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Andresen and Spokoiny’s (2013) “critical dimension in semiparametric estima-
tion“ provide a technique for the finite sample analysis of profile M-estimators. This
paper uses very similar ideas to derive two convergence results for the alternat-
ing procedure to approximate the maximizer of random functionals such as the
realized log likelihood in MLE estimation. We manage to show that the sequence
attains the same deviation properties as shown for the profile M-estimator in An-
dresen and Spokoiny (2013), i.e. a finite sample Wilks and Fisher theorem. Further
under slightly stronger smoothness constraints on the random functional we can
show nearly linear convergence to the global maximizer if the starting point for the
procedure is well chosen.
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1 Introduction

This paper presents a convergence result for an alternating maximization procedure to approx-
imate M-estimators. Let Y ∈ Y denote some observed random data, and IP denote the data
distribution. In the semiparametric profile M-estimation framework the target of analysis is

θ∗ = Πθυ
∗ = Πθ argmax

υ
IEIPL(υ,Y), (1.1)

where L : Υ × Y → IR , Πθ : Υ → IRp is a projection and where Υ is some high dimen-
sional or even infinite dimensional parameter space. This paper focuses on finite dimensional
parameter spaces Υ ⊆ IRp∗ with p∗ = p + m ∈ N being the full dimension, as infinite
dimensional maximization problem are computationally anyways not feasible. A prominent way
of estimating θ∗ is the profile M-estimator (pME)

θ̃
def
= Πθυ̃

def
= argmax

(θ,η)

L(θ,η).

The alternating maximization procedure is used in situations where a direct computation of the
full maximum estimator (ME) υ̃ ∈ IRp∗ is not feasible or simply very difficult to implement.
Consider for example the task to calculate the pME where with scalar random observations
Y = (yi)

n
i=1 ⊂ IR , parameter υ = (θ,η) ∈ IRp×IRm and a function basis (ek) ⊂ L2(IR)

L(θ,η) = −1

2

n∑
i=1

∣∣∣yi − m∑
k=0

ηkek(X
>
i θ)
∣∣∣2.

In this case the maximization problem is high dimensional and non-convex (see Section 3 for
more details). But for fixed θ ∈ S1 ⊂ IRp maximization with respect to η ∈ IRm is rather
simple while for fixed η ∈ IRm the maximization with respect to θ ∈ IRp can be feasible
for low p ∈ N . This motivates the following iterative procedure. Given some (data dependent)
functional L : IRp × IRm → IR and an initial guess υ̃0 ∈ IRp+m set for k ∈ N

υ̃k,k+1
def
= (θ̃k, η̃k+1) =

(
θ̃k, argmax

η∈IRm

L(θ̃k,η)

)
,

υ̃k,k
def
= (θ̃k, η̃k) =

(
argmax
θ∈IRp

L(θ, η̃k), η̃k

)
. (1.2)

The so called älternation maximization procedure"(or minimization) is a widely applied algorithm
in many parameter estimation tasks (see [9], [13], [10] or [17]). Some natural questions arise:
Does the sequence (θ̃k) converge to a limit that satisfies the same statistical properties as the
profile estimator? And if the answer is yes, after how many steps does the sequence acquire
these properties? Under what circumstances does the sequence actually converge to the global
maximizer υ̃ ? This problem is hard because the behavior of each step of the sequence is
determined by the actual finite sample realization of the functional L(·,Y) . To the authors’
knowledge no general "convergence"result is available that answers the questions from above
except for the treatment of specific models (see again [9], [13], [10] or [17]).

2



We address this difficulty via employing new finite sample techniques of [2] and [14] which allow
to answer the above questions: with growing iteration number k ∈ N the estimators θ̃k attain
the same statistical properties as the profile M-estimator and Theorem 2.2 provides a choice
of the necessary number of steps K ∈ N . Under slightly stronger conditions on the structure
of the model we can give a convergence result to the global maximizier that does not rely on
unimodality. Further we can address the important question under which ratio of full dimension
p∗ = p + m ∈ N to sample size n ∈ N the sequence behaves as desired. For instance for
smooth L our results become sharp if p∗/

√
n is small and convergence to the full maximizer

already occurs if p∗/n is small.

The alternation maximization procedure can be understood as a special case of the Expectation
Maximization algorithm (EM algorithm) as we will illustrate below. The EM algorithm itself was
derived by [5] who generalized particular versions of this approach and presented a variety of
problems where its application can be fruitful; for a brief history of the EM algorithm see [11]
(Sect. 1.8). We briefly explain the EM algorithm. Take observations (X) ∼ IPθ for some para-
metric family (IPθ, θ ∈ Θ) . Assume that a parameter θ ∈ Θ is to be estimated as maximizer
of the functional Lc(X,θ) ∈ IR , but that only Y ∈ Y is observed, where Y = fY (X)
is the image of the complete data set X ∈ X under some map fY : X → Y . Prominent
examples for the map fY are projections onto some components of X if both are vectors. The
information lost under the map can be regarded as missing data or latent variables. As a direct
maximization of the functional is impossible without knowledge of X the EM algorithm serves
as a workaround. It consists of the iteration of tow steps: starting with some initial guess θ̃0 the
kth “Expectation step“ derives the functional Q via

Q(θ,θk) = IEθk [Lc(X,θ)|Y],

which means that on the right hand side the conditional expectation is calculated under the
distribution IPθk . The kth ”Maximation step” then simply locates the maximizer θk+1 of Q .

Since the algorithm is very popular in applications a lot of research on its behaviour has been
done. We are only dealing with a special case of this procedure so we restrict our selves to
citing the well known convergence result by [16]. Wu presents regularity conditions that ensure
that L(θk+1) ≥ L(θk) where

L(θ,Y)
def
= log

∫
{X|Y=fY (X)}

expLc(X,θ)dX,

such that L(θk) → L∗ for some limit value L∗ > 0 , that may depend on the starting point
θ0 . Additionally Wu gives conditions that guarantee that the sequence θk (possibly a sequence

of sets) converges to C(L∗)
def
= {θ|L(θ) = L∗} . [5] show that the speed of convergence is

linear in the case of point valued θk and of some differentiability criterion being met. A limitation
of these results is that it is not clear whether L∗ = supL(θ) and thus it is not guaranteed
that C(L∗) is the desired MLE and not just some local maximum. Of course this problem
disappears if L(·) is unimodal and the regularity conditions are met but this assumption may
be too restrictive.

In a recent work [3] present a new way of addressing the properties of the EM sequence in
a very general i.i.d. setting, based on concavity of θ 7→ IEθ∗ [Lc(X,θ)] . They show that if
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additional to concavity the functional Lc is smooth enough (First order stability) and if for a
sample (Y i) with high probability an uniform bound holds of the kind

sup
θ∈Br(θ

∗)

∣∣∣∣∣
n∑
i=1

argmax
θ◦

IEθ[Lc(X,θ◦)|Y i]− argmax
θ◦

IEθ∗ [IEθ[Lc(X,θ◦)|Y]]

∣∣∣∣∣ ≤ εn,(1.3)

that then with high probability and some ρ < 1

‖θ̃k − θ∗‖ ≤ ρk‖θ0 − θ∗‖+ Cεn. (1.4)

Unfortunately this does not answer our two questions to full satisfaction. First the bound (1.3) is
rather high level and has to be checked for each model, while we seek (and find) properties of
the functional - such as smoothness and bounds on the moments of its gradient - that lead to
comparably desirable behavior. Further with (1.4) it remains unclear whether for large k ∈ N
the alternating sequence satisfies a Fisher expansion or whether a Wilks type phenomenon
occurs. In particular it remains open which ratio of dimension to sample size ensures good
performance of the procedure. Also the actual convergence of θ̃k → θ∗ is not implied, as the
right hand side in (1.4) is bounded from below by Cεn > 0 .

Remark 1.1. In the context of the alternating procedure the bound (1.3) would read

max
θ◦∈Br(θ

∗)

∣∣∣∣argmax
θ

L(θ, η̃θ◦)− argmax
θ

IEL(θ, η̃θ◦)

∣∣∣∣ ≤ εn,

which is still difficult to check.

To see that the procedure (1.2) is a special case of the EM algorithm denote in the notation
from above X =

(
argmaxη L{(θ,η),Y},Y

)
- where θ is the parameter specifying the

distribution IPθ - and fY (X) = Y . Then with Lc(θ,X) = Lc(θ,η,Y)
def
= L(θ,η)

Q(θ, θ̃k−1) = IEθ̃k−1
[Lc(θ,X)|Y] = Lc

(
θ, argmax

η
L{(θ̃k−1,η),Y},Y

)
= L(θ, η̃k),

and thus the resulting sequence is the same as in (1.2). Consequently the convergence results
from above apply to our problem if the involved regularity criteria are met. But as noted these
results do not tell us if the limit of the sequence (θ̃k) actually is the profile and the statistical
properties of limit points are not clear without too restrictive assumptions on L and the data.

This work fills this gap for a wide range of settings. Our main result can be summarized as
follows: Under a set of regularity conditions on the data and the functional L points of the
sequence (θ̃k) behave for large iteration number k ∈ N like the pME. To be more precise
we show in Theorem 2.2 that when the initial guess υ̃0 ∈ Υ is good enough, then the step
estimator sequence (θ̃k) satisfies with high probability∥∥D̆(θ̃k − θ∗)− ξ̆∥∥2 ≤ ε(p∗ + ρkR0),∣∣∣∣max

η
L(θ̃k,η)−max

η
L(θ∗,η)− ‖ξ̆‖2/2

∣∣∣∣ ≤ (p+ x)1/2ε(p∗ + ρkR0),
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where ρ < 1 and ε > 0 is some small number, for example ε = Cp∗/
√
n in the smooth

i.i.d setting. Further R0 > 0 is a bound related to the quality of the initial guess. The random
variable ξ̆ ∈ IRp and the matrix D̆ ∈ IRp×p are related to the efficient influence function
in semiparametric models and its covariance. These are up to ρkR0 the same properties as
those proven for the pME in [2] under nearly the same set of conditions. Further in our second
main result we manage to show under slightly stronger smoothness conditions that (θ̃k, η̃k)
approaches the ME υ̃ with nearly linear convergence speed, i.e. ‖D((θk,ηk) − υ̃)‖ ≤
τ k/ log(k) with some 0 < τ < 1 and D2 = IE∇2L(υ∗) (see Theorem 2.4).

In the following we write υ̃k,k(+1) in statements that are true for both υ̃k,k+1 and υ̃k,k . Also
we do not specify whether the elements of the resulting sequence are sets or single points. All
statements made about properties of υ̃k,k(+1) are to be understood in the sense that they hold
for “every point of υ̃k,k(+1) “.

1.1 Idea of the proof

To motivate the approach first consider the toy model

Y = υ∗ + ε, where ε ∼ N (0,F−2υ∗ ), F2
υ∗ =:

(
F2
θ∗ A
A> F2

η∗

)
.

In this case we set L to be the true log likelihood of the observations

L(υ,Y) = −‖F(υ∗ − Y)‖2/2.

With any starting initial guess υ̃0 ∈ IRp+m we obtain from (1.2) for k ∈ N and the usual first
order criterion of maximality the following two equations

Fθ∗(θ̃k − θ∗) = Iθ∗εθ + F−1θ∗A(η̃k − η∗),

Fη∗(η̃k+1 − η∗) = Iη∗εη + F−1η∗A>(θ̃k − θ∗).

Combining these two equations we derive, assuming ‖F−1θ∗AF
−2
η∗A

>I−1θ∗ ‖ =: ‖M 0‖ = ν < 1

Fθ∗(θ̃k − θ∗) = F−1θ∗ (F2
θ∗εθ − Aεη) + F−1θ∗AF

−1
η∗A

>F−1θ∗ Fθ∗(θ̃k−1 − θ
∗)

=
k∑
l=1

M k−l
0 F−1θ∗ (F2

θ∗εθ − Aεη)

+M k
0Fθ∗(θ̃0 − θ∗)→ Fθ∗(θ̂ − θ∗).

Because the limit θ̂ is independent of the initial point υ̃0 and because the profile θ̃ is a fix
point of the procedure the unique limit satisfies θ̂ = θ̃ . This argument is based on the fact that
in this setting the functional is quadratic such that the gradient satisfies

∇L(υ) = F2
υ∗(υ − υ∗) + F2

υ∗ε.
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Any smooth function is quadratic around its maximizer which motivates a local linear approxi-
mation of the gradient of the functional L to derive our results with similar arguments. This is
done in the proof of Theorem 2.2.

First it is ensured that the whole sequence (υ̃k,k(+1))k∈N0 satisfies for some R0 > 0

{υ̃k,k(+1), k ∈ N0} ⊂ {‖D(υ − υ∗)‖ ≤ R0}, (1.5)

where D2 def
= ∇2IEL(υ∗) (see Theorem 4.3). In the second step we approximate with ζ =

L− IEL

L(υ,υ∗) = ∇ζ(υ∗)(υ − υ∗)− ‖D(υ − υ∗)‖2/2 + α(υ,υ∗), (1.6)

where α(υ,υ∗) is defined by (1.6). Similar to the toy case above this allows using the first
order criterion of maximality and (1.5) to obtain a bound of the kind

‖D(υk,k − υ∗)‖ ≤ C

k∑
l=0

ρl
(
‖D−1∇ζ(υ∗)‖+ |α(υl,l,υ

∗)|
)

≤ C1
(
‖D−1∇ζ(υ∗)‖+ ε(R0)

)
+ ρkR0

def
= rk.

This is done in Lemma 4.5 using results from [2] to show that ε(R0) is small. Finally the same
arguments as in [2] allow to obtain our main result using that with high probability for all k ∈ N0

υ̃k,k ∈ {‖D(υ − υ∗)‖ ≤ rk} . For the convergence result similar arguments are used. The
only difference is that instead of (1.6) we use the approximation

L(υ, υ̃) = −‖D(υ − υ̃)‖2/2 + α′(υ, υ̃),

exploiting that ∇L(υ̃) ≡ 0 , which allows to obtain actual convergence to the ME.

It is worthy to point out two technical challenges of the analysis. First the sketched approach
relies on (1.5). As all estimators (υ̃k,k(+1)) are random this means that we need with some
small β > 0

IP

( ⋂
k∈N0

{
υ̃k,k, υ̃k,k+1 ∈ {‖D(υ − υ∗)‖ ≤ R0}

})
≥ 1− β.

This is not trivial but the result of Theorem 4.3 serves the result thanks to L(υ̃k,k(+1)) ≥
L(υ̃0) . Second the main result 2.2 is formulated to hold for all k ∈ N0 . This implies the need
of a bound of the kind

IP

( ⋂
k∈N0

{∥∥∥D̆−1{∇̆ζ(υ̃k,k)− ∇̆ζ(υ∗)
}∥∥∥ ≤ ε(rk)

})
≥ 1− β,

with some small ε(r) > 0 that is decreasing if r > 0 shrinks. Again this is not trivial and not
a direct implication of the results of [2] or [14]. We manage to derive this result in the desired
way in Theorem 8.2, which is an adapted version of Theorem D.1 of [2] based on Corollary 2.5
of [14] .
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2 Main results

2.1 Conditions

This section collects the conditions imposed on the model. We use the same set of assumptions
as in [2] and this section closely follows Section 2.1 of that paper.

Let the full dimension of the problem be finite, i.e. p∗ < ∞ . Our conditions involve the sym-
metric positive definite information matrix D2 ∈ IRp∗×p∗ and a central point υ◦ ∈ IRp∗ . In
typical situations for p∗ < ∞ , one can set υ◦ = υ∗ where υ∗ is the “true point” from (1.1).
The matrix D2 can be defined as follows:

D2 = −∇2IEL(υ◦).

Here and in what follows we implicitly assume that the log-functional function L(υ) : IRp∗

→ IR is sufficiently smooth in υ ∈ IRp∗ , ∇L(υ) ∈ IRp∗ stands for the gradient and
∇2IEL(υ) ∈ IRp∗×p∗ for the Hessian of the expectation IEL : IRp∗ → IR at υ ∈ IRp∗ . By
smooth enough we mean that we can interchange ∇IEL = IE∇L on Υ◦(R0) , where Υ◦(r)

is defined in (2.1) and R0 > 0 in (2.4). It is worth mentioning that D2 = V2 def
= Cov(∇L(υ∗))

if the model Y ∼ IPυ∗ ∈ (IPυ) is correctly specified and sufficiently regular; see e.g. [7].

In the context of semiparametric estimation, it is convenient to represent the information matrix
in block form:

D2 =

(
D2 A
A> H2

)
.

First we state an identifiability condition.

(I) It holds for some ρ < 1

‖H−1A>D−1‖∞ ≤
√
ρ.

Remark 2.1. The condition (I) allows to introduce the important p× p efficient information
matrix D̆2 which is defined as the inverse of the θ -block of the inverse of the full dimensional
matrix D2 . The exact formula is given by

D̆2 def
= D2 − AH−2A>,

and (I) ensures that the matrix D̆2 is well posed.

Using the matrix D2 and the central point υ◦ ∈ IRp∗ , we define the local set Υ◦(r) ⊂ Υ ⊆
IRp∗ with some r ≥ 0 :

Υ◦(r)
def
=
{
υ = (θ,η) ∈ Υ : ‖D(υ − υ◦)‖ ≤ r

}
. (2.1)

The following two conditions quantify the smoothness properties on Υ◦(r) of the expected
log-functional IEL(υ) and of the stochastic component ζ(υ) = L(υ)− IEL(υ) .
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(L̆) For each r ≤ r0 , there is a constant δ(r) such that it holds on the set Υ◦(r) :

‖D−1D2(υ)D−1 − Ip‖ ≤ δ(r), ‖D−1(A(υ)− A)H−1‖ ≤ δ(r),∥∥D−1AH−1 (Im −H−1H2(υ)H−1
)∥∥ ≤ δ(r).

Remark 2.2. This condition describes the local smoothness properties of the function IEL(υ) .
In particular, it allows to bound the error of local linear approximation of the projected gradient
∇̆θIEL(υ) which is defined as

∇̆θ = ∇θ − AH−2∇η.

Under condition (L̆0) it follows from the second order Taylor expansion for any υ,υ′ ∈
Υ◦(r) (see Lemma B.1 of [2])

‖D̆−1
(
∇̆IEL(υ)− ∇̆IEL(υ∗)

)
− D̆(θ − θ∗)‖ ≤ δ(r)r. (2.2)

In the proofs we actually only need the condition (2.2) which in some cases can be weaker than
(L̆0) .

The next condition concerns the regularity of the stochastic component ζ(υ)
def
= L(υ) −

IEL(υ) . Similarly to [14], we implicitly assume that the stochastic component ζ(υ) is a sep-
arable stochastic process.

(ĔD1) For all 0 < r < r0 , there exists a constant ω ≤ 1/2 such that for all |µ| ≤ ğ and
υ,υ′ ∈ Υ◦(r)

sup
υ,υ′∈Υ◦(r)

sup
‖γ‖≤1

log IE exp

{
µ

ω

γ>D̆−1
{
∇̆θζ(υ)− ∇̆θζ(υ′)

}
‖D(υ − υ′)‖

}
≤ ν̆21µ

2

2
.

The above conditions allow to derive the main result once the accuracy of the sequence is estab-
lished. We include another condition that allows to control the deviation behavior of ‖D̆−1∇̆ζ(υ∗)‖ .
To present this condition define the covariance matrix V2 ∈ IRp∗×p∗ and V̆ 2 ∈ IRp×p

V2 def
= Var

{
∇L(υ◦)

}
, V̆ 2 = Cov(∇̆θζ(υ◦)).

V2 ∈ IRp∗×p∗ describes the variability of the process L(υ) around the central point υ◦ .

(ĔD0) There exist constants ν0 > 0 and ğ > 0 such that for all |µ| ≤ ğ

sup
γ∈IRp

log IE exp

{
µ
〈∇̆θζ(υ◦),γ〉
‖V̆ γ‖

}
≤ ν̆20µ

2

2
.

So far we only presented conditions that allow to treat the properties of θ̃k on local sets
Υ◦(rk) . To show that rk is not to large the following, stronger conditions are employed:
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(L0) For each r ≤ r0 , there is a constant δ(r) such that it holds on the set Υ◦(r) :∥∥D−1{∇2IEL(υ)
}
D−1 − IIp∗

∥∥ ≤ δ(r).

(ED1) There exists a constant ω ≤ 1/2 , such that for all |µ| ≤ g and all 0 < r < r0

sup
υ,υ′∈Υ◦(r)

sup
‖γ‖=1

log IE exp

{
µγ>D−1

{
∇ζ(υ)−∇ζ(υ′)

}
ω ‖D(υ − υ′)‖

}
≤ ν21µ

2

2
.

(ED0) There exist constants ν0 > 0 and g > 0 such that for all |µ| ≤ g

sup
γ∈IRp∗

log IE exp

{
µ
〈∇ζ(υ◦),γ〉
‖Vγ‖

}
≤ ν20µ

2

2
.

It is important to note, that the constants ω̆, δ̆(r), ν̆ and ω, δ(r), ν in the respective weak and
strong version can differ substantially and may depend on the full dimension p∗ ∈ N in less
or more severe ways (AH−2∇ηL might be quite smooth while ∇ηL could be less regular).
This is why we use both sets of conditions where they suit best, although the list of assumptions
becomes rather long. If a short list is preferred the following lemma shows, that the stronger
conditions imply the weaker ones from above:

Lemma 2.1. [[2], Lemma 2.1] Assume (I) . Then (ED1) implies (ĔD1) , (L0) implies (L̆0) ,
and (ED0) implies (ĔD0) with

ğ =

√
1− ρ2

1 + ρ
√

1 + ρ2
g, ν̆ =

1 + ρ
√

1 + ρ2√
1− ρ2

ν, δ̆(r) = δ(r), and ω̆ = ω.

Finally we present two conditions that allow to ensure that with a high probability the sequence
(υk,k(+1)) stays close to υ∗ if the initial guess υ̃0 lands close to υ∗ . These conditions have
to be satisfied on the whole set Υ ⊆ IRp∗ .

(Lr) For any r > r0 there exists a value b(r) > 0 , such that

−IEL(υ,υ◦)

‖D(υ − υ◦)‖2
≥ b(r), υ ∈ Υ◦(r).

(Er) For any r ≥ r0 there exists a constant g(r) > 0 such that

sup
υ∈Υ◦(r)

sup
µ≤g(r)

sup
γ∈IRp∗

log IE exp

{
µ
〈∇ζ(υ),γ〉
‖Dγ‖

}
≤ ν2rµ

2

2
.

We impose one further merely technical condition:

(B1) We assume for all r ≥ 6ν0
b

√
x + 4p∗

1 +
√
x + 4p∗ ≤ 3ν2r

b
g(r).
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Remark 2.3. Without this the calculation of R0(x) in Section 4.1 would become technically
more involved, without that further insight would be gained.

Remark 2.4. For a discussion on how restrictive these conditions are we refer the reader to
Remark 2.8 and 2.9 of [2].

2.2 Introduction of important objects

In this section we introduce all objects and bounds that are relevant for Theorem 2.2. This
section is quite technical but necessary to understand the results.

First consider the p∗ × p∗ matrices D2 and V2 from Section 2.1, which could be defined
similarly to the Fisher information matrix:

D2 def
= −∇2IEL(υ∗), V2 def

= Cov(∇L(υ∗)).

We represent the information and covariance matrix in block form:

D2 =

(
D2 A
A> H2

)
, V2 =

(
V 2 E
E> Q2

)
.

A crucial object is the constant 0 ≤ ρ defined by

‖D−1AH−1‖2 def
= ρ,

which we assume to be smaller 1 ( ‖ · ‖ here and everywhere denotes the spectral norm when
its argument is a matrix). It determines the speed of convergence of the alternating procedure
(see Theorem 2.2). Define also the local sets

Υ◦(r)
def
=
{
υ : (υ − υ∗)>D2(υ − υ∗) ≤ r2

}
,

Υ̃◦(r)
def
=
{
υ : (υ − υ̃)>D2(υ − υ̃) ≤ r2

}
,

and the radius r0 > 0 via

r0(x)
def
= inf

r≥0

IP
argmax

υ∈Υ
Πθυ=θ

∗

L(υ), υ̃ ∈ Υ◦(r)

 ≥ 1− e−x

 . (2.3)

Remark 2.5. This radius can be determined using conditions (Lr) and (Er) of Section 2.1
and Theorem 4.3 which would yield r0(x) = C

√
x + p∗ .

Further introduce the p× p matrix D̆ and the p -vectors ∇̆θ and ξ̆ as

D̆2 = D2 − AH−2A>, ∇̆θ = ∇θ − AH−2∇η, ξ̆ = D̆−1∇̆θ,

and the matrices

IB2 def
= D−1V2D−1, IBθ

def
= D−1V 2D−1, IBη

def
= H−1Q2H−1.
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Remark 2.6. The random variable ξ̆ ∈ IRp is related to the efficient influence function in
semiparametric models. If the model is regular and correctly specified D̆2 is the covariance of
the efficient influence function and its inverse the semiparametric Cramer-Rao lower bound for
regular estimators. The matrices IB, IBθ, IBη describe the miss specification of the model and
are related to the White-statistic.

For our estimations we need the constant

z(x)
def
= z(x, IB) ∨ zQ(x, 4p∗) ≈

√
p∗ + x,

where z(x, ·) is explained in Section 7 and zQ(x, ·) is defined in Equation (8.2).

Remark 2.7. The constant z(x) is only introduced for ease of notation. This makes some
bounds less sharp but allows to address all terms that are of order

√
p∗ + x with one symbol.

The constant z(x, IB) is comparable to the " 1− e−x quantile of the norm of D−1VX , where
X ∼ N(0, Idp∗) , i.e. it is of order of the trace of IB . The constant zQ(x,Q) arises as an
exponential deviation bound for the supremum of a smooth process over a set with complexity
described by Q .

To bound the deviations of the points of the sequence (υ̃k,k(+1)) we need the following radius:

R0(x,K0)
def
= z(x) ∨ 6ν0

b(1− ρ)

√
x + 2.4p∗ +

b2

9ν20
K0(x), (2.4)

which will ensure {υ̃0, υ̃0,1, . . .} ⊂ Υ◦(R0) , where K0(x) > 0 is defined as

K0(x)
def
= inf

K>0
{IP (L(υ̃0,υ

∗) ≥ −K) ≥ β(x)} ,

for some β(x) → 0 as x → ∞ , see condition (A1) in 2.3. Finally define the parametric
uniform spread and the semiparametric uniform spread

♦Q(r, x)
def
=
{
δ(r)r + 6ν1ω(zQ(x, 4p∗) + 2r2)

}
,

♦̆Q(r, x)
def
=

8

(1− ρ2)2
δ̆(r)r + 6ν1ω̆

(
zQ(x, 2p∗ + 2p)2 + 2r2

)
. (2.5)

Remark 2.8. This object is central to our analysis as it describes the accuracy of our main result
of Theorem 2.2. It is small for not too large r , if ω̆, δ̆ from conditions (ĔD1) , (L̆0) from
Section 2.1 are small (with Lemma 2.1 it suffices that ω, δ from (ED1) , (L0) are small).
♦̆Q(r, x) is structurally slightly different from ♦̆(r, x) in [2] as it is based on Theorem 8.2
and allows a üniform in k "formulation of our main result Theorem 2.2, but for moderate
x ∈ IR+ they are of similar size.

2.3 Dependence on initial guess

Our main theorem is only valid under the conditions from Section 2.1 and under some con-
straints on the quality of the initial guess υ̃0 ∈ IRp∗ which we denote by (A1) , (A2) and
(A3) :

11



(A1) With probability greater 1 − β(A)(x) the initial guess satisfies L(υ̃0,υ
∗) ≥ −K0(x)

for some K0(x) ≥ 0 .

(A2) The conditions (ĔD1) , (L̆0) , (ED1) and (L0) from Section 2.1 hold for all r ≤
R0(x,K0) where R0 is defined in (2.4) with β(x) = β(A)(x) .

(A3) There is some ε > 0 such that δ(r)/r ∨ 12ν1ω ≤ ε for all r ≤ R0 . Further
K0(x) ∈ IR and ε > 0 are small enough to ensure

c(ε, z(x))
def
= ε7C(ρ)

1

1− ρ
(
z(x) + εz(x)2

)
< 1, (2.6)

c(ε,R0)
def
= ε7C(ρ)

1

1− ρ
R0 < 1, (2.7)

with

C(ρ)
def
= 2
√

2(1 +
√
ρ)(1−√ρ)−1. (2.8)

Remark 2.9. One way of obtaining condition (A1) is to show that υ̃ ∈ Υ◦(RK) with prob-
ability greater 1 − β(A)(x) for some finite RK(x) ∈ IR and 0 ≤ β(A)(x) < 1 . Then (see
Section 4.1)

K0(x)
def
= (1/2 + 12ν0ω)R2

K + (δ(RK) + z(x))RK + 6ν0ωz(x)2.

Condition (A1) is specified by conditions (A2) and (A3) and is fundamental, as it allows
with dominating probability to concentrate the analysis on a local set Υ◦

(
R0(x)

)
(see Theorem

4.3). Conditions (A2) and (A3) impose a bound on R0(x) and thus on K0 from (A1) . These
conditions boil down to δ(R0)+ωR0 being significantly smaller than 1. Condition (A3) ensures
that the quality of the main result from [2] can be attained, i.e. that ♦̆Q(rk, x) ≈ ♦̆(r0, x)
under rather mild conditions on the size R0 , as we only need εR0 to be small. A violation of
(A2) would make it impossible to apply Theorem 8.1 the backbone of our proofs.

Remark 2.10. In the case of iid observations with sample size n one often has δ(R0) + ωR0

≤ CR0(x)/
√
n which suggests at first glance that (A2) and (A3) are only a question of the

sample size. But note that in case of iid observations the functional satisfies n ≈ −L(υ̃0,υ
∗)

such that the conditions (A2) and (A3) are not satisfied automatically with sufficiently large
sample size. They are true conditions on the quality of the first guess.

2.4 Statistical properties of the alternating sequence

In this Section we present our main theorem in full rigor, i.e. that the limit of the alternating
sequence satisfies a finite sample Wilks Theorem and Fisher expansion.

Theorem 2.2. Assume that the conditions (ED0) , (ED1) , (L0) , (Lr) and (Er) of Sec-
tion 2.1 are met with a constant b(r) ≡ b and where V2 = Cov

(
∇L(υ∗)

)
, D2 =

12



−∇2IEL(υ∗) and where υ◦ = υ∗ . Assume that (ĔD1) and (L̆0) are met. Further as-
sume (B1) and that the initial guess satisfies (A1) and (A2) of Section 2.3. Then it holds
with probability greater 1− 8e−x − β(A) for all k ∈ N∥∥D̆(θ̃k − θ∗)− ξ̆∥∥ ≤ ♦̆Q(rk, x), (2.9)∣∣2L̆(θ̃k,θ

∗)− ‖ξ̆‖2
∣∣ ≤ 8

(
‖ξ̆‖+ ♦̆Q(rk, x)

)
♦̆Q(2(1 + ρ)rk, x) (2.10)

+♦̆Q(rk, x)2,

where

rk ≤ 2
√

2(1−√ρ)−1
{

(z(x) +♦Q(R0, x)) + (1 +
√
ρ)ρkR0(x)

}
.

If further condition (A3) is satisfied then (2.9) and (2.10) are met with

rk ≤ C(ρ)
(
z(x) + εz(x)2

)
+ ε

72C(ρ)4

1− c(ε, z(x))

(
1

1− ρ

)(
z(x) + εz(x)2

)2
+ρk

(
C(ρ)R0 + ε

72C(ρ)4

1− c(ε,R0)

(
1

ρ−1 − 1

)
R2
0

)
.

In particular this means that if

k ≥ 2 log(z(x))− log{2R0(x,K0)}
log(ρ)

,

we have with z(x)2 ≤ Cz(p
∗ + x)

♦̆Q(rk, x) ≈ ♦̆Q
(
C
√
p∗ + x, x

)
.

Remark 2.11. Note that the results are very similar to those in [2] for the profile M estimator
θ̃ . This is evident after noting that (ignoring terms of the order εz(x) )

rk . C(ρ)
(
z(x) + ρk(R0 + CεR2

0)
)
,

which for large k ∈ N means rk . C(ρ)z(x) .

Remark 2.12. Concerning the properties of ξ̆ ∈ IRp we repeat remark 2.1 of [2]. In the
case of the correct model specification the deviation properties of the quadratic form ‖ξ̆‖2 =
‖D̆−1∇̆θ‖2 are essentially the same as of a chi-square random variable with p degrees of
freedom; see Theorem 7.1 in the appendix. In the case of a possible model misspecification
with, the behavior of the quadratic form ‖ξ̆‖2 will depend on the characteristics of the matrix

ĬB
def
= D̆−1 Cov(∇̆L(υ∗))D̆−1 ; see again Theorem 7.1. Moreover, in the asymptotic setup

the vector ξ̆ is asymptotically standard normal; see Section 2.2. of [2] for the i.i.d. case.

Remark 2.13. These results allow to derive some important corollaries like concentration and
confidence sets (see [14], Section 3.2).
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Remark 2.14. In general an exact numerical computation of

θ(η)
def
= argmax

θ∈IRp

L(θ,η), or η(θ)
def
= argmax

η∈IRm

L(θ,η),

is not possible. Define θ̂(η) and η̂(θ) as the numerical approximations to θ(η) and η(θ)
and assume that

‖D(θ̂(η)− θ(η))‖ ≤ τ, for all η ∈ Υ◦,η(R0)
def
= {υ ∈ Υ◦(R0), Πηυ = η},

‖H(η̂(θ)− η(θ))‖ ≤ τ, for all θ ∈ Υ◦,θ(R0)
def
= {υ ∈ Υ◦(R0), Πθυ = θ}.

Then we can easily modify the proof of Theorem 2.2 via adding C(ρ)τ to the error terms and
the radii rk , where C(ρ) is some rational function of ρ .

Remark 2.15. Note that under condition (A3) the size of rk for k → ∞ does not depend
on R0 > 0 . So as long as εR0 is small enough the quality of the initial guess no longer affects
the statistical properties of the sequence (θk) for large k ∈ N .

2.5 Convergence to the ME

Even though Theorem 2.2 tells us, that the statistical properties of the alternating sequence
resemble those of its target, the profile ME, it is an interesting question if the underlying ap-
proach allows to qualify conditions under which the sequence actually attains the maximizer υ̃ .
Without further assumptions Theorem 2.2 yields the following Corollary:

Corollary 2.3. Under the assumptions of Theorem 2.2 it holds with probability greater 1 −
8e−x − β(A)

‖D̆(θ̃ − θ̃k)‖ ≤ ♦̆Q(rk, x) + ♦̆(r0, x),

where r0 > 0 is defined in (2.3) and

♦̆(r, x)
def
=

8

(1− ρ2)2
δ̆(r)r + 6ν1ω̆z1(x, 2p

∗ + 2p)r.

Remark 2.16. The value z1(x, ·) is defined in (2.11).

Corollary 2.3 is a first step in the direction of an actual convergence result but the gap ♦̆Q(rk, x)+

♦̆(r0, x) is not a zero sequence in k ∈ N . It turns out that it is possible to prove convergence
to the ME with the cost of assuming more smoothness of the functional L and using the right
bound for the maximal eigenvalue of the hessian ∇2L(υ∗) .

Consider the following condition, that basically quantifies how "well behaved"the second deriva-
tive ∇2(L− IEL) is:
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(ED2) There exists a constant ω ≤ 1/2 , such that for all |µ| ≤ g and all 0 < r < r0

sup
υ,υ′∈Υ◦(r)

sup
‖γ1‖=1

sup
‖γ2‖=1

log IE exp

{
µγ>1 D

−1{∇2ζ(υ)−∇2ζ(υ′)
}
γ2

ω2 ‖D(υ − υ′)‖

}
≤ ν22µ

2

2
.

Define z(x,∇2L(υ∗)) via

IP
{
‖D−1∇2L(υ∗)‖ ≥ z

(
x,∇2L(υ∗)

)}
≤ e−x,

and κ(x,R0)

κ(x,R0)
def
=

2
√

2(1 +
√
ρ)

√
1− ρ

[
δ(R0) + 9ω2ν2‖D−1‖z1(x, 6p∗)R0 + ‖D−1‖z

(
x,∇2L(υ∗)

)]
,

where z1(x, ·) satisfies (see Theorem 9.2)

z1(x,Q) =

{ √
2(x + Q) if

√
2(x + Q) ≤ g0,

g−10 (x + Q) + g0/2 otherwise.
(2.11)

Remark 2.17. For the case that L(υ) =
∑n

i=1 `i(υ) with a sum of independent marginal
functionals `i : Υ → IR we can use Corollary 3.7 of [15] to obtain

z
(
x,∇2L(υ∗)

)
=
√

2τν3
√
x + p∗,

if with a sequence of matrices (Ai) ⊂ IRp∗×p∗

log IE expλ∇2`i(υ
∗) � ν23λ

2/2Ai, ‖
n∑
i=1

Ai‖ ≤ τ.

Remark 2.18. In the case of smooth i.i.d models this means that κ(x,R0) ≤ C(R0 + x +
log(p∗))/

√
n+ CR0

√
x + p∗/n . This means that κ(x,R0) = O((x + R0 + log(p∗))/

√
n)

if p∗ + x = o(n) .

With these definitions we can prove the following Theorem:

Theorem 2.4. Let the conditions (ED2) , (L0) , (Lr) and (Er) be met with a constant
b(r) ≡ b and where D2 = −∇2IEL(υ∗) and υ∗ = υ◦ . Further suppose (B1) and that
the initial guess satisfies (A1) and (A2) . Assume that κ(x,R0) < (1− ρ) . Then

IP

(⋂
k∈N

{
υk,k(+1) ∈ Υ̃◦(r∗k)

})
≥ 1− 3e−x − β(A),

where

r∗k ≤

{
ρk2
√

2 1
1−κ(x,R0)k

R̃0, κ(x,R0)k ≤ 1,

2 1−ρ
κ(x,R0)

τ(x)k/ log(k)R̃0, otherwise,
(2.12)
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with R̃0
def
= R0 + r0 and

τ(x)
def
=

(
κ(x,R0)

1− ρ

)L(k)
< 1

L(k)
def
=

 log(1/ρ)− 1
k

(
log(2

√
2)− log(κ(x,R0)k − 1)

)(
1 + 1

log(k)
log(1− ρ)

)
 ∈ N,

where bxc ∈ N denotes the largest natural number smaller than x > 0 .

Remark 2.19. This means that we obtain nearly linear convergence to the global maximizer
υ̃ .

Remark 2.20. As in Remark 2.14 if no exact numerical computation of the stepwise maximiz-
ers is possible we can easily modify the proof of Theorem 2.4 via adding C(ρ)τ to κ(x,R0) ,
to address that case.

2.6 Critical dimension

In parallel to [2] we want to address the issue of critical parameter dimensions when the full
dimension p∗ grows with the sample size n . We write p∗ = pn . The results of Theorem 2.2
are accurate if the spread function ♦̆Q(rk, x) from (2.5) is small. The critical size of p∗ then

depends on the exact bounds on δ̆(·) and ω̆ . In the i.i.d setting δ̆(r)/r � ω̆ � 1/
√
n such

that ♦̆(rk, x) � p∗/
√
n for large k ∈ N . In other words, one needs that “ p∗2/n is small” to

obtain an accurate non asymptotic version of the Wilks phenomenon and the Fisher Theorem
for the limit of the alternating sequence. This is not surprising because good performance of the
ME itself can only be guaranteed if “ p∗2/n is small”, as is shown in [2]. There are examples
where the pME only satisfies a Wilks- or Fisher result if “ p∗2/n is small”, such that in any
of those settings the alternating sequence started in the global maximizer does not admit an
accurate Wilks- or Fisher expansion.

Interesting enough the constrain κ(x,R0) < (1−ρ) of Theorem 2.4 for the convergence of the
sequence to the global maximizer means that one needs p∗/n� 1 in the smooth i.i.d. setting
if R0 ≤ CR0

√
p∗ + x . Further Theorem 2.4 states a lower bound for the speed of convergence

that in the smooth i.i.d. setting decreases if p∗/n grows. Unfortunately we were unable to find
an example that meets the conditions of Section 2.1 and where no convergence occurs if p∗/n
tends to infinity. So whether this dimension effect on the convergence is an artifact of our proofs
or indeed a property of the alternating procedure remains an open question.

3 Application to single index model

We illustrate how the results of Theorem 2.2 and Theorem 2.4 can be applied in Single Index
modeling. Consider the following model

yi = f(X>i θ
∗) + εi, i = 1, ..., n,
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for some f : IR → IR and θ∗ ∈ Sp,+1 ⊂ IRp and with i.i.d errors εi ∈ IR , Var(εi) = σ2

and i.i.d random variables X i ∈ IRp with distribution denoted by IPX . The single-index model
is widely applied in statistics. For example in econometric studies it serves as a compromise be-
tween too restrictive parametric models and flexible but hardly estimable purely nonparametric
models. Usually the statistical inference focuses on estimating the index vector θ∗ . A lot of
research has already been done in this field. For instance, [4] show the asymptotic efficiency of
the general semiparametric maximum-functional estimator for particular examples and in [6] the
right choice of bandwidth for the nonparametric estimation of the link function is analyzed.

To ensure identifiability of θ∗ ∈ IRp we assume that it lies in the half sphere Sp,+1
def
= {θ ∈

IRp : ‖θ‖ = 1, θ1 > 0} ⊂ IRp . For simplicity we assume that the support of the X i ∈ IRp

is contained in the ball of radius sX > 0 . This allows to approximate f ∈ {f : [−sX , sX ] 7→
IR} by an orthonormal C2 -Daubechies-wavelet basis, i.e. for a suitable function e0

def
= ψ :

[−sX, sX] 7→ IR we set for k = (2jk−1)13+ rk with jk ∈ N0 and rk ∈ {0, . . . , (2jk)13−
1}

ek(t) = 2jk/2ψ
(
2jk(t− 2rksX)

)
, k ∈ N.

A candidate to estimate θ∗ is the profile ME

θ̃m
def
= Πθ argmax

(θ,η)∈Υm
Lm(θ,η),

where

Lm(θ,η) = −1

2

n∑
i=1

∣∣∣yi − m∑
k=0

ηkek(X
>
i θ)
∣∣∣2.

and where Υm ⊂ Sp,+1 × Bm
r◦ ⊂ IRp × IRm where Bm

r◦ ⊂ IRm denotes the centered
ball of radius r◦ > 0 for some r◦ > 0 . [8] analyzed a very similar estimator in a more
general setting based on a kernel estimation of IE

[
y
∣∣ f(θ>X)

]
instead of using a parametric

sieve approximation
∑m

k=0 ηkek . He showed
√
n -consistency and asymptotic normality of

the proposed estimator.

In this setting a direct computation of υ̃ becomes involved, as the maximization problem is high
dimensional and not convex. But as noted in the introduction the maximiziation with respect to
η for given θ is high dimensional but convex and consequently feasible. Further for moderate
p ∈ N the maximization with respect to θ for fixed η is computationally realistic. So an
alternating maximization procedure is applicable. To show that it behaves in a desired way we
apply the technique presented above.

For the initial guess υ̃0 ∈ Υ one can use a simple grid search. For this generate a uniform grid

GN
def
= (θ1, . . . ,θN) ⊂ S+

1 and define

υ̃0
def
= argmax

(θ,η)∈Υ
θ∈GN

L(υ). (3.1)
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Note that given the grid the above maximizer is easily obtained. Simply calculate

η̃0,k
def
= argmaxL(θk,η) =

(
1

n

n∑
i=1

ee>(X>i θk)

)−1
1

n

n∑
i=1

yie
>(X>i θk) ∈ IRm,(3.2)

where by abuse of notation e = (e1, . . . , em) ∈ IRm . Now observe that

υ̃0 = argmax
k=1,...,N

L(θk, η̃0,k).

Define τ
def
= supθ,θ◦∈GN

‖θ − θ◦‖ .

To apply the result presented in Theorem 2.2 and Theorem 2.4 we need a list of assumptions
denoted by (A) . We start with conditions on the regressors X ∈ IRp :

(CondX) The measure IPX is absolutely continuous with respect to the Lebesgue mea-
sure. The Lebesgue density dX : IRp → IR of IPX is only positive on the ball
BsX (0) ⊂ IRp and Lipschitz continuous on BsX (0) ⊂ IRp with Lipschitz constant
LdX > 0 . Further we assume that for any θ ⊥ θ∗ with ‖θ‖ = 1 we have

Var
(
X>θ

∣∣∣X>θ∗) > σ2
X|θ∗ for some constant σ2

X|θ∗ > 0 that does not depend

on X>θ∗ ∈ IR . Also the density dX : IRp → IR of the regressors satisfies cdX ≤
dX ≤ CdX on BsX (0) ⊂ IRp for constants 0 < cdX ≤ CdX <∞ .

(Condf ) For some η∗ ∈ l2

f = fη∗ =
∞∑
k=1

η∗kek,

where with some α > 2 and a constant C‖η∗‖ > 0

∞∑
l=0

l2αη∗l
2 ≤ C2

‖η∗‖ <∞.

(CondXθ∗) It holds true that IP (|f ′η∗(X>θ∗)| > cf ′
η∗

) > cIPf ′ for some cf ′
η∗
, cIPf ′ > 0 .

(Condε) The errors (εi) ∈ IR are i.i.d. with IE[εi] = 0 , Cov(εi) = σ2 and satisfy for all
|µ| ≤ g̃ for some g̃ > 0 and some ν̃r > 0

log IE[exp {µε1}] ≤ ν̃2rµ
2/2.

If these conditions denoted by (A) are met we can proof the following results:

Proposition 3.1. Let τ = o(p∗−3/2) and p∗5/n → 0 . With initial guess given by Equation
(3.1) and for x ≤ 2ν̃2g̃2n the alternating sequence satisfies (2.9) and (2.10) with probability
greater 1− 9 exp{−x} and where with some constant C� ∈ IR

♦̆Q(r, x) ≤ C�(p
∗ + x)3/2√
n

(r2 + p∗ + x).
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Remark 3.1. The constraint τ = o(p∗−3/2) implies that for the calculation of the initial guess
the vector η̃0,l of (3.2) and the functional L(·) have to be evaluated N = p∗3(p−1)/2 times.

Proposition 3.2. Take the initial guess given by Equation (3.1). Assume (A) but use a three
times continuously differentiable wavelet basis. Further assume that p∗4/n → 0 and τ =
o(p∗−3/2) . Let x > 0 be chosen such that

x ≤ 1

2

(
ν̃2ng̃2 − log(p∗)

)
∧ p∗.

Then we get the claim of Theorem 2.4 with β(A) = e−x and

κ(x,R0) = O(τm3/2 +
√
τxm3/2/n1/4) +O(p∗2/

√
n)→ 0,

for moderate choice of x > 0 .

For details see [1].

4 Proof of Theorem 2.2

In this section we will proof Theorem 2.2. Before we start with the actual proof we want to explain
the agenda. The first step of the proof is to find a desirable set Ω(x) ⊂ Ω of high probability,
on which a linear approximation of the gradient of the functional L(υ) can be carried out with
sufficient accuracy. Once this set is found all subsequent analysis concerns events in Ω(x) ⊂
Ω .

For this purpose define for some K ∈ N the set

Ω(x) =
K⋂
k=0

(Ck,k ∩ Ck,k+1) ∩ C(∇) ∩ {L(υ̃0,υ
∗) ≥ −K0(x)}, where (4.1)

Ck,k(+1) =
{
‖D(υ̃k,k(+1) − υ∗)‖ ≤ R0(x), ‖D(θ̃k − θ∗)‖ ≤ R0(x),

‖H(η̃k(+1) − η∗)‖ ≤ R0(x)
}
,

C(∇) =
⋂

r≤R0(x)

{
sup

υ∈Υ◦(r)

{
1

6ων1
‖Y(υ)‖ − 2r2

}
≤ zQ(x, 4p∗)2

}
⋂

r≤4R0(x)

{
sup

υ∈Υ◦(r)

{
1

6ω̆ν̆1
‖Y̆(υ)‖ − 2r2

}
≤ zQ(x, 2p∗ + 2p)2

}

∩
{

max{‖D−1∇L‖, ‖D−1∇θL‖, ‖H−1∇ηL‖} ≤ z(x)

}
∩{υ̃, υ̃θ∗ ∈ Υ◦(r0(x))}.
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For ζ(υ) = L(υ)−IEL(υ) the semiparametric normalized stochastic gradient gap is defined
as

Y̆(υ) = D̆−1
(
∇̆θζ(υ)− ∇̆θζ(υ∗)

)
.

the parametric normalized stochastic gradient gap Y(υ) is defined as

Y(υ) = D−10

(
∇ζ(υ)−∇ζ(υ∗)

)
,

and r0(x) > 0 is chosen such that IP (υ̃, υ̃θ∗ ∈ Υ◦(r0)) ≥ 1− e−x , where

υ̃θ∗
def
= argmax

υ∈Υ
Πθυ=θ

∗

L(υ).

Remark 4.1. We intersect the set with the event {υ̃, υ̃θ∗ ∈ Υ◦(r0)} where we a priory de-
mand r0(x) > 0 to be chosen such that IP (υ̃, υ̃θ∗ ∈ Υ◦(r0)) ≥ 1−e−x . Note that condition
(Er) together with (Lr) allow to set

√
p∗ + x ≈ r0 ≤ R0 (see Theorem 4.3).

In Section 4.1 we show that this set is of probability greater 1 − 8e−x − β(A) . We want to
explain the purpose of this set along the architecture of the proof of our main theorem.

{L(υ̃0,υ
∗) ≥ −K0(x)} : This set ensures, that the first guess satisfies L(υ̃0,υ

∗)
≥ −K0(x) , which means that it is close enough to the target υ∗ ∈ IRp∗ . This fact
allows us to obtain an a priori bound for the deviation of the sequence (υ̃k,k(+1)) ⊂ Υ
from υ∗ ∈ Υ◦(R0) with Theorem 4.3.

{D(υ̃k,k(+1) − υ∗) ≤ R0(x)} : As just mentioned this event is of high probability due to
L(υ̃0,υ

∗) ≥ −K0(x) and Theorem 4.3. This allows to concentrate the analysis on
the set Υ◦(R0) on which Taylor expansions of the functional L : IRp∗ → IR become
accurate.

C(∇) : This set ensures that on Ω(x) ⊂ Ω all occurring random quadratic forms and
stochastic errors are controlled by z(x) ∈ IR . Consequently we can derive in the proof
of Lemma 4.5 an a priori bound of the form ‖D(υ̃k,k(+1)−υ∗)‖ ≤ rk for a decreasing
sequence of radii (rk) ⊂ IR+ satisfying lim supk→∞ rk = Cz(x) . Further this set
allows to obtain in Lemma 4.7 the bounds for all k ∈ N .

On Ω(x) ⊂ Ω we find υ̃k,k(+1) ∈ Υ◦(rk) such that we can follow the arguments of Theorem

2.2 of [2] to obtain the desired result with accuracy measured by ♦̆Q(rk, x) .

4.1 Probability of desirable set

Here we show that the set Ω(x) actually is of probability greater 1− 8e−x − β(A) . We prove
the following two Lemmas, which together yield the claim.

Lemma 4.1. The set C(∇) satisfies

IP (C(∇)) ≥ 1− 7e−x.
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Proof. The proof is similar to the proof of Theorem 3.1 in [14]. Denote

A def
=

⋂
r≤R0(x)

{
sup

υ∈Υ◦(r)

{
1

6ων1
‖Y(υ)‖ − 2r2

}
≤ zQ(x, 4p∗)2

}

B def
=

⋂
r≤4R0(x)

{
sup

υ∈Υ◦(r)

{
1

6ω̆ν̆1
‖Y̆(υ)‖ − 2r2

}
≤ zQ(x, 2p∗ + 2p)2

}

C def
=
{

max{‖D−1∇L‖, ‖D−1∇θL‖, ‖H−1∇ηL‖} ≤ z(x)
}
.

We estimate

IP (C(∇)) ≥ 1− IP (Ac)− IP (Bc)− IP (Cc)

−IP (υ̃, υ̃θ∗ /∈ Υ◦(r0))− IP
(
‖D̆−1∇̆θ‖2 > z(x, ĬBθ)

)
.

We bound using for both terms Theorem 8.2 which is applicable due to (ED1) and (ĔD1) :

IP (Ac) ≤ e−x, IP (Bc) ≤ e−x.

For the set C ⊂ Ω observe that we can use (I) and Lemma 4.2 to find

‖H−1∇η‖ ∨ ‖D−1∇θ‖ ≤ ‖D−1∇‖.

This implies that

{‖D−1∇‖ ≤ z(x, IB)}

⊆ {‖D−1∇θ‖ ∨ ‖H−1∇η‖ ≤ z(x, IB)}.

Using the deviation properties of quadratic forms as sketched in Section 7 we find

IP
(
‖D−1∇‖ > z(x, IB)

)
≤ 2e−x, IP

(
‖D̆−1∇̆‖ > z(x, ĬB)

)
≤ 2e−x.

By the choice of z(x) > 0 and r0 > 0 this gives the claim.

We cite Lemma B.2 of [2]:

Lemma 4.2. Let

D2 =

(
D2 A
A> H2

)
∈ IR(p+p)×(p+p), D ∈ IRp×p, H ∈ IRm×m invertible,

‖D−1AH−1‖ < 1.

Then for any υ = (θ,η) ∈ IRp+m we have ‖H−1η‖ ∨ ‖D−1θ‖ ≤ ‖D−1υ‖ .

The next step is to show that the set
⋂K
k=1(Ck,k∩Ck,k+1) has high probability, that is indepen-

dent of the number of necessary steps. A close look at the proof of Theorem 4.1 of [14] shows
that it actually yields the following modified version:
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Theorem 4.3 ([14], Theorem 4.1). Suppose (Er) and (Lr) with b(r) ≡ b . Further define
the following random set

Υ (K)
def
= {υ ∈ Υ : L(υ,υ∗) ≥ −K}.

If for a fixed r0 and any r ≥ r0 , the following conditions are fulfilled:

1 +
√
x + 2p∗ ≤ 3ν2rg(r)/b,

6νr

√
x + 2p∗ +

b

9ν2r
K ≤ rb,

then

IP (Υ (K) ⊆ Υ◦(r0)) ≥ 1− e−x.

Note that with (I)

‖D(θ̃k − θ∗)‖ ∨ ‖H(η̃k(+1) − η∗)‖ ≤
1

1− ρ
‖D(υ̃k,k(+1) − υ∗)‖.

With assumption (B1) and

R0(x) =
6ν0

b(1− ρ)

√
x + Q +

b

9ν20
K0(x),

this implies the desired result as L(υk,k(+1),υ
∗) ≥ L(υ̃0,υ

∗) such that with Theorem 4.3

IP

(
K⋂
k=0

(Ck,k ∩ Ck,k+1)

)
≥ IP

(
K⋂
k=0

(Ck,k ∩ Ck,k+1) ∩ {L(υ̃0,υ
∗) ≥ −K0}

)
−IP (L(υ̃0,υ

∗) ≤ −K0)

≥ IP
{
Υ (K0(x)) ⊂ Υ◦

(
(1− ρ)R0(x)

)}
− β(A)

≥ 1− e−x − β(A).

Remark 4.2. This also shows that the sets of maximizers (υ̃k,k(+1)) are nonempty and well de-
fined since the maximization always takes place on compact sets of the form {θ ∈ IRp, (θ,η) ∈
Υ◦(R0)} or {η ∈ IRm, (θ,η) ∈ Υ◦(R0)} .

To address the claim of remark 2.9 we present the following Lemma:

Lemma 4.4. On the set C(∇) ∩ {υ̃0 ∈ Υ◦(RK)} it holds

L(υ0,υ
∗) ≥ −(1/2 + 12ν0ω)R2

K − (δ(RK) + z(x))RK − 6ν0ωz(x)2.

22



Proof. With similar arguments as in the proof of Lemma 4.5 we have on C(∇) ⊂ Ω that

L(υ0,υ
∗) ≥ IE[L(υ0,υ

∗)]− ‖D−1∇ζ(υ∗)‖RK − |{∇ζ(υ̂)−∇ζ(υ∗)}(υ0 − υ∗)|

≥ −‖D(υ0 − υ∗)‖2/2− ‖D−1∇ζ(υ∗)‖RK

−‖D−1
{
∇L(υ̂)−∇L(υ∗)

}
‖RK −RKδ(RK)

≥ −(1/2 + 12ν0ω)R2
K − (δ(RK) + z(x))RK − 6ν0ωz(x)2.

4.2 Proof convergence

We derive the a priori bound υ̃k,k(+1) ∈ Υ◦(rk) with an adequately decreasing sequence
(rk) ⊂ IR+ using the argument of Section 1.1, where lim sup rk ≈ z(x) .

Lemma 4.5. Assume that

Ω(x) ⊆
⋂
k∈N

{
υk,k(+1) ∈ Υ◦

(
r
(l)
k

)}
.

Then under the assumptions of Theorem 2.2 we get on Ω(x) for all k ∈ N0∥∥D(υ̃k,k(+1) − υ∗)
∥∥ ≤ 2

√
2(1−√ρ)−1

(
z(x) + (1 +

√
ρ)ρkR0(x)

)
+2
√

2(1 +
√
ρ)

k−1∑
r=0

ρr♦Q
(
r(l)r
)

=: r
(l+1)
k .

Proof. 1. We first show that on Ω(x)

D(θ̃k − θ∗) = D−1∇θL(υ∗)−D−1A(η̃k − η∗) + τ
(
r
(l)
k

)
, (4.2)

H(η̃k − η∗) = H−1∇ηL(υ∗)−H−1A>(θ̃k−1 − θ∗) + τ
(
r
(l)
k

)
,

where

‖τ (r)‖ ≤ ♦Q(r, x) =
{
δ(r)r + 6ν1ω(zQ(x, 4p∗) + 2r2)

}
.

The proof is the same in each step for both statements such that we only prove the first one.
The arguments presented here are similar to those of Theorem D.1 in [2]. By assumption on
Ω(x) we have υ̃k,k(+1) ∈ Υ◦

(
r
(l)
k

)
. Define with ζ = L− IEL

α(υ,υ∗) := L(υ,υ∗)−
(
∇ζ(υ∗)(υ − υ∗)− ‖D(υ − υ∗)‖2/2

)
.
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Note that

L(υ,υ∗) = ∇ζ(υ∗)(υ − υ∗)− ‖D(υ − υ∗)‖2/2 + α(υ,υ∗)

= ∇θζ(υ∗)(θ − θ∗)− ‖D(θ − θ∗)‖2/2 + (θ − θ∗)>A(η − η∗)

+∇ηζ(υ∗)(η − η∗)− ‖H(η − η∗)‖2/2 + α(υ,υ∗).

Setting ∇θL(θ̃k, η̃k) = 0 we find

D(θ̃k − θ∗)−D−1
(
∇θζ(υ∗)− A(η̃k − η∗)

)
= D−1∇θα(υ̃k,k,υ

∗).

As we assume that υ̃k,k ∈ Υ◦(R0) it suffices to show that with dominating probability

sup
(θ,η̃k)∈Υ◦(R0)

‖Uθ(θ, η̃k)‖ ≤ ♦(r
(l)
k ),

where

Uθ(θ, η̃k)
def
= D−1

{
∇θL(υ̃k,k)−∇θL(υ∗)−D2 (θ − θ∗)− A(η̃k − η∗)

}
.

To see this note first that with Lemma 4.2 ‖D−1ΠθDυ‖ ≤ ‖D−1Dυ‖ . This gives by condition
(L0) , Lemma 4.2 and Taylor expansion

sup
(θ,η̃k)∈Υ◦(r)

‖IEU(θ, η̃k)‖ ≤ sup
υ∈Υ◦(r)

‖D−1Πθ
(
∇IEL(υ)−∇IEL(υ∗)−D (υ − υ∗)

)
‖

≤ sup
υ∈Υ◦(r)

‖D−1ΠθD‖‖D−1∇2IEL(υ)2D−1 − Ip∗‖1/2r

≤ δ(r)r.

For the remainder note that again with Lemma 4.2

‖D−1
(
∇θζ(υ)−∇θζ(υ∗)

)∥∥∥ ≤ ‖D−1(∇ζ(υ)−∇ζ(υ∗)
)∥∥∥.

This yields that on Ω(x)

sup
(θ,η̃k)∈Υ◦(r)

∥∥∥Uθ(θ, η̃k)− IEUθ(θ, η̃k)∥∥∥ ≤ sup
υ∈Υ◦(r)

∥∥∥D−1(∇θζ(υ)−∇θζ(υ∗)
)∥∥∥

≤ sup
υ∈Υ◦(r)

{
1

6ν1ω
‖Y(υ)‖

}
6ν1ω ≤ 6ν1ω

{
zQ(x, 4p∗) + 2r2

}
.

Using the same argument for η̃k gives the claim.

2. We prove the apriori bound for the distance of the k. estimator to the oracle∥∥D(υ̃k,k(+1) − υ∗)
∥∥ ≤ r

(l+1)
k .
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To see this we first use the inequality

‖D(υ̃k,k(+1) − υ∗)‖ ≤
√

2‖D(θ̃k − θ∗)‖+
√

2‖H(η̃k(+1) − η∗)‖.

Now we find with (4.2)

‖D(θ̃k − θ∗)‖ ≤ ‖D−1∇θL(υ∗)‖+ ‖D−1A(η̃k − η∗)‖+ ‖τ
(
r
(l)
k

)
‖

≤ ‖D−1∇θL(υ∗)‖+ ‖D−1AH−1‖‖H(η̃k − η∗)‖+ ‖τ
(
r
(l)
k

)
‖.

Next we use that on Ω(x)

‖D−1AH−1‖ ≤ √ρ, ‖D−1∇θL(υ∗)‖ ≤ z(x), ‖H−1∇ηL(υ∗)‖ ≤ z(x),

and

‖H(η̃k − η∗)‖ ≤ ‖H−1∇ηL(υ∗)‖+ ‖H−1A>(θ̃k−1 − θ∗)‖+ ‖τ
(
r
(l)
k

)
‖,

to derive the recursive formula

‖D(θ̃k − θ∗)‖ ≤ (1 +
√
ρ)
(
z(x) + ‖τ

(
r
(l)
k

)
‖
)

+ ρ‖D(θ̃k−1 − θ∗)‖.

Deriving the analogous formula for ‖H(η̃k − η∗)‖ and solving the recursion gives the claim.

Lemma 4.6. Assume the same as in Theorem 2.2. Then we get

Ω(x) ⊆
⋂
k∈N

{
υk,k(+1) ∈ Υ◦

(
r
(1)
k

)}
,

where

r
(1)
k ≤ 2

√
2(1−√ρ)−1

{
(z(x) +♦Q(R0, x)) + (1 +

√
ρ)ρkR0(x)

}
. (4.3)

Further assume that δ(r)/r ∨ 12ν1ω ≤ ε and that (2.6) and (2.7) are met with C(ρ) defined
in (2.8). Then

Ω(x) ⊆
⋂
k∈N

{
υk,k(+1) ∈ Υ◦(r∗k)

}
,

where

r∗k ≤ C(ρ)
(
z(x) + εz(x)2

)
+ ε

72C(ρ)4

1− c(ε, z(x))

(
1

1− ρ

)(
z(x) + εz(x)2

)2
(4.4)

+ρk
(
C(ρ)R0 + ε

72C(ρ)4

1− c(ε,R0)

(
1

ρ−1 − 1

)
R2
0

)
.
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Proof. We proof this claim via induction. On Ω(x) we have

υk,k(+1) ∈ Υ◦(R0), set r(0)k
def
= R0.

Now with Lemma 4.5 we find that

Ω(x) ⊆
⋂
k∈N

{
υk,k(+1) ∈ Υ◦(r(l)k )

}
implies Ω(x) ⊆

⋂
k∈N

{
υk,k(+1) ∈ Υ◦(r(l+1)

k )
}
,

where

r
(l)
k ≤ 2

√
2(1−√ρ)−1

(
z(x) + (1 +

√
ρ)ρkR0(x)

)
+2
√

2(1 +
√
ρ)

k−1∑
r=0

ρr♦Q
(
r(l−1)r , x

)
.

Setting l = 1 this gives

r
(1)
k ≤ 2

√
2(1−√ρ)−1

{
(z(x) +♦Q(R0, x)) + (1 +

√
ρ)ρkR0(x)

}
,

which gives (4.3). For the second claim we show that

Ω(x) ⊆
⋂
k∈N

{
υk,k(+1) ∈ Υ◦

(
lim sup
l→∞

r
(l)
k

)}
⊆
⋂
k∈N

{
υk,k(+1) ∈ Υ◦(r∗k)

}
.

So we have to show that lim supl→∞ r
(l)
k ≤ r∗k from (4.4). For this we use δ(r)/r∨12ν1ω ≤

ε to estimate further

r
(l)
k ≤ 2

√
2(1−√ρ)−1

(
z(x) + (1 +

√
ρ)ρkR0(x)

)
+2
√

2(1 +
√
ρ)ε

k−1∑
r=0

ρr
((

r
(l−1)
k−r

)2
+ z(x)2

)
≤ 2
√

2(1−√ρ)−1
(
z(x) + εz(x)2 + (1 +

√
ρ)ρkR0(x)

)
+2
√

2(1 +
√
ρ)ε

k−1∑
r=0

ρr
(
r
(l−1)
k−r

)2
≤ C(ρ)

{(
z(x) + εz(x)2

)
+ ρkR0 + ε

k−1∑
r=0

ρr
(
r
(l−1)
k−r

)2}
,

where C(ρ) > 0 is defined in (2.8). We set

A
(l)
s,k

def
=

k−1∑
r1=0

ρr1

k−r1−1∑
r2=0

ρr2

(
. . .

k−r1−...−rs−1−1∑
rs=0

ρrs
(
r
(l−1)
k−r1−...−rs

)2
. . .

)2
2

.
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Claim

A
(l)
s,k ≤ 7

∑s−1
t=0 2tC(ρ)2

s

{(
1

1− ρ

)∑s−1
t=0 2t (

z(x) + εz(x)2
)2s

(4.5)

+ρk
(

1

ρ−1 − 1

)∑s−1
t=0 2t

R2s

0

}
+7

∑s−1
t=0 2t(C(ρ)ε)2

s

A
(l−1)
s+1,k.

We proof this claim via induction. Clearly

A
(l)
1,k =

k−1∑
r1=0

ρr1
(
r
(l−1)
k−r1

)2 ≤ 7C(ρ)2
k−1∑
r1=0

ρr1
{(

z(x) + εz(x)2
)2

+ ρ2(k−r1)R2
0

}

+7C(ρ)2ε2
k−1∑
r1=0

ρr1

(
k−r1−r2−1∑

r2=0

ρr2
(
r
(l−2)
k−r1−r2

)2)2

≤ 7C(ρ)2
{

1

1− ρ
(
z(x) + εz(x)2

)2
+

ρk

ρ−1 − 1
R2
0

}
+7C(ρ)2ε2A

(l−1)
2,k .

Further

A
(l)
s,k

def
=

k−1∑
r1=0

ρr1

k−r1−1∑
r2=0

ρr2

(
. . .

k−r1−...−rs−1−1∑
rs=0

ρrs
(
r
(l−1)
k−r1−...−rs

)2
. . .

)2
2

=
k−1∑
r1=0

ρr1
(
A

(l)
s−1,k−r1

)2
. (4.6)

Plugging in (4.5) we get for s ≥ 2

A
(l)
s,k ≤

k−1∑
r1=0

ρr1

(
7
∑s−2

t=0 2tC(ρ)2
s−1

{(
1

1− ρ

)∑s−2
t=0 2t (

z(x) + εz(x)2
)2s−1

+ρk
(

1

ρ−1 − 1

)∑s−2
t=0 2t

R2s−1

0

}

+ 7
∑s−2

t=0 2t(C(ρ)ε)2
s−1

A
(l−1)
s,k−r1

)2

.
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Shifting the index this gives

A
(l)
s,k ≤ 7

k−1∑
r1=0

ρr1

(
7
∑s−1

t=1 2tC(ρ)2
s

{(
1

1− ρ

)∑s−1
t=1 2t−1 (

z(x) + εz(x)2
)2s

+ρk
(

1

ρ−1 − 1

)∑s−1
t=1 2t

R2s

0

}

+ 7
∑s−1

t=1 2t(C(ρ)ε)2
s

(A
(l−1)
s,k−r1)

2

)
.

Direct calculation then leads to

A
(l)
s,k ≤ 7

∑s−1
t=0 2tC(ρ)2

s

{(
1

1− ρ

)∑s−1
t=0 2t (

z(x) + εz(x)2
)2s

+ρk
(

1

ρ−1 − 1

)∑s−1
t=0 2t

R2s

0

}

+7
∑s−1

t=0 2t(C(ρ)ε)2
s
k−1∑
r1=0

ρr1(A
(l−1)
s,k−r1)

2,

which gives (4.5) with (4.6). Similarly we can prove

A
(1)
s,k =

(
1

1− ρ

)2s−1

R2s

0 .

Abbreviate

λs
def
= 72s−1C(ρ)2

s

, βs
def
= 72s−1(C(ρ)ε)2

s

,

zs(x)
def
=

(
1

1− ρ

)2s−1 (
z(x) + εz(x)2

)2s
, Rs

def
=

(
1

ρ−1 − 1

)2s−1

R2s

0 .

Then

r
(l)
k ≤ C(ρ)

{(
z(x) + εz(x)2

)
+ ρkR0 + εA

(l)
1,k

}
≤

l−1∑
s=0

λs

s−1∏
r=0

βrzs(x) + ρk
l−1∑
s=0

λs

s−1∏
r=0

βrRs +
l−1∏
r=0

βrRl. (4.7)
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We estimate further

l−1∑
s=0

λs

s−1∏
r=0

βrzs(x)− C(ρ)
(
z(x) + εz(x)2

)
=

l−1∑
s=1

λs

s−1∏
r=0

βrzs(x)

≤
l−1∑
s=1

72sC(ρ)2
s+1

ε2
s−1
(

1

1− ρ

)2s−1 (
z(x) + εz(x)2

)2s
= ε72C(ρ)4

(
1

1− ρ

)(
z(x) + εz(x)2

)2 l−1∑
s=1

(
ε7C(ρ)

1

1− ρ
(
z(x) + εz(x)2

))2s−1

.

Assuming (2.6) this gives

l−1∑
s=0

λs

s−1∏
r=0

βrzs(x) ≤ C(ρ)
(
z(x) + εz(x)2

)
+ε

72C(ρ)4

1− c(ε, z(x))

(
1

1− ρ

)(
z(x) + εz(x)2

)2
.

With the same argument we find under (2.7) that

ρk
l−1∑
s=0

λs

s−1∏
r=0

βrRs ≤ ρk
(
C(ρ)R0 + ε

72C(ρ)4

1− c(ε,R0)

(
1

ρ−1 − 1

)
R2
0

)
.

Additionally (2.7) implies

l−1∏
r=0

βrRl ≤
(
ε7C(ρ)

1

ρ−1 − 1

)2l−1

R2l

0 → 0.

Plugging these bounds into (4.7) and letting l→∞ gives the claim.

4.3 Result after convergence

In the previous section we showed that

Ω(x) ⊂
⋂

r≤4R0(x)

{
sup

υ∈Υ◦(r)

{
1

6ω̆ν̆1
‖Y̆(υ)‖ − 2r2

}
≤ zQ(x, 2p∗ + 2p)2

}

∩
⋂
k∈N

{
υk,k ∈ Υ◦

(
r
(·)
k

)
, υk,k+1 ∈ Υ◦

(
r
(·)
k

)}
∩ {υ̃, υ̃θ∗ ∈ Υ◦(r0)},

where r
(·)
k is defined in (4.4) or (4.3). The claim of Theorem 2.2 follows with the following

lemma:
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Lemma 4.7. Assume (ĔD1) , (L̆0) , and (I) with a central point υ◦ = υ∗ and D2 =
∇2IEL(υ∗) . Then it holds on Ω(x) ⊆ Ω that for all k ∈ N∥∥D̆(θ̃k − θ∗)− ξ̆∥∥ ≤ ♦̆Q(rk, x), (4.8)∣∣2L̆(θ̃k,θ

∗)− ‖ξ̆‖2
∣∣ ≤ 8

(
‖D̆−1∇̆‖+ ♦̆Q(rk, x)

)
♦̆Q(2(1 + ρ)rk, x)

+♦̆Q(rk, x)2, (4.9)

where the spread ♦̆(r, x) is defined in (2.5) and where

rk
def
= r

(·)
k ∨ r0.

Proof. The proof is nearly the same as that of Theorem 2.2 of [2] which is inspired by the proof
of Theorem 1 of [12]. So we only sketch it and refer the reader to [2] for the skipped arguments.
We define

l : IRp × Υ → IR, (θ1,θ2,η) 7→ L(θ1,η +H−2A>(θ2 − θ1)).

Note that

∇θ1l(θ1,θ2,η) = ∇̆θL(θ1,η +H−2A>(θ2 − θ1)), θ̃k = argmax
θ

l(θ, θ̃k, η̃k),

such that ∇̆θL(θ̃k, η̃k) = 0 . This gives∥∥D̆(θ̃k − θ∗)− ξ̆∥∥ =
∥∥D̆−1∇̆L(θ̃k, η̃k)− D̆−1∇̆L(υ∗) + D̆

(
θ̃k − θ∗

)∥∥.
Now the right hand side can be bounded just as in the proof of Theorem 2.2 of [2]. This gives
(4.8).

For (4.9) we can represent:

L̆(θ̃k)− L̆(θ∗) = l(θ̃k, θ̃k, η̃k+1)− l(θ∗,θ∗, η̃θ∗),

where

η̃θ∗
def
= Πη argmax

υ∈Υ,
Πθυ=θ

∗

L(υ).

Due to the definition of θ̃k and η̃k+1

l(θ̃k,θ
∗, η̃θ∗)− l(θ∗,θ∗, η̃θ∗) ≤ L̆(θ̃k)− L̆(θ∗) ≤ l(θ̃k, θ̃k, η̃k+1)− l(θ∗, θ̃k, η̃k+1).

Again the remaining steps are exactly the same as in the proof of Theorem 2.2 of [2].
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5 Proof of Corollary 2.3

Proof. Note that with the argument of Section 4.1 IP (Ω′(x)) ≥ 1− 8e−x − β(A) where with
Ω(x) from (4.1)

Ω′(x) = Ω(x) ∩ {υ̃ ∈ Υ◦(r0)}.

On Ω′(x) it holds due to Theorem 2.2 and due to Theorem 2.1 of [2]

‖D̆(θ̃k − θ∗)− ξ̆‖ ≤ ♦̆Q(rk, x), ‖D̆(θ̃ − θ∗)− ξ̆‖ ≤ ♦̆(r0, x).

Now the claim follows with the triangular inequality.

6 Proof of Theorem 2.4

We prove this Theorem in a similar manner to the convergence result in Lemma 4.5. Redefine
the set Ω(x)

Ω(x)
def
=

K⋂
k=0

(Ck,k ∩ Ck,k+1) ∩ C(∇) ∩ {L(υ̃0,υ
∗) ≥ −K0(x)}, where

Ck,k(+1) =
{
‖D(υ̃k,k(+1) − υ∗)‖ ≤ R0(x), ‖D(θ̃k − θ∗)‖ ≤ R0(x),

‖H(η̃k(+1) − η∗)‖ ≤ R0(x)
}
,

C(∇) =

{
sup

υ∈Υ◦(R0(x))

‖Y(∇2)(υ)‖ ≤ 9ν2ω2z1(x, 6p
∗)R0(x)

}
∩{‖D−1∇2ζ(υ∗)‖ ≤ z(x,∇2ζ(υ∗))}.

where

Y(∇2)(υ)
def
= D−1

(
∇2ζ(υ)−∇2ζ(υ∗)

)
∈ IRp∗2 .

We see that on Ω(x)

υk,k(+1) ∈ Υ̃◦(R0)
def
= {‖D(υ − υ̃)‖ ≤ R0 + r0} ∩ Υ◦(R0).

Lemma 6.1. Under the conditions of Theorem 2.4

IP (Ω(x)) ≥ 1− 3e−x − β(A).

Proof. The proof is very similar to the one presented in Section 4.1, so we only give a sketch.
By assumption

IP
(
‖D−1∇2ζ(υ∗)‖ ≤ z(x,∇2ζ(υ∗))

)
≥ 1− e−x,
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and due to (ED2) with Theorem 9.2

IP

(
sup

υ∈Υ◦(R0(x))

‖Y(∇2)(υ)‖ ≤ 9ν2ω2z1(x, 6p
∗)R0(x)

)
≥ 1− e−x.

Lemma 6.2. Assume for some sequence (r
(l)
k ) that⋂

k∈N

{∥∥D(υ̃k,k(+1) − υ̃)
∥∥ ≤ r

(l)
k

}
⊆ Ω(x).

Then we get on Ω(x)

∥∥D(υ̃k,k(+1) − υ̃)
∥∥ ≤ 2

√
2(1 +

√
ρ)

k−1∑
r=0

ρr‖τ (r
(l)
k−r)‖+ 2

√
2ρk(R0 + r0),

=: r
(l+1)
k . (6.1)

where

‖τ (r)‖ ≤
[
δ(R0) + 9ν2ω2‖D−1‖z1(x, 6p∗)R0 + ‖D−1‖z(x,∇2ζ(υ∗))

]
r.

Proof. 1. We first show that on Ω(x)

D(θ̃k − θ̃) = −D−1A(η̃k − η̃) + τ
(
r
(l)
k

)
,

H(η̃k − η∗) = −H−1A>(θ̃k−1 − θ̃) + τ
(
r
(l)
k

)
,

The proof is very similar to that of Lemma 4.5. Define

α(υ, υ̃) := L(υ, υ̃) + ‖D(υ − υ̃)‖2/2.

Note that

L(υ, υ̃) = ∇L(υ)− ‖D(υ − υ̃)‖2/2 + α(υ,υ∗)

= −‖D(θ − θ̃)‖2/2 + (θ − θ∗)>A(η − η̃)

−‖H(η − η̃)‖2/2 + α(υ, υ̃).

Setting ∇θL(θ̃k, η̃k) = 0 we find

D(θ̃k − θ̃) = D−1A(η̃k − η̃) +D−1∇θα(υ̃k,k, υ̃).

We want to show

sup
(θ,η̃k)∈Υ̃◦

(
r
(l)
k

)
∩Υ◦(R0)

D−1∇θα((θ, η̃k), υ̃) ≤ ‖τ
(
r
(l)
k

)
‖,
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where

D−1∇θα(υ, υ̃)
def
= D−1

{
∇θL(υ)−D2 (θ − θ̃)− A(η̃k − η̃)

}
.

To see this note that by assumption we have Ω(x) ⊆ {υ̃ ∈ Υ◦(r0)} ⊆ {υ̃ ∈ Υ◦(R0)} . By
condition (L0) , Lemma 4.2 and Taylor expansion we have

sup
(θ,η̃k)∈Υ̃◦(r

(l)
k )∩Υ◦(R0)

‖IEU(θ, η̃k)‖

≤ sup
υ∈Υ̃◦(r(l)k )∩Υ◦(R0)

‖D−1Πθ
(
∇IEL(υ)−∇IEL(υ̃)−D (υ − υ∗)

)
‖

≤ sup
υ∈Υ◦(R0)

‖D−1ΠθD‖‖D−1∇2IEL(υ)D−1 − Ip∗‖r(l)k

≤ δ(R0)r
(l)
k .

For the remainder note that with ζ = L− IEL on Ω(x) using Lemma 4.2 we can bound

sup
(θ,η̃k)∈Υ̃◦(r

(l)
k )∩Υ◦(R0)

∥∥∥Uθ(θ, η̃k)− IEUθ(θ, η̃k)∥∥∥
≤ sup

υ∈Υ̃◦(r(l)k )∩Υ◦(R0)

∥∥∥D−1(∇θζ(υ)−∇θζ(υ̃)
)∥∥∥

≤ sup
υ∈Υ◦(r)

∥∥D−1∇2ζ(υ)D−1
∥∥ r(l)k

≤ sup
υ∈Υ◦(R0)

{
1

9ν2ω2

‖D−1
(
∇2ζ(υ)−∇2ζ(υ∗)

)
D−1‖

}
6ν1ωr

(l)
k

+

{
‖D−1∇2ζ(υ∗)D−1‖

}
r
(l)
k

≤
[
9ν2ω2‖D−1‖z1(x, 6p∗)R0 + ‖D−1‖z(x,∇2ζ(υ∗))

]
r
(l)
k .

Using the same argument for η̃k gives the claim.

Now the claim follows as in the proof of Lemma 4.5.

Lemma 6.3. Assume that δ(r)/r ∨ 9ν2ω2 ∨ ‖D−1‖ ≤ ε2 . Further assume that κ(x,R0) <
1− ρ where

κ(x,R0)
def
=

2
√

2(1 +
√
ρ)

√
1− ρ

(
δ(R0) + 9ω2ν2‖D−1‖z1(x, 6p∗)R0

+ ‖D−1‖z
(
x,∇2L(υ∗)

))
.
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Then

Ω(x) ⊆
⋂
k∈N

{
υk,k(+1) ∈ Υ̃◦(rk)

}
,

where (rk)k∈N satisfy the bound (2.12).

Proof. Define for all k ∈ N0 the sequence r
(0)
k = R0 . We estimate

‖τ (r
(l)
k )‖ ≤ 1√

1− ρ
(
δ(R0) + 6ν1ω2‖D−1‖z1(x, 6p∗)R0 + ‖D−1‖z(x, IB(∇2)

)
r
(l)
k ,

such that by definition

2
√

2(1 +
√
ρ)

k−1∑
r=0

ρr‖τ (r
(l)
k−r)‖ ≤ κ(x,R0)

k−1∑
r=0

ρrr
(l)
k−r.

Plugging in the recursive formula for r(l)k from (6.1) and denoting R̃0
def
= R0 + r0 we find

r
(l)
k ≤ κ(x,R0)

k−1∑
r=0

ρrr
(l−1)
k−r + 2

√
2ρkR̃0

≤ κ(x,R0)
k−1∑
r=0

ρr

(
κ(x,R0)

k−r−1∑
s=0

ρsr
(l−2)
k−r−s + 2ρk−rR̃0

)
+ 2
√

2R̃0ρ
k

≤ κ(x,R0)
2

k−1∑
r=0

ρr
k−r−1∑
s=0

ρsr
(l−2)
k−r−s + 2

√
2ρkR̃0 (κ(x,R0)k + 1)

≤ κ(x,R0)
2

k−1∑
r=0

ρr
k−r−1∑
s=0

ρs

(
κ(x,R0)

k−r−s−1∑
t=0

ρtr
(l−3)
k−r−s−t + 2ρk−r−sR̃0

)
+2
√

2ρkR̃0 (κ(x,R0)k + 1)

≤ κ(x,R0)
3

k−1∑
r=0

ρr
k−r−1∑
s=0

ρsr
(l−3)
k−r−s + 2

√
2ρkR̃0

(
κ(x,R0)

2k2 + κ(x,R0)k + 1
)
.
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By induction this gives for l ∈ N

r
(l)
k ≤ κ(x,R0)

l

k−1∑
r1=0

ρr1
k−r1−1∑
r2=0

ρr2 . . .

k−
∑l−1

s=1 rs−1∑
rl=0

ρrlR̃0

+2
√

2ρkR̃0

l−1∑
s=0

κ(x,R0)
sks

≤

((
κ(x,R0)

1− ρ

)l
+ 2
√

2ρk
l−1∑
s=0

(κ(x,R0)k)s
)

R̃0

≤


((

κ(x,R0)
1−ρ

)l
+ 2
√

2ρk 1
1−κ(x,R0)k

)
R̃0, κ(x,R0)k ≤ 1,

κ(x,R0)
l

((
1

1−ρ

)l
+ 2
√

2ρk kl

κ(x,R0)k−1

)
R̃0, otherwise.

By Lemma 6.2

Ω(x) ⊂
⋂
k∈N0

⋂
l∈N

{
υ̃k,k(+1) ∈ Υ̃◦

(
r
(l)
k

)}
.

Set if κ(x,R0)/(1− ρ) < 1

l(k)
def
=

{
∞, κ(x,R0)k ≤ 1,
k log(ρ)+log(2

√
2)−log(κ(x,R0)k−1)

− log(1−ρ)−log(k) , otherwise.

Then with r∗k
def
= r

(bl(k)c)
k we get

Ω(x) ⊂
⋂
k∈N0

{
υ̃k,k(+1) ∈ Υ̃◦

(
r∗k
)}

, r∗k ≤


ρk2
√
2

1−κ(x,R0)k
R̃0, κ(x,R0)k ≤ 1,

2
(

κ(x,R0)
1−ρ

) k
log(k)

L(k)−1
R̃0, otherwise,

as claimed.

7 Deviation bounds for quadratic forms

This section is the same as Section A of [2]. The following general result from [14] helps to
control the deviation for quadratic forms of type ‖IBξ‖2 for a given positive matrix IB and a
random vector ξ . It will be used several times in our proofs. Suppose that

log IE exp
(
γ>ξ

)
≤ ‖γ‖2/2, γ ∈ IRp, ‖γ‖ ≤ g.

For a symmetric matrix IB , define

p = tr(IB2), v2 = 2 tr(IB4), λ∗
def
= ‖IB2‖∞

def
= λmax(IB

2).
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For ease of presentation, suppose that g2 ≥ 2pIB . The other case only changes the constants
in the inequalities. Note that ‖ξ‖2 = η>IB η . Define µc = 2/3 and

gc
def
=
√
g2 − µcpIB,

2(xc + 2)
def
= (g2/µc − pIB)/λ∗ + log det

(
IIp − µcIB/λ∗

)
.

Proposition 7.1. Let (ED0) hold with ν0 = 1 and g2 ≥ 2pIB . Then for each x > 0

IP
(
‖IBξ‖ ≥ z(x, IB)

)
≤ 2e−x,

where z(x, IB) is defined by

z2(IB, x)
def
=


pIB + 2vIB(x + 1)1/2, x + 1 ≤ vIB/(18λ∗),

pIB + 6λ∗(x + 1), vIB/(18λ∗) < x + 1 ≤ xc + 2,∣∣yc + 2λ∗(x− xc + 1)/gc
∣∣2, x > xc + 1,

with y2c ≤ pIB + 6λ∗(xc + 2) .

8 A uniform bound for the norm of a random process

We want to derive for a random process Y̆(υ) ∈ IRp a bound of the kind

IP

(
sup
r≤r∗

sup
υ∈Υ◦(r)

{
1

ω
‖Y̆(υ)‖ − 2r2

}
≥ CzQ(x, p∗)

)
≤ e−x.

This is a slightly stronger result than the one derived in Section D of [2] but the ideas employed
here are very similar.

We want to apply Corollary 2.5 of the supplement of [14] which we cite here as a Theorem. Note
that we slightly generalized the formulation of the theorem, to make it applicable in out setting.
The proof remains the same.

Theorem 8.1. Let (U(r))0≤r≤r∗ ⊂ IRp be a sequence of balls around υ∗ induced by the
metric d(·, ·) . Let a random real valued process U(r,υ) fulfill for any 0 ≤ r ≤ r∗ that
U(r,υ∗) = 0 and

(Ed) For any υ,υ◦ ∈ U(r)

log IE exp

{
λ
U(r,υ)− U(r,υ◦)

d(υ,υ◦)

}
≤ ν20λ

2

2
, |λ| ≤ g. (8.1)

Finally assume that supυ∈U(r)(U(r,υ)) increases in r . Then with probability greater 1−e−x

sup
υ∈U(r)

{
1

3ν1
U(r,υ)− d(υ,υ∗)2

}
≤ zQ(x, p∗)2,
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where zQ(x, p∗)
def
= Q(U(r∗)) denotes the entropy of the set U(r∗) ⊂ IRp and where with

g0 = ν0g and for some Q > 0

zQ(x,Q)2
def
=

{
(1 +

√
x + Q)2 if 1 +

√
x + Q ≤ g0,

1 + {2g−10 (x + Q) + g0}2 otherwise.
(8.2)

To use this result let Y̆(υ) be a smooth centered random vector process with values in IRp and
let D : IRp∗ → IRp∗ be some linear operator. We aim at bounding the maximum of the norm

‖Y̆(υ)‖ over a vicinity Υ◦(r)
def
= {‖D(υ−υ∗)‖ ≤ r} of υ∗ . Suppose that Y̆(υ) satisfies for

each 0 < r < r∗ and for all pairs υ,υ◦ ∈ Υ◦(r) =
{
υ ∈ Υ : ‖D(υ − υ∗)‖ ≤ r

}
⊂ IRp∗

sup
‖u‖≤1

log IE exp

{
λ
u>
(
Y̆(υ)− Y̆(υ◦)

)
ω‖D(υ − υ◦)‖

}
≤ ν20λ

2

2
. (8.3)

Remark 8.1. In the setting of Theorem 2.2 we have

Y̆(υ) = D̆−1
(
∇̆ζ(υ)− ∇̆ζ(υ∗)

)
,

and condition (8.3) becomes (ED1) from 2.1.

Theorem 8.2. Let a random p -vector process Y̆(υ) fulfill Y̆(υ∗) = 0 and let condition (8.3)
be satisfied. Then for each 0 ≤ r ≤ r∗ , on a set of probability greater 1− e−x

sup
r≤r∗

sup
υ∈Υ◦(r)

{
1

6ων1
‖Y̆(υ)‖ − 2r2

}
≤ zQ(x, 2p∗ + 2p)2,

with g0 = ν0g .

Remark 8.2. Note that the entropy of the original set Υ◦(r) ⊂ IRp∗ is equal to 2p∗ . So in
order to control the norm ‖Y̆(υ)‖ one only pays with the additional sumand 2p .

Proof. In what follows, we use the representation

‖Y̆(υ)‖ = ω sup
‖u‖≤‖D(υ−υ∗)‖

1

ω‖D(υ − υ∗)‖
u>Y̆(υ).

This implies

sup
υ∈Υ◦(r)

‖Y̆(υ)‖ = ω sup
υ∈Υ◦(r)

sup
‖u‖≤‖D(υ−υ∗)‖

1

ω‖D(υ − υ∗)‖
u>Y̆(υ).

Due to Lemma 8.3 the process U(r,υ,u)
def
= 1

ω‖D(υ−υ∗)‖u
>Y̆(υ) satisfies condition (Ed)

(see (8.1)) as process on U(r∗) where

U(r)
def
= Υ◦(r)×Br(0). (8.4)
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Further sup(υ,u)∈U(r) U(r,υ,u) is increasing in r . This allows to apply Theorem 8.2 to obtain
the desired result. Set d((υ,u), (υ◦,u◦))2 = ‖D(υ−υ∗)‖2 + ‖u−u◦‖2 . We get on a set
of probability greater 1− e−x

sup
(υ,u)∈U(r∗)

{
1

6ων1‖D(υ − υ∗)‖
u>Y̆(υ)− ‖D(υ − υ∗)‖2 − ‖u‖2

}
≤ zQ

(
x,Q

(
U(r∗)

))
.

The constant Q
(
U(r∗)

)
> 0 quantifies the complexity of the set U(r∗) ⊂ IRp∗ × IRp . We

point out that for compact M ⊂ IRp∗ we have Q(M) = 2p∗ (see Supplement of [14], Lemma
2.10). This gives Q

(
U
)

= 2p∗ + 2p . Finally observe that

sup
r≤r∗

sup
υ∈Υ◦(r)

{
1

6ων1
‖Y̆(υ)‖ − 2r2

}
≤ sup

r≤r∗
sup

(υ,u)∈U(r)

{
1

6ων1‖D(υ − υ∗)‖
u>Y̆(υ)− ‖D(υ − υ∗)‖2 − ‖u‖2

}
= sup

(υ,u)∈U(r∗)

{
1

6ων1‖D(υ − υ∗)‖
u>Y̆(υ)− ‖D(υ − υ∗)‖2 − ‖u‖2

}
.

Lemma 8.3. Suppose that Y̆(υ) satisfies for each ‖u‖ ≤ 1 and |λ| ≤ g the inequality
(8.3). Then the process U(υ,u) = 1

2ω‖D(υ−υ∗)‖ Y̆(υ)>u1 satisfies (Ed) from (8.1) with

|λ| ≤ g/2 , d((υ,u), (υ◦,u◦))2 = ‖D(υ−υ∗)‖2+‖u−u◦‖2 , ν = 2ν0 and U ⊂ IRp∗+p

defined in (8.4), i.e. for any (υ,u1), (υ
◦,u2) ∈ U

log IE exp

{
λ
U(υ,u1)− U(υ◦,u2)

d((υ,u1), (υ◦,u2))

}
≤ ν20λ

2

2
, |λ| ≤ g/2.

Proof. Let (υ,u1), (υ
◦,u2) ∈ U and w.l.o.g. u1 ≤ ‖D(υ − υ∗)‖ ≤ ‖D(υ◦ − υ∗)‖ . By
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the Hölder inequality and (8.3), we find

log IE exp

{
λ
U(υ,u1)− U(υ,u2)

d((υ,u1), (υ◦,u2))

}
= log IE exp

{
λ
U(υ,u1)− U(υ◦,u1) + U(υ◦,u1)− U(υ◦,u2)

d((υ,u1), (υ◦,u2))

}

≤ 1

2
log IE exp

{
2λ
u>1
(

1
‖D(υ−υ∗)‖ Y̆(υ)− 1

‖D(υ◦−υ∗)‖ Y̆(υ◦)
)

ω‖D(υ − υ◦)‖

}

+
1

2
log IE exp

{
2λ

(u>1 − u>2 )Y̆(υ◦)

ω‖u1 − u2‖‖D(υ − υ∗)‖

}

≤ sup
‖u‖≤1

1

2
log IE exp

{
2λ
u>
(
Y̆(υ)− Y̆(υ◦)

)
ω‖D(υ − υ◦)‖

}

+ sup
‖u‖≤1

1

2
log IE exp

{
2λ
u>
(
Y̆(υ◦)− Y̆(υ∗)

)
ω‖D(υ − υ∗)‖

}

≤ 4ν20λ
2

2
, λ ≤ g/2.

9 A bound for the sprectal norm of a random matrix process

We want to derive for a random process Y̆(υ) ∈ IRp∗×p∗ a bound of the kind

IP

(
sup

υ∈Υ◦(r)

{
‖Y̆(υ)‖

}
≥ Cω2z1(x, p

∗)r

)
≤ e−x.

We derive such a bound in a very similar manner to Theorem E.1 of [2].

We want to apply Corollary 2.2 of the supplement of [14]. Again we slightly generalized the
formulation but the proof remains the same.

Corollary 9.1. Let (U(r))0≤r≤r∗ ⊂ IRp be a sequence of balls around υ∗ induced by the
metric d(·, ·) . Let a random real valued process U(υ) fulfill that U(υ∗) = 0 and

(Ed) For any υ,υ◦ ∈ U(r)

log IE exp

{
λ
U(υ)− U(υ◦)

d(υ,υ◦)

}
≤ ν20λ

2

2
, |λ| ≤ g. (9.1)

Then for each 0 ≤ r ≤ r∗ , on a set of probability greater 1− e−x

sup
υ∈U(r)

U(υ) ≤ 3ν1z1(x, p
∗)2d(υ,υ∗),
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where z1(x, p
∗)

def
= Q(U(r∗)) denotes the entropy of the set U(r∗) ⊂ IRp and where with

g0 = ν0g and for some Q > 0

z1(x,Q)
def
=

{√
2(x + Q) if

√
2(x + Q) ≤ g0,

g−10 (x + Q) + g0/2 otherwise.

To use this result let Y(υ) be a smooth centered random process with values in IRp∗×p∗

and let D : IRp∗ → IRp∗ be some linear operator. We aim at bounding the maximum of the

spectral norm ‖Y(υ)‖ over a vicinity Υ◦(r)
def
= {‖υ − υ∗‖Y ≤ r} of υ∗ . Suppose that

Y(υ) satisfies Y(υ∗) = 0 and for each 0 < r < r∗ and for all pairs υ,υ◦ ∈ Υ◦(r) ={
υ ∈ Υ : ‖υ − υ∗‖Y ≤ r

}
⊂ IRp∗

sup
‖u1‖≤1

sup
‖u2‖≤1

log IE exp

{
λ
u>1
(
Y(υ)− Y(υ◦)

)
u2

ω2‖D(υ − υ◦)‖

}
≤ ν22λ

2

2
. (9.2)

Remark 9.1. In the setting of Theorem 2.4 we have ‖υ − υ◦‖Y = ‖D(υ − υ◦)‖ and

Y(υ) = D−1∇2ζ(υ)−D−1∇2ζ(υ∗),

and condition (9.2) becomes (ED2) from 2.1.

Theorem 9.2. Let a random process Y(υ) ∈ IRp∗×p∗ fulfill Y(υ∗) = 0 and let condition (9.2)
be satisfied. Then for each 0 ≤ r ≤ r∗ , on a set of probability greater 1− e−x

sup
υ∈Υ◦(r)

‖Y(υ)‖ ≤ 9ω2ν2z1(x, 6p
∗)r,

with g0 = ν0g .

Remark 9.2. Note that the entropy of the original set Υ◦(r) ⊂ IRp∗ is multiplied by 3. So in
order to control the spectral norm ‖Y(υ)‖ one only pays with this factor.

Proof. In what follows, we use the representation

‖Y(υ)‖ = ω2 sup
‖u2‖≤r

sup
‖u2‖≤r

1

ω2r2
u>1 Y̆(υ)u2.

This implies

sup
υ∈Υ◦(r)

‖Y(υ)‖ = ω sup
υ∈Υ◦(r)

sup
‖u2‖≤r

sup
‖u2‖≤r

1

ωr2
u>1 Y̆(υ)u2.

Due to Lemma 9.3 the process U(υ)
def
= 1

ωr2
u>1 Y(υ)u2 satisfies condition (Ed) (see (9.1))

as process on

U(r)
def
= Υ◦(r)×Br(0)×Br(0) ⊂ IR3p∗ . (9.3)
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This allows to apply Corollary 9.1 to obtain the desired result. We get on a set of probability
greater 1− e−x

sup
υ∈Υ◦(r)

‖Y(υ)‖ ≤ sup
(υ,u1,u2)∈U(r)

{
1

r2
u>1 Y(υ)u2

}
≤ 9ω2ν2z1

(
x,Q

(
U(r∗)

))
r.

The constant Q
(
U(r)

)
> 0 quantifies the complexity of the set U(r) ⊂ IR3p∗ . We point out

that for compact M ⊂ IR3p∗ we have Q(M) = 6p∗ (see Supplement of [14], Lemma 2.10).
This gives the claim.

Lemma 9.3. Suppose that Y(υ) ∈ IRp∗×p∗ satisfies Y(υ∗) = 0 and for each ‖u1‖ ≤ 1 ,
‖u2‖ ≤ 1 and |λ| ≤ g the inequality (9.2). Then the process

U(υ,u1,u2) =
1

2ω2r2
u>1 Y(υ)>u2

satisfies (Ed) from (9.1) with U ⊂ IR3p∗ defined in (9.3), with |λ| ≤ g/3 and with

d((υ,u), (υ◦,u◦))2 = ‖D(υ − υ∗)‖2 + ‖u1 − u◦1‖2 + ‖u2 − u◦2‖2,

i.e. for any (υ,u1,u2), (υ
◦,u◦1,u

◦
2) ∈ U

log IE exp

{
λ
U(υ,u1,u2)− U(υ◦,u◦1,u

◦
2)

d((υ,u1,υ2), (υ◦,u◦1,u
◦
2))

}
≤ 9ν22λ

2

2
, |λ| ≤ g/3.
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Proof. Let (υ,u1,u2), (υ
◦,u◦1,u

◦
2) ∈ U . By the Hölder inequality and (9.2), we find

log IE exp

{
λ
U(υ,u1,u2)− U(υ◦,u◦1,u

◦
2)

d((υ,u1, u2), (υ◦,u◦1,u
◦
2))

}
= log IE exp

{
λ

(
U(υ,u1,u2)− U(υ◦,u1,u2)

d((υ,u1, u2), (υ◦,u◦1,u
◦
2))

+
U(υ◦,u1,u2)− U(υ◦,u◦1,u2)

d((υ,u1,υ2), (υ◦,u◦1,u
◦
2))

+
U(υ◦,u◦1,u2)− U(υ◦,u◦1,u

◦
2)

d((υ,u1, u2), (υ◦,u◦1,u
◦
2))

)}

≤ 1

3
log IE exp

{
3λ
u>1
(

1
r2
Y̆(υ)− 1

r2
Y̆(υ◦)

)
u2

ω2‖D(υ − υ◦)‖

}
+

1

3
log IE exp

{
3λ

(u1 − u◦1)>)Y(υ◦)u2

ω2‖u1 − u2‖r2

}
+

1

3
log IE exp

{
3λ

(u◦1)
>)Y(υ◦)(u2 − u◦2)
ω2‖u1 − u2‖r2

}
≤ 1

3
sup
‖u1‖≤1

sup
‖u2‖≤1

log IE exp

{
3λ
u>1
(
Y(υ)− Y(υ◦)

)
u2

ω2‖D(υ − υ◦)‖

}

+
2

3
sup
‖u1‖≤1

sup
‖u2‖≤1

log IE exp

{
3λ
u>1
(
Y(υ◦)− Y(υ∗)

)
u2

ω2‖D(υ − υ∗)‖

}

≤ 9ν22λ
2

2
, λ ≤ g/3.
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