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Abstract

We consider an Allen–Cahn equation with a constraint of double obstacle-type. This constraint

is a subdifferential of an indicator function on the closed interval, which is a multivalued function.

In this paper we study the properties of the Lagrange multiplier to our equation. Also, we consider

the singular limit of our system and clarify the limit of the solution and the Lagrange multiplier to

our double obstacle problem. Moreover, we give some numerical experiments of our problem by

using the Lagrange multiplier.

1 Introduction

In this paper, for each ε ∈ (0, 1] we consider the following constrained Allen–Cahn equation:

uε
t − ∆uε +

W ′(uε)

ε2
+
∂I[σ∗,σ∗](u

ε)

ε2
3 0 in Q := (0, T ) × Ω, (1.1)

∂uε

∂ν
= 0 on Σ := (0, T ) × Γ, (1.2)

uε(0, x) = uε
0(x), x ∈ Ω, (1.3)

where 0 < T < +∞, Ω is a bounded domain in RN (1 ≤ N < +∞) with smooth boundary
Γ := ∂Ω, σ∗, σ

∗ are given constants with −∞ < σ∗ < σ∗ < +∞, ν is an outward normal vector
on Γ and uε

0 is a given initial data. W is a potential so that W ′ is Lipschitz on R. The typical examples
of W are the following:

W (z) =
(1 − z2)2

4
, W (z) =

1 − z2

2
, W (z) = 1 + cos z, · · · etc.

Furthermore, ∂I[σ∗,σ∗](·) is the subdifferential of the indicator function I[σ∗,σ∗](·) on the closed interval
[σ∗, σ

∗] defined by

I[σ∗,σ∗](z) :=

{

0, if z ∈ [σ∗, σ
∗],

+∞, otherwise.
(1.4)

More precisely, ∂I[σ∗,σ∗](·) is a set-valued mapping defined by

∂I[σ∗,σ∗](z) :=



















∅ if z < σ∗ or z > σ∗,

[0,∞) if z = σ∗,

{0} if σ∗ < z < σ∗,

(−∞, 0] if z = σ∗.

(1.5)

The Allen–Cahn equation was proposed to describe the macroscopic motion of phase boundaries. In
physical context, the function uε = uε(t, x) in (P)ε:={(1.1), (1.2), (1.3)} denotes the nonconserved
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order parameter that characterizes physical structure. For instance, let v = v(t, x) be the local ratio
of the volume of pure liquid relative to that of pure solid at time t and position x ∈ Ω, defined by

v(t, x) := lim
r↓0

the volume of pure liquid in Br(x) at time t

|Br(x)|
,

where Br(x) is the ball in RN with center x and radius r and |Br(x)| denotes its volume. Put
uε(t, x) := (σ∗ − σ∗)v(t, x) + σ∗ for any (t, x) ∈ Q. Then, we easily see that uε(t, x) is the
nonconserved order parameter that characterizes the physical structure:







uε(t, x) = σ∗ on the pure liquid region,
uε(t, x) = σ∗ on the pure solid region,

σ∗ < uε(t, x) < σ∗ on the mixture region.

There are vast literatures of Allen–Cahn equation with or without the double obstacle constraint
∂I[σ∗,σ∗](·). For such works, we refer to [1, 3, 7, 8, 9, 10, 11, 15, 20, 21, 22, 24, 26], for instance.
In particular, Bronsard and Kohn [7] studied the singular limit of (P)ε as ε→ 0 with a bistable potential
W with both wells of equal depth and without the constraint ∂I[σ∗,σ∗](·). Also, Chen and Elliott [9]
considered the asymptotic behavior of the solution to (P)ε with W ′(z) = −z and with the constraint
∂I[−1,1](·) as ε → 0. But there was no information of an element of ∂I[−1,1](u

ε) in [9] as ε → 0.
Recently, the authors [12] gave the results of an element of ∂I[−1,1](u

ε) in (P)ε as ε → 0 in the case
of W ′(z) = −z, σ∗ = −1 and σ∗ = 1.

On the other hand, elliptic and parabolic variational inequalities were considered in connection with
Lagrange multipliers (cf. [3, 4, 13, 14, 17, 25]). In particular, there were some numerical experiments of
PDE’s by using the Lagrange multiplier (cf. [3, 25]). Note from the constraint that the notion of solution
to (P)ε is given in variational sense (cf. Remark 2.1 below). Also, our constraint ∂I[σ∗,σ∗](·) is a set-
valued mapping (cf. (1.5)). Therefore, it is very difficult to make numerical experiments to (P)ε. Hence,
it is worthy considering the Lagrange multiplier to (P)ε in order to analyze (P)ε numerically.

In this paper, for each ε ∈ (0, 1] we consider an element λε ∈ ∂I[σ∗,σ∗](u
ε), which is called the

Lagrange multiplier to (P)ε. Also, we investigate the singular limit of our system (P)ε and clarify the
limit of the solution uε and the Lagrange multiplier λε to (P)ε as ε → 0. Moreover, we give numerical
experiments to (P)ε in one dimension of space for sufficient small ε ∈ (0, 1]. Namely, the main
novelties found in this paper are the following:

(a) We give the characterization of the Lagrange multiplier λε to (P)ε.

(b) We show the convergence of the solution uε and the Lagrange multiplier λε to (P)ε as ε→ 0.

(c) We clarify the properties of the limit of uε and λε as ε→ 0.

(d) We give numerical experiments to (P)ε in one dimension of space for sufficient small ε ∈ (0, 1].

The plan of this paper is as follows. In Section 2, we state the main result in this paper. In Section
3 we recall the decomposition result of the subdifferential of convex functions. Also, we prove the
main result (Theorem 2.1) concerning the existence-uniqueness of solutions to (P)ε and properties of
the Lagrange multiplier λε. In Section 4, we prove Theorem 2.2 corresponding to the items (b) and
(c) listed above. In Section 5, we give numerical experiments to (P)ε in one dimension of space for
sufficient small ε ∈ (0, 1].
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Notations and basic assumptions

Throughout this paper, for any reflexive Banach space B, we denote by | · |B the norm of B, and
denote by B∗ the dual space of B.

In particular, we put H := L2(Ω) with usual real Hilbert space structure, and denote by (·, ·)H the
inner product in H . Also, we put V := H1(Ω) with the usual norm

|z|V :=
{

|z|2H + |∇z|2H
}

1

2 , z ∈ V,

and denote by 〈·, ·〉 the duality pairing between V ∗ and V . By identifying H with its dual space, we
have V ⊂ H ⊂ V ∗ with compact and dense embeddings; then,

〈u, v〉 = (u, v)H for u ∈ H and v ∈ V. (1.6)

In the proof of Theorem 2.1, we use some techniques of proper (that is, not identically equal to infin-
ity), l.s.c. (lower semi-continuous), convex functions and their subdifferentials, which are useful in the
systematic study of variational inequalities. Therefore, let us outline some notations and definitions.
For a proper, l.s.c. and convex function ψ : H → R ∪ {+∞}, the effective domain D(ψ) is defined
by

D(ψ) := {z ∈ H; ψ(z) <∞}.
The subdifferential of ψ is a possibly multi-valued operator in H and is defined by z∗ ∈ ∂ψ(z) if and
only if

z ∈ D(ψ) and (z∗, y − z)H ≤ ψ(y) − ψ(z) for all y ∈ H.

For various properties and related notions of the proper, l.s.c., convex function ψ and its subdifferential
∂ψ, we refer to a monograph by Brézis [5].

Next, we give assumptions on the data. Throughout this paper,

(A1) σ∗, σ
∗ are constants with −∞ < σ∗ < σ∗ < +∞.

(A2) W is a C1-function on R such that W ≥ 0 on R and W ′ is Lipschitz continuous on [σ∗, σ
∗].

Moreover, the equation W + I[σ∗,σ∗] = 0 has at most k roots ξ1, ξ2, · · · , ξk in [σ∗, σ
∗] so that

σ∗ ≤ ξ1 < ξ2 < · · · < ξk ≤ σ∗.

(A3) uε
0 ∈ K := {z ∈ V ; σ∗ ≤ z ≤ σ∗ a.e. in Ω} for all ε ∈ (0, 1].

Example 1.1. If W (z) = (1 − z2)2/4, σ∗ = −1 and σ∗ = 1, then, the equation W + I[σ∗,σ∗] = 0
has exactly two roots ξ1 = −1 and ξ2 = 1.

Example 1.2. IfW (z) = (1.52−z2)/2, σ∗ = −1 and σ∗ = 1.5, then, the equationW+I[σ∗,σ∗] = 0
has exactly one root ξ1 = 1.5.
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Figure 1: The graph of (1−z2)2

4
+ I[−1,1](z).

Figure 2: The graph of (1.52−z2)
2

+ I[−1,1.5](z).

Example 1.3 (cf. [20]). If W (z) = 1 + cos z, σ∗ = −3π and σ∗ = 3π, then, the equation

W + I[σ∗,σ∗] = 0 has exactly four roots −3π,−π, π, 3π.

Figure 3: The graph of 1 + cos z + I[−3π,3π](z).

Finally, throughout this paper,Ci = Ci(·), i = 1, 2, 3, · · · , denote positive (or nonnegative) constants
depending only on its arguments.

2 Main results

We begin by giving the rigorous definition of solutions to our problem (P)ε (ε ∈ (0, 1]).

Definition 2.1. A function uε : [0, T ] → H is called a solution to (P)ε on [0, T ], if the following

conditions are satisfied:

(i) uε ∈ W 1,2(0, T ;H) ∩ L∞(0, T ;V ).
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(ii) There is a function λε ∈ L2(0, T ;H) with λε ∈ ∂I[σ∗,σ∗](u
ε) a.e. in Q such that

(uε
t(t), z)H + (∇uε(t),∇z)H +

1

ε2
(W ′(uε(t)), z)H +

1

ε2
(λε(t), z)H = 0

for all z ∈ V and a.e. t ∈ (0, T ).

(iii) uε(0) = uε
0 in H .

We call λε in (ii) a Lagrange multiplier to (P)ε on [0, T ].

Remark 2.1. It follows from the constraint ∂I[σ∗,σ∗](·) and (ii) of Definition 2.1 that the equation (1.1)
is equivalent to the following variational inequality:

(

uε
t(t) +

1

ε2
W ′(uε(t)), uε(t) − z

)

H

+ (∇uε(t),∇uε(t) −∇z)H ≤ 0

for all z ∈ K and a.e. t ∈ (0, T ).

Now, let us mention the first main result in this paper, which is concerned with the existence and basic
property of the solution and the Lagrange multiplier to (P)ε on [0, T ].

Theorem 2.1. Suppose that the assumptions (A1)–(A3) are satisfied and let ε ∈ (0, 1]. Then, there

exists a unique solution uε to (P)ε on [0, T ]. Also, there exists a Lagrange multiplier λε to (P)ε on

[0, T ] in the sense of Definition 2.1 such that

λε(t, x)











≥ 0 on {(t, x) ∈ Q ; uε(t, x) = σ∗},
= 0 on {(t, x) ∈ Q ; σ∗ < uε(t, x) < σ∗},
≤ 0 on {(t, x) ∈ Q ; uε(t, x) = σ∗}.

(2.1)

In next Section 3, we give the proof of Theorem 2.1.

Next, we consider the convergence of (P)ε as ε → 0. To this end, we use the following energy
functional:

F
ε(u) :=

∫

Ω

{

ε

2
|∇u|2 +

1

ε
I[σ∗,σ∗](u) +

1

ε
W (u)

}

dx, u ∈ V. (2.2)

Now we state the second main result in this paper, which is concerned with the singular limit of (P)ε

as ε→ 0:

Theorem 2.2. Assume (A1)–(A3). For each ε ∈ (0, 1], let uε be the unique solution to (P)ε on [0, T ].
Also, let λε be the Lagrange multiplier to (P)ε on [0, T ] in the sense of Definition 2.1. Assume that there

are a function u0 ∈ L1(Ω) and a positive constant M , independent of ε ∈ [0, 1], satisfying u0(x)
takes only a value which is the zero point of W + I[σ∗,σ∗], namely, W (u0(x)) + I[σ∗,σ∗](u0(x)) = 0
for a.e. x ∈ Ω,

sup
ε∈[0,1]

F
ε(uε

0) < M (2.3)

and

lim
ε→0

∫

Ω

|uε
0(x) − u0(x)|dx = 0. (2.4)
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Then, there are a subsequence {εk} of {ε} with εk ↘ 0 as k → ∞, functions u ∈ L2(0, T ;H) and

λ ∈ L2(0, T ;V ∗) and a positive number N0 independent of ε ∈ (0, 1] such that u(t, x) also takes

only a value which is the zero point of W + I[σ∗,σ∗], namely, W (u(t, x)) + I[σ∗,σ∗](u(t, x)) = 0 for

a.e. (t, x) ∈ Q,

lim
k→∞

uεk(t, x) = u(t, x), a.e. (t, x) ∈ Q, (2.5)

∫

Ω

|u(t1, x) − u(t2, x)| dx ≤ N0|t1 − t2|
1

2 , ∀t1, t2 ∈ [0, T ], (2.6)

lim
t→0

u(t, x) = u0(x), a.e. x ∈ Ω, (2.7)

∫

Ω

|∇u(t)| ≤ N0, a.e. t ∈ (0, T ) (2.8)

and

λεk −→ λ weakly in L2(0, T ;V ∗) as k → ∞, (2.9)

where
∫

Ω
|∇u(t)| is the total variation measure of u(t). Moreover, λ+W ′(u) = 0 in L2(0, T ;V ∗),

hence,

λ(t, x) = −W ′(u(t, x)), a.e. (t, x) ∈ Q. (2.10)

In Section 4 we prove Theorem 2.2 by using a priori estimates of uε and λε.

Example 2.1. If W (z) = (1 − z2)2/4, σ∗ = −1 and σ∗ = 1, then, the equation W + I[σ∗,σ∗] = 0
has exactly two roots ξ1 = −1 and ξ2 = 1 (cf. Example 1.1). Then, if the initial data u0(x) takes only

a value −1 or 1 for a.e. x ∈ Ω, we infer from Theorems 2.1–2.2 that the limit function u(t, x) takes

only a value −1 or 1 for a.e. (t, x) ∈ Q. Therefore, we observe that the limit function λ of Lagrange

multiplier has the following property:

λ(t, x) = −W ′(u(t, x)) = −(u(t, x))3 + u(t, x) = 0, a.e. (t, x) ∈ Q.

Example 2.2. IfW (z) = (1.52−z2)/2, σ∗ = −1 and σ∗ = 1.5, then, the equationW+I[σ∗,σ∗] = 0
has exactly one root ξ1 = 1.5 (cf. Example 1.2). Then, if the initial data u0(x) takes only a value 1.5
for a.e. x ∈ Ω, we infer from Theorems 2.1–2.2 that the limit function u(t, x) also takes only a value

1.5 for a.e. (t, x) ∈ Q. Therefore, we observe that the limit function λ of Lagrange multiplier has the

following property:

λ(t, x) = −W ′(u(t, x)) = u(t, x) = 1.5, a.e. (t, x) ∈ Q.

Example 2.3. If W (z) = 1 + cosx, σ∗ = −3π and σ∗ = 3π, then, the equation W + I[σ∗,σ∗] = 0
has exactly four roots −3π, −π, π, 3π (cf. Example 1.3). Then, if the initial data u0(x) takes a value

−3π, −π, π, or 3π for a.e. x ∈ Ω, we infer from Theorems 2.1–2.2 that the limit function u(t, x) also

takes a value −3π, −π, π, or 3π for a.e. (t, x) ∈ Q. Therefore, we observe that the limit function λ
of Lagrange multiplier has the following property:

λ(t, x) = −W ′(u(t, x)) = sin(u(t, x)) = 0, a.e. (t, x) ∈ Q.

6



3 Solvability of (P)ε

In this section we consider (P)ε for each ε ∈ (0, 1]. In fact, we study (P)ε by arguments similar to
[12, 19, 24], namely by abstract evolution equations governed by subdifferentials.

Now, we define a functional ϕ0 on H by

ϕ0(z) :=







1

2

∫

Ω

|∇z|2dx, if z ∈ V,

∞, otherwise.
(3.1)

Clearly, ϕ0 is proper, l.s.c. and convex on H .

Also, we define the proper, l.s.c. and convex functional I[σ∗,σ∗] of H by

I[σ∗,σ∗](z) :=

∫

Ω

I[σ∗,σ∗](z)dx for any z ∈ H,

where I[σ∗,σ∗] is the indicator function defined in (1.4).

Next, we consider the functional ϕ defined by the form:

ϕ(z) = ϕ0(z) +
1

ε2
I[σ∗,σ∗](z) for any z ∈ H.

Clearly, ϕ is proper, l.s.c. and convex on H with the effective domain D(ϕ) = K , where K is the set
defined in (A3).

Here, we recall the following decomposition result of the subdifferential ∂ϕ.

Proposition 3.1 (cf. [6, Section 3], [24, Theorem 3.1]). The subdifferential ∂ϕ of ϕ is decomposed

into the following form:

∂ϕ(z) = ∂ϕ0(z) +
1

ε2
∂I[σ∗,σ∗](z) in H for any z ∈ H.

By arguments similar to [6, Section 3] and [24, Theorem 3.1], we can show Proposition 3.1, thus, omit
its detailed proof.

Now, we prove Theorem 2.1 by using Proposition 3.1 and applying the abstract theory of evolution
equation associated with subdifferential ∂ϕ.

Proof of Theorem 2.1. By the same argument as in [12, Section 3], we can show the existence-
uniqueness of a solution uε to (P)ε on [0, T ] for each ε ∈ (0, 1]. In fact, we easily prove the uniqueness
of solutions to (P)ε on [0, T ] by the quite standard arguments: monotonicity and Gronwall’s inequality.

Now, we show the existence of solutions to (P)ε on [0, T ]. We easily observe that the problem (P)ε

can be rewritten as in an abstract framework of the form:

(CP)ε

{

d

dt
uε(t) + ∂ϕ(uε(t)) +

1

ε2
W ′(uε(t)) 3 0 in H, for a.e. t > 0,

uε(0) = uε
0 in H.

(3.2)

Therefore, applying the Lipschitz perturbation theory of abstract evolution equations (cf. [6, 16, 23]),
we can show the existence of a solution uε to (P)ε on [0, T ] for each ε ∈ (0, 1] in the variational sense
(cf. Remark 2.1).
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Also, note from Proposition 3.1 that (CP)ε is equivalent to:

(̃CP)
ε















d

dt
uε(t) + ∂ϕ0(u

ε(t)) +
1

ε2
∂I[σ∗,σ∗](u

ε(t)) +
1

ε2
W ′(uε(t)) 3 0

in H, for a.e. t > 0,
uε(0) = uε

0 in H.

(3.3)

Namely, there are functions vε ∈ L2(0, T ;H) and λε ∈ L2(0, T ;H) such that vε(t) ∈ ∂ϕ0(u
ε(t))

a.e. t ∈ (0, T ), λε ∈ ∂I[σ∗,σ∗](u
ε) a.e. in Q and (3.3) holds in the following sense:

d

dt
uε(t) + vε(t) +

1

ε2
λε(t) +

1

ε2
W ′(uε(t)) = 0 in H, for a.e. t > 0.

Thus, from the characterization of ∂ϕ0, we easily observe that uε is a solution to (P)ε on [0, T ] and
λε is the Lagrange multiplier to (P)ε on [0, T ] in the sense of Definition 2.1.

Furthermore, taking account of the definition (1.5) of ∂I[σ∗,σ∗](·), we conclude from λε ∈ ∂I[σ∗,σ∗](u
ε)

a.e. inQ that the signature result (2.1) of the Lagrange multiplier λε holds. Thus, the proof of Theorem
2.1 has been completed.

4 Singular limit of (P)ε as ε→ 0

In this section we consider the singular limit of (P)ε as ε → 0, and clarify the limit of the solution uε

and the Lagrange multiplier λε.

We begin by giving the uniform estimates for uε and λε with respect to ε ∈ (0, 1].

Lemma 4.1. Suppose all the same conditions in Theorem 2.2. For each ε ∈ (0, 1], let uε be the

unique solution to (P)ε on [0, T ]. Also, let λε be the Lagrange multiplier to (P)ε on [0, T ] in the sense

of Definition 2.1. Moreover, assume that there is a positive constant M , independent of ε ∈ [0, 1],
satisfying

sup
ε∈[0,1]

F
ε(uε

0) < M.

Then, there is a positive number N1 > 0, dependent on M and independent of ε ∈ (0, 1], such that

ε

∫ T

0

|uε
t(τ)|2Hdτ + sup

τ∈[0,T ]

F
ε(uε(τ)) +

∫ T

0

|λε(τ)|2V ∗dτ ≤ N1. (4.1)

Proof. Multiplying (1.1) by εuε
t , we get

ε|uε
t(τ)|2H +

d

dτ
F

ε(uε(τ)) = 0 for a.e. τ > 0, (4.2)

where F ε(·) is the functional defined in (2.2). By integrating (4.2) (in τ ) over [0, t] (⊂ [0, T ]), we get

ε

∫ t

0

|uε
t(τ)|2Hdτ + F

ε(uε(t)) = F
ε(uε

0) < M for all t ∈ [0, T ]. (4.3)

Also, taking account of the constraint ∂I[σ∗,σ∗](·) (cf. (1.5)), we easily see that

σ∗ ≤ uε ≤ σ∗, a.e. in Q. (4.4)
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Since W ′ is Lipschitz on [σ∗, σ
∗] (cf. (A2)), we easily infer from (4.4) that

|W ′(uε(t, x))| ≤ C1, a.e. (t, x) ∈ Q (4.5)

for some constant C1 > 0. By (1.6), (4.5) and (ii) of Definition 2.1, we observe from the Hölder
inequality that:

∣

∣

∣

∣

∫ T

0

〈λε(t), z(t)〉dt
∣

∣

∣

∣

=

∣

∣

∣

∣

∫ T

0

(λε(t), z(t))Hdt

∣

∣

∣

∣

≤
∫ T

0

∣

∣(ε2uε
t(t), z(t))H

∣

∣ dt+

∫ T

0

∣

∣ε2 (∇uε(t),∇z(t))H

∣

∣ dt

+

∫ T

0

|(W ′(uε(t)), z(t))H | dt

≤
(

ε2|uε
t |L2(0,T ;H) + ε2

√
T sup

t∈[0,T ]

|∇uε(t)|H + C1

√

T |Ω|
)

|z|L2(0,T ;V ) (4.6)

for any z ∈ L2(0, T ;V ), where |Ω| denotes the volume of Ω. Therefore, from ε ∈ (0, 1], (2.2),
(4.3)–(4.6), we infer that:

|λε|L2(0,T ;V ∗) ≤
√
M +

√
2MT + C1

√

T |Ω| for all ε ∈ (0, 1]. (4.7)

From (4.3) and (4.7), we infer that the uniform estimate (4.1) holds for some positive constant N1.
Thus, the proof of Lemma 4.1 has been completed.

Corollary 4.1. Suppose all the same conditions in Lemma 4.1. For each ε ∈ (0, 1], let uε be the

unique solution to (P)ε on [0, T ]. Also, let N1 > 0 be the positive number obtained in Lemma 4.1. Put

h(s) :=

∫ s

σ∗

√

W (σ) dσ for s ∈ [σ∗, σ
∗]. (4.8)

Then, the following estimates hold:

sup
t∈[0,T ]

∫

Ω

|∇h(uε(t, x))|dx ≤ N1 (4.9)

and
∫ t2

t1

∫

Ω

|(h(uε(t, x)))t|dxdt ≤ N1(t2 − t1)
1

2

for all t1, t2 with 0 ≤ t1 < t2 ≤ T.
(4.10)

Proof. First, note from (4.8) that h′(s) =
√

W (s) for s ∈ [σ∗, σ
∗].

Now, we show the estimate (4.9). By (4.1), (4.4) and the Schwarz inequality, we have:
∫

Ω

|∇h(uε(t, x))|dx =

∫

Ω

|h′(uε(t, x))||∇uε(t, x)|dx

=

∫

Ω

√

W (uε(t, x))|∇uε(t, x)|dx

≤ 1

2ε

∫

Ω

W (uε(t, x))dx+
ε

2

∫

Ω

|∇uε(t, x)|2dx

≤ F
ε(uε(t))

≤ N1 for all t ∈ [0, T ].

9



Thus, (4.9) holds.

Next, we show (4.10). By (4.1), (4.4) and the Hölder inequality, we have:

∫ t2

t1

∫

Ω

|(h(uε(t, x)))t|dxdt =

∫ t2

t1

∫

Ω

|h′(uε(t, x))||uε
t(t, x)|dxdt

≤
(
∫ t2

t1

∫

Ω

|h′(uε(t, x))|2dxdt
)

1

2
(
∫ t2

t1

|uε
t(t)|2Hdt

)

1

2

=

(
∫ t2

t1

∫

Ω

W (uε(t, x))dxdt

)

1

2
(
∫ t2

t1

|uε
t(t)|2Hdt

)

1

2

≤ (t2 − t1)
1

2{ε sup
t∈[t1,t2]

F
ε(uε(t))} 1

2

N
1

2

1

ε
1

2

≤ N1(t2 − t1)
1

2

for all t1, t2 with 0 ≤ t1 < t2 ≤ T .

Thus, the proof of Corollary 4.1 has been completed.

Now, we prove the main Theorem 2.2, which is concerned with the singular limit of (P)ε as ε→ 0.

Proof of Theorem 2.2. Let {ξ1, ξ2, · · · , ξk} be the set of all solutions to the equationW+I[σ∗,σ∗] = 0
so that σ∗ ≤ ξ1 < ξ2 < · · · < ξk ≤ σ∗. Then, we first show the existence of a subsequence {εk}
of {ε} and a function u ∈ L2(0, T ;H) such that u(t, x) takes only a value, which is an element of
{ξ1, ξ2, · · · , ξk}, for a.e. (t, x) ∈ Q. Also, we show (2.5).

By the definition of h (cf. (4.8)), we easily see that the function h is bounded on [σ∗, σ
∗]:

|h(s)| ≤ Ch for all s ∈ [σ∗, σ
∗] (4.11)

for some positive constant Ch > 0. Therefore we infer from (4.4) and (4.11) that:

∫ T

0

∫

Ω

|h(uε(t, x))|dxdt ≤ T |Ω|Ch. (4.12)

Taking account of (4.9), (4.10) and (4.12), we observe that {h(uε)} is bounded in BV ((0, T ) × Ω)
uniformly in ε ∈ (0, 1], where BV ((0, T ) × Ω) is the space of all functions of bounded variation on
(0, T ) × Ω. Since BV ((0, T ) × Ω) is compactly embedded into L1((0, T ) × Ω) (cf. [2, Corollary
3.49]), there are a subsequence {εk} ⊂ {ε} and a function h̃ ∈ BV ((0, T )×Ω) such that εk → 0
and

h(uεk) −→ h̃ in L1((0, T ) × Ω) as k → ∞. (4.13)

Therefore, taking a subsequence if necessary, we obtain:

h(uεk(t, x)) −→ h̃(t, x), a.e. (t, x) ∈ (0, T ) × Ω as k → ∞. (4.14)

Since h is continuous and strictly increasing on [σ∗, σ
∗] (cf. (A2) and (4.8)), we can find a unique

function u(t, x) such that

h̃(t, x) = h(u(t, x)), a.e. (t, x) ∈ (0, T ) × Ω (4.15)
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and
uεk(t, x) −→ u(t, x), a.e. (t, x) ∈ (0, T ) × Ω as k → ∞, (4.16)

hence (2.5) holds. Clearly, it follows from (4.4) and (4.16) that:

σ∗ ≤ u ≤ σ∗, a.e. in (0, T ) × Ω (4.17)

We easily see from (A2) and (4.4) that

|W (uεk(t, x))| ≤ C2, a.e. (t, x) ∈ (0, T ) × Ω (4.18)

for some constant C2 > 0 independent of k. Therefore, from (A2), (4.1), (4.4), (4.16)–(4.18) and
Lebesgue’s dominated convergence theorem, we infer that:

0 ≤
∫ T

0

∫

Ω

W (u(t, x))dxdt = lim
k→∞

∫ T

0

∫

Ω

W (uεk(t, x))dxdt

≤ N1T lim
k→∞

εk = 0. (4.19)

Thus, we obtain
W (u(t, x)) = 0, a.e. (t, x) ∈ (0, T ) × Ω,

which implies from (4.17) that the limit function u of uεk takes only a value that is an element of
{ξ1, ξ2, · · · , ξk}.

Next, we show (2.6). Note that from (4.10) the following inequality follows:

∫

Ω

|h(uεk(t1, x)) − h(uεk(t2, x))| dx ≤
∫

Ω

∫ t2

t1

|(h(uεk(t, x)))t|dtdx

≤ N1(t2 − t1)
1

2 (4.20)

for all t1, t2 with 0 ≤ t1 < t2 ≤ T .

Taking the limit in (4.20) as k → ∞, we infer from (4.4), (4.11), (4.13)–(4.15) and Lebesgue’s domi-
nated convergence theorem that

∫

Ω

|h(u(t1, x)) − h(u(t2, x))| dx ≤ N1(t2 − t1)
1

2

for a.e. t1, t2 with 0 ≤ t1 < t2 ≤ T .
(4.21)

Note that the limit function u of uεk takes only a value that is an element of {ξ1, ξ2, · · · , ξk}. Therefore,
we easily see that:

|h(u(t1, x)) − h(u(t2, x))| ≥ C3|u(t1, x) − u(t2, x)|,
a.e. x ∈ Ω and a.e. t1, t2 ∈ (0, T ),

(4.22)

where C3 > 0 is a positive constant defined by:

C3 :=

min

{

|h(ξi) − h(ξj)|; i, j = 1, 2, · · · , k
with i 6= j

}

σ∗ − σ∗
.

11



Therefore, we observe from (4.21) and (4.22) that:

∫

Ω

|u(t1, x) − u(t2, x)| dx ≤ N1

C3

(t2 − t1)
1

2

for a.e. t1, t2 with 0 ≤ t1 < t2 ≤ T .
(4.23)

By (4.23), we can redefine the function u in order that u(t) ∈ L1(Ω) is continuous with respect to
t ∈ [0, T ]. Therefore, (4.23) holds for all t1, t2 ∈ [0, T ] with t2 > t1, thus, (2.6) holds by defining
N0 := N1/C3.

Next, we show (2.7). At first, we note from (2.4) that

uεk

0 (x) −→ u0(x), a.e. x ∈ Ω as k → ∞ (4.24)

by taking a subsequence if necessary. Therefore, by (2.3), (4.11), (4.24) and the continuity of h, we
easily obtain from Lebesgue’s dominated convergence theorem that:

lim
k→∞

∫

Ω

|h(uεk

0 (x)) − h(u0(x))| dx = 0. (4.25)

Now, taking t1 = 0 in (4.20), we have:

∫

Ω

|h(uεk

0 (x)) − h(uεk(t2, x))| dx ≤ N1t
1

2

2 for all t2 ∈ (0, T ]. (4.26)

Taking the limit in (4.26) as k → ∞, we observe from (4.13)–(4.16), (4.24) and (4.26) that:

∫

Ω

|h(u0(x)) − h(u(t2, x))| dx ≤ N1t
1

2

2 , a.e. t2 ∈ (0, T ]. (4.27)

Note that u0(x) takes only a value that is an element of {ξ1, ξ2, · · · , ξk} for a.e. x ∈ Ω. Also, note
that u(t) ∈ L1(Ω) is continuous with respect to t ∈ [0, T ]. Therefore, we easily see from (4.22) and
(4.27) that:

∫

Ω

|u0(x) − u(t2, x)| dx ≤ N1

C3

t
1

2

2 for all t2 ∈ (0, T ], (4.28)

Thus, by taking the limit t2 → 0 in (4.28), we observe that (2.7) holds.

Next, we show (2.8). By (4.9), (4.13) and the lower semicontinuity of the total variation under L1-
convergence (cf. [2, Proposition 3.6]), we observe that

∫

Ω

|∇h̃(t)| ≤ N1, a.e. t ∈ (0, T ), (4.29)

where
∫

Ω
|∇h̃(t)| is the total variation measure of h̃(t). Since u(t, x) takes only a value, that is an

element of {ξ1, ξ2, · · · , ξk}, for a.e. (t, x) ∈ (0, T ) × Ω, we infer from (4.15) and (4.22) that

∫

Ω

|∇u(t)| ≤ N1

C3

, a.e. t ∈ (0, T ). (4.30)

Hence, (2.8) holds.

Finally, we show (2.9)–(2.10). By the uniform estimate (4.1), we easily see that there is a subsequence
of {εk} (which we denote εk for simplicity) and a function λ ∈ L2(0, T ;V ∗) satisfying (2.9).
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From (A2), (4.4), (4.5), (4.16) and Lebesgue’s dominated convergence theorem, we infer that:

W ′(uεk) −→ W ′(u) in L2(0, T ;H) as k → ∞. (4.31)

By (1.6), (4.1) and (ii) of Definition 2.1, we have that:
∫ T

0

〈λεk(t) +W ′(uεk(t)), z(t)〉dt

=

∫ T

0

(λεk(t) +W ′(uεk(t)), z(t))Hdt

≤
∫ T

0

∣

∣(ε2
ku

εk

t (t), z(t))H

∣

∣ dt+

∫ T

0

∣

∣ε2
k(∇uεk(t),∇z(t))H

∣

∣ dt

≤ε
3

2

k

√

N1|z|L2(0,T ;H) + ε
3

2

k

√

2TN1|z|L2(0,T ;V )

for any z ∈ L2(0, T ;V ).

From (2.9), (4.31) and the above inequality, we see that
∫ T

0

〈λ(t) +W ′(u(t)), z(t)〉dt = lim
k→∞

∫ T

0

〈λεk(t) +W ′(uεk(t)), z(t)〉dt ≤ 0. (4.32)

Since z ∈ L2(0, T ;V ) is arbitrary, we infer from (4.32) that

λ+W ′(u) = 0
(

∈ L2(0, T ;H)
)

in L2(0, T ;V ∗). (4.33)

Hence, we conclude from (4.33) that (2.10) holds. Thus, the proof of Theorem 2.2 has been completed.

5 Numerical experiments in one dimension of space

In this section, for each ε ∈ (0, 1], we consider the following special case of (P)ε, denoted by (1D)ε:

(1D)ε















uε
t − uε

xx −
uε

ε2
+
∂I[−1,1](u

ε)

ε2
3 0 in Q := (0, T ) × (0, 1),

uε
x(t, 0) = uε

x(t, 1) = 0, t ∈ (0, T ),

uε(0, x) = uε
0(x), x ∈ (0, 1).

Remark 5.1 (cf. [12, Theorem 2.2]). The problem (1D)ε is a special case of (P)ε when we use the

following setting: Ω := (0, 1), W (z) = (1 − z2)/2, σ∗ = −1 and σ∗ = 1. Therefore, we easily see

that the equation W + I[σ∗,σ∗] = 0 has exactly two roots ξ1 = −1 and ξ2 = 1. Hence, if the initial

value u0(x) takes only a value −1 or 1 for a.e. x ∈ Ω, we infer from Theorems 2.1–2.2 that the limit

function u(t, x) takes only a value −1 or 1 for a.e. (t, x) ∈ (0, T ) × Ω. Also, we observe that the

limit function λ of Lagrange multiplier has the following property:

λ =

{

1 on {(t, x) ∈ Q ; u(t, x) = 1},
−1 on {(t, x) ∈ Q ; u(t, x) = −1}.

(5.1)

In this section, we consider the problem (1D)ε numerically for sufficient small ε ∈ (0, 1].

Note that the constraint ∂I[−1,1](·) is a set-valued mapping (cf. (1.5)). Therefore, it is very difficult to do
numerical simulations (to (1D)ε). To handle the set-valued constraint ∂I[−1,1](·), we use the Lagrange
multiplier λε (to (1D)ε). Taking account of (5.1) (cf. Theorems 2.1 and 2.2), we propose the following
numerical algorithm, denoted by (NA)ε.
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Figure 4: The graph of (1−z2)
2

+ I[−1,1](z).

Numerical Algorithm (NA)ε to (1D)ε

(Step 0) Fix the small parameter ε ∈ (0, 1], and choose the initial data uε
0 ∈ K . Put un = uε

0 and
un−1 = uε

0.

(Step 1) If −1 < uε
n < 1, then, go to (Step 3); Otherwise, compute a Lagrange multiplier λε

n by:

λε
n := ε2−uε

n + uε
n−1

4t + ε2(uε
n)xx + uε

n,

where4t is the time mesh size and (uε
n)xx is the second-order central difference approximation

for the Laplacian of uε
n.

(Step 2) Test: if λε
n = 1 (resp. −1), then, set uε

n+1 = 1 (resp. −1); Otherwise, go to (Step 3).

(Step 3) To determine uε
n+1, solve (1D)ε without the constraint ∂I[−1,1](·).

(Step 4) Redefine uε
n+1 so that uε

n+1 ∈ [−1, 1].

(Step 5) Set n = n+ 1, and go to (Step 1).

Remark 5.2. Blank et al. [3] had already proposed the numerical algorithm, called a primal-dual active

set method, which is similar to (NA)ε. However, there was no result on the value of a Lagnange

multiplier in [3] (cf. (5.1)).

To make numerical experiments, we use the following data.

Numerical Data

� Ω = (0, 1) and T = 0.01.

� The mesh size of space 4h = 0.005 = 1/200.

� The mesh size of time 4t = 0.2 ∗ 4h2 = 0.000005 = 1/200000.

Now, we consider the following initial data uε
0(x), which converges to u0(x) defined by

u0(x) =

{

1, if x ∈ J := [0.4, 0.7],
−1, if x ∈ Ω \ J.
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Figure 5: The graph of initial data uε
0(x) in the case ε = 0.07, 0.05, 0.03, 0.01, 0.007 and 0.0051.

By using the numerical algorithm (NA)ε with numerical data as before, we have the following numerical
experiments (Figures 6–11) to (1D)ε. From these results, we easily see that the solution uε(t, x) takes
a value 1 or −1 in very short time if ε is sufficient small.
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Figure 6: Behaviour of a solution uε(t, x) with ε = 0.07.
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Figure 7: Behaviour of a solution uε(t, x) with ε = 0.05.
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Figure 8: Behaviour of a solution uε(t, x) with ε = 0.03.
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Figure 9: Behaviour of a solution uε(t, x) with ε = 0.01.
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Figure 10: Behaviour of a solution uε(t, x) with ε = 0.007.
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Figure 11: Behaviour of a solution uε(t, x) with ε = 0.0051.

Remark 5.3. To handle the set-valued constraint ∂I[−1,1](·), we can consider some approximat-

ing method. For instance, for δ > 0, we use the following Yosida approximation (∂I[−1,1])δ(·) of

∂I[−1,1](·) defined by:

(∂I[−1,1])δ(z) =
[z − 1]+ − [−1 − z]+

δ
for all z ∈ R,

where [z]+ is the positive part of z. Then, we observe from [5, Chapter 2, Section 4] that (∂I[−1,1])δ(·) →
∂I[−1,1](·) as δ → 0. Now, for each δ > 0, we consider the approximation problem of (1D)ε, denoted

by (1D)εδ:

(1D)
ε
δ















uε
t − uε

xx −
uε

ε2
+

(∂I[−1,1])δ(u
ε)

ε2
= 0 in Q := (0, T ) × (0, 1),

uε
x(t, 0) = uε

x(t, 1) = 0, t ∈ (0, T ),

uε(0, x) = uε
0(x), x ∈ (0, 1).

Then, we have the following numerical result to (1D)εδ by using the standard forward Euler method for

(1D)εδ with the same numerical data as before.

From Figure 12, we easily observe that in order to get stable numerical results, we have to choose the

suitable constants ε, δ and the mesh size 4t, 4x. Therefore, if we make a numerical experiment of

(P)ε for sufficient small ε, we had better consider the original problem by using a Lagrange multiplier

method: a primal-dual active set method in [3], (NA)ε as above, and so on.
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Figure 12: Behaviour of a solution uε(t, x) with ε = 0.007 and δ = 0.01.
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