the dynamic boundary condition (1.4). Namely,
the problem we want to address consists in minimizing a proper cost functional depending on
both the control uΓ and the associate state (y, yΓ). Among several possibilities, we choose the
cost functional

J(y, yΓ, uΓ) :=
bQ
2
‖y − zQ‖2

L2(Q) +
bΣ

2
‖yΓ − zΣ‖2

L2(Σ) +
b0

2
‖uΓ‖2

L2(Σ) , (1.6)

where the functions zQ, zΣ and the nonnegative constants bQ, bΣ, b0 are given. The control
problem then consists in minimizing (1.6) subject to the state system and to the constraint
uΓ ∈ Uad, where the control box Uad is given by

Uad :=
{
uΓ ∈ H1(0, T ;HΓ) ∩ L∞(Σ) :

uΓ,min ≤ uΓ ≤ uΓ,max a.e. on Σ, ‖∂tuΓ‖L2(Σ) ≤M0

}
(1.7)

for some given functions uΓ,min, uΓ,max ∈ L∞(Σ) and some prescribed positive constant M0.
Of course, the control box Uad must be nonempty and this is guaranteed if, for instance, at least
one of uΓ,min or uΓ,max is in H1(0, T ;HΓ) and its time derivative satisfies the above L2(Σ)
bound.

This paper is a follow-up of the recent contributions [9] and [10] already mentioned. They deal
with a similar system and a similar control problem. The paper [9] contains a number of results
on the state system obtained by considering

w = τ ∂ty −∆y + f ′(y) (1.8)

in place of the second condition in (1.1). In (1.8), τ is a nonnegative parameter and the case
τ > 0 coupled with the first equation in (1.1) yields the well-known viscous Cahn–Hilliard
equation (in contrast, we term (1.1) the pure Cahn–Hilliard system). More precisely, existence,
uniqueness and regularity results are proved in [9] for general potentials that include (1.2)–(1.3),
and are valid for both the viscous and pure cases, i.e., by assuming just τ ≥ 0. Moreover, if
τ > 0, further regularity and properties of the solution are ensured. These results are then used
in [10], where the boundary control problem associated to a cost functional that generalizes (1.6)
is addressed and both the existence of an optimal control and first-order necessary conditions
for optimality are proved and expressed in terms of the solution of a proper adjoint problem.

In fact, recently Cahn–Hilliard systems have been rather investigated from the viewpoint of op-
timal control. In this connection, we refer to [15, 23, 27] and to [25, 26] which deal with the
convective Cahn–Hilliard equation; the case with a nonlocal potential is studied in [20]. There
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also exist contributions addressing some discretized versions of general Cahn–Hilliard systems,
cf. [16, 22]. However, about the optimal control of viscous or non-viscous Cahn–Hilliard systems
with dynamic boundary conditions of the form (1.4), we only know of the papers [10] and [6]
dealing with the viscous case; to the best of our knowledge, the present contribution is the
first paper treating the optimal control of the pure Cahn–Hilliard system with dynamic boundary
conditions.

The technique used in our approach essentially consists in starting from the known results for
τ > 0 and then letting the parameter τ tend to zero. In doing that, we use some of the ideas
of [7] and [6], which deal with the Allen–Cahn and the viscous Cahn–Hilliard equations, re-
spectively, and address similar control problems related to the nondifferentiable double obstacle
potential by seeing it as a limit of logarithmic double-well potentials.

The paper is organized as follows. In the next section, we list our assumptions, state the problem
in a precise form and present our results. The corresponding proofs are given in the last section.

2 Statement of the problem and results

In this section, we describe the problem under study and give an outline of our results. As in the
Introduction, Ω is the body where the evolution takes place. We assume Ω ⊂ R3 to be open,
bounded, connected, and smooth, and we write |Ω| for its Lebesgue measure. Moreover, Γ, ∂n,
∇Γ and ∆Γ stand for the boundary of Ω, the outward normal derivative, the surface gradient
and the Laplace–Beltrami operator, respectively. Given a finite final time T > 0, we set for
convenience

Qt := Ω× (0, t) and Σt := Γ× (0, t) for every t ∈ (0, T ] (2.1)

Q := QT , and Σ := ΣT . (2.2)

Now, we specify the assumptions on the structure of our system. Even though some of the
results we quote hold under rather mild hypotheses, we give a list of assumptions that implies
the whole set of conditions required in [9]. We assume that

−∞ ≤ r− < 0 < r+ ≤ +∞ (2.3)

f, fΓ : (r−, r+)→ [0,+∞) are C3 functions (2.4)

f(0) = fΓ(0) = 0 and f ′′ and f ′′Γ are bounded from below (2.5)

|f ′(r)| ≤ η |f ′Γ(r)|+ C for some η, C > 0 and every r ∈ (r−, r+) (2.6)

lim
r↘r−

f ′(r) = lim
r↘r−

f ′Γ(r) = −∞ and lim
r↗r+

f ′(r) = lim
r↗r+

f ′Γ(r) = +∞ . (2.7)

We note that (2.3)–(2.7) imply the possibility of splitting f ′ as f ′ = β+π, where β is a monotone
function that diverges at r± and π is a perturbation with a bounded derivative. Moreover, the
same is true for fΓ, so that the assumptions of [9] are satisfied. Furthermore, the choices f =
freg and f = flog corresponding to (1.2) and (1.3) are allowed.

Next, in order to simplify notations, we set

V := H1(Ω), H := L2(Ω), HΓ := L2(Γ) and VΓ := H1(Γ) (2.8)

V := {(v, vΓ) ∈ V × VΓ : vΓ = v
Γ
} and H := H ×HΓ (2.9)
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and endow these spaces with their natural norms. If X is any Banach space, then ‖ · ‖X and
X∗ denote its norm and its dual space, respectively. Furthermore, the symbol 〈 · , · 〉 usually
stands for the duality pairing between V ∗ and V itself and the similar notation 〈 · , · 〉Γ refers to
the spaces V ∗Γ and VΓ. In the following, it is understood that H is identified with H∗ and thus
embedded in V ∗ in the usual way, i.e., such that we have 〈u, v〉 = (u, v) with the inner product
( · , ·) of H , for every u ∈ H and v ∈ V . Thus, we introduce the Hilbert triplet (V,H, V ∗)
and analogously behave with the boundary spaces VΓ, HΓ and V ∗Γ . Finally, if u ∈ V ∗ and
u ∈ L1(0, T ;V ∗), we define their generalized mean values uΩ ∈ R and uΩ ∈ L1(0, T ) by
setting

uΩ :=
1

|Ω|
〈u, 1〉 and uΩ(t) :=

(
u(t)

)Ω
for a.a. t ∈ (0, T ). (2.10)

Clearly, the relations in (2.10) give the usual mean values when applied to elements of H or
L1(0, T ;H).

At this point, we can describe the state problem. For the data, we assume that

y0 ∈ H2(Ω) and y0 Γ
∈ H2(Γ) (2.11)

r− < y0(x) < r+ for every x ∈ Ω (2.12)

uΓ ∈ H1(0, T ;HΓ) . (2.13)

We look for a triplet (y, yΓ, w) satisfying

y ∈ H1(0, T ;V ∗) ∩ L∞(0, T ;V ) ∩ L2(0, T ;H2(Ω)) (2.14)

yΓ ∈ H1(0, T ;HΓ) ∩ L∞(0, T ;VΓ) ∩ L2(0, T ;H2(Γ)) (2.15)

yΓ(t) = y(t)
Γ

for a.a. t ∈ (0, T ) (2.16)

w ∈ L2(0, T ;V ) , (2.17)

as well as, for almost every t ∈ (0, T ), the variational equations

〈∂ty(t) v〉+

∫
Ω

∇w(t) · ∇v = 0 for every v ∈ V (2.18)∫
Ω

w(t) v =

∫
Ω

∇y(t) · ∇v +

∫
Γ

∂tyΓ(t) vΓ +

∫
Γ

∇ΓyΓ(t) · ∇ΓvΓ

+

∫
Ω

f ′(y(t)) v +

∫
Γ

(
f ′Γ(yΓ(t))− uΓ(t)

)
vΓ for every (v, vΓ) ∈ V (2.19)

y(0) = y0 . (2.20)

Thus, we require that the state variables satisfy the variational counterpart of the problem de-
scribed in the Introduction in a strong form. We note that an equivalent formulation of (2.18)–
(2.19) is given by ∫ t

0

〈∂ty(t) v(t)〉 dt+

∫
Q

∇w · ∇v = 0 (2.21)∫
Q

wv =

∫
Q

∇y · ∇v +

∫
Σ

∂tyΓ vΓ +

∫
Σ

∇ΓyΓ · ∇ΓvΓ

+

∫
Q

f ′(y) v +

∫
Σ

(
f ′Γ(yΓ)− uΓ

)
vΓ (2.22)
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for every v ∈ L2(0, T ;V ) and every (v, vΓ) ∈ L2(0, T ; V), respectively.

Besides, we consider the analogous state system with viscosity. Namely, for τ > 0 we replace
(2.19) by∫

Ω

w(t) v = τ

∫
Ω

∂ty(t) v +

∫
Ω

∇y(t) · ∇v +

∫
Γ

∂tyΓ(t) vΓ +

∫
Γ

∇ΓyΓ(t) · ∇ΓvΓ

+

∫
Ω

f ′(y(t)) v +

∫
Γ

(
f ′Γ(yΓ(t))− uΓ(t)

)
vΓ for every (v, vΓ) ∈ V (2.23)

in the above system. We notice that a variational equation equivalent to (2.23) is given by the
analogue of (2.22), i.e.,∫

Q

wv = τ

∫
Q

∂ty v +

∫
Q

∇y · ∇v +

∫
Σ

∂tyΓ vΓ +

∫
Σ

∇ΓyΓ · ∇ΓvΓ

+

∫
Q

f ′(y) v +

∫
Σ

(
f ′Γ(yΓ)− uΓ

)
vΓ for every (v, vΓ) ∈ L2(0, T ; V). (2.24)

As far as existence, uniqueness, regularity and continuous dependence are concerned, we
directly refer to [9]. From [9, Thms. 2.2 and 2.3] (where V has a slightly different meaning with
respect to the present paper), we have the following results:

Theorem 2.1. Assume (2.3)–(2.7) and (2.11)–(2.13). Then, there exists a unique triplet (y, yΓ, w)
satisfying (2.14)–(2.17) and solving (2.18)–(2.20).

Theorem 2.2. Assume (2.3)–(2.7) and (2.11)–(2.13). Then, for every τ > 0, there exists a
unique triplet (yτ , yτΓ, w

τ ) satisfying (2.14)–(2.17) and solving (2.18), (2.20) and (2.23). More-
over, this solution satisfies ∂tyτ ∈ L2(0, T ;H) and the estimate

‖yτ‖H1(0,T ;V ∗)∩L∞(0,T ;V )∩L2(0,T ;H2(Ω))

+ ‖yτΓ‖H1(0,T ;HΓ)∩L∞(0,T ;VΓ)∩L2(0,T ;H2(Γ))

+ ‖wτ‖L2(0,T ;V ) + ‖f ′(yτ )‖L2(0,T ;H) + ‖f ′Γ(yτΓ)‖L2(0,T ;HΓ)

+ τ 1/2‖∂tyτ‖L2(0,T ;H) ≤ C0 (2.25)

holds true for some constant C0 > 0 that depends only on Ω, T , the shape of the nonlinearities
f and fΓ, and the norms

∥∥(y0, y0|Γ)
∥∥

V
, ‖f ′(y0)‖L1(Ω),

∥∥f ′Γ(y0|Γ

)∥∥
L1(Γ)

, and ‖uΓ‖L2(0,T ;HΓ).

In fact, if the data are more regular, in particular, if uΓ ∈ H1(0, T ;HΓ) ∩ L∞(Σ), then the
solution (yτ , yτΓ, w

τ ) is even smoother (see [9, Thms. 2.4 and 2.6]) and, specifically, it satisfies

rτ− ≤ yτ ≤ rτ+ a.e. in Q (2.26)

for some constants rτ−, r
τ
+ ∈ (r−, r+) that depend on τ , in addition. It follows that the functions

f ′′(yτ ) and f ′′Γ(yτΓ) (which will appear as coefficients in a linear system later on) are bounded.
We also notice that the stability estimate (2.25) is not explicitely written in [9]. However, as the
proof of the regularity (2.14)–(2.17) of the solution performed there relies on a priori estimates
and compactness arguments and the dependence on τ in the whole calculation of [9] is always
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made explicit, (2.25) holds as well, and we stress that the corresponding constant C0 does not
depend on τ .

Once well-posedness for problem (2.18)–(2.20) is established, we can address the correspond-
ing control problem. As in the Introduction, given two functions

zQ ∈ L2(Q) and zΣ ∈ L2(Σ) (2.27)

and three nonnegative constants bQ, bΣ, b0, we set

J(y, yΓ, uΓ) :=
bQ
2
‖y − zQ‖2

L2(Q) +
bΣ

2
‖yΓ − zΣ‖2

L2(Σ) +
b0

2
‖uΓ‖2

L2(Σ) (2.28)

for, say, y ∈ L2(0, T ;H), yΓ ∈ L2(0, T ;HΓ) and uΓ ∈ L2(Σ), and consider the problem of
minimizing the cost functional (2.28) subject to the constraint uΓ ∈ Uad, where the control box
Uad is given by

Uad :=
{
uΓ ∈ H1(0, T ;HΓ) ∩ L∞(Σ) :

uΓ,min ≤ uΓ ≤ uΓ,max a.e. on Σ, ‖∂tuΓ‖L2(Σ) ≤M0

}
(2.29)

and to the state system (2.18)–(2.20). We simply assume that

M0 > 0, uΓ,min, uΓ,max ∈ L∞(Σ) and Uad is nonempty. (2.30)

Besides, we consider the analogous control problem of minimizing the cost functional (2.28)
subject to the constraint uΓ ∈ Uad and to the state system (2.18), (2.20) and (2.23). From [10,
Thm. 2.3], we have the following result.

Theorem 2.3. Assume (2.3)–(2.7) and (2.11)–(2.13), and let J and Uad be defined by (2.28)
and (2.29) under the assumptions (2.27) and (2.30). Then, for every τ > 0, there exists u τΓ ∈
Uad such that

J(y τ , y τΓ , u
τ
Γ) ≤ J(yτ , yτΓ, uΓ) for every uΓ ∈ Uad , (2.31)

where y τ , y τΓ , yτ and yτΓ are the components of the solutions (y τ , y τΓ , w
τ ) and (yτ , yτΓ, w

τ )
to the state system (2.18), (2.20) and (2.23) corresponding to the controls u τΓ and uΓ, respec-
tively.

In [10] first-order necessary conditions are obtained in terms of the solution to a proper adjoint
system. More precisely, just the case τ = 1 is considered there. However, by going through the
paper with some care, one easily reconstructs the version of the adjoint system corresponding
to an arbitrary τ > 0. Even though the adjoint problem considered in [10] involves a triplet
(pτ , qτ , qτΓ) as an adjoint state, only the third component qτΓ enters the necessary condition for
optimality. On the other hand, qτ and qτΓ are strictly related to each other. Hence, we mention the
result that deals with the pair (qτ , qτΓ). To this end, we recall a tool, the generalized Neumann
problem solver N, that is often used in connection with the Cahn–Hilliard equations. With the
notation for the mean value introduced in (2.10), we define

dom N := {v∗ ∈ V ∗ : vΩ
∗ = 0} and N : dom N→ {v ∈ V : vΩ = 0} (2.32)
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by setting, for v∗ ∈ dom N,

Nv∗ ∈ V, (Nv∗)
Ω = 0, and

∫
Ω

∇Nv∗ · ∇z = 〈v∗, z〉 for every z ∈ V . (2.33)

Thus, Nv∗ is the solution v to the generalized Neumann problem for −∆ with datum v∗ that
satisfies vΩ = 0. Indeed, if v∗ ∈ H , the above variational equation means that −∆Nv∗ = v∗
and ∂nNv∗ = 0. As Ω is bounded, smooth, and connected, it turns out that (2.33) yields a
well-defined isomorphism. Moreover, we have

〈u∗,Nv∗〉 = 〈v∗,Nu∗〉 =

∫
Ω

(∇Nu∗) · (∇Nv∗) for u∗, v∗ ∈ dom N, (2.34)

whence also

2〈∂tv∗(t),Nv∗(t)〉 =
d

dt

∫
Ω

|∇Nv∗(t)|2 =
d

dt
‖v∗(t)‖2

∗ for a.a. t ∈ (0, T ) (2.35)

for every v∗ ∈ H1(0, T ;V ∗) satisfying (v∗)
Ω = 0 a.e. in (0, T ), where we have set

‖v∗‖∗ := ‖∇Nv∗‖H for v∗ ∈ V ∗. (2.36)

One easily sees that ‖ · ‖∗ is a norm in V ∗ which is equivalent to the usual dual norm.

Furthermore, we introduce the spaces HΩ and VΩ by setting

HΩ := {(v, vΓ) ∈ H : vΩ = 0} and VΩ := HΩ ∩ V , (2.37)

and endow them with their natural topologies as subspaces of H and V, respectively. As in [10,
Thms. 2.5 and 5.4], we have the following result.

Theorem 2.4. Assume

λ ∈ L∞(Q), λΓ ∈ L∞(Σ), ϕQ ∈ L2(Q) and ϕΣ ∈ L2(Σ). (2.38)

Then, for every τ > 0, there exists a unique pair (qτ , qτΓ) satisfying the regularity conditions

qτ ∈ H1(0, T ;H) ∩ L2(0, T ;H2(Ω)) and qτΓ ∈ H1(0, T ;HΓ) ∩ L2(0, T ;H2(Γ))
(2.39)

and solving the following adjoint problem:

(qτ , qτΓ)(t) ∈ VΩ for every t ∈ [0, T ] (2.40)

−
∫

Ω

∂t
(
N(qτ (t)) + τqτ (t)

)
v +

∫
Ω

∇qτ (t) · ∇v +

∫
Ω

λ(t) qτ (t) v

−
∫

Γ

∂tq
τ
Γ(t) vΓ +

∫
Γ

∇Γq
τ
Γ(t) · ∇ΓvΓ +

∫
Γ

λΓ(t) qτΓ(t) vΓ

=

∫
Ω

ϕQ(t)v +

∫
Γ

ϕΣ(t)vΓ for a.a. t ∈ (0, T ) and every (v, vΓ) ∈ VΩ (2.41)∫
Ω

(
Nqτ + τqτ

)
(T ) v +

∫
Γ

qΓ(T ) vΓ = 0 for every (v, vΓ) ∈ VΩ . (2.42)
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More precisely, in [10] the above theorem is proved with the particular choice

λ = f ′′(y τ ), λΓ = f ′′Γ(y τΓ), ϕQ = bQ(y τ − zQ) and ϕΣ = bΣ(y τΓ − zΣ) (2.43)

where y τ and y τΓ are the components of the state associated to an optimal control u τΓ . However,
the same proof is valid under assumption (2.38).

Finally, [10, Thm. 2.6] gives a necessary condition for u τΓ to be an optimal control in terms of
the solution to the above adjoint system corresponding to (2.43). This condition reads∫

Σ

(qτΓ + b0u
τ
Γ)(vΓ − u τΓ) ≥ 0 for every vΓ ∈ Uad. (2.44)

In this paper, we first show the existence of an optimal control uΓ. Namely, we prove the following
result.

Theorem 2.5. Assume (2.3)–(2.7) and (2.11)–(2.13), and let J and Uad be defined by (2.28)
and (2.29) under the assumptions (2.27) and (2.30). Then there exists some uΓ ∈ Uad

such that
J(y, yΓ, uΓ) ≤ J(y, yΓ, uΓ) for every uΓ ∈ Uad , (2.45)

where y, yΓ, y and yΓ are the components of the solutions (y, yΓ, w) and (y, yΓ, w) to the
state system (2.18)–(2.20) corresponding to the controls uΓ and uΓ, respectively.

Next, for every optimal control uΓ, we derive a necessary optimality condition like (2.44) in terms
of the solution of a generalized adjoint system. In order to make the last sentence precise, we
introduce the spaces

W := L2(0, T ; VΩ) ∩
(
H1(0, T ;V ∗)×H1(0, T ;V ∗Γ )

)
(2.46)

W0 := {(v, vΓ) ∈W : (v, vΓ)(0) = (0, 0)} (2.47)

and endow them with their natural topologies. Moreover, we denote by 〈〈 · , · 〉〉 the duality prod-
uct between W∗

0 and W0. We will prove the following representation result for the elements of
the dual space W∗

0.

Proposition 2.6. A functional F : W0 → R belongs to W∗
0 if and only if there exist Λ and ΛΓ

satisfying

Λ ∈
(
H1(0, T ;V ∗) ∩ L2(0, T ;V )

)∗
and ΛΓ ∈

(
H1(0, T ;V ∗Γ ) ∩ L2(0, T ;VΓ)

)∗
(2.48)

〈〈F, (v, vΓ)〉〉 = 〈Λ, v〉Q + 〈ΛΓ, vΓ〉Σ for every (v, vΓ) ∈W0 , (2.49)

where the duality products 〈 · , · 〉Q and 〈 · , · 〉Σ are related to the spaces X∗ and X with
X = H1(0, T ;V ∗) ∩ L2(0, T ;V ) and X = H1(0, T ;V ∗Γ ) ∩ L2(0, T ;VΓ), respectively.

However, this representation is not unique, since different pairs (Λ,ΛΓ) satisfying (2.48) could
generate the same functional F through formula (2.49).

At this point, we are ready to present our result on the necessary optimality conditions for the
control problem related to the pure Cahn–Hilliard equations, i.e., the analogue of (2.44) in terms
of a solution to a generalized adjoint system.
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Theorem 2.7. Assume (2.3)–(2.7) and (2.11)–(2.13), and let J and Uad be defined by (2.28)
and (2.29) under the assumptions (2.27) and (2.30). Moreover, let uΓ be any optimal control
as in the statement of Theorem 2.5. Then, there exist Λ and ΛΓ satisfying (2.48), and a pair
(q, qΓ) satisfying

q ∈ L∞(0, T ;V ∗) ∩ L2(0, T ;V ) (2.50)

qΓ ∈ L∞(0, T ;HΓ) ∩ L2(0, T ;VΓ) (2.51)

(q, qΓ)(t) ∈ VΩ for every t ∈ [0, T ] , (2.52)

as well as ∫ T

0

〈∂tv(t),Nq(t)〉 dt+

∫ T

0

〈∂tvΓ(t), qΓ(t)〉Γ dt

+

∫
Q

∇q · ∇v +

∫
Σ

∇ΓqΓ · ∇ΓvΓ + 〈Λ, v〉Q + 〈ΛΓ, vΓ〉Σ

=

∫
Q

ϕQ v +

∫
Σ

ϕΣ vΓ for every (v, vΓ) ∈W0 , (2.53)

such that ∫
Σ

(qΓ + b0uΓ)(vΓ − uΓ) ≥ 0 for every vΓ ∈ Uad. (2.54)

In particular, if b0 > 0, then the optimal control uΓ is the L2(Σ)-projection of−qΓ/b0 onto Uad.

One recognizes in (2.53) a problem that is analogous to (2.41)–(2.42). Indeed, if Λ, ΛΓ and
the solution (q, qΓ) were regular functions, then its strong form should contain both a general-
ized backward parabolic equation like (2.41) and a final condition for (Nq, qΓ) of type (2.42),
since the definition of W0 allows its elements to be free at t = T . However, the terms λτqτ

and λτΓq
τ
Γ are just replaced by the functionals Λ and ΛΓ and cannot be identified as products,

unfortunately.

3 Proofs

In the whole section, we assume that all of the conditions (2.3)–(2.7) and (2.11)–(2.12) on the
structure and the initial datum of the state system, as well as assumptions (2.27) and (2.30)
that regard the cost functional (2.28) and the control box (2.29), are satisfied. We start with an
expected result.

Proposition 3.1. Assume uτΓ ∈ H1(0, T ;HΓ) and let (yτ , yτΓ, w
τ ) be the solution to the prob-

lem (2.18), (2.20) and (2.23) associated to uτΓ. If uτΓ converges to uΓ weakly in H1(0, T ;HΓ)
as τ ↘ 0, then

yτ → y weakly star in H1(0, T ;V ∗) ∩ L∞(0, T ;V ) ∩ L2(0, T ;H2(Ω))

and strongly in C0([0, T ];H) ∩ L2(0, T ;V ) (3.1)

yτΓ → yΓ weakly star in H1(0, T ;HΓ) ∩ L∞(0, T ;VΓ) ∩ L2(0, T ;H2(Γ))

and strongly in C0([0, T ];HΓ) ∩ L2(0, T ;VΓ) (3.2)

wτ → w weakly star in L2(0, T ;V ) , (3.3)
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where (y, yΓ, w) is the solution to problem (2.18)–(2.20) associated with uΓ.

Proof. The family {uτΓ} is bounded in H1(0, T ;HΓ). Thus, the solution (yτ , yτΓ, w
τ ) satis-

fies (2.25) for some constant C0, so that the weak or weak star convergence specified in
(3.1)–(3.3) holds for a subsequence. In particular, the Cauchy condition (2.20) for y is satis-
fied. Moreover, we also have τ ∂tyτ → 0 strongly in L2(0, T ;H) as well as f ′(yτ ) → ξ and
f ′Γ(yτΓ) → ξΓ weakly in L2(0, T ;H) and in L2(0, T ;HΓ), respectively, for some ξ and ξΓ.
Furthermore, yτ and yτΓ converge to their limits strongly in L2(0, T ;H) and L2(0, T ;HΓ), re-
spectively, thanks to the Aubin-Lions lemma (see, e.g., [17, Thm. 5.1, p. 58], which also implies
a much better strong convergence [21, Sect. 8, Cor. 4]). Now, as said in Section 2, we can split
f ′ as f ′ = β + π, where β is monotone and π is Lipschitz continuous. It follows that π(yτ )
converges to π(y) strongly in L2(0, T ;H), whence we obtain that also β(yτ ) converges to
ξ−π(y) weakly in L2(0, T ;H). Then, we infer that ξ−π(y) = β(y) a.e. inQ, i.e., ξ = f ′(y)
a.e. in Q, with the help of standard monotonicity arguments (see, e.g., [1, Lemma 1.3, p. 42]).
Similarly, we have ξΓ = f ′Γ(yΓ). Therefore, by starting from (2.21) and (2.24) written with uτΓ
in place of uΓ, we can pass to the limit and obtain (2.21)–(2.22) associated to the limit con-
trol uΓ. As the solution to the limit problem is unique, the whole family (yτ , yτΓ, w

τ ) converges
to (y, yΓ, w) in the sense of the statement and the proof is complete.

Corollary 3.2. Estimate (2.25), written formally with τ = 0, holds for the solution to the pure
Cahn–Hilliard system (2.18)–(2.20).

Proof. By applying the above proposition with uτΓ = uΓ and using (2.25) for the solution to the
viscous problem, we immediately conclude the claim.

Proof of Theorem 2.5. We use the direct method and start from a minimizing sequence
{uΓ,n}. Then, uΓ,n remains bounded in H1(0, T ;H), whence we have uΓ,n → uΓ weakly in
H1(0, T ;HΓ) for a subsequence. By Corollary 3.2, the sequence of the corresponding states
(yn, yΓ,n, wn) satisfies the analogue of (2.25). Hence, by arguing as in the proof of Proposi-
tion 3.1, we infer that the solutions (yn, yΓ,n, wn) converge in the proper topology to the solution
(y, yΓ, w) associated to uΓ. In particular, there holds the strong convergence specified by the
analogues of (3.1) and (3.2). Thus, by also owing to the semicontinuity of J and the optimality
of uΓ,n, we have

J(y, yΓ, uΓ) ≤ lim inf
n→∞

J(yn, yΓ,n, uΓ,n) ≤ J(y, yΓ, uΓ)

for every uΓ ∈ Uad, where y and yΓ are the components of the solution to the Cahn–Hilliard
system associated with uΓ. This means that uΓ is an optimal control.

Proof of Proposition 2.6. Assume that Λ and ΛΓ satisfy (2.48). Then, formula (2.49) actually
defines a functional F on W0. Clearly, F is linear. Moreover, we have, for every (v, vΓ) ∈W0,

|〈Λ, v〉Q + 〈ΛΓ, vΓ〉Σ|
≤ ‖Λ‖(H1(0,T ;V ∗)∩L2(0,T ;V ))∗ ‖v‖H1(0,T ;V ∗)∩L2(0,T ;V )

+ ‖ΛΓ‖(H1(0,T ;V ∗Γ )∩L2(0,T ;VΓ))∗ ‖v‖H1(0,T ;V ∗Γ )∩L2(0,T ;VΓ)

≤
(
‖Λ‖(H1(0,T ;V ∗)∩L2(0,T ;V ))∗ + ‖ΛΓ‖(H1(0,T ;V ∗Γ )∩L2(0,T ;VΓ))∗

)
‖(v, vΓ)‖W ,

10



so that F is continuous. Conversely, assume that F ∈ W∗
0. As W0 is a (closed) subspace of

W̃ :=
(
H1(0, T ;V ∗)∩L2(0, T ;V ))× (H1(0, T ;V ∗Γ )∩L2(0, T ;VΓ)), we can extend F to

a linear continuous functional F̃ on W̃. Then, there exist Λ and ΛΓ (take Λ(v) := F̃ (v, 0) and
ΛΓ(vΓ) := F̃ (0, vΓ)) satisfying (2.48) such that

〈F̃ , (v, vΓ)〉 = 〈Λ, v〉Q + 〈ΛΓ, vΓ〉Σ for every (v, vΓ) ∈ W̃ ,

where the duality product on the left-hand side refers to the spaces (W̃)∗ and W̃. Since
〈〈F, (v, vΓ)〉〉 = 〈F̃ , (v, vΓ)〉 for every (v, vΓ) ∈W0, (2.49) immediately follows.

The rest of this section is devoted to the proof of Theorem 2.7 on the necessary optimality
conditions. Therefore, besides the general assumptions, we also suppose that

uΓ is any optimal control as in Theorem 2.5, (3.4)

that is, an arbitrary optimal control uΓ is fixed once and for all. In order to arrive at the desired
necessary optimality condition for uΓ, we follow [2] and introduce the modified functional J̃

defined by

J̃(y, yΓ, uΓ) := J(y, yΓ, uΓ) +
1

2
‖uΓ − uΓ‖2

L2(Σ) . (3.5)

Then the analogue of Theorem 2.3 holds, and we have:

Theorem 3.3. For every τ > 0, there exists some ũτΓ ∈ Uad such that

J̃(ỹτ , ỹτΓ, ũ
τ
Γ) ≤ J̃(yτ , yτΓ, uΓ) for every uΓ ∈ Uad , (3.6)

where ỹτ , ỹτΓ, yτ and yτΓ are the components of the solutions (ỹτ , ỹτΓ, w̃
τ ) and (yτ , yτΓ, w

τ )
to the state system (2.18), (2.20) and (2.23) corresponding to the controls ũτΓ and uΓ, respec-
tively.

For the reader’s convenience, we fix the notation just used and introduce a new one (which was
already used with a different meaning earlier in this paper):

ũτΓ is an optimal control as in Theorem 3.3 (3.7)

(ỹτ , ỹτΓ, w̃
τ ) is the solution to (2.18), (2.20) and (2.23) corresponding to ũτΓ (3.8)

(y τ , y τΓ , w
τ ) is the solution to (2.18), (2.20) and (2.23) corresponding to uΓ. (3.9)

The next step consists in writing the proper adjoint system and the corresponding necessary
optimality condition, which can be done by repeating the argument of [10]. However, instead of
just stating the corresponding result, we spend some words that can help the reader. The opti-
mality variational inequality is derived as a condition on the Fréchet derivative of the map (de-
fined in a proper functional framework) uΓ 7→ J̃(y, yΓ, uΓ), where the pair (y, yΓ) is subjected
to the state system. Thus, this derivative depends on the Fréchet derivative of the functional
(y, yΓ, uΓ) 7→ J̃(y, uΓ, uΓ), which is given by

[DJ̃(y, yΓ, uΓ)](k, kΓ, hΓ)] = bQ

∫
Q

(y−zQ)k+bΣ

∫
Σ

(yΓ−zΣ)kΓ+

∫
Σ

(
b0uΓ+(uΓ−uΓ)

)
hΓ .

Hence, the argument for J̃ differs from the one for J only in relation to the last integral. In other
words, we just have to replace b0uΓ by b0uΓ + (uΓ − uΓ) in the whole argument of [10]. In
particular, the adjoint system remains unchanged. Here is the conclusion.
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Proposition 3.4. With the notations (3.7)–(3.8), we have∫
Σ

(
qτΓ + b0ũ

τ
Γ + (ũτΓ − uΓ)

)
(vΓ − ũτΓ) ≥ 0 for every vΓ ∈ Uad , (3.10)

where qτΓ is the component of the solution (qτ , qτΓ) to (2.40)–(2.42) corresponding to uΓ = ũτΓ
with the choices λ = λτ , λΓ = λτΓ, ϕQ = ϕτQ and ϕΣ = ϕτΣ specified by

λτ = f ′′(ỹτ ), λτΓ = f ′′Γ(ỹτΓ), ϕτQ = bQ(ỹτ − zQ) and ϕτΣ = bΣ(ỹτΓ − zΣ). (3.11)

Thus, our project for the proof of Theorem 2.7 is the following: we take the limit in (3.10) and in
the adjoint system mentioned in the previous statement as τ tends to zero. This will lead to the
desired necessary optimality condition (2.54) provided that we prove that the optimal controls
ũτΓ converge to uΓ. The details of this project are the following.

i) There hold

ũτΓ → uΓ weakly star in H1(0, T ;HΓ) ∩ L∞(Σ) and strongly in L2(Σ) (3.12)

ỹτ → y weakly star in H1(0, T ;V ∗) ∩ L∞(0, T ;V ) ∩ L2(0, T ;H2(Ω))

and strongly in C0([0, T ];H) ∩ L2(0, T ;V ) (3.13)

ỹτΓ → yΓ weakly star in H1(0, T ;HΓ) ∩ L∞(0, T ;VΓ) ∩ L2(0, T ;H2(Γ))

and strongly in C0([0, T ];HΓ) ∩ L2(0, T ;VΓ) (3.14)

w̃τ → w weakly star in L2(0, T ;V ) (3.15)

qτ → q weakly star in L∞(0, T ;V ∗) ∩ L2(0, T ;V ) (3.16)

qτΓ → qΓ weakly star in L∞(0, T ;HΓ) ∩ L2(0, T ;VΓ) , (3.17)

as well as
J̃(ỹτ , ỹτΓ, ũ

τ
Γ)→ J(y, yΓ, uΓ) , (3.18)

at least for a subsequence, and (y, yΓ, w) solves problem (2.18)–(2.20) with uΓ = uΓ.

ii) The functionals associated with the pair (λτqτ , λτΓ, q
τ
Γ) through Proposition 2.6 converge to

some functional weakly in W∗
0, at least for a subsequence, and we then represent the limit by

some pair (Λ,ΛΓ), so that we have

〈λτqτ , v〉Q + 〈λτΓqτΓ, vΓ〉Σ → 〈Λ, v〉Q + 〈ΛΓ, vΓ〉Σ for every (v, vΓ) ∈W0. (3.19)

iii) With such a choice of (Λ,ΛΓ), the pair (q, qΓ) solves (2.52)–(2.53).

iv) Condition (2.54) holds.

The main tool is proving a priori estimates. To this concern, we use the following rule to denote
constants in order to avoid a boring notation. The small-case symbol c stands for different con-
stants that neither depend on τ nor on the functions whose norm we want to estimate. Hence,
the meaning of c might change from line to line and even in the same chain of equalities or
inequalities. Similarly, a symbol like cδ denotes different constants that depend on the parame-
ter δ, in addition.
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First a priori estimate. As u τΓ ∈ Uad and Theorem 2.2 holds, we have

‖ũτΓ‖H1(0,T ;HΓ) + ‖ỹτ‖H1(0,T ;V ∗)∩L∞(0,T ;V )∩L2(0,T ;H2(Ω))

+ ‖ỹτΓ‖H1(0,T ;HΓ)∩L∞(0,T ;VΓ)∩L2(0,T ;H2(Γ)) + ‖w̃τ‖L2(0,T ;V )

+ ‖f ′(ỹτ )‖L2(0,T ;H) + ‖f ′Γ(ỹτΓ)‖L2(0,T ;HΓ) + τ 1/2‖∂tỹτ‖L2(0,T ;H) ≤ c . (3.20)

Second a priori estimate. For the reader’s convenience, we explicitly write the adjoint system
mentioned in Proposition 3.4, as well as the regularity of its solution,

qτ ∈ H1(0, T ;H) ∩ L2(0, T ;H2(Ω)), qτΓ ∈ H1(0, T ;HΓ) ∩ L2(0, T ;H2(Γ)) (3.21)

(qτ , qτΓ)(s) ∈ VΩ for every s ∈ [0, T ] (3.22)

−
∫

Ω

∂t
(
N(qτ (s)) + τqτ (s)

)
v +

∫
Ω

∇qτ (s) · ∇v +

∫
Ω

λτ (s) qτ (s) v

−
∫

Γ

∂tq
τ
Γ(s) vΓ +

∫
Γ

∇Γq
τ
Γ(s) · ∇ΓvΓ +

∫
Γ

λτΓ(s) qτΓ(s) vΓ

=

∫
Ω

ϕτQ(s)v +

∫
Γ

ϕτΣ(s)vΓ for a.e. s ∈ (0, T ) and every (v, vΓ) ∈ VΩ (3.23)

where λτ = f ′′(ỹτ ), λτΓ = f ′′Γ(ỹτΓ), ϕτQ = bQ(ỹτ − zQ) and ϕτΣ = bΣ(ỹτΓ − zΣ)∫
Ω

(
Nqτ + τqτ

)
(T ) v +

∫
Γ

qΓ(T ) vΓ = 0 for every (v, vΓ) ∈ VΩ. (3.24)

Now, we choose v = qτ (s) and vΓ = qτΓ(s), and integrate over (t, T ) with respect to s.
Recalling (2.35) and now reading Qt := Ω× (t, T ) and Σt := Γ× (t, T ), we have

1

2
‖qτ (t)‖2

∗ +
τ

2

∫
Ω

|qτ (t)|2 +

∫
Qt

|∇qτ |2 +

∫
Qt

λτ |qτ |2

+
1

2

∫
Γ

|qτΓ(t)|2 +

∫
Σt

|∇Γq
τ
Γ|2 +

∫
Σt

λτΓ|qτΓ|2

=

∫
Qt

ϕτQ q
τ +

∫
Σt

ϕτΣ q
τ
Γ ≤

∫
Q

|ϕτQ|2 +

∫
Qt

|qτ |2 +

∫
Σ

|ϕτΣ|2 +

∫
Σt

|qτΓ|2

≤
∫
Qt

|qτ |2 +

∫
Σt

|qτΓ|2 + c (3.25)

where the last inequality follows from (3.20). By accounting for (2.5), we also have∫
Qt

λτ |qτ |2 ≥ −c
∫
Qt

|qτ |2 and

∫
Qt

λτΓ|qτΓ|2 ≥ −c
∫

Σt

|qτΓ|2.

We treat the volume integral (and the same on the right-hand side of (3.25)) invoking the com-
pact embedding V ⊂ H . We have∫

Ω

|v|2 ≤ δ

∫
Ω

|∇v|2 + cδ‖v‖2
∗ for every v ∈ V and δ > 0.

13



Hence, we deduce that∫
Qt

|qτ |2 ≤ δ

∫
Qt

|∇qτ |2 + cδ

∫ T

t

‖qτ (s)‖2
∗ ds .

Therefore, by combining, choosing δ small enough and applying the backward Gronwall lemma,
we conclude that

‖qτ‖L∞(0,T ;V ∗)∩L2(0,T ;V ) + ‖qτΓ‖L∞(0,T ;HΓ)∩L2(0,T ;VΓ) + τ 1/2‖qτ‖L∞(0,T ;H) ≤ c . (3.26)

Third a priori estimate. Take an arbitrary pair (v, vΓ) ∈ H1(0, T ; HΩ)∩L2(0, T ; VΩ), and
test (3.23) by v(s) and vΓ(s). Then, we sum over s ∈ (0, T ) and integrate by parts with the
help of (3.24), so that no integral related to the time T appears. In particular, if (v, vΓ) ∈ W0,
even the terms evaluated at t = 0 vanish and we obtain that∫
Q

(Nqτ + τqτ )∂tv +

∫
Q

∇qτ · ∇v +

∫
Q

λτqτv +

∫
Σ

qτΓ∂tvΓ +

∫
Σ

∇qτΓ · ∇vΓ +

∫
Σ

λτqτΓvΓ

=

∫
Q

ϕτQ v +

∫
Σ

ϕτΣ vΓ . (3.27)

Therefore, we have, for every (v, vΓ) ∈W0,∣∣∣∣∫
Q

λτqτv +

∫
Σ

λτqτΓvΓ

∣∣∣∣
≤ ‖Nqτ + τqτ‖L2(0,T ;V ) ‖∂tv‖L2(0,T ;V ∗) + ‖qτ‖L2(0,T ;V ) ‖v‖L2(0,T ;V )

+ ‖qτΓ‖L2(0,T ;VΓ) ‖∂tvΓ‖L2(0,T ;V ∗Γ ) + ‖qτΓ‖L2(0,T ;VΓ) ‖vΓ‖L2(0,T ;VΓ)

+ ‖ϕτQ‖L2(0,T ;H) ‖v‖L2(0,T ;H) + ‖ϕτΣ‖L2(0,T ;HΓ) ‖vΓ‖L2(0,T ;HΓ) .

Now, by assuming τ ≤ 1, we have ‖Nv + τv‖V ≤ c‖v‖∗ + τ‖v‖V ≤ c‖v‖V for every
v ∈ V with zero mean value (see (2.36)). Therefore, by accounting for (3.20) and (3.26), we
conclude that∣∣∣∣∫

Q

λτqτv +

∫
Σ

λτqτΓvΓ

∣∣∣∣ ≤ c ‖(v, vΓ)‖W for every (v, vΓ) ∈W0. (3.28)

Conclusion of the proof of Theorem 2.7. From the above estimates, we infer that

ũτΓ → uΓ weakly star in H1(0, T ;HΓ) ∩ L∞(Σ) (3.29)

ỹτ → y weakly star in H1(0, T ;V ∗) ∩ L∞(0, T ;V ) ∩ L2(0, T ;H2(Ω))

and strongly in C0([0, T ];H) ∩ L2(0, T ;V ) (3.30)

ỹτΓ → yΓ weakly star in H1(0, T ;HΓ) ∩ L∞(0, T ;VΓ) ∩ L2(0, T ;H2(Γ))

and strongly in C0([0, T ];HΓ) ∩ L2(0, T ;VΓ) (3.31)

w̃τ → w weakly star in L2(0, T ;V ) (3.32)

qτ → q weakly star in L∞(0, T ;V ∗) ∩ L2(0, T ;V ) (3.33)

qτΓ → qΓ weakly star in L∞(0, T ;HΓ) ∩ L2(0, T ;VΓ) (3.34)

τqτ → 0 strongly in L∞(0, T ;H) (3.35)
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at least for a subsequence, and (y, yΓ, w) is the solution to the problem (2.14)–(2.20) cor-
responding to uΓ, thanks to Proposition 3.1. Notice that (3.33)–(3.34) coincide with (3.16)–
(3.17) and that (3.12)–(3.15) hold once we prove that uΓ = uΓ and that ũτΓ converges strongly
in L2(Σ).

To this end, we recall the notations (3.7)–(3.9), and it is understood that all the limits we write
are referred to the selected subsequence. By optimality, we have

J(y, yΓ, uΓ) ≤ J(y, yΓ, uΓ) and J̃(ỹτ , ỹτΓ, ũ
τ
Γ) ≤ J̃(y τ , y τΓ , uΓ).

On the other hand, (3.29)–(3.31) and Proposition 3.1 applied with uτΓ = uΓ yield

J̃(y, yΓ, uΓ) ≤ lim inf J̃(ỹτ , ỹτΓ, ũ
τ
Γ) and lim J(y τ , y τΓ , uΓ) = J(y, yΓ, uΓ).

By combining, we deduce that

J(y, yΓ, uΓ) +
1

2
‖uΓ − uΓ‖2

L2(Σ) ≤ J(y, yΓ, uΓ) +
1

2
‖uΓ − uΓ‖2

L2(Σ)

= J̃(y, yΓ, uΓ) ≤ lim inf J̃(ỹτ , ỹτΓ, ũ
τ
Γ) ≤ lim sup J̃(ỹτ , ỹτΓ, ũ

τ
Γ)

≤ lim sup J̃(y τ , y τΓ , uΓ) = lim sup J(y τ , y τΓ , uΓ) = J(y, yΓ, uΓ).

By comparing the first and last terms of this chain, we infer that the L2(Σ)-norm of uΓ − uΓ

vanishes, whence uΓ = uΓ, as desired. In order to prove the strong convergence mentioned
in (3.12), we observe that the above argument also shows that

lim inf J̃(ỹτ , ỹτΓ, ũ
τ
Γ) = lim sup J̃(ỹτ , ỹτΓ, ũ

τ
Γ) = J(y, yΓ, uΓ).

Notice that this coincides with (3.18). From the strong convergence given by (3.13) and (3.14),
and by comparison, we deduce that

lim

(
b0

2

∫
Σ

|ũτΓ|2 +
1

2

∫
Σ

|ũτΓ − uΓ|2
)

=
b0

2

∫
Σ

|uΓ|2 ,

whence also

lim sup
b0

2

∫
Σ

|ũτΓ|2 ≤ lim sup

(
b0

2

∫
Σ

|ũτΓ|2 +
1

2

∫
Σ

|ũτΓ − uΓ|2
)

=
b0

2

∫
Σ

|uΓ|2 ≤ lim inf
b0

2

∫
Σ

|ũτΓ|2.

Therefore, we have

lim
b0

2

∫
Σ

|ũτΓ|2 =
b0

2

∫
Σ

|uΓ|2 , whence lim
1

2

∫
Σ

|ũτΓ − uΓ|2 = 0 ,

and (3.12)–(3.15) are completely proved.

Now, we deal with the limit (q, qΓ) given by (3.33)–(3.34), i.e., (3.16)–(3.17). Clearly, (2.52)
holds as well. Furthermore, as ‖Nv∗‖V ≤ c‖v∗‖∗ for every v∗ ∈ V ∗ with zero mean value
(see (2.33)), and since the convergence (3.35) holds, we also have

Nqτ + τqτ → Nq weakly star in L∞(0, T ;H).
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On the other hand, (3.28) implies that the functionals F τ ∈W∗
0 defined by

〈〈F τ , (v, vΓ)〉〉 := 〈λτqτ , v〉Q + 〈λτΓqτΓ, vΓ〉Σ ,

i.e., the functionals associated with (λτqτ , λτΓ, q
τ
Γ) as in Proposition 2.6, are bounded in W∗

0.
Therefore, for a subsequence, we have F τ → F weakly star in W∗

0, where F is some element
of W∗

0. Hence, if we represent F as stated in Proposition 2.6, we find Λ and ΛΓ satisfying (2.48)
and (3.19). At this point, it is straightforward to pass to the limit in (3.27) and in (3.10) to obtain
both (2.53) and (2.54). This completes the proof of Theorem 2.7.

Remark 3.5. The above proof can be repeated without any change starting from any sequence
τn ↘ 0. By doing that, we obtain: there exists a subsequence {τnk

} such that (3.12)–(3.18)
hold along the selected subsequence. As the limits uΓ, y, yΓ, w and J(y, yΓ, uΓ) are always
the same, this proves that in fact (3.12)–(3.15) as well as (3.18) hold for the whole family. On the
contrary, the limits q and qΓ might depend on the selected subsequence since no uniqueness
result for the adjoint problem is known. Nevertheless, the necessary optimality condition (2.54)
holds for every solution (q, qΓ) to the adjoint problem that can be found as a limit of pairs
(qτ , qτΓ) as specified in the above proof.
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