
Weierstraß-Institut
für Angewandte Analysis und Stochastik
Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 2198-5855

Splitting methods for SPDEs: From robustness to financial

engineering, optimal control and nonlinear filtering

Christian Bayer1, Harald Oberhauser2

submitted: February 3, 2015

1 Weierstrass Institute
Mohrenstr. 39
10117 Berlin
Germany
E-Mail: christian.bayer@wias-berlin.de

2 Oxford-Man Institute of Quantitative Finance
University of Oxford
Eagle House
Walton Well Road
Oxford OX2 6ED
United Kingdom
E-Mail:harald.oberhauser@oxford-man.ox.ac.uk

No. 2072

Berlin 2015

2010 Mathematics Subject Classification. 60H15, 60H35, 65C30.

Key words and phrases. Splitting methots, SPDEs, rough paths, Ninomiya-Victoir method.

Harald Oberhauser is grateful for the support of the ERC (grant agreement No.291244 Esig) and the Oxford-Man Institute of
Quantitative finance.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications Server of the Weierstrass Institute for Applied Analysis and Stochastics

https://core.ac.uk/display/289298958?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax: +49 30 20372-303
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/



Abstract

In this survey paper we give an overview of recent applications of the splitting method to stochas-
tic (partial) differential equations, that is, differential equations that evolve under the influence of
noise. We discuss weak and strong approximations schemes. The applications range from the man-
agement of risk, financial engineering, optimal control and nonlinear filtering to the viscosity theory
of nonlinear SPDEs.

1 Introduction

The theory of (ordinary/partial) differential equations has been incredibly successful in modelling
quantities that evolve over time. Many of these quantities can be profoundly affected by stochastic
fluctuations, noise, and randomness. The theory of stochastic differential equations aims for a qual-
itative and quantitative understanding of the effects of such stochastic perturbations. This requires
insights from pure mathematics and to deal with them in practice requires us to revisit and extend
classic numerical techniques. Splitting methods turn out to be especially useful since they often
allow to separate the problem into a deterministic and a stochastic part.

White noise and Brownian motion

The arguably simplest case of such a stochastic perturbation is an ODE driven by a vector field V
that is affected by noise which is modelled below by a sequence of random variablesN = (Nt)t≥0

and picked up by a vector field W ,

dyt
dt

= V (yt) +W (yt)Nt︸ ︷︷ ︸
Noise

.

Often a reasonable assumption is that N = (Nt)t≥0 is white noise, that is

1 (independence) ∀s 6= t, Nt and Ns are independent,

2 (stationarity) ∀t1 ≤ · · · ≤ tn the law of (Nt1+t, · · · , Ntn+t) does not depend on t,

3 (centered) E [Nt] = 0, ∀t ≥ 0.

Above properties imply that the trajectory t 7→ Nt cannot be continuous, and even worse if we
assume that E[N2

t ] = 1 then (ω, t) 7→ Nt(ω) is not even measurable (see [57, 38]). Putting
mathematical rigour aside, let us rewrite the above differential equation as an integral equation,
i.e. we work with Bt =

∫ t
0
Nrdr and since integration smoothes out we expect B = (Bt)t≥0 to

have nicer trajectories than N . In this case the above becomes

dyt = V (yt) dt+W (yt) dBt resp. yt =

∫ t

0

V (yr) dr +

∫ t

0

W (yr) dBr. (1)

It turns out that B = (Bt)t≥0 can be rigorously defined as a stochastic process — i.e. a collection
of (ω, t)-measurable random variables carried on some probability space (Ω,F ,P). This process
B is the well-known Brownian motion (also called Wiener process)1.

1Named after the botanist Robert Brown who observed in 1827 that pollen grains suspended in water execute continuous
but jittery motions. The physical explanation was given by Albert Einstein in 1905 (his “annus mirabilis”: small water molecules
hit the pollen) and a little earlier Marian Smoluchowski had already emphasized the importance of this process for physics.
Further important contributions are due to Louis Bachelier, Andrey Kolmogorov, Paul Lévy, Joseph Doob, Norbert Wiener and
finally Kyoshi Ito
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Definition 1.1. We call a real-valued stochastic process B = (Bt)t≥0 defined on a probability
space (Ω,P) a one-dimensional Brownian motion if

1 B0 = 0 and t 7→ Bt is continuous (a.s.),

2 ∀t1 < · · · < tn and n ∈ N, Bt2 −Bt1 , . . . , Btn −Btn−1
are independent,

3 ∀s, t, t− s ≥ 0, Bt −Bs ∼ N (0, t− s).

The trajectories t 7→ Bt(ω) are “degenerate” from the point of view of classical analysis: they
are highly oscillatory, of infinite length, (statistically) self-similar and possess a rich fractal structure;
see Figure 1. Developing a theory that can deal with such “degenerate” trajectories is what makes
stochastic calculus such a fascinating and rich subject. Finally, let us note that while Brownian motion
is probably the most important stochastic process, there are many other classes of noise that appear
in the real-world and are not covered by the Brownian (e.g. so-called fractional Brownian motion [53])
and many of the methods we present here are not limited to the Brownian or even semimartingale
setting.
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Figure 1: The piecewise linear interpolation between the points of a two dimensional Brownian motion
started at t = 0 at (0, 0) (green circle), stopped at t = 1 (red circle) and sampled at time steps of size
{10−2, 10−3, 10−4, 10−5} .

Stochastic integrals

The Gaussianity of Brownian increments implies Bt − Bs ∼ N
√
t− s for N ∼ N (0, 1), hence

we can at best expect at best a Hölder-modulus of 1/2 and the problem of giving meaning to∫ t
0
W (yr) dBr appears. To see what goes wrong with Riemann–Stieltjes integrals consider in-

tegrating a one-dimensional Brownian trajectory against itself: with dyadic partitions of [0, 1], tni =
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i.2−n a direct calculation shows that∑
i

B tn
i+1

+tn
i

2

(Btni+t −Btni ) and
∑
i

Btni (Btni+1
−Btni ) (2)

both converge (for a.e. Brownian trajectoryB(ω)) but to different limits. The difference of their limits
equals 1/2 times the n→∞ limit of ∑

i

(Btni+1
−Btni )2 (3)

and the quantity (3) is the so-called quadratic variation process ([B]t)t≥0 of the Brownian motion
B. Kyoshi Ito developed a powerful integration theory by generalizing the above limit construction
(2). He gave meaning to

∫ t
0
φrdBr for a large class of stochastic processes φ by taking the L2(Ω)-

limit of
∑
i φtni (Btni+1

− Btni ) as n → ∞. A crucial ingredient is that the integrand φ does not

“look into the future evolution of B”2. For many applications like mathematical finance this is a
desirable property. Instead of the right sum in in (2) one can also use the left sum, i.e. the mid-points
φ(tni +tni+1)/2, to arrive at a different notion of stochastic integration called the Stratonovich integral,

denoted
∫ t

0
φr◦dBr. Above approaches to stochastic integration are not limited to Brownian motion

and can be extended to the class of semi-martingales. Ito and his successors (especially the “Ecole
de Strasbourg”) a complete theory that gives existence and uniqueness for stochastic equations of
the form (1); see [61, 41, 58, 57].

Ito’s change of variable formula

Stochastic calculus is not a first order calculus: the change of variable formula, called “Ito’s Lemma”,
reads as

f(t, Bt) = f(0, B0) +

∫ t

0

∂f

∂t
(r,Br)dr +

∫ t

0

∂f

∂x
(r,Br)dBr +

∫ t

0

∂2f

∂x2
(r,Br)d[B]r. (4)

Replacing Ito with Stratonovich integration show a big advantage of the Stratonovich integral, namely
that it follows a first order calculus,

f(t, Bt) = f(0, B0) +

∫ t

0

∂f

∂t
(r,Br)dr +

∫ t

0

∂f

∂x
(r,Br) ◦ dBr. (5)

This is only the starting point for one of the most exciting mathematical developments of the twentieth
century and to make the above rigorous requires much more detail — we refer the interested reader
to the many excellent introductory texts [59, 57, 39, 61].

A drawback: discontinuity of the solution map

While stochastic calculus had tremendous impact on theory and applications it has several short-
comings; two which are relevant for this article are that it is, firstly, limited to the class of semimartin-
gales as noise (this for example excludes fractional Brownian motion) and secondly, that a very basic
object, solution map associated with (1),

B 7→ Y,

is not continuous. Over the last 20 years an approach to differential equations perturbed by irregular
paths was developed and is usually referred to as the Over the last 20 years, Terry Lyons and
collaborators [52, 50, 47, 30, 33] devolped a robust and completely analytic/algebraic approach to
such differential equations; this is the so-called “theory of rough paths”. It is not meant to replace
stochastic calculus but it complements it where it runs into trouble; especially in view of splitting
results this robustness becomes very useful and in the rest of this chapter we make heavy use of
this theory.

2More precisely, the relevant property of the Brownian motion here is that B is a martingale. Geometrically, this is an
orthogonality relation between the incrementsBt−Bs and the path up to time s. Hence, the construction works in a geometric
L2(Ω) sense which allows to take advantage of this structure.
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Structure of this chapter

In Section 2 we introduce the main topic of this chapter, namely that splitting schemes can be de-
rived from robustness of the solution map. In Section 3 we recall some key results from the the
theory of rough paths which give a quantitative and qualitative understanding of the regularity of this
solution map.
Splitting methods for S(P)DEs are naturally divided in strong and weak schemes. The goal of strong
schemes is to approximate the solution Y of a S(P)DE (or a function of it, f (Y )) for a given re-
alization of the noise. On the other hand, for many applications it is sufficient to only approximate
the expected value E[f (Y )]. Strong approximations are discussed in Section 4 and applications
to nonlinear filtering and optimal control are given in Section 5. In Sections 6 we discuss weak split-
ting schemes for S(P)DEs and their rate of convergence; we recall a popular weak approximation
scheme called “cubature on Wiener space” and show that it has a natural interpretation as a splitting
scheme. In Section 7 we present three applications of splitting schemes in financial engineering: ef-
ficient implementations for popular stochastic local volatility models [2]; a calibration of the Gatheral
Double Mean Reverting model to market data [3]; and finally the Heath–Jarrow–Morton interest rate
model [22].

Background

This chapter is inspired by a view on stochastic differential equations that emerged over the last 15
years, namely the theory of rough paths due to Terry Lyons and collaborators; for further develop-
ments and introduction see [52, 49, 50, 33, 30, 48]). This theory complements classic Ito-calculus
and provides new, if not revolutionary insights, on how differential equations react to complex in-
put signals. One of the earliest new applications was the so-called “cubature on Wiener space”
of Kusuoka–Lyons–Victoir [51, 44]. Bayer, Dörsek, Teichmann among others [22, 64, 21, 5] then
showed that these methods can be applied to the infinite-dimensional setting that is needed by
SPDEs. More recently more applications were developed both in finite and in infinite dimensions (we
survey some of these in Section 7). In a somewhat different direction, the work of Friz–Oberhauser
[28] combined robustness from rough path theory with viscosity PDE methods to derive splitting
schemes for strong approximations of (nonlinear) SPDEs.

Of course, splitting-up methods have appeared much earlier in stochastic calculus and we em-
phasize that these techniques remain highly relevant and form the basis of much of the recent
developments that we present here. However, instead of giving a “horizontal” historical account we
decided to give a “vertical” snapshot of what we believe are some exciting current developments
in theory and applications. Unfortunately, this implies that we cannot do full justice to the existing
rich literature. Nevertheless, we would like to point the reader to some classic articles as a starting
point: one of the earliest motivation comes from the theory of nonlinear filtering we mention pars
pro toto the work of Bensoussan and Glowinski [6] and Bensoussan, Glowinski and Răşcanu [7],
Elliott and Glowinski [23], Florchinger and Le Gland [45, 26], Gyöngy and Krylov [34], Nagase [54],
and Lototsky, Mikulevicius and Rozovskii [46]. The more general field of splitting is overwhelmingly
large, so that we again cannot hope to give a balanced literature review. Some general works we
want to mention are Jentzen and Kloeden [40], Debussche [19], Gyöngy and Krylov [35], Răşcanu
and Tudor [60] Hausenblas [36] and, finally, Yan [65]. Let us finally stress that we consider partial
differential equations driven by a temporal (possibly also spacial) noise, not partial differential equa-
tions with spacial noise, another very active research field in applied mathematics (see, for instance,
Schwab and Gittelson [62]).

2 From robustness to splitting schemes

On an abstract level, we have to understand how the output path (the solution of a differential equa-
tion) of a complex system (a differential equation) responds to an input path (e.g. time and noise). In
this section we show that if a continuous dependence between output and input signal holds, then
splitting results follow immediately.
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A toy example

Let us consider the simple example of a quantity y whose evolution over time is described by the
differential equation

dyt
dt

= V (yt) +W (yt) , y0 ∈ Re

where V,W are Lipschitz vector fields on Re. We identify this differential equation as a special case
of the integral equation

yt =

∫ t

0

V (yr) dar +

∫ t

0

W (yt) dbr, y0 ∈ Re (6)

where a and b are continuous, real-valued paths that are regular enough that above integrals have
meaning. While finite 1-variation as recalled in Definition 2.1 is sufficient for the Riemann–Stieltjes
integrals, we will treat paths having much less regularity in later parts of this chapter. Equations
of type (6) are often called controlled (differential/integral) equations and a, b are referred to as
the controls or also as the driving paths/signals. Such equations arise naturally in the engineering
sciences and have been very well studied (see the seminal work of work of Brockett, Sussmann,
Fliess, et al. [10, 25, 63]). We henceforth use the shorthand/differential notation

dyt = V (yt) dat +W (yt) dbt, y0 ∈ Re (7)

to denote (6). A basic question is the regularity of the solution map

(a, b) 7→ y. (8)

Obviously, the answer depends on what norms we use to measure distances between paths. What
might be somewhat surprising is that the above mapping, defined on smooth paths

C1
(
[0, T ] ,R2

)
→ C1 ([0, T ] ,Re) ,

is not even continuous under the usual uniform norm |a|∞ = supt∈[0,T ] |at|; we invite the reader to
find an example for this discontinuity and come back to this issue in detail in Example 2.5. Motivated
by this, we introduce a cascade of metrics that are stronger than the uniform norm.

Definition 2.1. Let x be a continuous path defined on [0, T ] that takes values in a complete metric
space (E, d). For every p ≥ 1 the p-variation norm of x is defined as

|x|p−var = sup
n∈N,(t1,...,tn):

0≤t1<···<tn≤T

(
n∑
i=1

d(xti+1
, xti)

p

)1/p

We denote the subset of C ([0, T ] , E) of paths finite p-variation norm by Cp−var ([0, T ] , E).

Standard arguments show that
(
Cp−var ([0, T ] , E) , |.|p−var

)
is a Banach space. We now

see that the p-variation norm resolves the non-continuity of the uniform norm.

Theorem 2.2 (Robustness [30].). Let V,W : Re → Re be Lipschitz continuous and (a, b) ∈
C1−var ([0, T ] ,R2

)
. Then there exists a unique solution y ∈ C1−var ([0, T ] ,Re) to the con-

trolled differential equation

dyt = V (yt) dat +W (yt) dbt, y0 ∈ Rd

and the map (a, b) 7→ y is continuous in 1-variation norm |.|1−var .
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Lie and Strang splitting

The connection with splitting is now immediate: Fix ∆ > 0 and divide [0, T ] into intervals of size
∆ > 0; further, denote t∆ =

⌊
t
∆

⌋
∆, t∆ = t∆ + ∆ and define two time-changes (real-valued

increasing paths) φ∆, ϕ∆,

φ∆
t =

t∆ + 2 (t− t∆) , if t ∈
[
t∆,

t∆+t∆

2

]
t∆ , if t ∈

[
t∆+t∆

2 , t∆
] , ϕ∆

t = φ∆
t+ ∆

2
. (9)

In other words, we approximate t 7→ (t, t) with t 7→
(
φ∆
t , ϕ

∆
t

)
as ∆ → 0, as depicted in Figure

2. Basic arguments show that this convergence holds in p-variation norm for every p > 1 (for p = 1
it is not true).

φ∆
t

0,0 ∆ 2∆ 3∆

∆

2∆

3∆

ϕ∆
t

t0,0 ∆ 2∆ 3∆

∆

2∆

3∆

φ∆
t , ϕ

∆
t

Figure 2: (Lie-Splitting) The two-dimensional path t 7→
(
φ∆, ϕ∆

)
approximates the identity t 7→ (t, t)

and exactly one of dφ
∆
t
dt ,dϕ

∆
t
dt is 0 for any given time t ≥ 0. This gives rise to the so-called Lie-splitting

scheme.

This particular choice of control paths immediately implies a splitting result since by composition
of a (resp. b) with φ∆ (resp. ϕ∆) we flow at any moment in time either along V or along W . The
above choice of a∆, b∆ yields the classic Lie–splitting but obviously other choices are possible, for
example we recover the Strang–Splitting scheme by using

φ̃∆
t = φ∆

t+ ∆
4

and ϕ̃∆
t = φ̃∆

t+ ∆
2

To state it precisely, we introduce the notion of solution operators.

Definition 2.3. For every y0 ∈ Re denote by P∆,V
t y0 the solution at time t of the controlled

differential equation
dy∆
t = V

(
y∆
t

)
d(a ◦ φ∆)t

started at y∆
0 = y0. Similarly denote by Q∆,W

t y0 the solution at time t of the controlled differential
equation

dy∆
t = W

(
y∆
t

)
d(b ◦ ϕ∆)t

started at y∆
0 = y0.

Corollary 2.4 (Splitting). We have ∀t > 0

lim
∆→0

∣∣∣∣(P∆,V
∆ Q∆,W

∆

)bt/∆c
y0 − yt

∣∣∣∣ = 0

where y is the solution of the differential equation (6) started at time 0 with y0. Moreover, the con-
vergence even holds uniformly in t.

Proof. A simple calculation shows that the path
(
a ◦ φ∆, b ◦ ϕ∆

)
converges to the the path t 7→

(t, t) with uniform 1-variation bounds, i.e. sup∆>0 |a∆|1−var + sup∆>0 |b∆|1−var < ∞. The
claim then follows from a slight variation of Theorem 2.2; see [28].

6



φ̃∆
t

0,0 ∆ 2∆ 3∆

∆

2∆

3∆

ϕ̃∆
t

t0,0 ∆ 2∆ 3∆

∆

2∆

3∆

φ̃∆
t , ϕ̃

∆
t

Figure 3: (Strang–Splitting) The two-dimensional path t 7→
(
φ̃∆, ϕ̃∆

)
approximates the identity t 7→

(t, t) better than t 7→
(
φ∆
t , ϕ

∆
t

)
as depicted in Figure 2. Therefore it should be not surprising that

Strang–splitting leads to better rates than Lie–splitting.

Highly oscillatory paths and the Lie brackets of vector fields

We now replace the path b in (6) by one with highly oscillatory trajectories (which are typically for
many stochastic processes).

Example 2.5. Consider the sequence of paths (ant , b
n
t )n =

(
1
n cos 2πn2t, 1

n sin 2πn2t
)

and
note that converges uniform norm as n → ∞ to

(
a0, b0

)
= (0, 0). Define the vector fields

W (y1, y2, y3) := (1, 0, −y
2

2 )T and V (y1, y2, y3) = (0, 1, y
1

2 )T and denote by y∆ the solu-
tion of

dy∆
t = V

(
y∆
t

)
da∆

t +W
(
y∆
t

)
db∆t with y∆

0 = y0 ∈ R3. (10)

A simple calculation then shows that y∆
1 does not converge as ∆ → 0 to y0 (the solution of (10)

applied with ∆ ≡ 0).

In above Example 2.5,the hghly oscillatory motions of the driving signals affect the evolution of
y not directly via V or W but via their Lie bracket [V,W ] = V ·W −W · V which picks up the
signed area (recall the Green/Stokes formula)

1

2

(∫ .

0

anr db
n
r −

∫ .

0

bnr da
n
r

)
swept out by (an, bn). To sum up, the highly oscillatory behaviour of the driving signal leads to
a subtle interplay between the iterated integrals of the driving signal and the Lie brackets of the
involved vector fields that can destroy continuity of the solution map. However, was central to our
derivation above of the Lie and Strang-splittings. In the next section we show how the theory of
rough paths provide the needed continuity.

3 Rough path theory

We still have to give meaning to differential equations driven by non-smooth paths and study the
properties of the associated solution map. Example 2.5 suggests that the iterated integrals∫

s<r1<t

dxr1 ,

∫
s<r1<r2<t

dxr1 ⊗ dxr2 , . . . ,

∫
s<r1<···<rn<t

dxr1 ⊗ · · · ⊗ dxrn .

of the driving signal x (resp. their linear combinations) play a special role when the path is highly
oscillatory. These integrals will in general not make sense as Riemann–Stieltjes integrals if x is of
unbounded variation. However, the theory of rough paths shows that it is enough to find a sequence
of tensors that “behaves algebraically” like such a sequence of iterated integrals to derive the well-
posedness of differential equations driven by this “iterated integrals”.
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The space of iterated integrals

The sequence of iterated integrals has a rich algebraic structure. Let us first give the definition for
the case of a bounded variation path.

Definition 3.1. For every u, v such that 0 ≤ u ≤ v ≤ T define ∆1
u,v = {(s, t) : u ≤ s ≤ t ≤ v} .

Let x ∈ C1−var ([0, T ] ,Rd
)
, (s, t) ∈ ∆0,T and k ∈ N. We define the iterated integrals∫

∆k
s,t

dx⊗ · · · ⊗ dx ∈
(
Rd
)⊗k

recursively as

∫
∆1
s,t

dx := x (t)− x (s) and

∫
∆k
s,t

dx⊗ · · · ⊗ dx︸ ︷︷ ︸
k times

:=

∫ t

s

∫
∆k−1
s,r

dx⊗ · · · ⊗ dx︸ ︷︷ ︸
(k−1) times

⊗dxr.

Recall that the space
(
Rd
)⊗k

used above is the space of k-tensors which has as basis (ei1 ⊗ · · · ⊗ ej)i,j∈{1,...,d}.

Definition 3.2. Let x ∈ C1−var ([0, T ] ,Rd
)

and (s, t) ∈ ∆1
0,T . The signature of x over [s, t],

denoted by S (x)s,t, is the elementof
⊕∞

k=0

(
Rd
)⊗k

given as

S (x)s,t =

(
1,

∫
∆1
s,t

dx,

∫
∆2
s,t

dx⊗ dx, . . .

)

with the convention that
(
Rd
)⊗0

= {1}. Similarly, we define for n ∈ N the truncated signature of

x over [s, t], denoted Sn (x)s,t, as the element of
⊕n

k=0

(
Rd
)⊗k

given as

Sn (x)s,t =

1,

∫
∆1
s,t

dx,

∫
∆2
s,t

dx⊗ dx, . . . ,

∫
∆n
s,t

dx⊗ · · · ⊗ dx︸ ︷︷ ︸
n times

 .

We call the path t 7→ Sn (x)0,t the step-n lift of x.

The above definition is not efficient concerning the state space since it does not account for
the recursive structure of Sn (x) and we can hope to work with a much smaller subspace of⊕n

k=0

(
Rd
)⊗k

. With slight abuse of notation denote with ⊗ :
⊕n

k=0

(
Rd
)⊗k →⊕n

k=0

(
Rd
)⊗k

the natural extension of the tensor multiplication to the graded space
⊕n

k=0

(
Rd
)⊗k

, i.e. for

g =

n∑
k=0

∑
i1,...,ik

gi1...ikei1 ⊗ · · · ⊗ eik , h =

n∑
k=0

∑
i1,...,ik

hi1...ikei1 ⊗ · · · ⊗ eik ∈
n⊕
k=0

(
Rd
)⊗k

define

g ⊗ h =

n∑
k=0

∑
l,m:l+m=k

gi1...ilhi1...imei1 ⊗ · · · ⊗ eik ⊗ ei1 ⊗ · · · ⊗ eim .

We can now describe the algebraic structure of the subspace of
⊕n

k=0

(
Rd
)⊗k

that contains
the iterated integrals.

Theorem 3.3 ([30]). For n ≥ 1 and d ≥ 1 defineGn,d :=
{
S (x)0,1 : x ∈ C1−var ([0, T ] ,Rd

)}
.

Then

1 (Gn,d,⊗) is a Lie group,

2 Gn,d = exp gn,d where (gn,d, [·, ·]) is Lie algebra and

3 gn,d = Rd ⊕
[
Rd,Rd

]
⊕ · · · ⊕

[
Rd,

[
Rd,

[
· · · ,

[
Rd,Rd

]
· · ·
]]]

We call Gn,d the free step-n Lie group with d generators and gn,d the free step-n Lie algebra with
d generators. The geodesic (so-called Carnot–Caratheodory) distance dCC turns (Gn,d, dCC) in
a metric space.
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(Weak) geometric rough paths

Since (Gn,d, dCC) is a complete metric space, Definition 2.1 applies and we can speak of paths of
bounded p-variation — this is exactly the definition of a weak geometric p-rough path.

Definition 3.4. Let p ≥ 1 and n = bpc. We define the space of weak geometric p rough paths as

Cp−var([0, T ], Gn,d) := {x ∈ C([0, T ], Gn,d) : dp−var(0,x) <∞}

(here 0 denotes constant path that takes the value of the neutral element of the group Gn,d).

Example 3.5 (The Brownian rough path). Let B be a two-dimensional Brownian motion. This gives
rise to the G2,2-valued path

Bt =

(
1, Bt,

∫ t

0

dB ⊗ dB
)

︸ ︷︷ ︸
∈G2,2

= exp

(
B1
t e1 +B2

t e2 +
1

2

(∫ t

0

B1
rdB

2
r −

∫ t

0

B2
rdB

1
r

)
(e1 ⊗ e2 − e2 ⊗ e1)

)
︸ ︷︷ ︸

∈g2,2

where the integrals are understood as (Stratonovich) stochastic integrals. One can show that B ∈
Cp−var([0, T ], G2,2) for any p > 2, see [52, 30].

Differential equations driven by rough paths

Ito’s approach to differential equations driven by highly oscillatory stochastic processes exploits
the underlying probabilistic structure of the driving signal. Lyons [52, 49, 48] developed a different
approach that relies only on analytic and algebraic methods; most important for us, it comes with a
cascade of metrics which provide the needed continuity of the solution map.

Theorem 3.6 (“Universal Limit Theorem”: Existence, uniqueness and continuity of RDEs; see [52,
30]). Let p ∈ (2, 3), d ≥ 1, x ∈ Cp−var([0, T ], G2,d) and Vi ∈ C3

b (Re,Re). There exists a
y ∈ Cp−var([0, T ],Re) such that for every sequence (xn)n ⊂ C1−var([0, T ],Rd) such that
dp−var(S2(x),x)→ 0, the solutions of the ODE

dynt = V (ynt )dxnt ≡
∑
i

Vi(y
n
t )d(xn)it

converge uniformly to y. We say that y is a solution of the RDE driven by x and write

dyt = V (yt)dxt.

The solution map is uniformly continuous on compact sets, that is for every R > 0 the map

(y0,x) 7→ y

Re × {dp−var(x, 0) < R} → Cp−var ([0, T ] , G2,d)

is uniformly continuous in dp−var-metric.

Summary

Rough path theory provides us with a machinery that allows to solve differential equations driven
by non-smooth signals (like Brownian motion, semimartingales but also many other classes of noise
that are not covered by stochastic calculus). As opposed to the classical Ito-theory it not only requires
the trajectory as input to construct the solution but also the “iterated integrals” of the driving signal;
to be precise, it requires a set of tensors that “behave like” classical Riemann–Stieltjes iterated
integrals. Finding efficient state spaces for these “enhanced paths” required us to work with nonlinear
spaces, i.e. Lie groups. In return we get a completely analytic/algebraic approach that provides the
well-posedness of such differential equations, and the rough path theory comes with a cascade of
metrics which makes the solution map continuous (the metric dp−var for p ≥ 1). This robustness is
in stark contrast with Ito’s theory and allows us to translate our splitting proof from the toy example
in Section 2 to the case of S(P)DEs.
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4 Strong splitting schemes for SPDEs

In this section we extend the splitting method to parabolic PDEs that evolve under the influence of
noise. A large class of such stochastic partial differential equations (SPDEs) is of the form{

du = F
(
t, x, u,Du,D2u

)
dt+

∑d
i=1 Λi (t, x, u,Du) dzit on [0, T ]× Rn

u (0, x) = u0 (x) on Rn
(11)

where u = u (t, x) is scalar-valued,F denotes a nonlinear, (possibly degenerate) elliptic differential
operator, Λ is affine linear in (u,Du) and z ∈ C

(
[0, T ] ,Rd

)
is a multidimensional path with the

same (or worse) regularity properties as Brownian trajectories.
Several issues appear: firstly, even if Λ ≡ 0, then the nonlinearity of F implies that we cannot

hope for a smooth solution u ∈ C1,2 ([0, T ]× Rn,R). Therefore we have to work with a suitable
concept of generalized solutions. Secondly, the path z is not differentiable and similar to our toy
example, we have to give appropriate meaning to Λ (t, x, u,Du) ◦ dzt. Put simply, we solve the
first problem by working with the theory of viscosity solutions and the second problem with the theory
of rough paths.

Approximating time

As in our toy example in Section 2, we now want to look at equation (11) as a special case of{
du∆ = F

(
t, x, u∆, Du∆, D2u∆

)
d(a ◦ φ∆)t +

∑d
i=1 Λ

(
t, x, u∆, Du∆

)
◦ d(zi ◦ ϕ∆)t,

u∆ (0, x) = u0 (x) .
(12)

However, the situation is more subtle.

Example 4.1. Consider n = 1, F
(
t, x, u,Du,D2u

)
= D2u and Λ ≡ 0 in which the above

reduces to the one-dimensional heat equation: du∆ = D2u∆d(a◦φ∆)t. Then one cannot hope for

continuity of (a, z) 7→ u since this requires to give meaning to the heat equation when d(a◦φ∆)t
dt <

0, i.e. when time is run backwards which is in general not well-posed.

We simply resolve above issue by replacing C1−var by a smaller class of paths.

Proposition 4.2 ([28]). Define

C1,+
0 ([0, T ] ,R) =

{
ξ ∈ C1 ([0, T ] ,R) : ξT = T, ξ̇t > 0 ∀t

}
and its closure C1−var,+

0 ([0, T ] ,R) := C1,+
0 ([0, T ] ,R)

|.|∞
where |a|∞ ≡ supt∈[0,T ] |at|.

Then

C1−var,+
0 ([0, T ] ,R) =

{
ξ ∈ C0 ([0, T ] ,R) : ξT = T and ∃ξcont ∈ L1 ([0, T ] ,R) ,

∃ξsing ∈ C1−var ([0, T ] ,R≥0) , ξsing = 0 a.s. and ξt = ξsingt +

∫ t

0

ξcontr dr

}
and C1−var,+

0 ([0, T ] ,R) ( C1−var
0 ([0, T ] ,R).

Viscosity solutions of PDEs

Given a map
F : [0, T ]× Rn × R× Rn × Sn → R

(with Sn denoting the set of symmetric (n× n)-matrices) that is proper in the sense that

F (t, x, r, p, A) ≤ F (t, x, r, A+B) ∀A ∈ Sn and B ≥ 0

r 7→ F (t, x, r, A) is increasing,

10



then the theory of viscosity solutions provides well-posedness for parabolic PDEs of the form{
∂tu− F

(
t, x, u,Du,D2u

)
= 0 on [0, T ]× Rn,

u (0, x) = u0 (x) on Rn. (13)

More precisely, if u : [0, T ] × Rn → R is bounded and uniformly continuous then we call u a
subsolution of the PDE (13) if for every ϕ ∈ C1,2 ([0, T ]× Rn,R) it holds that whenever

(
t̂, x̂
)

is
a local maximum of

(t, x) 7→ u (t, x)− ϕ (t, x)

then
∂tϕ

(
t̂, x̂
)
− F

(
t̂, x̂, ϕ,Dϕ,D2ϕ

)
≤ 0. (14)

Similarly, we define supersolutions and call u a solution if it is a sub- and supersolution. Viscosity
theory provides comparison results, that is given a subsolution v and a supersolution w of (13) this
guarantees that

v ≤ w

(note that this immediately implies uniqueness of solutions), see [14, 24].

Robustness for (nonlinear) SPDEs

We can now have an educated guess of a good solution concept for the nonlinear SPDE (11): let us
approximate t 7→ (t, zt) with a sequence (ξn, zn)n ⊂ C1

(
[0, T ] ,Rd

)
of smooth paths. Then for

every fixed n ∈ N we can speak of a viscosity solution un ∈ BUC ([0, T ]× Rn) — the space of
real-valued, bounded and uniformly continuous functions — of{

dun = F
(
t, x, un, Dun, D2un

)
dξn +

∑d
i=1 Λ (t, x, un, Dun) dzn;i

t on [0, T ]× Rn,
un (0, x) = u0 (x) on Rn.

(15)
We expect that (un)n converges to a function u ∈ BUC ([0, T ]× Rn) as n → ∞ and it is
natural to identify this function u as the solution of the SPDE (11). It turns out that it is natural to
define convergence of the sequence (ξn, zn)n to (t, zt) if

sup
n
‖S(zn)‖p−var;[0,T ] + sup

n
|ξn|1−var < ∞ (16)

d0 (z, S(zn)) + |ξnt − t|∞ →n 0

holds. Here d0(x,y) ≡ sup
∑
ti
dCC(xti,ti+1

,yti,ti+1
) where the sup is taken over all partitions

(ti) and we use the notation xti,ti+1
≡ x−1

ti xti+1
for increments in the group. Let us take this as

definition of a solution.

Definition 4.3. Let z ∈ C0,p−var
0

(
[0, T ] , G[p],d

)
,ξ ∈ C1−var,+

0 ([0, T ] ,R). Let

(zn, ξn)n ⊂ C
0,p−var
0

(
[0, T ] , G[p],d

)
× C1−var,+

0 ([0, T ] ,R)

be a sequence that converges to (t, zt) in the sense of (16) and assume that there exists for every
n a unique viscosity solution un of the PDE (15). We call every accumulation point (in the metric of
uniform convergence on compacts) of (un) a solution of the RPDE{

du = F
(
t, x, u,Du,D2u

)
dξt + Λ (t, x, u,Du) ◦ dzt on [0, T ]× Rn,

u (0, x) = u0 (x) on Rn.
(17)

If this limit is unique and does not depend on the choice of the approximating sequence (ξn, zn)n
and the solution map

(ξ, z) 7→ u

is continuous then we say that (17) is robust in the rough path sense.

11



It is clear that the above robustness in rough path sense immediately gives a splitting result when
use the time changes (φ1/n, ϕ1/n) from Section 2 to define the approximating sequence(

ξ ◦ φ1/n, z ◦ ϕ1/n
)
n
.

In Section 5 below we show that large classes of SPDEs are robust in rough path sense as defined
above.

5 Applications of strong schemes to nonlinear filtering and op-
timal control

Nonlinear filtering

In many areas of science, the quantities of interest are not available for direct measurement. For-
tunately, we can make reasonable inferences about them by combining mathematical models that
describe their evolution with partial observations of these quantities. These partial observations are
typically corrupted by noise and we need to account for this. Applications range from cryptography,
tracking and guidance, the study of the global climate, to the management of risk in a economic
context (see for example [15, 9, 27, 32]). Consider a Markov process (X,Y ) that takes its values in
Rdsig+dobs with its dynamics given by{

dXt = µ (Xt) dt+ σ (Xt) dBt (signal),
dYt = h (Xt) dt+ dB̃t (observation).

Here, B and B̃ are multidimensional Brownian motions that are defined on some probability space
(Ω,F ,P). The goal is to compute for a given real-valued function f the conditional expectation

πtf ≡ E [f (Xt) |Yt] ,

i.e. to find the best estimate for f (Xt) given the observation σ-algebra3 Yt = σ ({Yr, r ∈ [0, t]})∨
N with N denoting the P-null-sets. From basic principles it follows that there exists a measurable
map φft : C

(
[0, t] ,RdY

)
→ R such that

φft
(
Y |[0,t]

)
= πtf P− a.s. (18)

and our problem reduces to effectively calculate this functional φft .

Clark’s robustness problem

In practice, only a finite number of observations (Yti)i of Y is available and we evaluate φft along
some continuous interpolation of these points, Y interpolated. Of course we expect that

φft
(
Y interpolated|[0,t]

)
' φft

(
Y |[0,t]

)
but this is not guaranteed by (18), as the interpolation is a path of bounded variation, hence a null-set
under the Wiener measure or any equivalent measure, see [16] for a detailed discussion. Clark [12]
sketched a proof (a rigorous argument was given later by Clark and Crisan [13]) that if B and B̃ are
uncorrelated, then there exists a functional φf,robust

t that is continuous in supremum norm and fulfills
(18). In the correlated case, there cannot exist such a functional but recently (see [16]), it was shown
that also in the correlated case there exists a functional φf,robust

t defined on the space of rough paths
such that

φf,robust
t (Y ) = πtf P− a.s and Y 7→ φf,robust

t (Y )

is continuous in rough path metric. This solves Clark’s robustness problem (for semimartingale
piecewise linear approximations converge in the appropiate rough path metric).

3There are some subtle measure-theoretic issues which we gloss over but refer the reader to [1] for more details.
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The Kallianpur–Striebel and Zakai equations

Theorem 5.1 (Kallianpur–Striebel). There exists a probability measure P̃ on (Ω,F) such that

1 P̃ is equivalent to P,

2 dP̃
dP |Ft= exp

(
−
∫ t

0
h (Xs) · dBs − 1

2

∫ t
0
|h (Xs)|2 ds

)
,

3 the observation process Y is a Brownian motion under P̃,

4 for every f ∈ B
(
Rdsig

)
—the space of real-valued, bounded, measurable functions on Rd—

and every fixed t > 0

πtf =
Ẽ
[
f (Xt) exp

(∫ t
0
h (Xs) · dYs − 1

2

∫ t
0
|h (Xs)|2 ds

)
|Yt
]

Ẽ
[
exp

(∫ t
0
h (Xs) · dYs − 1

2

∫ t
0
|h (Xs)|2 ds

)] P and P̃ a.s.

Proof. This can be found in every text book on nonlinear filtering; see for example [1, 15].

It turns out that it is advantageous to work with an unnormalized version of the inferred probability
measure π. Indeed, if we define for every f ∈ B

(
Rdsig

)
ρtf = πtf · Ẽ

[
exp

(∫ t

0

h (Xs) · dYs −
1

2

∫ t

0

|h (Xs)|2 ds

)]
then obviously πtf = ρtf

ρt1
. The Fokker–Planck/Kolmogorov forward equation is a PDE given by the

generator of X that describes the time evolution of the density of the diffusion X via a parabolic
PDE with the elliptic differential operator

A =
∑
i,j

(σT · σ)i,j
∂2

∂xi∂xj
+
∑
i

µi
∂

∂xi
.

The Zakai equation can be seen an extensionthat incorporates the additional information we get
from the observation process Y . Indeed, set h ≡ 0 in Theorem below to recover the Fokker–Planck
equation.

Theorem 5.2 (The Zakai SDE; uncorrelated case). Under standard assumptions4 we have P̃-a.s. for
every t ≥ 0 and every f ∈ B

(
Rdsig

)
that

(ρtf) = π0f +

∫ t

0

ρs (Af) ds+

∫ t

0

ρs
(
fhT

)
dYs.

Proof. See for example [1, Chapter 3].

The above applies to the case when B and B̃ are uncorrelated. In the correlated case a slight
variation of the above Zakai SDE holds (an extra differential operator appears in the stochastic
integral against Y ).

Splitting for the Zakai SPDE

It is advantageous to work with densities instead of measures. Indeed, under well-known conditions
ρ has a density u and we can write

ρt (A) =

∫
A

u (t, x) dx

4For exampleE
[∫ t

0
|h(Xs)|2ds

]
<∞,E

[∫ t

0
Zs|h(Xs)|2ds

]
<∞ and P̃

[∫ t

0
[ρs(|h|)]2ds <∞

]
= 1 is sufficient

where Zs = exp
(
−
∑

i

∫ s

0
hi(Xr)dBi

r − 1
2

∫ s

0
hi(Xr)2dr

)
; see [1, Chapter 3]
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for some u ∈ BUC ([0, T ]× Rn). In this case we can rewrite the above (infinite-dimensional)
Zakai SDE from Theorem 5.2 for the unnormalized measure ρ as a SPDE for the density u. Since the
generator of the signalX is linear, second order parabolic it is not surprising that the resulting SPDE
will be linear (with linear noise). In fact, our setup is more general than needed by the nonlinear
filtering application and below we treat general semi-linear PDEs (of which the SPDE for the density
u is a special case).

Assumption 1. Let

L (t, x, r, p,M) = Tr [M (x) ·X] + b (x) · p+ f (x, r)

withM (x) = σ (x)σT (x), σ : Rn → Rn×m and b : Re → Re bounded, Lipschitz in x. Further,
let f : Rn × R → R be continuous, bounded whenever r is bounded and with a lower Lipschitz
bound, i.e.

f (x, r)− f (x, s) ≥ c (r − s) ∀r ≥ s, x ∈ Rn.
Assumption 2. Let

Λ (t, x, r, p) = p · σk (t, x) + r · νk (t, x) + gk (t, x)

where σ, ν and g are Lipγ for γ > p+ 2.

Theorem 5.3 (Well-posedness of linear RPDEs). Let z ∈ C0,p−var ([0, T ] ,Rd
)

and let L and Λ
fulfill assumption (1) resp. (2). Then{

du = L
(
t, x, u,Du,D2u

)
dt+

∑d
i=1 Λ (t, x, u,Du) ◦ dzit on [0, T ]× Rn,

u (0, x) = u0 (x) on Rn.
(19)

is robust in rough path sense.

Proof. We only sketch the idea of the proof for the case

{
du = σ2(t, x)D2udt+

∑d
i=1 Vi (x)Du ◦ dzit on [0, T ]× Rn,

u (0, x) = u0 (x) on Rn. (20)

First assume that z is a smooth path and denote by φ the ODE flow

dφ(t, x) = V (φ(t, x))dzt, φ(0, x) = x ∈ Rn. (21)

Then (at least formally) we see that the function v(t, x) := u(t, φ(t, x)) solves the standard
parabolic heat equation

{
dv = σ2

φ(t, x)D2vdt on [0, T ]× Rn,
v (0, x) = u0 (x) on Rn, where σ2

φ(t, x) := σ2(t, φ(t, x)). (22)

An obvious idea for the case that z is no longer a smooth path is to approximate z by a sequence
of smooth paths (zn). For each fixed n ∈ N one can solve the ODE flow φn (the ODE (21) with z
replaced by zn) and subsequently the corresponding simple PDE (22) to arrive at the sequence of
PDE solutions (vn). Since the flow φn will be a diffeomorphism we also know that

un(t, x) = vn(t, (φnt )−1(x)) (23)

where un denotes the solution of (20) where the driving signal z is replaced by zn. Obviously
we expect that (vn)n as well as (φn)n converge as n → ∞: for (vn)n this should follow from
the robust approximations of operators from viscosity theory and for (φn)n this should follow if we
consider convergence in rough path metric—recall Section 2 and 3 on the problems caused by
highly oscillatory driving signals z. If this holds, then (23) implies that (un)n converges to some u
and this function is a natural candidate for a solution. Of course, all the above was completely formal
and the convergence can go wrong. However, with more care it can be made rigorous even for fully
nonlinear operators; for the detailed argument see [11, 29].
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Corollary 5.4 (Splitting for the Zakai SPDE). Denote with {P t, t ≥ 0} the solution operator

ϕ 7→ v where v is the viscosity solution of dv = L
(
t, x,Dv,D2v

)
dt, v (0, ·) = ϕ (·)

and with
{
Qs,t, 0 ≤ s ≤ t

}
the solution operator

ϕ 7→ v where v is the SDE solution of dy = Λ (t, x,Dv) ◦ dBt, y (0, ·) = ϕ (·) .

Then for a.e. ω

un (t, x) :=

bt/nc−1∏
i=0

[
Qi/n,i/n+1/n ◦ P 1/n

]
(u0 (x))

converges locally uniformly (in (t, x)) as n→∞ to the unique solution u of (19) given by Theorem

5.3 with zt = Bt (ω) ≡
(

1, Bt (ω) ,
(∫ t

0
B ⊗ ◦dB

)
(ω)
)

.

Pathwise optimal control

Consider the SDE

dXt = a (Xt, αt) dt+ b (Xt, αt) ◦ dBt + c (Xt) ◦ dB̃t

where t 7→ αt is a path, B and B̃ are multi-dimensional, independent Brownian motions and
(a, b, c) are (sufficiently regular) vector fields. In applications (engineering, economics, etc.) one
often faces the problem that one can influence the evolution of X by controlling the path α. The aim
is then to minimize a cost function (consisting of a terminal cost g and a running cost f ) of the form

v (t, x) = inf
α

E

[
g
(
Xt,x
T

)
+

∫ T

t

f
(
Xt,x
s , αs

)
ds|B̃

]
. (24)

It turns out that we can use the Bellman principle to describe the change in the cost function over
time by a SPDE, the so-called Hamilton–Jacobi–Bellman (S)PDE. Indeed, a formal computation (see
[20] for a rigorous derivation from basic principles) shows that after the time reversal u (t, x) :=
v (T − t, x), we get a SPDE of the form{

du|t,x + infα [b (x, αt)Du|t,x+Lαu|t,x+f (x, αt)] dt+Du|t,x·c (x) ◦ dB̃t = 0 on [0, T ]× Rn,
u (0, x) = g (x) on Rn,

(25)
where Lα is the linear differential operator with (a, b). Using

Corollary 5.5. Let z ∈ C0,p−var ([0, T ] ,Rd
)
. The SPDE (25) is robust in rough path sense.

The proof is a slight modification of the proof of Theorem 5.3 since the usual comparison results
from viscosity theory is stable under taking infα.

6 Weak splitting schemes for SPDEs

In the previous sections we have concentrated on strong approximation of (partial) differential equa-
tions driven by random signals, i.e., on the approximation of the solution yT = yT (ω) of the rough
or stochastic (partial) differential equation as a random variable, ω-for-ω (resp. rough path by rough
path). However, in many applications one is only interested in the law of the solution yT of the
equation. Indeed, if the quantity of interest is just the expectation of a functional of the solution, say

E [f(yT )] ,

then it is sufficient to only approximate the law of yT . This corresponds to the notion of weak con-
vergence of random variables, and hence schemes for approximating the law of the solution of a
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stochastic (partial) differential equations are referred to as weak schemes. More precisely, let us
consider the solution yT of a stochastic differential equation defined on the Banach spaceX (which
is infinite-dimensional in the case of an SPDE) and let us consider a sequence of approximations yN
taking values in X indexed by N ∈ N. Fix a space of sufficiently regular test functions f : X → R
(classically chosen to be Cb(X) in theoretical probability theory, but more flexibility is needed in
numerics). Then we say that yN converges to yT in the weak sense if for any test function f we
have

E [f(yN )]
N→∞−−−−→ E [f(yT )] .

In particular, note that weak schemes — unlike strong ones — do not have to operate on the same
probability space as the true solution.

Of course, if the space of test functions is a subspace of the Lipschitz continuous functions, then
strong convergence (i.e., convergence in L1(Ω;X)) implies weak convergence, and the rate of
weak convergence is at least as good as the rate of strong convergence. However, in many cases
the weak rate of convergence is, in fact, much better than the strong one.

Cubature on Wiener space

For simplicity, let us concentrate on the finite-dimensional case first — we will come back to the
infinite-dimensional (SPDE) setting at the end of this section. Consider the stochastic differential
equation

dyt = V0(yt)dt+

d∑
i=1

Vi(yt) ◦ dBit, (26)

with y0 ∈ Re fixed, B denoting a d-dimensional standard Brownian motion and “◦” indicating
that the stochastic integral is understood in the Stratonovich sense. We furthermore introduce the
notation B0

t ≡ t to simplify the presentation.

Assumption 3. We assume that the vector fields V0, . . . , Vd : Re → Re are C∞-bounded, i.e.,
they are smooth and all the derivatives are bounded (but not necessarily the functions themselves).
Moreover, the test function f is smooth and bounded.

Remark 6.1. Of course, these assumptions can be relaxed. For instance, the boundedness require-
ments can be removed by working with properly weighted norms [21, 43]. Moreover, assuming a
(hypo-)ellipticity condition for the vector fields, we can actually rely on the smoothing property of
the diffusion equation and drop the smoothness assumption for the test function f – at the cost of
possibly having to work with non-uniform grids, see [51].

In order to derive appropriate weak splitting schemes for the equation (26), we first recall the
short time behaviour of the solution using the stochastic Taylor expansion, see for instance [42]. By
iterating the Ito-formula for the Stratonovich-SDE (26) m times, we obtain

f(yt) = f(y0)+

m∑
k=1

∑
(i1,...,ik)∈{0,...,d}k

Vi1 · · ·Vikf(y0)

∫
0<t1<···<tk<t

◦dBi1t1 · · ·◦dB
ik
tk

+O
(
t(m+1)/2

)
,

(27)
where we iteratively use the geometrical notion V f(x) ≡ ∇f(x) · V (x) for a function f and a
vector field V . We also denote

BIt = B
(i1,...,ik)
t ≡

∫
0<t1<···<tk<t

◦dBi1t1 · · ·◦dB
ik
tk
, I = (i1, . . . , ik) ∈ {0, . . . , d}k. (28)

Remark 6.2. We once again see that the short-time behaviour of the solution y is controlled by the
truncated signature.

Remark 6.3. As a matter of fact, sharper versions of (27) are possible, in so far that (27) ignores
the different scaling of t = B0

t and B1
t , . . . , B

d
t . Once again, we refer to [51].
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Remark 6.4. Of course, analogous stochastic Taylor expansions can also be formulated in terms of
the Ito integral, which would then lead to the Ito-signature. We prefer the geometrically more intuitive
Stratonovich versions in this chapter.

This motivates the following methodology for constructing higher order weak approximation schemes
termed the ODE method (originally introduced as cubature on Wiener space by [51] and, indepen-
dently, [44]).

Theorem 6.5. In the setting of Assumption 3, we are given a time-grid 0 = t0 < t1 < · · · <
tN = T with corresponding increments ∆ti, i = 1, . . . , N . Let Wi : [0,∆ti] → Rd+1 be a
(d+ 1)-dimensional path of bounded variation satisfying

∀0 ≤ k ≤ m, I ∈ {0, . . . , d}k : E
[
BI∆ti

]
= E

[
W I
i (∆ti)

]
.

Moreover, letW : [0, T ]→ Rd+1 be the bounded-variation process obtained by concatenating the
processes W1, . . . , WN . Finally, let yN ≡ yT (W ) be defined as the solution of the ODE

dy(W )t
dt

= V0(y(W )t)Ẇ
0
t +

d∑
i=1

Vi(y(W )t)Ẇ
i
t (29)

formally obtained from (26) by replacing B by W . Then there is a constant C > 0 such that

|E [f(yT )]− E [f(y(W )T ]| ≤ C
(

max
i=1,...,N

∆ti

)(m−1)/2

.

Proof. We do not give a detailed proof, as the underlying argument is quite standard in numerical

analysis. Indeed, by (27) the local error of the approximation is of order (∆ti)
(m+1)/2. Thus, by

summing up the local errors we obtain that the global error is of order (maxi ∆ti)
(m−1)/2

Remark 6.6. The above theorem is somewhat imprecise, as the constant C depends on T , f , the
vector fields V0, . . . , Vd and the method of constructing the processes W1, . . . ,WN , but not on
the grid. E.g., in the case of the Ninomiya-Victoir method introduced below, C will only depend on
T , f , V0, . . . , Vd.

6.1 The Ninomiya–Victoir splitting

If liberally interpreted — e.g., for Euler schemes, when the path W is actually a step-function —
Theorem 6.5 encompasses a large class of discretization schemes for the stochastic differential
equation (26). In particular, it allows for a simple construction of stochastic splitting schemes, as we
shall exemplify by the arguably most popular version, the Ninomiya–Victoir scheme [56]. In that case,
the paths of the process W are axis-paths, i.e., the paths are continuous and piecewise-parallel to
the axis in Rd+1, similar to the construction used in Definition 2.3, see (9). More precisely, choose
1 ≤ i ≤ N and a sequence of independent (of all other sources of randomness) random variables
Λi, i = 1, . . . , N with P (Λi = 1) = P (Λi = −1) = 1/2. Construct a process Wi on [0,∆ti]
in the following way: set δi ≡ ∆ti/(d+ 1) and when Λi = +1, set

Ẇi(t) =


∆ti/δie0, 0 ≤ t < 1/2δi,

∆Bji /δiej , (1/2 + (j − 1))δi ≤ t < (1/2 + j)δi, 1 ≤ j ≤ d,
∆ti/δie0, ∆ti − 1/2δi ≤ t ≤ ∆ti,

(30a)

where we recall that ∆Bji ≡ Bjti − B
j
ti−1

and where we denote by (e0, e1, . . . , ed) the standard

basis of Rd+1. In the other case (Λi = −1), we define Wi by

Ẇi(t) =


∆ti/δie0, 0 ≤ t < 1/2δi,

∆Bd−j+1
i /δied−j+1, (1/2 + (j − 1))δi ≤ t < (1/2 + j)δi, 1 ≤ j ≤ d,

∆ti/δie0, ∆ti − 1/2δi ≤ t ≤ ∆ti.
(30b)
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As in the general construction, the independent processes W1, . . . ,WN are then concatenated to
form the process W defined on [0, T ].

Inserting the process W just constructed into the general methodology (29), we see that the
Ninomiya–Victoir method boils down to solving the ODEs driven by the individual vector fields
V0, . . . , Vd on Re. Indeed, let esVix denote the flow associated to the vector field Vi at time s,
i.e., esVix = z(s) solution to

ż(t) = Vi(z(t)), z(0) = x ∈ Re,

then the solution yl ≡ y(W )tl , l = 0, . . . , N , of (29) for the Ninomiya–Victoir processW satisfies
y0 = y0 and

yl =

{
e

∆tl
2 V0e∆Bdl Vd · · · e∆B1

l V1e
∆tl
2 V0yl−1, Λl = +1,

e
∆tl
2 V0e∆B1

l V1 · · · e∆Bdl Vde
∆tl
2 V0yl−1, Λl = −1,

(31)

l = 1, . . . , N . This explains from the SDE side, why we consider the Ninomiya–Victoir scheme a
stochastic splitting scheme for the SDE (26).

Theorem 6.7. Under Assumption 3, the Ninomiya–Victoir scheme is a weak scheme of second
order, i.e., there is a constant C > 0 (depending on T, f, V0, . . . , Vd, but not on the grid) such that

|E [f(yT )]− E [f(y(W )T ]| ≤ C
(

max
i=1,...,N

∆ti

)2

.

Proof. We show that E
[
S5

0,t(B)
]

= E
[
S5

0,t(W )
]

for t = ∆ti and any W = Wi, which implies
the conclusion by Theorem 6.5.

Let us first consider the (Stratonovich) signature of the Brownian motion. By the construction of
the Stratonovich integral in terms of the Ito integral, we have

B
(i1,...,ik)
t = int0<t1<···<tk<t◦dB

i1
t1 · · ·◦dB

ik
tk

=

{∫ t
0
B

(i1,...,ik−1)
tk

dBiktk + 1
2

∫ t
0
B

(i1,...,ik−2)
s dsδikik−1

, ik 6= 0,∫ t
0
B

(i1,...,ik−1)
tk

dBiktk , ik = 0.

Using the Ito isometry, the expectation of the iterated Stratonovich integral is iteratively given by

E
[
B

(i1,...,ik)
t

]
=


1
2

∫ t
0
E
[
B

(i1,...,ik−2)
s

]
dsδikik−1

, ik 6= 0,∫ t
0
E
[
B

(i1,...,ik−1)
s

]
ds, ik = 0.

As regards the Ninomiya–Victoir cubature formula defined above, we see that

Ẇ j
i (t) = ∆Bji /δi1Aji

(t), j = 0, . . . , d, i = 1, . . . , N,

where we tacitly let ∆B0
i = ∆ti and define the set Aji by

A0
i = [0, 1/2δi[∪[∆ti − 1/2δi,∆ti],

Aji =

{
[(j − 1/2)δi, (j + 1/2)δi], Λi = +1,

[(d− j + 1/2)δi, (d− j + 3/2)δi], Λi = −1,
j = 1, . . . , d.

So we have the general formula

E
[
W

(i1,...,ik)
i (∆ti)

]
= E

[
∆Bi1i · · ·∆B

ik
i

]
E

[∫
0<t1<···<tk

1
A
i1
i

(t1) · · ·1
A
ik
i

(tk)dt1 · · · dtk
]
,

where the last expectation is necessary due to the random choice of intervals above, and, in fact,
only involves the two alternatives Λi = ±1.
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The verification of the theorem now boils down to a simple, albeit tedious exercise. For instance,
for multi-indices of length 3, we see that the only non-zero components of the expectation of the
signature restricted to multi-indices of length 3 for either B and Wi are

E
[
B

(0,0,0)
∆ti

]
=

∆t3i
6

= E
[
W

(0,0,0)
i (∆ti)

]
,

E
[
B

(0,j,j)
∆ti

]
=

∆t2i
4

= E
[
W

(0,j,j)
i (∆ti)

]
,

E
[
B

(j,j,0)
∆ti

]
=

∆t2i
4

= E
[
W

(j,j,0)
i (∆ti)

]
,

j = 1, . . . , d,

A path-wise interpretation of the Ninomiya–Victoir splitting scheme

Interpreting the Ninomiya–Victoir scheme in the Lie/Strang splitting picture drawn in (9) and below,
we define functions a∆ti , b∆ti1 , . . . , b∆tid on the interval [0,∆ti] by

ȧ∆ti(t) =
∆ti
δi

1[0,δi/2[(t),

ḃ∆tij (t) =
∆Bji
δi

1[(1/2+j−1)δi,(1/2+j)δi[(t), j = 1, . . . , d,

ċ∆ti(t) =
∆ti
δi

1[∆ti−δi/2,∆ti](t).

After concatenating these paths, we could immediately construct a Lie-type splitting following Defini-
tion 2.3 (in fact, we would not need splitting the time component in the a and c paths) or a Strang-type
splitting. However, taking the scaling of Brownian motion into account, we realize that we need to
take care of Lie brackets of order up to 5 in order to obtain a high order scheme. Hence, we need
even more “re-orderings” than in the ordinary Strang splitting. Thus, we further define paths

˙
b̃∆tij (t) =

∆Bji
δi

1[(1/2+d−j)δi,(1/2+d−j+1)δi[(t), j = 1, . . . , d.

The two alternatives (30a) and (30b) of Wi(t) are then given by

Wi(t) = (a∆ti(t) + c∆ti(t))e0 +

d∑
j=1

(
b∆tij (t)1Λi=+1 + b̃∆tij (t)1Λi=−1

)
ej ,

and the corresponding splitting scheme is indeed given by (31), taking into account that the solutions
of the ODEs driven by b∆tij and b̃∆tij eventually coincide at time ∆ti.

The Ninomiya–Victoir scheme as a splitting scheme for PDEs

It is well-known that the function u(t, y) ≡ E [f(yt)] with y0 = y satisfies the linear Cauchy
problem

∂

∂t
u(t, y) = Lu(t, y), u(0, y) = f(y), (32)

for t > 0 and y ∈ Re, respectively. Here, the partial differential operator L is defined by

Lg(y) = V0g(y) +
1

2

d∑
i=1

V 2
i g(y), (33)

19



where we recall that for any vector field V : Re → Re and any smooth function g : Re → R
we set V g(y) ≡ ∇g(y) · V (y). Iterating this procedure also define V 2g, with V 2 a second order
differential operator. Hence, for any weak approximation yN of yT , we have that

E [f(yN )] ≈ E [f(yT )] = u(T, y0), (34)

and the order of the weak approximation is the order of the approximation in the solution of the
PDE (32). In semi-group notation, we can denote the solution operator associated to L by Pt ≡
exp(tL), i.e.,

u(t, y) = Ptf(y).

Remark 6.8. Obviously, solving the SDE (26) is only one step for the solution of the PDE (32): in
addition, one needs to approximate the expectation in (34). In principle, for the Ninomiya–Victoir
method this is a numerical integral in dimension d×N . As this dimension is typically quite high, one
usually resorts to Monte Carlo or Quasi Monte Carlo methods for computing the integral. Numeri-
cally, the computational cost of the integration step is often much higher than the computational cost
of the discretization of the SDE, as the rate of convergence of the integration schemes is only 1

2 (for
Monte Carlo) or (at best) 1 (for Quasi Monte Carlo). Nonetheless, higher order weak approximation
methods can reduce the overall computational cost considerably as compared to low order meth-
ods, partly because they actually lead to a considerable reduction of the dimension of the integration
problem in the second step. The advantages of using higher order schemes have been observed in
many numerical studies, for instance [56, 2, 4, 43].

Remark 6.9. As compared to classical numerical solvers for the Cauchy problem (32), the stochas-
tic approximation scheme presented here has some very different features. On the one hand, most
standard numerical methods such as finite element or finite difference schemes produce approxi-
mate solutions u(t, y) for all values of t and y simultaneously – within a certain region in time and
space, and up to interpolation. On the other hand, using the stochastic representation (34), one only
obtains an approximation of u(t, y) for one particular t and one particular y. Moreover, the stochas-
tic method crucially relies on the performance of the (Q)MC approximation for the expected values,
and shares its strengths and weaknesses. Hence, for low-dimensional problems classical numerical
PDE solvers are typically more efficient, whereas for high dimensions e� 1, the stochastic method
is competitive or superior, as it does not suffer from the curse of dimensionality.

In light of (32), the question arises whether the Ninomiya–Victoir scheme can be naturally asso-
ciated with a (PDE) splitting scheme for (32). To this end let us first consider the situation when there
is only one time-step. Let Qit, i = 1, . . . , d, be the semi-groups corresponding to the second order

differential operators 1
2V

2
i , i = 1, . . . , d, respectively. Formally, we write Qit = e

t
2V

2
i . Moreover,

we denote by Q0
t the semi-group associated with the operator V0, i.e.,

Q0
tf(x) = f

(
etV0x

)
.

While the correspondence between etV0 and Q0
t is obvious, we note that Qit is in some sense the

expectation of eB
i
tVi . More precisely, stochastic Taylor expansion shows that for any C∞-bounded

test function f and any initial value y ∈ Re we have

Qitf(y) = E
[
f
(
eB

i
tViy

)]
.

Hence, in the case with only one time-step (with ∆t = T , ∆B = BT ) we obtain that

E [f(y1)] =
1

2
E
[
f
(
e

∆t
2 V0e∆BdVd · · · e∆B1V1e

∆t
2 V0y

)]
+

1

2
E
[
f
(
e

∆t
2 V0e∆B1V1 · · · e∆BdVde

∆t
2 V0y

)]
=

1

2
Q0

∆t/2Q
d
∆t · · ·Q1

∆tQ
0
∆t/2f(y) +

1

2
Q0

∆t/2Q
1
∆t · · ·Qd∆tQ0

∆t/2f(y) ≡ Q∆tf(y).

Note that the weight “ 1
2 ” comes from the probability 1

2 to choose either of the two alternatives in (31).
Iterating this construction along a discretization of the time interval [0, T ] as above, we recover

a well-known splitting scheme from the PDE literature, sometimes referred to as “symmetrically
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weighted sequential splitting” scheme, see [17]. In terms of the solution operator Pt = exp(tL),
Theorem 6.7 thus says that

|PT f(y)−Q∆tN · · ·Q∆t1f(y)| ≤ C
(

max
i=1,...,N

∆ti

)2

. (35)

The Ninomiya–Victoir stochastic splitting for SPDEs

The stochastic splitting methodology introduced above can be directly generalized to the infinite-
dimensional case, i.e., to the case of SPDEs instead of SDEs. This was first done by Bayer and
Teichmann [5] for the abstract formulation of Theorem 6.5 under strong regularity conditions. Later
on, Dörsek and Teichmann [21] have given a careful analysis of the Ninomiya–Victoir splitting and
other splitting techniques for weak approximation of SPDEs under weaker assumptions. We will
mainly follow their approach here.

Consider a stochastic partial differential equation of the form

dyt = (Ayt + V (yt))dt+

d∑
i=1

Vi(yt)dB
i
t, y0 ∈ X, (36)

that is we assume that the stochastic fluctuation only depend on yt, but not on derivatives of yt. The
state space X of the equation (36) is assumed to be a separable Hilbert space and the vector fields
V, V1, . . . , Vd : X → X are Frechet-differentiable and Lipschitz continuous, whereas the operator
A : D(A) ⊂ X → X is the generator of a strongly continuous, pseudo-contractive semigroup on
X — more regularity conditions on the coefficients are deferred until later. Then, a mild solution yt of
the SPDE exists. For details of the solution theory of this class of SPDEs we refer to the monograph
[18].

As mild solutions to SPDEs of the form (36) are generally not semi-martingales, we cannot
re-write (36) in Stratonovich form from the beginning, but have to work with the Ito formulation.
Nonetheless, if we use the Ninomiya–Victoir stochastic splitting approach, all the resulting (simpler)
SPDEs can, in fact, be written in Stratonovich form, hence we proceed just as above. Indeed, define

esViy = zs, where żt = Vi(zt), z0 = y ∈ X, i = 1, . . . , d.

Moreover, set V0(y) ≡ V (y) − 1
2

∑d
i=1DVi(y) · Vi(y), y ∈ X , which precisely corresponded

to the Stratonovich drift if it actually was to exist, and define es(A+V0)y analogously, i.e., as solution
zs at time s of the Cauchy problem

∂

∂t
zt = Azt + V0(zt), z0 = y ∈ X,

which may be represented in terms of the semi-group exp(tA) generated by A as

es(A+V0)y = zs = exp(sA)y +

∫ s

0

exp((s− t)A)V0(zt)dt.

Now we can define the Ninomiya–Victoir splitting essentially as in (31), i.e., we set y0 = y0 and

yl =

{
e

∆tl
2 (A+V0)e∆Bdl Vd · · · e∆B1

l V1e
∆tl
2 (A+V0)yl−1, with prob. 1

2 ,

e
∆tl
2 (A+V0)e∆B1

l V1 · · · e∆Bdl Vde
∆tl
2 (A+V0)yl−1, else,

(37)

l = 1, . . . , N .
We formulate assumptions given in [21], which can, in fact, be weakened using suitably weighted

spaces.

Assumption 4. Consider the coefficients A, V, V1, . . . , Vd of the SPDE (36) and a function f :
X → R. We assume that
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� A : D(A) ⊂ X → X generates a strongly continuous, pseudo-contractive semi-group on
X and has a compact resolvent.

� V, V1, . . . , Vd ∈ C6(X,X) and have bounded derivatives.

� V, V1, . . . , Vd are Lipschitz when considered as maps D(Al) → D(Al), l = 1, . . . , 5,
where D(Al) is equipped with the graph norm, i.e., the Hilbert norm given by ‖x‖2D(Al) ≡
‖x‖2X +

∑l
k=1

∥∥Akx∥∥2

X
.

� f ∈ C6
b (X).

Theorem 6.10 ([21, Cor. 7.11, Th. 7.20]). Under Assumption 4, there is a constant C such that

|E [f(yT )]− E [f (yN )]| ≤ C
(

max
i=1,...,N

∆ti

)2

.

Remark 6.11. The theorem can also be re-formulated completely deterministically in the fashion
of (35), i.e., as a deterministic splitting method for a PDE on an infinite-dimensional state space.
This is the version actually given in [21].

7 Applications of weak schemes in financial engineering

Given a financial model of the form (26), where yt could be a (one- or multi-dimensional) vector of
asset (forward) prices, or a vector of asset prices and stochastic volatilities, or the individual factors
of a multi-factor model, . . . . Disregarding financial technicalities (discounting, change to the pricing
measure), we are concerned in computing a European option price with payoff function f : Re → R
and maturity T , i.e., our quantity of interest is

E [f (yT )] .

This simple option pricing problem is mostly relevant for calibration purposes, i.e., for identifying the
model parameters which provide the best fit to the observed market prices. Hence, the speed of the
pricing algorithm is extremely important for this application — more important than accuracy, due
to the usually non negligible model error.5 In this section we give an overview of some successful
applications of weak stochastic splitting methods in this context. We begin with two numerical studies
on the performance of the Ninomiya–Victoir scheme for two popular (finite-dimensional) models
often used in financial engineering — the SABR model and the CEV model, a special case of the
former [2, 4]. Then we report the performance of the Ninomiya–Victoir method in an actual calibration
routine for yet another related model, the double-mean-reverting model, [3]. Finally, we present the
performance of the weak stochastic splitting method for SPDEs, again in the context of a calibration
problem, this time for an interest rate model, the Heath–Jarrow–Morton model, see [22].

Option pricing in high dimensions

The SABR model is a prominent example of a stochastic interest rate model. We consider the
following generalizations of the classical SABR model (cf. [2]).

dy1(t) =ay2(t)αy1(t)βdB1
t ,

dy2(t) =κ(θ − y2(t))dt+ by2(t)
(
ρdB1

t +
√

1− ρ2dB2
t

)
,

(38)

with X1(0) = x1 and X2(0) = x2. We assume that the parameters satisfy 1
2 ≤ β ≤ 1, θ, κ ≥ 0,

α > 0, a, b > 0, −1 < ρ < 1. Here, the first component y1(t) models the (discounted) price of a
stock, and y2(t) can be interpreted as some kind of stochastic volatility. In fact, the dynamics of y1

5That is, even without any numerical error, it is generally not possible to obtain a perfect fit to market prices, due to the
model limitations.
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depend in a nonlinear way on y1 (local volatility ) and on a second stochastic process y2 (stochastic
volatility ). Hence, models of this kind are known as stochastic local volatility models. Moreover, note
that this model can be easily generalized to the multi-asset case by just adding new processes y
with the same kind of dynamics, but driven by correlated Brownian motions for every new asset to
be included in the model, see [2] for more details. We concentrate on the one-asset case for ease
of presentation.

For the SABR model (38), the Stratonovich drift vector field and the diffusion vector fields are
given by

V0(y) =

(
− 1

2a
2βy2α

2 y2β−1
1 − 1

2αabρy
α
2 y

β
1

κθ −
(
κ+ 1

2b
2
)
y2

)
, V1(y) =

(
ayα2 y

β
1

bρy2

)
, V2(y) =

(
0

b
√

1− ρ2y2

)
.

(39)
Quite typically for models in financial engineering, the Stratonovich drift vector field is considerably
more complicated than the Ito drift vector field or the diffusion vector fields which can be seen as
a consequence of the Stratonovich correction V0 = V − 1

2

∑d
i=1DVi · Vi, noting that models

in financial engineering are typically formulated in Ito form. As a consequence, it is not surprising
that we have explicit formulas for the flow of the diffusion vector field, but not for the flow of the
Stratonovich vector field V0. In fact, we have

esV1y =

(
g1(s)

y2 exp (bρs)

)
, esV2y =

(
y1

y2 exp
(
b
√

1− ρ2s
))

,

where

g1(s) =


[
(1− β)ayα2

eαbρs−1
αbρ + y1−β

1

]1/(1−β)

+
, 1

2 ≤ β < 1,

y1 exp
(
axα2

eαbρs−1
αbρ

)
, β = 1.

Of course, it is possible to compute esV0y numerically, but for efficiency (and often also for geomet-
rical reasons) it is preferable to have explicit solutions whenever possible.6 We therefore propose
to slightly adjust the Ninomiya–Victoir splitting formula, taking the Stratonovich drift correction into
account. That means, we replace the splitting L = V0 + 1

2

∑d
i=1 V

2
i by the splitting

L = V
(γ)
0 +

1

2

d∑
i=1

(
V 2
i + 2γiVi

)
, where V (γ)

0 = V0 −
d∑
i=1

γiVi,

and γ ∈ Rd is chosen such that the flow of V (γ)
0 has an explicit solution. Note that 1

2V
2
i + γiVi

corresponds to the stochastic equation

dzt = γiVi(zt)dt+ Vi(zt) ◦ dBit = Vi(zt) ◦ d
(
Bit + γit

)
,

i.e., the stochastic weak splitting scheme actually looks exactly like the standard Ninomiya–Victoir

scheme (31), but with ∆Bil replaced by ∆Bil + γi∆tl and V0 replaced by V (γ)
0 :

yl =

{
e

∆tl
2 V

(γ)
0 e(∆Bdl +γd∆tl)Vd · · · e(∆B1

l +γ1∆tl)V1e
∆tl
2 V

(γ)
0 yl−1, with prob. 1

2 ,

e
∆tl
2 V

(γ)
0 e(∆B1

l +γ1∆tl)V1 · · · e(∆Bdl +γd∆tl)Vde
∆tl
2 V

(γ)
0 yl−1, else,

(40)

see [2]. As a matter of fact, we can easily find such a choice of γ for the generalized SABR model
given by

γ1 = −1

2
αbρ, γ2 =

αbρ2 − 2κ/b− b
2
√

1− ρ2
,

leading to

V
(γ)
0 (y) =

(
− 1

2a
2βy2α

2 y2β−1
1

κθ

)
, esV

(γ)
0 y =

(
g0(s; y)
κθs+ y2

)
,

6By which we do not mean difficult-to-evaluate series expansions, Bessel functions or similar solutions. Instead, we mean
formulas with comparable complexity to the vector fields themselves.
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with

g0(s; y) =


(
−a2β(1− β)P (s; y) + y

2(1−β)
1

) 1
2(1−β)

+
, 1

2 < β < 1,

y1 exp
(
− 1

2a
2P (s; y)

)
, β = 1,

− 1
4a

2P (s; y) + y1, β = 1
2 ,

and

P (s; y) =
1

(2α+ 1)κθ

(
(κθs+ y2)2α+1 − y2α+1

2

)
.

Finally, let us present the results from one of the numerical experiments in [2] with real-world
data. The parameters there were chosen to be β = 1.0, θ = 0.3, κ = 2.0, α = 0.5, a = 1.0,
b = 0.5, ρ = −0.7, y1 = 1.0 and y2 = 0.2. The option has strike price K = 1.05 and time to
maturity T = 1.0 years. The estimated “true result” is 0.1767505855. Note that the expectation is
computed by quasi Monte Carlo based on Sobol numbers.

Method K M Rel. Error Time
Euler 32 8192000 0.00174 91.94 sec
Ninomiya–Victoir 4 2048000 0.00204 13.93 sec
NV with drift 4 1024000 0.00104 2.88 sec

Table 1: Computational time for the generalized SABR model

In Table 1 the computational times are reported for the generalized SABR model. Here, the
computational parameter N (the number of uniform time-steps) is chosen such that the weak error
is of order 10−3. We see that the computational time needed for the adjusted splitting method (40) is
indeed considerably smaller than the time for the classical one (31). The other numerical parameter
(the number M of samples for the quasi Monte Carlo integration, restricted to be a power of 2) was
chosen such that the integration error (i.e., the error in the computation of the expected value) is
of order 10−5. Indeed, we focus on the discretization problem here, an we do not want our results
to be overshadowed by the integration error. Note that in the case of the Euler scheme, one has
to compute a 64-dimensional integral, whereas in the case of the Ninomiya–Victoir scheme (with
or without drift), the integration only needs to be performed on an eight-dimensional space. This
explains why the M can be chosen smaller for the Ninomiya–Victoir splitting as compared to the
Euler scheme, as quasi Monte Carlo is known to work better when the dimension is smaller –
despite not suffering from the curse of dimensionality.

In [2] similar results were reported for the multi-asset case. More precisely, the authors of [2] also
applied it to the case of four assets, meaning an eight-dimensional model. But, in fact, the stochastic
splitting method can be used in even higher dimensions. For instance, we used it in [4] in order to
obtain reference solutions for options depending on up to 100 assets for a pure local volatility model,
coupled with quasi Monte Carlo or Monte Carlo methods for the integration step. In that case, it is
difficult if not impossible to obtain reliable reference values, but the method seems to perform very
well.

Calibration of the double mean reverting model

The double mean reverting model goes back to Jim Gatheral [31]. Its main advantage is that it allows
joint calibration to market data for option prices on an index like the S & P 500 index (SPX) and a
corresponding implied volatility index (like the VIX). The model is given by

dSt =
√
vtStdW

1
t , (41a)

dvt = κ1(v′t − vt)dt+ ξ1v
α1
t dW 2

t , (41b)

dv′t = κ2(θ − v′t)dt+ ξ2v
′
t
α2dW 3

t , (41c)

where the Brownian motionsWi are all correlated withE[dW i
t dW

j
t ] = ρijdt. Again, it is natural to

interpret vt as the (stochastic) volatility of the (discounted) asset price process St – or rather, as the
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stochastic variance. Conforming to stylized facts about the volatility, vt is a mean-reverting process
due to the form of the drift, but unlike traditional stochastic volatility models, the long-term mean v′t
is itself a (mean-reverting) stochastic process, hence the name “double mean reverting” model.

Typically, one of the most numerically challenging tasks in financial engineering is the calibration
of a model such as (41), i.e., the fitting of the model parameters (κ1, κ2, ξ1, ξ2, α1, α2, ρ12, ρ13,
ρ23, but also v0 and v′0 which, unlike S0, are not directly observable) to market data, in particular
to market option prices. Indeed, even though the model itself assumes these parameters to be con-
stant, in reality they typically change frequently, which means that the model has to be re-calibrated
on a regular bases, say daily.

In the case of the double mean reverting model, practical experience seems to show that θ, κ1,
κ2, ρ23 α1 and α2 are fairly constant in time, implying that they can be excluded from the daily
re-calibration. In fact, [3] found that the data available did not suffice to successfully estimate α2.
Hence, it was assumed to have the same value as α1, which was calibrated to α1 = 0.94. Hence,
for the purpose of their numerical study, [3] assumed θ, κ1, κ2, ρ23 α1 and α2 to be given (by
parameters which where themselves, of course, calibrated to the market data) – leaving us with the
task of fast calibration of the parameters ξ1, ξ2, ρ12 and ρ13. In the context of [3], “market data”
mean the prices of vanilla (i.e., European put and call options) on SPX and on VIX. The general
calibration procedure proposed was the following:

1 Given a time series of VIX data, linear regression allows to construct time series for the pro-
cesses vt and v′t. Out of these, a least-square optimization is used to estimate θ, κ1 and
κ2. Moreover, the correlation between vt and v′t gives ρ23. A similar regression on VIX time
series data gives an estimate for α1.

2 Note that options on VIX depend only on vt and v′t now, but not on St. Hence, one can
calibrate ξ1 and ξ2 directly to VIX options, without needing to simulate the St component,
i.e., without adding any constraints to ρ12 and ρ13. The calibration boils down to a least-
squares minimization of misfits of VIX-option prices from the model to the quoted market
prices. The minimization was done using a Levenberg-Marquardt algorithm, for the option
pricing algorithm the authors of [3] tested the Euler scheme and a variant of the Ninomiya–
Victoir scheme for the discretization of the SDE and both classical and quasi Monte Carlo for
the computation of the expected value.

3 Having obtained ξ1 and ξ2 from the previous step, they used options on the SPX to calibrate
the remaining parameters ρ12 and ρ13. The procedure is very similar to the calibration of ξ1
and ξ2, except that now the full three-dimensional SDE needs to be solved.

In [3] the calibration was done for two particular days, namely April 3, 2007 (before the financial
crisis) and September 15, 2011 (after the financial crisis). The fits to SPX options are quite good,
especially for maturities which are not too small. The fit to VIX options is slightly worse, but in that
time VIX options were also less liquid than today. Regarding the numerical algorithms, the Ninomiya–
Victoir splitting method (with an additional splitting in the drift, not unlike the one presented in [2])
performs much better for the calculation of VIX options, where the classical Euler method would
requires 500 time-steps as compared to 30 time-steps for the splitting method in order to achieve the
required accuracy. Thereby, for this example, the Ninomiya–Victoir scheme reduces the calibration
time for the VIX-step by a factor of around five. For the SPX options, the Euler scheme surprisingly
gave sufficiently accurate results already for 30 time-steps, which implies that for this case the Euler
scheme turned out to be seemingly In total, the authors of [3] report that their implementation can
do the re-calibration to market data in about 5 seconds using the Ninomiya–Victoir splitting scheme.

Calibration of the Heath–Jarrow–Morton model

Finally, we want to present an application of the Ninomiya–Victoir weak splitting method to a true
SPDE given by Dörsek and Teichmann [22], namely the fast calibration of a general, infinite-dimensional
Heath–Jarrow–Morton model for interest rate dynamics, see [37]. We should also note alternative
numerical treatments of the full, infinite dimensional HJM model in [8] and [55].
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We start with a short description of the model. Let P (t, T ) denote the price of a zero-coupon
bond with maturity T at time t. Of course, this entity only makes sense if t ≤ T . The (instantaneous)
forward rate at time t for the maturity T is defined by

f(t, T ) = − ∂

∂T
logP (t, T ),

implying the natural inverse relation P (t, T ) = exp
(
−
∫ T
t
f(t, u)du

)
, which explains why we

call f an interest rate. Unlike many other models, in which only the short rate f(t, t) or only
the rates f(t, T1), . . . , f(t, Tn) for finitely many maturities are modeled, [37] propose an infinite-
dimensional model for the whole forward rate curve (f(t, T ))T∈[t,∞[. In order to avoid working

with time-dependent state spaces, we introduce the parametrization rt(x) = f(t, t+ x) in time to
maturity x = T − t ≥ 0. Then the HJM model corresponds to the SPDE

drt =

(
∂

∂x
rt + αHJM (rt)

)
dt+

d∑
i=1

σi(rt)dB
i
t. (42)

Here, we restrict ourselves to a finite number d of driving Brownian motions, which can be justified
empirically, but is not strictly necessary for the HJM model. Moreover, we note that there are inherent
restrictions on the vector fields imposed by no-arbitrage constraints, which boil down to the relation

αHJM (h)(x) =

d∑
i=1

σi(h)(x)

∫ x

0

σi(h)(y)dy,

where x ≥ 0 and h takes values in the state space H , a suitably weighted Sobolev space, see [22]
for details on H and on further regularity requirements on σi.

Next, we describe the splitting. Note that the diffusion vector fields do not pose any additional
complications as compared to the finite dimensional case, as they are (assumed to be) continuous
vector fields on H . This is evidently not the case for the Stratonovich drift vector field σ0(h) =
∂
∂xh + αHJM (h) − 1

2Dσi(h) · σi(h), where the unbounded operator ∂
∂x appears. (Recall that

the solution rt cannot, in fact, be written in Stratonovich form.) Hence, they additionally split σ0 =
σ0,1 + σ0,2 with σ0,1 = ∂

∂x and σ0,2 = αHJM − 1
2Dσi · σi. Here we note that the flow of σ0,1

is obviously given by the shift operator St(h)(x) = h(x + t), so that the esσ0,1 = Ss is given in
closed form. Regarding the diffusion vector fields, the authors suggest to use the parametric form

σj(h, v)(x) = (αj,0 + αj,1x) e−βx tanh

(
cje

v

∫ tj

0

h(s)ds

)
,

which includes a stochastic volatility component v, and αj,i, β, cj and tj are parameters, which
need to be estimated. Moreover, they choose d = 3.

The authors of [22] calibrate against 120 market prices of caplets, again using a Levenberg-
Marquardt type algorithm for the optimization. In total, they report that it takes about half a second
to compute these 120 option prices to the required accuracy (on a workstation with 16 cores), and
the total calibration can be done in 14.5 minutes.
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