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Abstract

In this article we study networks of coupled dynamical systems with time-delayed con-
nections. If two such networks hold different delays on the connections it is in general
possible that they exhibit different dynamical behavior as well. We prove that for particular
sets of delays this is not the case. To this aim we introduce a componentwise timeshift
transformation (CTT) which allows to classify systems which possess equivalent dynam-
ics, though possibly different sets of connection delays. In particular, we show for a large
class of semiflows (including the case of delay differential equations) that the stability of
attractors is invariant under this transformation. Moreover we show that each equivalence
class which is mediated by the CTT possesses a representative system in which the num-
ber of different delays is not larger than the cycle space dimension of the underlying graph.
We conclude that the ’true’ dimension of the corresponding parameter space of delays is
in general smaller than it appears at first glance.

1 Introduction

Differential equations with time delays have been subject of intensive research in the last decades.
Recently, major impulses for theoretical investigations came from the challenge of understand-
ing and modeling the human brain [19, 15, 13]. Here, time delays appear due to the finite speed
of action potentials propagating through axons [28, 38, 5]. It was observed that the qualitative
behaviour of brain networks is closely related to their heterogeneous delay distributions. These
were shown to play important roles in phenomena such as coherence in the resting state activity
[13, 15], nonstationary bifurcations of equilibria [1] and enhanced synchronizability [12, 9]. Fur-
ther examples of delay-coupled systems are interacting lasers where delays appear due to the
finite speed of light travelling through optical fibers [39, 11, 36]. In population dynamics, delays
correspond to maturing and gesturing times [22], and in gene regulatory networks, delays rep-
resent the time the system needs to produce a protein [23, 8]. Thus, delays are often included
in order to account for the time a signal needs to propagate from one node of the network to
another or for the processing time that it takes to emit a response to some input. An inevitable
property of real networks of interacting systems with delays is that, generically, each delay time
is different from any other.

Nevertheless, there exist comparatively few attempts to study systems with several different de-
lays analytically. An important reason for this is that their analysis is usually much harder than
for identical delays and techniques available for systems with one delay are in general not appli-
cable in the case of multiple delays. In particular, the analysis of spectra of solutions becomes
more complicated since the characteristic quasi-polynomials involve several exponential terms
[4, 18]. At least for coupled systems with two different delays some analytical results are avail-
able. For instance, Nussbaum [29] proved the existence of periodic solutions in a system with
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two commensurable delays. Moreover some detailed studies on bifurcations in coupled systems
with two different delay times were conducted [3, 7, 35, 6, 17]. In particular, we mention Shayer
et al. [35], where the investigation initially assumes three different delays. In the course of the
investigation, the authors discover that the stability of a steady state depends only on two values
combined from these delays. This finding is a special case of the more general result that we
present in this paper. Higher order scalar systems with two delays are considered, e.g., by Gu
et al. [16], who study stability crossing curves for this system. For the same system, Ruan and
Wei [34] refine techniques for the determination of the roots of characteristic quasi-polynomials
of single delay equations to treat the case of two delays. Yanchuk and Giacomelli [40] consider
a scalar system with two large delays and show that this system can be described by a complex
Ginzburg-Landau equation in the neighborhood of an equilibrium.

Finally, we want to mention studies of Hopfield neural networks with delayed connections where
many different delays are taken into account [14, 41, 37, 24]. Here, the primary object of inves-
tigation are sufficient conditions for global convergence of the system towards a single steady
state in order to obtain a well-defined method of input classification.

In this paper, the focus of our interest is a componentwise timeshift transformation (CTT) which
allows to change the interaction delays while the dynamical properties of the system remain the
same. Apart of providing an intuition about the functionality of delays, the transformation proves
to be particularly useful in cases where it is possible to achieve a smaller or in some sense
preferable set of delays in the transformed system.

This is especially apparent for the case when the nodes are coupled in a single unidirectional
ring. The corresponding special case of the CTT was utilized more or less explicitly already in
[2, 27, 31, 32]. Therefore, let us illustrate the CTT for this example. In a general form, a ring of
N unidirectionally delay-coupled systems can be written as

d

dt
xj(t) = fj (xj(t), xj−1(t− τj−1)) , j = 1, ..., N, (1)

where j is considered modulo N and τj ≥ 0 are N possibly different delays. Given a solution
xj(t), j = 1, ..., N , we introduce new variables

yj (t) := xj (t+ ηj) , (2)

by shifting the nodes independently in time by certain amounts ηj ≥ 0. Formally, we find that
the dynamics of the variables yj(t) obey

d

dt
yj(t) = fj (yj(t), yj−1(t− τ̃j−1)) , j = 1, ..., N, (3)

with new delays τ̃j = τj + ηj − ηj+1. In other words, finding timeshifts ηj for given delays τ̃j is
equivalent to solving a system of linear equations.

For the case of a ring with only two nodes, which is depicted in Fig. 1, we illustrate the possible
effect of the timeshift (2) in Fig. 2. The plots (a)–(c) show an initial piece of a solution and its
change under the CTT (two delay-coupled Mackey-Glass systems [26] were used to create this
example). The process of transformation is indicated by the symbols T and T̃ , which are given
a precise meaning in Sec. 4. Each transformation corresponds to a particular choice of the
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Figure 1: Two simple examples of CT-Transformations for a ring of two delay-coupled systems.
The transformation T1 reduces the number of delays from two to one and T2 reveals a hidden
symmetry in the system by adjusting the two delays to the same value τ = (τ1 + τ2)/2.

timeshifts in (2). Here, T converts (1) to (3) and T̃ describes the reverse transformation from (3)
to (1). In (a) and (c), the arrows between the timetraces of both components indicate the delayed
dependence of ẋ1(t) on x2(t− τ2) and ẋ1(t) on x2(t− τ2), similar in (b) for y1 and y2 for the
transformed delays τ̃1 and τ̃2. From (2) it follows that the timetraces of the single components
have exactly the same form in both systems. Both solutions only differ in the relative timeshifts
between their components.

Baldi and Atiya [2] discovered that by choosing timeshifts ηj =
∑j−1

k=1 τk one obtains the trans-
formed delays

τ̃j =

{
0, for 1 ≤ j ≤ N − 1,∑N

k=1 τk, for j = N.
(4)

They used this simplified form to predict oscillatory behavior and bifurcations for a neural cir-
cuit exhibiting delayed excitatory and inhibitory connections. Mallet-Paret [27] utilized the same
transformation to prove a Poincaré-Bendixson Theorem for monotone cyclic feedback systems
with delays. A slightly different set of timeshifts can be found in [31] and [32], where the choice
ηj = (N − j)τ̄ +

∑j
k=1 τk, with the mean delay τ̄ = 1

N

∑
k τk, was proposed. This leads to

identical transformed delays
τ̃j ≡ τ̄ . (5)

For a ring of identical nodes, i.e. fj ≡ f for all j, it turns out that the obtained system is much
more tractable due to its rotational symmetry. One may say that this hitherto hidden symmetry
was revealed by the CTT. See also Fig. 1 for an illustration of the two above mentioned timeshifts
in a ring of two nodes.

For both variants, (4) and (5), it is evident that if one is interested in the changes of dynamic
behavior with respect to the different delays τj it suffices to vary a single parameter, i.e. the
mean delay τ̄ = 1

N

∑
k τk, instead of the N different parameters τj , j = 1, ..., N . In other

words, the parameter space dimension is much smaller than it might have appeared at first
glance. Similar as for a ring, the CTT allows to identify a canonical set of delay parameters in a
general network as we explain in Sec. 5.

Before doing so let us pose a question. What does the knowledge about dynamical features
of the transformed system (3) really tell us about the dynamical features of the original system
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↓ T

↓ T̃

Figure 2: CT-Transformation for a pair of bidirectionally coupled Mackey-Glass systems [26], cf.
Fig. 1. Plot (a) shows the original solution x(t) = (x1(t), x2(t)) of (6). Plot (b) shows the
transformed solution y(t) = (y1(t), y2(t)) of (7), which is shifted to the left by amounts η1 = 0
and η2 = 10. Plot (c) shows the solution x(t + η1) obtained after a reverse transformation of
y(t) [see Sec. 4 for details].

4



(1)? It might seem intuitive that they are the same since the timeshift yj (t) 7→ yj (t− ηj) in-
verses (2). This is true for the particular solution (2) but, in general, the expression yj (t− ηj)
(with ηj > 0) may not be defined at all. This is because, in general, solutions of delay differen-
tial equations (DDEs) cannot be continued backwards. Another subtlety arises if one considers
timeshifts ηj leading to anticipating arguments, that is negative delays. In this case (3) has fun-
damentally different properties from an ordinary DDE with positive delays. For instance, initial
value problems are ill-posed in general [18]. Even though we will restrict ourselves to the situ-
ation where transformed delays are positive, a proper treatment of the above question should
introduce state spaces and flows to formulate and compare the dynamical properties of the
original and the transformed system. Such a rigorous treatment of the CTT was not given in any
of the above mentioned works [2, 27, 31, 32]. We will do this in a quite general setting using
semidynamical systems in Sec. 4 where we also give a rigorous definition of the CTT. In par-
ticular, the structural similarity of the state spaces and the stability of invariant sets is studied.
In Sec. 2 we introduce notations to describe general networks of delay coupled dynamical sys-
tems and in Sec. 3 we study the special cases of equilibria and periodic orbits of DDEs where
the equivalence of the dynamics of the original and the transformed system is relatively easy to
show.

2 Networks of delay coupled dynamical systems

To describe a general network of N coupled systems we choose a framework which enables
us to account for multiple links between two nodes holding different delays. That is, the coupling
structure of the network is assumed to be represented by a multidigraph. This is a set of node
indices,N = {1, ..., N}, and a set E of directed links. Throughout the whole article we assume
that (N , E) is weakly connected. This means that each node can be reached from any other
node by traversing a sequence of links, where each link may be traversed in arbitrary direction.
For networks with several connected components our results can be applied separately to each
component. For each link ` ∈ E the functions s, t : E → N assign its source s(`) and its target
t(`). This means that the link ` connects the node xs(`) to the node xt(`). The delay time of ` is
denoted by τ(`). Note that there may indeed exist two links `1 and `2 in E with s(`1) = s(`2)
and t(`1) = t(`2) but τ(`1) 6= τ(`2). For node xj , we introduce the set of its incoming links as

Ij = {` ∈ E : t (`) = j} .

Then, the dynamics of xj can be written as

d

dt
xj(t) = fj

((
xs(`) (t− τ (`))

)
`∈Ij

)
∈ R, j = 1, ..., N, (6)

where we assume xj(t) ∈ R without loss of generality. This notation allows to include a self-
dependency of xj(t) via a link ` with s(`) = t(`) = j. It is also possible to have an instanta-
neous dependence by setting τ(`) = 0. For (6), the introduction of new variables yj(t) as in
(2) leads to the transformed system

d

dt
yj(t) = fj

((
ys(`) (t− τ̃ (`))

)
`∈Ij

)
, j = 1, ..., N, (7)
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with modified delays
τ̃ (`) = τ (`)− ηt(`) + ηs(`). (8)

3 Spectrum of equilibria and periodic orbits

An equilibrium point x̄ = (x̄1, ..., x̄N) ∈ RN of (6) is a point which satisfies

fj

((
x̄s(`)

)
`∈Ij

)
= 0, j = 1, ..., N. (9)

Obviously x̄ is also an equilibrium of (7). In the following we assume that fj ∈ C1. Then a
characteristic exponent λ of x̄ in (6) corresponds to an exponential solution ξ (t) = eλtξ0 ∈
CN of the variational equation

d

dt
ξj (t) =

∑
`∈Ij

∂s(`)fj

((
x̄s(`′)

)
`′∈Ij

)
ξs(`) (t− τ (`)) . (10)

If all of the characteristic exponents of x̄ possess negative real parts this assures that x̄ is
stable, if at least one has positive real part then x̄ is unstable [18]. In the transformed system (7)
the timeshifted variation χ (t), given by χj (t) = ξj (t+ ηj), is a solution of the corresponding
variational equation of x̄

d

dt
χj (t) =

∑
`∈Ij

∂s(`)fj

((
x̄s(`′)

)
`′∈Ij

)
χs(`) (t− τ̃ (`)) . (11)

Hence, the characteristic exponents of x̄ are the same in (6) and (7).

Similarly, the stability of a periodic solution x̄ (t) = x̄ (t+ T ) is determined by its Floquet
exponents if their real parts are different from zero. Each exponent λ corresponds to a solution
ξ (t) of the variational equation

d

dt
ξj (t) =

∑
`∈Ij

∂s(`)fj

((
x̄s(`′) (t− τ (`′))

)
`′∈Ij

)
ξs(`) (t− τ (`)) (12)

which has the form ξ (t) = eλtp (t) with a periodic function p (t) = p (t+ T ). Again, the
timeshifted solution χ (t) with χj (t) = ξj (t+ ηj) fulfills the variational equation

d

dt
χj (t) =

∑
`∈Ij

∂s(`)fj

((
ȳs(`′) (t− τ̃ (`′))

)
`′∈Ij

)
χs(`) (t− τ̃ (`)) (13)

of the corresponding periodic solution ȳj (t) = x̄j (t+ ηj) in the transformed system. Let us
summarize this section in a theorem:

Theorem 1. The following statements hold true:

(i) A fixed point x̄ possesses the same characteristic exponents in (6) and (7).

(ii) A periodic solution x̄ (t) possesses the same Floquet exponents in (6) as the corresponding
transformed solution ȳ (t) of (7).
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4 The componentwise timeshift transformation

4.1 Definitions

In this section we introduce a rigorous formulation of the idea which underlies the change of
variables (2). We define the CTT in terms of the underlying infinite dimensional phase spaces
of (6) and (7).

First recall that a semidynamical system (or a semiflow) is a mapping

Φ : [0,∞)×X → X,

(t,x) 7→ Φt (x) ,

on a Banach space X which fulfills:

(i) Φ0 = Id
(ii) Φt+s = Φt ◦ Φs, ∀t, s ≥ 0
(iii) Φt : X → X is continuous for all t ≥ 0.

The state spaces for DDEs contain segments of functions, which represent the history of the
solution curve x (t). For instance, in Fig. 2 the shaded part of the timetrace in (a) corresponds
to the initial segment of the depicted solution. For the original system (6), we choose the state
space to be

C =
N∏
j=1

C ([−rj, 0] ; R) , rj = max
`∈Oj

τ (`) ,

where Oj = {` ∈ E : s (`) = j} is the set of all outgoing links from the j-th node. Hence, the
value rj is the largest delay time on outgoing links of the node j. This definition ensures, that
the history for the j-th component is available for all delayed arguments appearing on the right
hand side of (6). Similarly, we choose

C̃ =
N∏
j=1

C ([−r̃j, 0] ; R) , r̃j = max
`∈Oj

τ̃ (`)

as state space for the transformed system (7). Assuming that solutions exist for all future times
(e.g. if fj are Lipschitz continuous), there exist semiflows

Φ : [0,∞)× C → C, (t,x) 7→ Φt (x) ,

Ψ : [0,∞)× C̃ → C̃, (t,y) 7→ Ψt (y) ,

for (6) and (7). Now let us formulate (2) as a state space transformation T : C → C̃. We define
T componentwise for j = 1, ..., N , and pointwise for x0 ∈ C and t ∈ [−r̃j, 0], as

Tj [x0] (t) =

{
[x0 (t+ ηj)]j , for t ∈ [−r̃j,−ηj] ,[
Φt+ηj (x0)

]
j
(0) , for t ∈ [−min {ηj, r̃j} , 0] .

(14)
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For illustration see Fig. 2(b), where the shading marks the segment y0 = T [x0] for the initial
segment x0 indicated in (a). The lighter shading indicates the part defined by the second case
of (14). Let us show that (14) is well-defined. For this we need to assure that y0 = T [x0] ∈ C̃.
This only requires that the term [x0(t − ηj)]j appearing in (14) is defined for all t + ηj with
t ∈ [−r̃j,−ηj]. For the case in which [−r̃j,−ηj] is non-empty, this is equivalent to t + ηj ≥
−rj for all t ∈ [−r̃j,−ηj]. In order to show this, choose a link ` ∈ Oj with maximal delay
τ̃(`) = r̃j . Then,

rj − r̃j ≥ τ (`)− τ̃ (`) = τ (`′)−
(
τ (`′)− ηt(`′) + ηj

)
≥ −ηj.

Therefore, t+ ηj ≥ −r̃j + ηj ≥ −rj for t ∈ [−r̃j,−ηj] and (14) is well-defined.

Furthermore, one easily checks that

T ◦ Φt = Ψt ◦ T, for all t ≥ 0. (15)

That is, T transforms solutions of (6) into solutions of (7). As inherited from the semiflow Φ,
the transformation T is neither injective nor surjective in general. Therefore, one cannot expect
a dynamical equivalence of (6) and (7) in the strict form of topological conjugacy, i.e. Ψ =
h ◦ Φ ◦ h−1 for some homeomorphism h. Moreover, since T is not surjective, (15) does not
even signify that Ψ is properly semiconjugate to Φ. However, this "weak semiconjugacyïs mutual
as we show in the following, and this fact implies a strong equivalence as well.

4.2 CT-equivalence

Let us find a reverse transformation from (7) to (6). It should transform τ̃ (`) back to τ (`) which
leads to the natural definition of reverse timeshifts

η̃j = η̄ − ηj ≥ 0, with η̄ = max
1≤j≤N

ηj.

Then, the reverse transformation T̃ : C̃ → C is given as

T̃j [y0] (t) =

{(
Ψt+η̃j (y0)

)
j
(0) , t ∈ [−min {η̃j, rj} , 0] ,

(y0 (t+ η̃j))j (0) , t ∈ [−rj,−η̃j] .
(16)

Analogously to (15), we have
T̃ ◦Ψ = Φ ◦ T̃ , (17)

and additionally T and T̃ are reverse in the sense that

T̃ ◦ T = Φη̄ and T ◦ T̃ = Ψη̄. (18)

See, for example, Fig. 2(c), where the shaded region indicates the initial segment (T̃ ◦ T )[x0]
of the solution (T̃ ◦ T )[x](t) = x(t + η̄), with η̄ = 10. The lighter shaded region indicates
where the second case of (16) takes effect.

The equations (15), (17) and (18) constitute a notion of equivalence which can be applied not
only to semidynamical systems which stem from systems of DDEs, but as well to systems such
as delay coupled PDEs or more generally to abstract evolution equations. Therefore we define
in a more abstract fashion:

8



Definition 1. Two semidynamical systems Φ : [0,∞)×X → X and Ψ : [0,∞)× Y → Y
are called CT-equivalent if there exist mappings T : X → Y , T̃ : Y → X and η̄ ≥ 0 such
that

T ◦ T̃ = Ψη̄, T ◦ Φt = Ψt ◦ T,
T̃ ◦ T = Φη̄, T̃ ◦Ψt = Φt ◦ T̃ .

In the following, the analysis is carried out in the general setting on Banach spaces X and Y
but we keep in mind that the results apply to the case of DDEs on the spaces X = C and
Y = C̃ as introduced above. We still use the term CT-equivalence for the general formulation
though, since most probably the equivalent systems Φ and Ψ will in practice be connected by a
transformation, which resembles (14).

4.3 Dynamical invariants of CT-equivalent semidynamical systems

In this section, we derive some properties of CT-equivalent systems in the sense of Definition 1.
We show that their state spaces hold a structure of corresponding strongly invariant sets. Then,
assuming that the CTTs T and T̃ are Lipschitz continuous, we prove that stability properties
are preserved as well. For the DDE systems (6) and (7) this is the case if all fj are Lipschitz
continuous. Throughout, we assume thatX and Y are Banach spaces. Before stating the main
results of this section (Theorems 2 and 3), we give some definitions:

A set A ⊆ X is called positively invariant under Φ if for any t ≥ 0:

Φt (A) ⊆ A.

A ⊆ X is called invariant under Φ if for any t ≥ 0:

Φt (A) = A.

For any set A ⊆ X , we define its strongly invariant hull HΦ (A) as the set

HΦ (A) := {x ∈ X | ∃t1, t2 ≥ 0, x̂ ∈ A : Φt1 (x̂) = Φt2 (x)} .

A strongly invariant set A ⊆ X is a set that coincides with its strongly invariant hull, i.e.

HΦ (A) = A.

The class of strongly invariant sets is denoted by

sis (Φ) = {A ⊆ X | A = HΦ (A)} .

Note that positive invariance is implied by both, invariance and strong invariance. But between
invariance and strong invariance there holds no implication. Of course a strongly invariant set
always contains a maximal invariant set which might be empty.
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Theorem 2. Let Φ : [0,∞)×X → X and Ψ : [0,∞)× Y → Y be CT-equivalent. Then,

(i) for each (positively) Φ-invariant set A ∈ X , the set T [A] ∈ Y is (positively) Ψ-invariant,

(ii) there is a one-to-one correspondence between (strongly) invariant sets of Φ and Ψ.

Proof. Ad (i): LetA be positively invariant,x ∈ A and y = T [x]. Then, Ψt (y) = T [Φt (x)] ∈
T [A]. Hence T [A] is positively invariant.
If A is invariant, then for each x ∈ A and each t ∈ [0,∞) there is an x−t ∈ A such that
Φt (x−t) = x and correspondingly for each y = T [x] ∈ T [A] there is y−t = T [x−t] with

Ψt

(
y−t
)

= T [Φt (x−t)] = T [x] = y.

Ad (ii): Let A ∈ sis (Φ). We define a corresponding set Ã = HΨ (T [A]) ∈ sis (Ψ). Corre-
spondence for strongly invariant sets is proven via

(HΦ ◦ T̃ ) ◦ (HΨ ◦ T ) = idsis(Φ) and (HΨ ◦ T ) ◦ (HΦ ◦ T̃ ) = idsis(Ψ),

where, by symmetry, it suffices to show only one equality. Let y ∈ Ã, then there exist t1, t2 ≥ 0
and ŷ = T [x̂] ∈ T [A] such that Ψt2 (y) = Ψt1 (ŷ) ∈ Ã. Thus,

Φt2

(
T̃ [y]

)
= T̃ [Ψt2 (y)] = T̃ [Ψt1 (ŷ)]

= T̃ [Ψt1 (T [x̂])] = T̃ [T [Φt1 (x̂)]]

= Φt1+η̄ (x̂) ∈ HΦ (A) = A.

Hence, T̃ [y] ∈ A. That is, T̃
[
Ã
]
⊆ A and HΦ

(
T̃
[
Ã
])
⊆ A. We have also shown

that for x̂ ∈ A, Φt1+η̄ (x̂) ∈ T̃
[
Ã
]

and therefore x̂ ∈ HΦ

(
T̃
[
Ã
])

. This yields A ⊆

HΦ

(
T̃
[
Ã
])
⊆ A, i.e. A = HΦ

(
T̃
[
Ã
])

and
(
HΦ ◦ T̃

)
◦ (HΨ ◦ T ) = idsis(Φ).

For invariant sets, the one-to-one correspondence is mediated directly via T and T̃ .

Definition 2. The maximal Lyapunov exponent (MLE) of a point x ∈ X with respect to a
semidynamical system Φ : [0,∞)×X → X on a Banach space X is defined as

λ (x) := lim sup
t→∞

lim sup
|ξ|↘0

1

t
ln

(
|Φt (x+ ξ)− Φt (x)|

|ξ|

)
∈ [−∞,∞] .

The MLE of x ∈ A ⊆ X with respect to the set A is defined as

λ (x,A) := lim sup
t→∞

lim sup
|ξ|↘0

min
a∈A

1

t
ln

(
|Φt (x+ ξ)− a|

|ξ|

)
= lim sup

t→∞
lim sup
|ξ|↘0

1

t
ln

(
dist (Φt (x+ ξ) , A)

|ξ|

)
.

The MLE of a set A ∈ X is defined as λ (A) = supx∈A λ (x, A) .
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Theorem 3. Let the CT-transformations T and T̃ be Lipschitz-continuous and let X , Y be
Banach spaces. Then,

(i) corresponding (strongly) invariant sets of Φ and Ψ possess the same maximal Lyapunov
exponents (MLEs),

(ii) for each positively invariant set A ∈ X , the set T [A] ∈ Y has the same type of stability.

Claim (i) is a direct consequence of the following Lemma.

Lemma 1. LetX , Y be Banach spaces and let T and T̃ be Lipschitz-continuous with constants
LT and LT̃ . Then, we have λ (x) ≤ λ (T [x]) ≤ λ (Φη̄ (x)) for all x ∈ X .

Proof. For each x,χ ∈ C, t ≥ η̄:

1

t
ln

(
|Φt (x)− Φt (x+ χ)|

|χ|

)

=
1

t
ln


∣∣∣Φt−η̄

(
T̃ ◦ T [x]

)
− Φt−η̄

(
T̃ ◦ T [x+ χ]

)∣∣∣
|χ|


=

1

t
ln


∣∣∣T̃ ◦Ψt−η̄ (T [x])− T̃ ◦Ψt−η̄ (T [x] + ξ)

∣∣∣
|χ|

 ,

with |ξ| = |T [x+ χ]− T [x]| ≤ LT |χ|,

... ≤ 1

t
ln

(
LT̃ |Ψt−η̄ (T [x])−Ψt−η̄ (T [x] + ξ)|

(|ξ| /LT )

)
=

1

t
ln

(
|Ψt−η̄ (T [x])−Ψt−η̄ (T [x] + ξ)|

|ξ|

)
+

1

t
ln (LTLT̃ )

Therefore,

1

t
ln

(
|Φt (x)− Φt (x+ χ)|

|χ|

)
≤ 1

t
ln

(
|Ψt−η̄ (T [x])−Ψt−η̄ (T [x] + ξ)|

|ξ|

)
,

and, thus,
λ (x) ≤ λ (T [x]) .

The same reasoning for y = T [x] gives

λ (x) ≤ λ (T [x]) ≤ λ (Φη̄ (x)) .

Proof. (of Theorem 3) Lemma 1 implies claim (i). To see that consider two corresponding sets
A ∈ sis (Φ) and Ã ∈ sis (Ψ). Then it is impossible that λ (A) > λ(Ã) since for any x ∈ A
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there exists y = T [x] ∈ Ã such that λ (x) ≤ λ (y). The same holds vice versa and therefore
λ (A) = λ(Ã). Similarly, one shows this for the case of invariant sets.

Ad (ii): Let A ∈ C be an (asymptotically) stable positively invariant set. We show that if A is
(asymptotically) stable so is T [A]. Let ε > 0, y0 = T [x0] ∈ T [A] and ξ0 ∈ C̃ a small
initial perturbation, i.e. |ξ0| ≤ δ with δ = δ (ε) > 0 to be specified later. Define the perturbed
solution

ỹt = Ψt (y0 + ξ0) = yt + ξt,

where yt = Ψt (y0) is the unperturbed solution. Consider

x̃t : = T̃ [ỹt] = T̃ [Ψt (y0 + ξ0)]

= Φt

(
T̃ [y0 + ξ0]

)
= Φt

(
T̃ ◦ T [x0] +

(
T̃ [y0 + ξ0]− T̃ [y0]

))
= Φt

(
xη̄ + χη̄

)
,

with ∣∣χη̄∣∣ =
∣∣∣T [y0 + ξ0]− T̃ [y0]

∣∣∣
≤ LT̃ · δ,

where LT̃ is the Lipschitz constant of T̃ . Since xη̄ ∈ A and A is (asymptotically) stable, we
can find a δ = δ (ε) such that

d (x̃t, A) ≤ ε

LT
,

and, in case of asymptotic stability, such that

x̃t → A.

This means, we can represent x̃t as x̃t = at + χt with at ∈ A, |χt| ≤ ε
LT

and, in case of
asymptotic stability, |χt| → 0, for t → ∞. Note that t 7→ at has not to be a solution. Define
bt = T [at] ∈ T [A]. Then,∣∣ỹt+η̄ − bt∣∣ =

∣∣∣T ◦ T̃ [ỹt]− T [at]
∣∣∣

= |T [at + χt]− T [at]|
≤ LT |χt| ≤ ε

and
∣∣ỹt+η̄ − bt∣∣→ 0, if A is asymptotically stable. This completes the proof.

5 Reduction of delay-parameters

The Theorems 2 and 3 show that CT-equivalence is indeed a very strong equivalence. For vir-
tually all cases one is best advised to study the system which possesses the most convenient
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distribution of delays within the concerned equivalence class. However, it is difficult give a gen-
eral identification of the appropriate distribution, since it strongly depends on the problem at
hand. We can acknowledge two possible guiding principles, which correspond to the transfor-
mations of delays in a ring that were mentioned in the introduction [cf. (4) and (5)]. Firstly, a
homogenization of delays can sometimes lead to a higher degree of symmetry and thereby al-
low for simplifications. In other cases a "concentrationöf the delays on selected links may be
useful.

In Sec. 5.1 we show, that it is always possible to find timeshifts ηj , j = 1, ..., N , such that the
number of different delays in system (6) reduces to the cycle space dimension C = L−N + 1
of the network, where L = #E is the number of links and N = #N is the number of nodes
in the network. Effectively, this means that no more than C delay-parameters have to be taken
into account during investigation [see Fig. 1]. For a connected network this number cannot be
reduced further as we show in Sec. 5.2.

5.1 Construction of an instantaneous spanning tree

In this section we construct a set of links, called a ßpanning tree"(see Def. 4), on which all
connection delays can be eliminated by componentwise timeshifts. Let us firstly introduce the
necessary notions:

Definition 3. A semicycle c = (`1, ..., `k) is a closed path in the undirected graph which is
obtained by dropping the orientation from all links from the multigraph (N , E).

Definition 4. A spanning tree of (N , E) is a set of links S ⊆ E which contains no semicycles
but all nodes, that is {s(`), t(`)}`∈S = N .

A spanning tree can be thought of as a ßkeletonöf the graph. Following its links one can visit
each node in the graph exactly once. For instance, the solid, red links in Figs. 4(c) form spanning
trees. A spanning tree can also be characterized as a maximal cycle-free set of links. Conse-
quently, adding another link which is not contained in the spanning tree creates a semicycle.
For instance, if in Figs. 4(a) the link with delay τ1 is added to the spanning tree the semicycle c1

is created. A spanning tree of a connected network necessarily contains N − 1 links, therefore
the cycle space dimension C coincides with the number of links not contained in a spanning
tree. In the context of the CTT, an important quantity for a semicycle is its delay sum.

Definition 5. The delay sum of a semicycle c = (`1, ..., `k) with respect to a delay distribution
and an orienting link `1 is

Σ (c) :=
k∑
j=1

σjτ (`j) ,

where σj ∈ {±1} indicates whether the link `j points in the same direction as `1 (σj = 1) or
not (σj = −1). The roundtrip of c is the modulus of its delay sum

rt (c) := |Σ (c)| . (19)
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The following Lemma gives a characterization of timeshift-transformed delay distributions and
describes their relation to the underlying graph structure. More specifically, it shows that the
delay sums of semicycles are invariant under timeshifts.

Lemma 2. Let τ, τ̃ : E → [0,∞) be two delay distributions in a connected network. Then, the
following statements are equivalent.

(i) There exist ηj ≥ 0, j = 1, ..., N , such that τ̃ (`) = τ (`)− ηt(`) + ηs(`).

(ii) For all semicycles c of the network holds:

Στ (c) = Στ̃ (c) .

Proof. (i)⇒ (ii) Indeed, for any cycle c = (`1, ..., `k) we have

Στ̃ (c) =
k∑
j=1

σj τ̃ (`j) =
k∑
j=1

σj
(
τ (`j)− ηt(`j) + ηs(`j)

)
= Στ (c) +

k∑
j=1

σj
(
ηs(`j) − ηt(`j)

)
= Στ (c) .

(ii) ⇒ (i) Select an arbitrary spanning tree S = (`1, ..., `N−1). Select ξ = (ξ1, ..., ξN) and
χ = (χ1, ..., χN) such that τ (`j) = ξt(`j) − ξs(`j) and τ̃ (`j) = χt(`j) − χs(`j) for j =
1, ..., N − 1. (Note that both defining sets of equations are inhomogeneous linear systems of
type RN×(N−1) and of rankN−1. Therefore they possess solutions.) The shifts ξ and χ define
distributions (with possibly negative values)

τ̂1 (`) = τ (`)− ξt(`) + ξs(`),

τ̂2 (`) = τ̃ (`)− χt(`) + χs(`).

Both, τ̂1 and τ̂2, are instantaneous along S, i.e., τ̂1 (`) = τ̂2 (`) = 0 for ` ∈ S. Each link `
which is not in S corresponds to a unique fundamental semicycle c = c(S, `) which is created
by adding ` to S. It is the only link in c which may hold a non-zero value τ̂1 (`) or τ̂2 (`),
respectively. By the part (i)⇒ (ii) we have

τ̂1 (`) = Στ (c) = Στ̃ (c) = τ̂2 (`) .

Hence τ̂1 = τ̂2. With ηj := ξj − χj this gives

τ̃ (`) = τ (`)− ηt(`) + ηs(`).

Note that ηj can always be chosen to be non-negative since a simultaneous shift ηj 7→ ηj + η̄
by some amount η̄ ∈ R does not change the resulting transformed distribution τ̃ .

Often, this lemma makes it straightforward to determine possible transformations, since it cir-
cumvents the explicit determination of timeshifts. For instance, in the case of the two coupled
systems depicted in Fig. 1, it follows immediately that τ = (τ1 + τ2)/2.

Now we can state the main result of this section, which is the construction of a transformation
(2) such that the number of delays is minimized.
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Figure 3: Illustration of the fundamental cut corresponding to the link `∗ in the spanning tree
S (solid red links), s(`∗) and t(`∗) denote the source and target of `∗. Links which are not
contained in S are indicated by dashed lines.

Theorem 4. For every connected network with dynamics given by Eq. (6), there exists a span-
ning tree S and timeshifts ηj such that in the transformed system (7) all links ` ∈ S are instan-
taneous,

τ̃ (`) = 0, for ` ∈ S,

and for each link ` outside the spanning tree the delay τ̃ (`) equals the roundtrip rt (c (`))
[Eq. (19)] along the corresponding fundamental cycle c (`),

τ̃ (`) = T (c (`)) , for ` /∈ S.

Proof. The following algorithm describes the general procedure to find a reduced set of delays.
For a more definite example see Fig. 4 and its description following this proof. The main idea
of the algorithm is as follows. We construct spanning trees and timeshifts iteratively such that
after each step the number of non-zero delays on the spanning tree has decreased by at least
one. Therefore the algorithm finishes after at most N − 1 iterations. Each step consists of two
stages.

Stage (i). Construction of a spanning tree:
Select a spanning tree S = {`1, ...., `N−1} in the following way. First, pick a link `1 with minimal
delay, i.e. τ (`1) = min`∈L {τ (`)} ∈ [0,∞). Proceed picking links `2, ..., `j with minimal
delays (under all links except the ones already picked) as long as the set Sj = {`1, ..., `j}
contains no semicycles. If at the j-th step the chosen link would create a semicycle when
added to Sj−1, do not add it but ignore it for the rest of this stage. Following this procedure,
called Kruskal’s algorithm [21], yields a spanning tree S = {`1, ..., `N−1}.
Stage (ii). Construction of timeshifts:
Now consider the link `∗ ∈ S with minimal positive delay (in the very first step of the construction
it equals `1 if τ (`1) > 0). The link induces a fundamental cut [10], i.e. it partitions the spanning
tree S in two connected components: the source component V of `∗ and the target component
W of `∗, see Fig. 3. Since S is spanning, this is a partition of all nodes. Now let us define the
timeshifts by ηj = 0 for j ∈ V and ηj = τ (`∗) for all j ∈ W .
From the shifts ηj we obtain the new delay distribution τ̃ (`) = τ (`) + ηs(`) − ηt(`). For
a link ` 6= `∗ which connects nodes within one set of the partition, i.e. s(`), t(`) ∈ V or
s(`), t(`) ∈ W , we have ηs(`) = ηt(`). This implies τ̃ (`) = τ (`). In particular this is the case
for all links in S \{`∗} and therefore τ(`) = 0 = τ̃(`) for all instantaneous links in S. For `∗ we
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have τ̃ (`∗) = 0 because s (`∗) ∈ V and t (`∗) ∈ W , which means ηs(`∗)− ηt(`∗) = −τ (`∗).
Hence, the delay distribution τ̃ reduced the number of delays on the spanning tree S by one
compared to the distribution τ . We remind that τ (`∗) is the smallest positive delay not only
on the spanning tree but over all the links which connect V and W . Therefore, τ(`) ≥ 0 for
all ` ∈ L. Indeed, if there were a link between V and W with a smaller delay we must have
included it in the spanning tree in step (i)

If a link ` exists in S with τ̃ (`) 6= 0 we repeat stage (i) starting from an initial set Sj which
contains all j instantaneous links from the spanning tree constructed in the previous step. Then
stage (ii) yields a spanning tree with a strictly larger number of instantaneous links. In this way
we arrive at an instantaneous spanning tree S in at most N − 1 iterations. The statement that
τ̃ (`) = T (c (`)) for ` /∈ S follows from Lemma 2.

Fig. 4 illustrates how the algorithm described in the proof of Theorem. 4 determines a delay
reduction in the depicted network of N = 7 coupled systems with cycle space dimension
C = 3. We assume an initial delay-distribution as given in the first row of the table in Fig. 4(b).
Then, the spanning tree in (a), indicated by solid, red links, is selected by the algorithm as
a successive cycle-free collection of links with smallest delays. Let us denote the links of the
example by `j with τj = τ(`j), j = 1, ..., 7. Note that in (a) `1 is not contained in the spanning
tree although τ1 < τ5 and τ1 < τ7, and `5 and `7 are both contained. This is because if
the links `2 and `6 with τ2, τ6 < τ1 are already selected, then an addition of `1 would lead to
the inclusion of the semicycle c1, which is not allowed. Each row of table (b) corresponds to
a step of the algorithm, where the bracketed, red values correspond to the delay times of the
currently selected spanning tree. Two stages are repeated alternatingly: In stage (i) a spanning
tree with minimal delay sum is determined and in stage (ii) the minimal delay in this spanning
tree is eliminated by a componentwise timeshift. In (c) the spanning tree is shown which is
selected at the final stage. It contains only instantaneous links when the algorithm is completed.
The remaining delays on links not contained in the final spanning tree, correspond to the delay
sums of the corresponding semicycles (c1, c2, c3), oriented as indicated in the figure, i.e., τ̃2 =
Σ(c1) = τ1 + τ2 − τ6; τ̃5 = Σ(c2) = τ3 + τ5 + τ6 − τ7; and τ̃4 = Σ(c3) = τ4 + τ7.

5.2 Genericity of the dimension of the delay parameter space

We call C the essential number of delays since it is the minimal number to which the number
of different delays in a network can be reduced generically. Here “generically” means that the
conditions which allow for further reduction of delays form a null set in the parameter space of
delays RL

≥0 = {(τ (`))`∈E : τ (`) ≥ 0} of the original system. The reducibility condition to m
different delays is described by the L linear equations

ηt(`) − ηs(`) + τ̃ (`) = τ (`) , ` ∈ Ij, (20)

with the restriction for τ̃ (`) to take one of m different values {θ1, ..., θm}. System (20) can be
equivalently written in the vector form Gqv = τ , where v is the (N + m)-dimensional vector
of unknowns v = (η1, . . . , ηN , θ1, . . . θm) and τ is the L-dimensional vector of delays τ (`).
For any fixed assignment τ̃ (`) = θq(`), ` ∈ Ij , with q : Ij → {0, ...,m}, and θ0 := 0, one
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(a) initial stage: (b) stage τ1 τ2 τ3 τ4 τ5 τ6 τ7

(i) x

4 3 10 8 9 2 5

(ii) x

4 [3] 10 8 [9] [2] [5]

(i) x

2 [3] 12 8 [9] [0] [5]

(ii) x

[2] 3 12 8 [9] [0] [5]

(i) x

[0] 5 12 8 [9] [0] [5]

(ii) x

[0] 5 12 8 [9] [0] [5]

(i) x
[0] 5 7 13 [9] [0] [0]

(ii) x
[0] 5 [7] 13 9 [0] [0]
[0] 5 [0] 13 16 [0] [0]

(c) final stage:

Figure 4: Illustration of the delay reduction in a network of N = 7 delay-coupled systems with
cycle space dimensionC = 3 [cf. proof of Theorem. 4]. In (a) the initially selected spanning tree
with original delays τj , j = 1, ..., 7, is indicated by red, solid links, Three semicycles c1, c2, and
c3 are indicated by the grey curves following the contained links; in (c) the final spanning tree
with transformed delays τ̃j is indicated. The table (b) shows the steps taken by the reduction
algorithm. Bracketed, red values indicate the delay times on the currently selected spanning
tree at each step.

obtains a different matrix Gq ∈ RL×(N+m). It can further be shown that the rank of the matrix
Gq is smaller than N − 1 +m. This implies for m < C = L− (N − 1) that N − 1 +m < L.
Hence, the number of equations in (20) is larger than the number of unknowns. Such equation
cannot be solved generically, unless the given delays τ (`) satisfy some special condition of
positive codimension.

6 Conclusion

In this article we have studied a componentwise timeshift transformation (CTT) for a general
class of coupled differential equations with constant coupling delays. We have defined appro-
priate phase spaces such that the CTT conveys an equivalence for the semiflows of the original
and the transformed system which is reminiscent to, but weaker than topological conjugacy. We
have shown several dynamical invariants for the equivalent flows. Firstly, for delay differential
equations, the characteristic exponents of equilibria and the Floquet exponents of periodic or-
bits are invariant under the CTT. More generally, for CT-equivalent semidynamical systems, we
have shown that there exists a one-to-one correspondence between invariant and strongly in-
variant sets, respectively. As a main stability result we have shown that corresponding positively
invariant sets have the same kind of stability, and invariant and strongly invariant corresponding
sets possess the same maximal Lyapunov exponents. To sum up, the observable dynamics of
the coupled units might change its relative timing in the transformed system, but qualitatively it
remains the same. In particular attractors and their stability are invariant.

We have presented a constructive proof that there is always a CTT which reduces the delays to
at most C = L − N + 1 different delays, where L is the number of links in the network and
N is the number of nodes. The number of different delays C coincides with the cycle space
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dimension of the underlying graph. Furthermore, we have shown that the sum of delays along
semicycles in the network is invariant under CTTs. This reveals a strong link between a coupled
delay differential equation and the topology of the underlying graph. Although a CTT which
reduces the number of different delays to a minimum is usually not unique, we have shown that
the minimal number of different delays itself cannot be reduced in general.

We believe that our results have a relevance for several applied areas (see also [25]). For ex-
ample, in theoretical neuroscience it is an accepted fact that in the case of two mutually delay
coupled units [30] (as in Fig. 1) or more generally, in unidirectionally coupled rings [31], the
delays can always be chosen identical for theoretical investigations. Moreover, in view of our
results, the observations about the role of the greatest common divisor of loop-lengths in net-
works of delay coupled excitable systems with homogeneous delays [20, 33] can be formulated
more generally in terms of the delay sums along the network’s cycles. The CTT is an important
tool for investigators working with delayed dynamical systems since it clarifies one aspect of the
way in which different interaction delays in a coupled system work together.

Furthermore, the CTT can speed up the numerical simulation of a system by reducing the num-
ber of different delays or by reducing the maximal delay time. The computational advantages of
the transformed system might be of interest especially in the field of delayed neural networks,
where large scale simulations of networks with many different delay times are conducted.
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