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Abstract

In this paper, we consider a coupled PDE system describing phase separation and damage phenomena
in elastically stressed alloys in the presence of inertial e�ects. The material is considered on a bounded
Lipschitz domain with mixed boundary conditions for the displacement variable. The main aim of this
work is to establish existence of weak solutions for the introduced hyperbolic-parabolic system. To this
end, we �rst adopt the notion of weak solutions introduced in [HK11]. Then we prove existence of weak
solutions by means of regularization, time-discretization and di�erent variational techniques.

1 Introduction

In micro-electronic materials such as solder alloys, di�erent physical processes are shaping the micro-
structure. For a realistic description of these structures, phase separation, coarsening and elasticity as well
as damage phenomena have to be taken into account. A fully coupled system has been originally studied
in [HK11] and further developed in [HK13b] allowing, for instance, inhomogeneous elastic energy densities.
The corresponding degenerating case has been analyzed in [HK12]. To the authors' best knowledge, before
these works, phase separation and damage processes have only been investigated independently of each other
in the mathematical literature.

Phase separation and coarsening phenomena are usually described by phase��eld models of Cahn�Hilliard
type. The evolution is modeled by a parabolic di�usion equation for the phase fractions. To include
elastic e�ects, resulting from stresses caused by di�erent elastic properties of the phases, Cahn-Hilliard
systems are coupled with an elliptic equation in the case of a quasi-static balance of forces. Such coupled
Cahn-Hilliard systems with elasticity are also called Cahn-Larché systems. Since in general the mobility,
sti�ness and surface tension coe�cients depend on the phases (see for instance [BDM07] and [BDDM07] for
the explicit structure deduced by the embedded atom method), the mathematical analysis of the coupled
problem is very complex. Existence results were derived for special cases in [CMP00, Gar00, BP05] (constant
mobility, sti�ness and surface tension coe�cients), in [BCD+02] (concentration dependent mobility, two space
dimensions), [SP13b, SP13a] (concentration dependent surface tension and nonlinear di�usion) and in [PZ08]
in an abstract measure-valued setting (concentration dependent mobility and surface tension tensors).

Damage behavior, however, originates from breaking atomic links in the material from a microscopic point
of view whereas a macroscopic theory may specify damage in the isotropic case by a scalar-valued variable
related to the proportion of damaged bonds in the micro-structure of the material with respect to the
undamaged ones. According to the latter perspective, phase-�eld models are quite common to model smooth
transitions between damaged and undamaged material states. Such phase-�eld models have been mainly
investigated for incomplete damage which means that damaged material cannot loose all its elastic energy.

Existence and uniqueness results for damage models of viscoelastic materials are proven in [BSS05] for
scalar-valued displacements. Higher dimensional damage models are analytically investigated in [BS04,
MR06, MT10, KRZ13, RR12] and, there, existence and regularity properties are shown. A coupled system
describing incomplete damage, linear elasticity and phase separation appeared in [HK11, HK13b]. There,
existence of weak solutions has been proven under mild assumptions, where, for instance, the sti�ness tensor
may be material-dependent and the chemical free energy may be of polynomial or logarithmic type. All
these works are based on the gradient-of-damage model proposed by Frémond and Nedjar [FN96] (see also
[Fré02]) which describes damage as a result from microscopic movements in the solid. The distinction
between a balance law for the microscopic forces and constitutive relations of the material yield a satisfying
derivation of an evolution law for the damage propagation from the physical point of view. In particular,
the gradient of the damage variable enters the resulting equation and serves as a regularization term for the
mathematical analysis as well as it ensures the structural size e�ect. Internal constraints are ensured by
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the presence of non-smooth operators (subdi�erential operators) in the evolution system. Hence, in the case
that the evolution of the damage is assumed to be uni-directional, i.e. the damage process is irreversible,
the microforce balance law becomes a doubly-nonlinear di�erential inclusion.

The main aim of this paper is to generalize the results for hyperbolic-parabolic damage systems introduced
in [HK13a] to coupled phase-�eld systems describing phase separation and damage processes in the presence
of inertial terms with mixed boundary conditions on non-smooth (Lipschitz) domains. The novelty of this
contribution is to obtain existence results for phase separation with elasticity including inertial e�ects and
damage processes on Lipschitz domains. We �rst utilize and adjust the notion of weak solutions introduced
in [HK11]. Then, we prove existence of weak solutions by means of regularization, time-discretization and
di�erent variational techniques. To this end, an energy estimate has, for instance, to be established and
several convergence properties are shown.

1.1 Energies and evolutionary equations

Here, we qualify our model formally and postpone a rigorous treatment to Section 4. The presented model
is based on two functionals, i.e. a generalized Ginzburg-Landau free energy functional E and a damage
pseudo-dissipation potential R (in the sense by Moreau). The free energy density ϕ of the system is given
by

ϕ(ε(u), c,∇c, z,∇z) :=
1
p
|∇z|p +

1
2
|∇c|2 +W (c, ε(u), z) + f(z) + Ψ(c), (1)

where the gradient terms penalize spatial changes of the variables c and z. W denotes the elastically stored
energy density accounting for elastic deformations and damage e�ects, f is the damage dependent potential
and Ψ stands for the chemical energy density.

The overall free energy E of Ginzburg-Landau type has the following structure:

E(u, c, z) :=
∫

Ω

(
ϕ(ε(u), c,∇c, z,∇z) + I[0,∞)(z)

)
dx. (2)

In this context, I[0,∞) signi�es the indicator function of the subset [0,∞) ⊆ R, i.e. I[0,∞)(x) = 0 for x ∈ [0,∞)
and I[0,∞)(x) =∞ for x < 0. We assume that the energy dissipation for the damage process is triggered by
a rate-dependent dissipation potential R of the form

R(ż) :=
∫

Ω

(1
2
|ż|2 + I(−∞,0](ż)

)
dx. (3)

The governing evolutionary equations for a system state q = (u, c, z) can be expressed by virtue of the
functionals (2) and (3). More precisely, the evolution is driven by the following hyperbolic-parabolic system
of di�erential equations and di�erential inclusions:

di�usion: ct = div(m(c, z)∇µ), (4a)

µ = −∆c+W,c(c, ε(u), z) + Ψ′(c), (4b)

balance of forces: utt − div (W,e(c, ε(u), z)) = l, (4c)

damage evolution: 0 ∈ ∂zE(u, c, z) + ∂żR(∂tz) or equivalently (4d)

zt = −∆pz +W,z(c, ε(u), z) + f ′(z) + ξ + ϕ = 0, (4e)

ξ ∈ ∂I[0,∞)(z), (4f)

ϕ ∈ ∂I(−∞,0](zt). (4g)

The Cahn-Hilliard system (4a)-(4b) describes phase separation phenomena in alloys, the hyperbolic equation
(4c) formulates the balance of forces including inertial e�ects and the inclusion (4d)-(4g) is an evolution law
for the damage processes. The sub-gradients correspond to the constraints that the damage is non-negative
and irreversible. Let us note that linear contributions in f model damage activation thresholds.
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We choose Dirichlet conditions for the displacements u on a subset Γ of the boundary ∂Ω with Hn−1(Γ) > 0.
Let b : [0, T ]×Γ→ Rn be a function which prescribes the displacements on Γ for a �xed chosen time interval
[0, T ]. The imposed boundary and initial conditions and constraints are as follows:

boundary displacements : u = b on ΓD × (0, T ), (5a)

initial concentration : c(0) = c0 in Ω, (5b)

initial displacements : u(0) = u0, ut(0) = v0 in Ω, (5c)

initial damage : z(0) = z0 in Ω. (5d)

Moreover, we use natural boundary conditions for the remaining variables on (parts of) the boundary:

W,e(c, ε(u), z) · ν = 0 on ΓN × (0, T ), (6a)

∇c · ν = ∇z · ν = m(c, z)∇µ · ν = 0 on ∂Ω, (6b)

(6c)

where ν stands for the outer unit normal to ∂Ω.

We like to mention that mass conservation of the system follows from the di�usion equation (4a) and (6b),
i.e. ∫

Ω

c(t)− c0 dx = 0 for all t ∈ [0, T ].

In the next section, we state the precise assumptions that are needed for a rigorous analysis. Section 3
presents the main results. We give a notion of weak solutions evolved from [HK13a] and state the existence
theorem in Subsection 3.1. Since the proof is based on regularization techniques, we also give the weak
notion and the associated existence result for the regularized system in Subsection 3.2. In the main part,
Section 4, the existence proof is carried out �rst for the regularized case and then for the limiting case.

2 Notation and assumptions

Throughout this work, let p > n be a constant and let Ω ⊆ Rn (n = 1, 2, 3) be a bounded Lipschitz domain.
For the Dirichlet boundary ΓD and the Neumann boundary ΓN of ∂Ω, we adopt the assumptions from
[Ber11], i.e., ΓD and ΓN are non-empty and relatively open sets in ∂Ω with �nitely many path-connected
components such that ΓD ∩ ΓN = ∅ and ΓD ∪ ΓN = ∂Ω.

The considered time interval is denoted by [0, T ] and Ωt := Ω× [0, t] for t ∈ [0, T ]. The partial derivative of
a function h with respect to a variable s is abbreviated by h,s. The set {v > 0} for a function v ∈ W 1,p(Ω)
has to be read as {x ∈ Ω | v(x) > 0} by employing the embedding W 1,p(Ω) ↪→ C(Ω) (because p > n).

The elastic energy density W is assumed to be of the form

W (c, e, z) =
1
2
C(z)(e− e∗(c)) : (e− e∗(c)), (7)

where e∗ denotes the eigenstrain and C the material sti�ness tensor which depends on the damage variable.
For e∗, we assume the linear relation e∗(c) = c ê with ê ∈ Rn×nsym (Vegard's law). We choose the sti�ness
tensor function C ∈ C1([0, 1];Lsym(Rn×n)), where Lsym(Rn×n) denotes the linear mappings from Rn×n into
Rn×n which are symmetric. We also assume the properties

C(z)e : e ≥ η|e|2, C′(z)e : e ≥ 0 (8)

for all e ∈ Rn×nsym , z ∈ [0, 1] and a constant η > 0 independent of e and z.

Furthermore, we choose the mobility m ∈ C(R × [0, 1]; R+) and suppose that the chemical energy density
Ψ ∈ C1(R) can be decomposed into

Ψ(c) = Ψ1(c) + Ψ2(c) for c ∈ R,
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where Ψ1,Ψ2 ∈ C1(R) with Ψ1 convex and Ψ1 ≥ 0.

In addition, we assume the following growth conditions:

|Ψ′(c)| ≤ C(1 + |c|2
?/2), (9a)

|Ψ′2(c)| ≤ C(|c|+ 1) (9b)

for all c ∈ R. Moreover, the mobility function should satisfy

C1 ≤ m(c, z) ≤ C2 (10)

for all c ∈ R, z ∈ [0, 1]. Here, C1, C2 > 0 denote constants independent of c and z, and 2? is the Sobolev
critical exponent.

The damage dependent potential f entering equation (4d) is assumed to be a function of C1([0, 1]; R+).

3 Main results

3.1 Notion of weak solutions and existence results

In what follows we de�ne for k ≥ 1 the spaces

W k,p
+ (Ω) :=

{
u ∈W k,p(Ω) |u ≥ 0 a.e. in Ω

}
,

W k,p
− (Ω) :=

{
u ∈W k,p(Ω) |u ≤ 0 a.e. in Ω

}
,

Hk
ΓD

(Ω) :=
{
u ∈ Hk(Ω) |u = 0 on ΓD in the sense of traces

}
.

Let the following initial-boundary data and volume forces be given:

boundary data: b ∈ H1(0, T ;H2(Ω; Rn) ∩W 2,1(0, T ;L2(Ω; Rn)),

initial values: c0 ∈ H1(Ω), u0 ∈ H1(Ω; Rn), v0 ∈ L2(Ω; Rn),

z0 ∈W 1,p(Ω) with 0 ≤ z0 ≤ 1 a.e. in Ω,

external volume forces: l ∈ L2(0, T ;L2(Ω; Rn)).

A weak formulation of system (4)-(6) is given in the following de�nition.

De�nition 3.1 (Weak solution) A weak solution of the PDE system (4)-(6) for the data (l, b, c0, u0, v0, z0)
is a 5-tuple (c, u, z, µ, ξ) satisfying the following properties:

� spaces:

c ∈ L∞(0, T ;H1(Ω)) ∩H1(0, T ; (H1(Ω))∗),

u ∈ L∞(0, T ;H1(Ω; Rn)) ∩W 1,∞(0, T ;L2(Ω; Rn)) ∩H2(0, T ; (H1
ΓD

(Ω; Rn))∗)

with u = b on ΓD × (0, T ), u(0) = u0 a.e. in Ω, ∂tu(0) = v0 a.e. in Ω,

z ∈ L∞(0, T ;W 1,p(Ω)) ∩H1(0, T ;L2(Ω))

with z(0) = z0 in Ω, z ≥ 0 a.e. in ΩT , ∂tz ≤ 0 a.e. in ΩT ,

µ ∈ L2(0, T ;H1(Ω)),

ξ ∈ L∞(0, T ;L1(Ω)).

� for all ζ ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω)) with ζ(T ) = 0:∫
ΩT

(c− c0)∂tζ dx dt =
∫

ΩT

m(c, z)∇µ · ∇ζ dxdt (11)
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� for all ζ ∈ L2(0, T ;H1(Ω)) and for a.e. t ∈ (0, T ):∫
Ω

µ ζ dx =
∫

Ω

(
∇c · ∇ζ +W,c(c, ε(u), z)ζ + Ψ′(c)ζ

)
dx (12)

� for all ζ ∈ H1
ΓD

(Ω; Rn) and for a.e. t ∈ (0, T ):

〈∂ttu, ζ〉H1 +
∫

Ω

W,e(c, ε(u), z) : ε(ζ) dx =
∫

Ω

l · ζ dx (13)

� for all ζ ∈W 1,p
− (Ω) and for a.e. t ∈ (0, T ):

0 ≤
∫

Ω

(
|∇z|p−2∇z · ∇ζ + (W,z(c, ε(u), z) + f ′(z) + ∂tz + ξ)ζ

)
dx (14)

� for all ζ ∈ L∞+ (Ω) and for a.e. t ∈ (0, T ):

0 ≥
∫

Ω

ξ(ζ − z) dx (15)

� total energy inequality for a.e. t ∈ (0, T ):

E(t) +K(t) +D(0, t) ≤ E(0) +K(0) +Wext(0, t) (16)

with

free energy: E(t) :=
∫

Ω

(
1
p
|∇z(t)|p +

1
2
|∇c(t)|2 +W (c(t), ε(u(t)), z(t))

)
dx

+
∫

Ω

(
f(z(t)) + Ψ(c(t))

)
dx,

kinetic energy: K(t) :=
∫

Ω

1
2
|∂tu(t)|2 dx,

dissipation: D(0, t) :=
∫

Ωt

(
|∂tz|2 +m(c, z)|∇µ|2

)
dx ds,

external work: Wext(0, t) :=
∫

Ωt

W,e(c, ε(u), z) : ε(∂tb) dxds

−
∫

Ωt

∂tu · ∂ttbdxds+
∫

Ωt

l · (∂tu− ∂tb) dx ds

−
∫

Ω

v0 · ∂tb0 dx+
∫

Ω

∂tu(t) · ∂tb(t) dx.

Remark 3.2 Let (c, u, z, µ, ξ) be a weak solution. Furthermore, if additionally

c ∈ H1(0, T ;H1(Ω)), u ∈ H1(0, T ;H1(Ω; Rn)), z ∈ H1(0, T ;W 1,p(Ω)),

then for a.e. t ∈ (0, T )

zt −∆pz +W,z(c, ε(u), z) + f ′(z) + ξ + ϕ = 0 in
(
W 1,p(Ω)

)∗
,

ξ ∈ ∂IW 1,p
+ (Ω)(z),

ϕ ∈ ∂IW 1,p
− (Ω)(∂tz).

Moreover, the energy inequality (16) becomes an energy balance.

The main aim of this work is to prove existence of weak solutions in the sense above.

Theorem 3.3 Let the assumptions in Section 2 be satis�ed. To the given data l, b, c0, u0, v0, z0, there
exists a weak solution of system (4)-(6) in the sense of De�nition 3.1.
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3.2 Notion of weak solutions for a regularized system and existence results

We will �rst study a regularized version of our phase separation-damage model. The passage to the limit
is performed in Section 4.2. The regularization is needed in the existence proof in the �rst instance to pass
from the time-discrete to the time-continuous system.

The regularized PDE system for δ > 0 is given by

ct = div(m(c, z)∇µ),
µ = −∆c+W,c(c, ε(u), z) + Ψ′(c) + δct,

utt − div (W,e(c, ε(u), z)) + δAu = l,

zt −∆pz +W,z(c, ε(u), z) + f ′(z) + ξ + ϕ = 0,
ξ ∈ ∂I[0,∞)(z),
ϕ ∈ ∂I(−∞,0](zt),

where the linear operator A : H2(Ω; Rn)→ (H2(Ω; Rn))∗ is de�ned as

〈Au, v〉H2 :=
∫

Ω

〈∇(∇u),∇(∇v)〉Rn×n×n dx :=
∑

1≤i,j,k≤n

∫
Ω

d2uk
dxidxj

d2vk
dxidxj

dx.

A weak formulation of the regularized system such as in De�nition 3.1 can be obtained with the corresponding
modi�cations including the δ-terms.

De�nition 3.4 (Weak solution of the regularized system) A weak solution of the regularized PDE
system for the data (l, b, c0, u0, v0, z0) is a 5-tuple (c, u, z, µ, ξ) satisfying the following properties:

� spaces:

c ∈ L∞(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω)),

with c(0) = c0 a.e. in Ω,

u ∈ L∞(0, T ;H2(Ω; Rn)) ∩W 1,∞(0, T ;L2(Ω; Rn)) ∩H2(0, T ; (H2
ΓD

(Ω; Rn))∗)

with u = b on ΓD × (0, T ), u(0) = u0 a.e. in Ω, ∂tu(0) = v0 a.e. in Ω,

z ∈ L∞(0, T ;W 1,p(Ω)) ∩H1(0, T ;L2(Ω))

with z(0) = z0 in Ω, z ≥ 0 a.e. in ΩT , ∂tz ≤ 0 a.e. in ΩT ,

µ ∈ L2(0, T ;H1(Ω)),

ξ ∈ L∞(0, T ;L1(Ω)).

� for all ζ ∈ H1(Ω) and for a.e. t ∈ (0, T ):∫
ΩT

(∂tc) ζ dxdt = −
∫

ΩT

m(c, z)∇µ · ∇ζ dxdt (17)

� for all ζ ∈ H1(Ω) and for a.e. t ∈ (0, T ):∫
Ω

µ ζ dx =
∫

Ω

(
∇c · ∇ζ +W,c(c, ε(u), z)ζ + Ψ′(c)ζ + δ (∂tc) ζ

)
dx (18)

� for all ζ ∈ H1
ΓD

(Ω; Rn) and for a.e. t ∈ (0, T ):

〈∂ttu, ζ〉H1 +
∫

Ω

W,e(c, ε(u), z) : ε(ζ) dx+ δ〈Au, ζ〉H2 =
∫

Ω

l · ζ dx (19)

� for all ζ ∈W 1,p
− (Ω) and for a.e. t ∈ (0, T ):

0 ≤
∫

Ω

(
|∇z|p−2∇z · ∇ζ + (W,z(c, ε(u), z) + f ′(z) + ∂tz + ξ)ζ

)
dx (20)
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� for all ζ ∈ L∞+ (Ω) and for a.e. t ∈ (0, T ):

0 ≥
∫

Ω

ξ(ζ − z) dx (21)

� total energy inequality for a.e. t ∈ (0, T ):

E(t) +K(t) +D(0, t) ≤ E(0) +K(0) +Wext(0, t) (22)

with

free energy: E(t) :=
∫

Ω

(
1
p
|∇z(t)|p +

1
2
|∇c(t)|2 +W (c(t), ε(u(t)), z(t))

)
dx

+
∫

Ω

(
f(z(t)) + Ψ(c(t))

)
dx+

δ

2
〈Auτ (t), uτ (t)〉H2 ,

kinetic energy: K(t) :=
∫

Ω

1
2
|∂tu(t)|2 dx,

dissipation: D(0, t) :=
∫

Ωt

(
|∂tz|2 + δ|∂tc|2 +m(c, z)|∇µ|2

)
dxds,

external work: Wext(0, t) :=
∫

Ωt

W,e(c, ε(u), z) : ε(∂tb) dxds

+ δ

∫ t

0

〈Au(s), ∂tb(s)〉H2 ds

−
∫

Ωt

∂tu · ∂ttbdxds+
∫

Ωt

l · (∂tu− ∂tb) dx ds

−
∫

Ω

v0 · ∂tb0 dx+
∫

Ω

∂tu(t) · ∂tb(t) dx.

The proof of the main result, see Theorem 3.3, is based on the existence of weak solutions for the regularized
system.

Theorem 3.5 Let the assumptions in Section 2 be satis�ed. To the given data l, b, c0, u0, v0, z0, there
exists a weak solution of the regularized system in the sense of De�nition 3.4.

4 Proof of the existence theorems

4.1 Existence proof for the regularized system

For the existence proof of the regularized system, we will use a semi-implicit Euler scheme solved by a
recursive minimization procedure.

Let τ > 0 denote the discretization �neness and let Mτ := bT/τc be the number of discrete time points. We
�x a k ∈ 1, . . . ,Mτ and de�ne the functional Fkτ : H1(Ω)×H2(Ω; Rn)×W 1,p(Ω)→ R by

Fkτ (c, u, z) :=
∫

Ω

(
1
p
|∇z|p +

1
2
|∇c|2 +W (c, ε(u), z) + f(z) + Ψ(c)− l(kτ) · u

)
dx

+
δ

2
〈Ak−1u, u〉H2 +

τ

2

∥∥∥∥z − zk−1
τ

τ

∥∥∥∥2

L2

+
τ2

2

∥∥∥∥u− 2uk−1
τ + uk−2

τ

τ2

∥∥∥∥2

L2

+
1
2τ

∥∥∥∥c− ck−1
τ

τ

∥∥∥∥2

V0

+
δ

2τ

∥∥∥∥c− ck−1
τ

τ

∥∥∥∥2

L2

,

where V0 = {ζ ∈ (H1(Ω))∗|〈ζ,1〉(H1)∗×H1 = 0}. Note that the inverse operator Ak−1,−1 : V0 → U0 := {ζ ∈
(H1(Ω))|

∫
Ω
ζ dx = 0} of the operator Ak−1 : U0 → V0 given by

u 7→ 〈∇u,m(ck−1
τ , zk−1

τ )∇· 〉L2
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is well de�ned. The space V0 is endowed with the scalar product

〈u, v〉V0 := 〈∇(A−1u),m(ck−1
τ , zk−1

τ )∇(A−1v)〉L2 .

We refer to [Gar00] for details.

A minimizer of Fkτ in the subspace{
c ∈ H1(Ω) |

∫
Ω

(c− c0) dx = 0 dx
}
×
{
u ∈ H2(Ω; Rn) | u|ΓD = b(τk)|ΓD

}
×
{
z ∈W 1,p(Ω) | 0 ≤ z ≤ zk−1

τ

}
(23)

obtained by the direct method in the calculus of variations is denoted by (ckτ , u
k
τ , z

k
τ ). More precisely, by a

recursive minimization procedure starting from the initial values (c0, u0, z0) and u−1 := u0 − τv0, we obtain
functions (ckτ , u

k
τ , z

k
τ ) for k = 0, . . . ,Mτ . The velocity �eld vkτ is set to (ukτ −uk−1

τ )/τ and bkτ and l
k
τ are given

by b(τk) and l(τk).

Let wkτ ∈ {lkτ , bkτ , ckτ , ukτ , vkτ , zkτ , µkτ}, we introduce the piecewise constant interpolations wτ , w−τ and the linear
interpolation ŵτ with respect to time as

wτ (t) := wkτ with k = dt/τe ,
w−τ (t) := wmax{0,k−1}

τ with k = dt/τe ,

ŵτ (t) := βwkτ + (1− β)wmax{0,k−1}
τ with k = dt/τe , β =

t− (k − 1)τ
τ

and the piecewise constant functions tτ and t−τ as

tτ := dt/τe τ = min{kτ | k ∈ N0 and kτ ≥ t},
t−τ := max{0, tτ − τ}.

We would like to remark that, by de�nition, wτ (t) = wτ (tτ ) for all t ∈ [0, T ] and

∂tv̂τ (t) =
ukτ − 2uk−1

τ + uk−2
τ

τ2

for t ∈ dt/τe.

Since the functions (ckτ , u
k
τ , z

k
τ ) are minimizers, we obtain the following necessary conditions (Euler-Lagrange

equations) by direct methods in the calculus of variations, cf. [HK11, HK12, HK13a]:

Lemma 4.1 There exists a time-discrete weak solution in the following sense:

� spaces:

cτ , c
−
τ ∈ L∞(0, T ;H1(Ω)), ĉτ ∈W 1,∞(0, T ;H1(Ω)),

uτ , vτ ∈ L∞(0, T ;H2(Ω; Rn)), ûτ , v̂τ ∈W 1,∞(0, T ;H2(Ω; Rn)),

zτ , z
−
τ ∈ L∞(0, T ;W 1,p(Ω)), ẑτ ∈W 1,∞(0, T ;W 1,p(Ω)),

µτ ∈ L∞(0, T ;H1(Ω)),

with

cτ (0) = c0 a.e. in Ω, uτ (0) = u0 a.e. in Ω, zτ (0) = z0 in Ω, vτ (0) = v0 a.e. in Ω,
uτ = bτ on ΓD × (0, T ), zτ ≥ 0 a.e. in ΩT , ∂tẑτ ≤ 0 a.e. in ΩT ,

� for all ζ ∈ L2(0, T ;H1(Ω)):∫
ΩT

(∂tĉτ )ζ dxdt = −
∫

ΩT

m(c−τ , z
−
τ )∇µτ · ∇ζ dxdt, (24)
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� for all ζ ∈ H1(Ω) and for a.e. t ∈ (0, T ):∫
Ω

µτζ dx =
∫

Ω

(
∇cτ · ∇ζ +W,c(cτ , ε(uτ ), zτ )ζ + Ψ′(cτ )ζ + δ(∂tĉτ )ζ

)
dx, (25)

� for all ζ ∈ H2
ΓD

(Ω; Rn) and for a.e. t ∈ (0, T ):∫
Ω

∂tv̂τ · ζ dx+
∫

Ω

W,e(cτ , ε(uτ ), zτ ) : ε(ζ) dx+ δ〈Auτ , ζ〉H2 =
∫

Ω

lτ · ζ dx, (26)

� for a.e. t ∈ (0, T ) and for all ζ ∈W 1,p(Ω) with 0 ≤ ζ + zτ (t) ≤ z−τ (t):

0 ≤
∫

Ω

(
|∇zτ |p−2∇zτ · ∇ζ + (W,z(cτ , ε(uτ ), zτ ) + f ′(zτ ) + ∂tẑτ )ζ

)
dx. (27)

Lemma 4.2 (A priori estimates) There exists a constant C > 0 independent of δ such that

(i) ‖∇cτ‖L∞(0,T ;L2(Ω;Rn)) < C, ‖∂tĉτ‖L2(0,T ;L2(Ω)) < C,

(ii) ‖uτ‖L∞(0,T ;H2(Ω;Rn)) < C, ‖vτ‖L∞(0,T ;L2(Ω;Rn)) < C,

‖ûτ‖L∞(0,T ;H2(Ω;Rn))∩W 1,∞(0,T ;L2(Ω;Rn)) < C,

‖v̂τ‖L∞(0,T ;L2(Ω;Rn))∩H1(0,T ;(H2
ΓD

(Ω;Rn))∗) < C,

(iii) ‖∇zτ‖L∞(0,T ;Lp(Ω;Rn)) < C, ‖∂tẑτ‖L2(0,T ;L2(Ω)) < C,

(iv) ‖∇µτ‖L2(0,T ;L2(Ω;Rn)) < C, ‖m(c−τ , z
−
τ )1/2∇µτ‖L2(0,T ;L2(Ω;Rn)) < C.

Proof. We split the proof into two steps. We �rst prove the a priori estimates (i), (ii) and (iv) and then we
deduce estimate (iii).
First a priori estimates. Testing (24) with τµτ , testing(25) with cτ−c−τ , testing (26) with uτ−u−τ −(bτ−b−τ ),
and adding everything, yield

T1(t) + T2(t) + T3(t) + T4(t) + T5(t) ≤ 0

with

T1(t) :=
∫

Ω

∇cτ (t) · ∇(cτ (t)− c−τ (t)) dx+
∫

Ω

δ〈∇(∇uτ (t)),∇(∇(uτ (t)− u−τ (t)))〉dx

+
∫

Ω

∂tv̂τ (t) · (uτ (t)− u−τ (t)) dx,

T2(t) := τ

∫
Ω

m(cτ (t), zτ (t))|∇µτ (t)|2 dx+ τ

∫
Ω

δ|∂tĉτ (t)|2 dx,

T3(t) :=
∫

Ω

W,c(cτ (t), ε(uτ (t)), zτ (t))(cτ (t)− c−τ (t)) dx

+
∫

Ω

W,e(cτ (t), ε(uτ (t)), zτ (t)) : ε(uτ (t)− u−τ (t)) dx

T4(t) := τ

∫
Ω

Ψ′(cτ (t))∂tĉτ (t) dx− τ
∫

Ω

lτ (t) · ∂tûτ (t) dx

T5(t) := −τ
∫

Ω

(
∂tv̂τ (t) · ∂tb̂τ (t) +W,e(cτ (t), ε(uτ (t)), zτ (t)) : ε(∂tb̂τ (t))

)
dx,

− τ
∫

Ω

(
δ〈∇(∇uτ (t)),∇(∇(∂tb̂τ (t)))〉Rn×n×n − lτ (t) · ∂tb̂τ (t)

)
dx.

These terms are estimated in the following.
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� Convexity estimates yield

T1(t) ≥ 1
2
‖∇cτ (t)‖2L2(Ω) −

1
2
‖∇c−τ (t)‖2L2(Ω)

+
δ

2
‖∇(∇uτ (t))‖2L2(Ω;Rn×n×n) −

δ

2
‖∇(∇u−τ (t))‖2L2(Ω;Rn×n×n)

+
1
2
‖vτ (t)‖2L2(Ω;Rn) −

1
2
‖v−τ (t)‖2L2(Ω;Rn).

� We obtain for small η > 0:

T2(t) ≥ η
∫ tτ

t−τ

(
‖∇µτ (s)‖2L2(Ω;Rn) + δ‖∂tĉτ (s)‖2L2(Ω)

)
ds.

� By the convexity argument and by zτ ≤ z−τ , we gain

W,e(cτ (t), ε(uτ (t)), zτ (t)) : ε(uτ (t)− u−τ (t))

≥W (cτ (t), ε(uτ (t)), zτ (t))−W (cτ (t), ε(u−τ (t)), zτ (t))

≥W (cτ (t), ε(uτ (t)), zτ (t))−W (c−τ (t), ε(u−τ (t)), z−τ (t))

+
∫ tτ

t−τ

W,c(ĉτ (s), ε(u−τ (s)), zτ (s))∂tĉτ (s) ds,

and conclude (η > 0 is chosen as small as necessary)

T3(t) ≥
∫

Ω

(
W (cτ (t), ε(uτ (t)), zτ (t))−W (c−τ (t), ε(u−τ (t)), z−τ (t))

)
dx

+
∫ tτ

t−τ

∫
Ω

W,c(cτ (s), ε(uτ (s)), zτ (s))∂tĉτ (s) dxds

+
∫ tτ

t−τ

∫
Ω

W,c(ĉτ (s), ε(u−τ (s)), zτ (s))∂tĉτ (s) dxds

≥
∫

Ω

(
W (cτ (t), ε(uτ (t)), zτ (t))−W (c−τ (t), ε(u−τ (t)), z−τ (t))

)
dx

− Cη
∫ tτ

t−τ

(
‖W,c(cτ (s), ε(uτ (s)), zτ (s))‖2L2(Ω) + ‖W,c(ĉτ (s), ε(u−τ (s)), zτ (s))‖2L2(Ω)

)
ds

− η
∫ tτ

t−τ

‖∂tĉτ (s)‖2L2(Ω) ds

≥
∫

Ω

(
W (cτ (t), ε(uτ (t)), zτ (t))−W (c−τ (t), ε(u−τ (t)), z−τ (t))

)
dx

− Ĉη
∫ tτ

t−τ

(
‖cτ (s)‖2L2(Ω) + ‖c−τ (s)‖2L2(Ω) + ‖ε(uτ (s))‖2L2(Ω) + ‖ε(u−τ (s))‖2L2(Ω)

))
ds

− η
∫ tτ

t−τ

‖∂tĉτ (s)‖2L2(Ω) ds.

� Convexity of Ψ1 combined with growth condition (9b) and Young's inequality show

T4(t) ≥
∫

Ω

Ψ1(cτ (t)) dx−
∫

Ω

Ψ1(c−τ (t)) dx− η
∫ tτ

t−τ

(
‖∂tĉτ (s)‖2L2(Ω) + ‖lτ (s)‖2L2(Ω;Rn)

)
ds

− Cη
∫ tτ

t−τ

(
‖Ψ′2(cτ (s))‖2L2(Ω) + ‖vτ (s)‖2L2(Ω;Rn)

)
ds

≥
∫

Ω

Ψ1(cτ (t)) dx−
∫

Ω

Ψ1(c−τ (t)) dx− η
∫ tτ

t−τ

(
‖∂tĉτ (s)‖2L2(Ω) + ‖lτ (s)‖2L2(Ω;Rn)

)
ds

− Cη
∫ tτ

t−τ

(
‖cτ (s)‖2L2(Ω) + ‖vτ (s)‖2L2(Ω;Rn)

)
ds.
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� By using the discrete integration by parts formula, i.e.,∫ tτ

t−τ

∫
Ω

∂tv̂τ · ∂tb̂τ dxds =
∫

Ω

vτ (t) · ∂tb̂τ (t) dx−
∫

Ω

v−τ (t) · ∂tb̂τ (t− τ) dx

−
∫ tτ

t−τ

∫
Ω

v−τ (s) · ∂tb̂τ (s)− ∂tb̂τ (s− τ)
τ

dx ds, (28)

we obtain

T5(t) ≥ −
∫

Ω

vτ (t) · ∂tb̂τ (t) dx+
∫

Ω

v−τ (t) · ∂tb̂τ (t− τ) dx

−
∫ tτ

t−τ

(
η‖v−τ (s)‖2L2(Ω) + Cη

∥∥∥∂tb̂τ (s)− ∂tb̂τ (s− τ)
τ

∥∥∥2

L2(Ω)

)
ds

−
∫ tτ

t−τ

(
η‖cτ (s)‖2L2(Ω) + η‖ε(uτ (s))‖2L2(Ω;Rn×n) + Cη‖ε(∂tb̂τ (s))‖2L2(Ω;Rn×n)

)
ds

−
∫ tτ

t−τ

(
η‖∇(∇uτ (s))‖2L2(Ω;Rn×n×n) + Cη‖∇(∇∂tb̂τ (s))‖2L2(Ω;Rn×n×n)

)
ds

−
∫ tτ

t−τ

(
η‖lτ (s)‖2L2(Ω;Rn) + Cη‖∂tb̂τ (s)‖2L2(Ω;Rn)

)
ds.

Summing over the discrete time points tτ = 0, τ, . . . , kτ for an arbitrary but �xed chosen k ∈ N, we can
apply Gronwall's inequality and obtain the following boundedness properties:

‖∇cτ‖L∞(0,T ;L2(Ω;Rn)) < C, (29)

‖∂tĉτ‖L2(0,T ;L2(Ω)) < C, (30)

‖∇(∇uτ )‖L∞(0,T ;L2(Ω;Rn×n×n)) < C, (31)

‖ε(uτ )‖L∞(0,T ;L2(Ω;Rn×n)) < C, (32)

‖vτ‖L∞(0,T ;L2(Ω;Rn)) < C, (33)

‖∇µτ‖L2(0,T ;L2(Ω;Rn)) < C, (34)

where C > 0 is independent of τ . Combining estimates (31)-(33) with Korn's inequality, we obtain

‖uτ‖L∞(0,T ;H2(Ω;Rn)) < C.

Consequently, by noticing vτ = ∂tûτ ,

‖ûτ‖L∞(0,T ;H2(Ω;Rn))∩W 1,∞(0,T ;L2(Ω;Rn)) < C.

A comparison argument in (26) also gives

‖v̂τ‖L∞(0,T ;L2(Ω;Rn))∩H1(0,T ;(H2
ΓD

(Ω;Rn))∗) < C.

Second a priori estimates. Testing (27) with z−τ − zτ , yields∫
Ω

|∇zτ (t)|p−2∇zτ (t) · ∇(zτ (t)− z−τ (t)) dx+
1
2
τ‖∂tẑτ (t)‖2L2(Ω)

≤ −τ
∫

Ω

(W,z(c(τ(t)), ε(uτ (t)), zτ (t))∂tẑτ (t) + f ′(zτ (t))∂tẑτ (t)) dx.

Now we apply a convexity estimate and get

1
p
‖∇zτ (t)‖pLp(Ω;Rn) −

1
p
‖∇z−τ (t)‖pLp(Ω;Rn) +

1
2
τ‖∂tẑτ (t)‖2L2(Ω)

≤ τη‖∂tẑτ (t)‖2L2(Ω) + τCη
(
1 + ‖cτ (t)‖4L4(Ω) + ‖ε(uτ (t))‖4L4(Ω;Rn×n)

)
.
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We end up with

‖∇zτ‖L∞(0,T ;Lp(Ω;Rn)) < C,

‖∂tẑτ‖L2(0,T ;L2(Ω)) < C,

where C > 0 is independent of τ . �

By applying Poincaré's inequality, standard weak and weakly-star compactness results to the above a priori
estimates, we obtain the following convergence properties.

Lemma 4.3 (Convergence properties) There exist functions

c ∈ L∞(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω)),

u ∈ L∞(0, T ;H2(Ω; Rn)) ∩W 1,∞(0, T ;L2(Ω; Rn)) ∩W 2,∞(0, T ; (H2
ΓD

(Ω; Rn))∗),

z ∈ L∞(0, T ;W 1,p(Ω)) ∩H1(0, T ;L2(Ω)),

µ ∈ L2(0, T ;H1(Ω))

and subsequences (omitting the subscript) such that for all r ≥ 1 and s < 2∗:

cτ , c
−
τ → c weakly-star in L∞(0, T ;H1(Ω)), (35)

strongly in Lr(0, T ;Ls(Ω)), a.e. in ΩT , (36)

ĉτ → c weakly-star in L∞(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω)), (37)

uτ , u
−
τ → u weakly-star in L∞(0, T ;H2(Ω; Rn)), (38)

strongly in Lr(0, T ;H1(Ω; Rn)), a.e. in ΩT , (39)

ûτ → u weakly-star in L∞(0, T ;H2(Ω; Rn)) ∩W 1,∞(0, T ;L2(Ω; Rn)), (40)

vτ , v
−
τ → ∂tu weakly-star in L∞(0, T ;L2(Ω; Rn)), (41)

v̂τ → ∂tu weakly-star in L∞(0, T ;L2(Ω; Rn)) ∩H1(0, T ; (H2
ΓD

(Ω; Rn))∗), (42)

zτ , z
−
τ → z weakly-star in L∞(0, T ;W 1,p(Ω)),

strongly in Lr(0, T ;Lr(Ω; Rn)), a.e. in ΩT , (43)

ẑτ → z weakly-star in L∞(0, T ;W 1,p(Ω)) ∩H1(0, T ;L2(Ω)), (44)

µτ → µ weakly in L2(0, T ;H1(Ω)), (45)

m(c−τ , z
−
τ )

1
2∇µτ → m(c, z)

1
2∇µ weakly in L2(0, T ;L2(Ω; Rn)) (46)

as τ ↘ 0.

Strong convergence of a subsequence of {∇zτ} in Lp(ΩT ; Rn) can be shown as in [HK13a] by a tricky
approximation argument.

Lemma 4.4 (cf. [HK13a]) There exists a sequence {τk}k∈N such that zτk → z in Lp(0, T ;W 1,p(Ω)) as
τk ↘ 0.

For a time discrete solution of the regularized system, we can prove the validity of an energy inequality of
type (16) except the additional discretization error terms e1

τ , . . . , e
4
τ which will turn out to converge to 0 in

a certain sense as τ ↘ 0.

Lemma 4.5 (Discrete energy inequality) Let a time-discrete weak solution be given as in Lemma 4.1.
Then the following energy estimate is satis�ed for a.e. t ∈ (0, T ):

Eτ (t) +Kτ (t) +Dτ (0, t) +
∫ tτ

0

(
e1
τ (s) + e2

τ (s) + e3
τ (s) + e4

τ (s)
)

ds

≤ Eτ (0) +Kτ (0) +Wτ,ext(0, t) (47)
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with the discrete energies

Eτ (t) :=
∫

Ω

(
1
p
|∇zτ (t)|p +

1
2
|∇cτ (t)|2 +W (cτ (t), ε(uτ (t)), zτ (t)) + f(zτ (t)) + Ψ(cτ (t))

)
dx

+
δ

2
〈Auτ (t), uτ (t)〉H2 ,

Kτ (t) :=
∫

Ω

1
2
|vτ (t)|2 dx,

Dτ (0, t) :=
∫ tτ

0

∫
Ω

(
|∂tẑτ |2 + δ|∂tĉτ |2 +m(c−τ , z

−
τ )∇µτ · ∇µτ

)
dx ds,

Wτ,ext(0, t) :=
∫ tτ

0

∫
Ω

W,e(cτ , ε(uτ ), zτ ) : ε(∂tb̂τ ) dx ds+ δ

∫ tτ

0

〈Auτ (s), ∂tb̂τ (s)〉H2 ds

+
∫ tτ

0

∫
Ω

lτ ·
(
∂tûτ − ∂tb̂τ

)
dxds−

∫
Ω

v0 · ∂tb̂τ (0) dx+
∫

Ω

vτ (t) · ∂tb̂τ (t) dx

−
∫ tτ

0

∫
Ω

v−τ (s) · ∂tb̂τ (s)− ∂tb̂τ (s− τ)
τ

dxds,

and the error terms

e1
τ (t) :=

∫
Ω

(
W (cτ (t), ε(u−τ (t)), z−τ (t))−W (cτ (t), ε(u−τ (t)), zτ (t))

τ

)
dx

+
∫

Ω

W,z(cτ (t), ε(uτ (t)), zτ (t)) ∂tẑτ (t) dx,

e2
τ (t) :=

∫
Ω

(
W (c−τ (t), ε(u−τ (t)), z−τ (t))−W (cτ (t), ε(u−τ (t)), z−τ (t))

τ

)
dx

+
∫

Ω

W,c(cτ (t), ε(uτ (t)), zτ (t)) ∂tĉτ (t) dx,

e3
τ (t) :=

∫
Ω

Ψ(c−τ (t))−Ψ(cτ (t))
τ

dx+
∫

Ω

Ψ′(cτ (t)) ∂tĉτ (t) dx,

e4
τ (t) :=

∫
Ω

f(z−τ (t))− f(zτ (t))
τ

dx+
∫

Ω

f ′(zτ (t)) ∂tẑτ (t) dx.

Proof. We compute by using convexity of W with respect to e:∫
Ω

W,e(cτ , ε(uτ ), zτ ) : ε(uτ − u−τ ) dx

≥
∫

Ω

(
W (cτ , ε(uτ ), zτ )−W (c−τ , ε(u

−
τ ), z−τ )

)
dx

+
∫

Ω

(
W (cτ , ε(u−τ ), z−τ )−W (cτ , ε(u−τ ), zτ )

)
dx

+
∫

Ω

(
W (c−τ , ε(u

−
τ ), z−τ )−W (cτ , ε(u−τ ), z−τ )

)
dx. (48)

We test (26) with uτ − u−τ − (bτ − b−τ ), apply (48), use further convexity arguments and end up with

1
2
‖vτ (t)‖2L2 −

1
2

∥∥v−τ (t)
∥∥2

L2 +
δ

2
〈Auτ (t), uτ (t)〉H2 − δ

2
〈Au−τ (t), u−τ (t)〉H2

+
∫

Ω

(
W (cτ (t), ε(uτ (t)), zτ (t))−W (c−τ (t), ε(u−τ (t)), z−τ (t))

)
dx−

∫
Ω

∂tv̂τ (t) ·
(
bτ (t)− b−τ (t)

)
dx

+
∫

Ω

(
W (cτ (t), ε(u−τ (t)), z−τ (t))−W (cτ (t), ε(u−τ (t)), zτ (t))

)
dx

+
∫

Ω

(
W (c−τ (t), ε(u−τ (t)), z−τ (t))−W (cτ (t), ε(u−τ (t)), z−τ (t))

)
dx
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≤
∫

Ω

lτ (t) ·
(
uτ (t)− u−τ (t)− (bτ (t)− b−τ (t))

)
dx

+
∫

Ω

W,e(cτ (t), ε(uτ (t)), zτ (t)) : ε(bτ (t)− b−τ (t)) dx+ δ〈Auτ (t), bτ (t)− b−τ (t)〉H2 . (49)

Using the convexity estimate∫
Ω

|∇zτ |p−2∇zτ · ∇(zτ − z−τ ) dx ≥ 1
p
‖∇zτ‖pLp −

1
p
‖∇z−τ ‖

p
Lp

and testing (27) with z−τ − zτ yield

1
p
‖∇zτ (t)‖pLp −

1
p
‖∇z−τ (t)‖pLp + τ ‖∂tẑτ (t)‖2L2

≤
∫

Ω

(W,z(ε(uτ (t)), zτ (t)) + f ′(zτ (t))) (z−τ (t)− zτ (t)) dx. (50)

Next we test equation (24) with τµτ and (25) with (cτ − c−τ ) and add the two derived equations. We obtain
by means of the convexity property∫

Ω

∇cτ · ∇(cτ − c−τ ) dx ≥ 1
2
‖∇cτ‖2L2 −

1
2
‖∇c−τ ‖2L2

the estimate

1
2
‖∇cτ (t)‖2L2 −

1
2
‖∇c−τ (t)‖2L2 +

∫
Ω

(
W,c(cτ (t), ε(uτ (t)), zτ (t))(cτ (t)− c−τ (t))

+ Ψ′(cτ (t))(cτ (t)− c−τ (t)) + τ m(c−τ (t), z−τ (t))∇µτ (t) · ∇µτ (t)
)

dx+ δ τ‖∂tĉτ (t)‖2L2 ≤ 0. (51)

Adding the estimates (49)�(51), we end up with

1
2
‖vτ (t)‖2L2 −

1
2

∥∥v−τ (t)
∥∥2

L2 +
δ

2
〈Auτ (t), uτ (t)〉H2 − δ

2
〈Au−τ (t), u−τ (t)〉H2

+
1
2
‖∇cτ (t)‖2L2 −

1
2
‖∇c−τ (t)‖2L2 +

1
p
‖∇zτ (t)‖pLp −

1
p
‖∇z−τ (t)‖pLp

+ τ
(
‖∂tẑτ (t)‖2L2 + δ ‖∂tĉτ (t)‖2L2 +

∫
Ω

m(c−τ (t), z−τ (t))∇µτ (t) · ∇µτ (t) dx
)

−
∫

Ω

∂tv̂τ (t) ·
(
bτ (t)− b−τ (t)

)
dx+

∫
Ω

(
W (cτ (t), ε(uτ (t)), zτ (t))−W (c−τ (t), ε(u−τ (t)), z−τ (t))

)
dx

+
∫

Ω

f(zτ (t)) dx−
∫

Ω

f(z−τ (t)) dx+
∫

Ω

Ψ(cτ (t)) dx

−
∫

Ω

Ψ(c−τ (t)) dx+ τ
(
e1
τ (t) + e2

τ (t) + e3
τ (t) + e4

τ (t)
)

≤
∫

Ω

lτ (t) ·
(
uτ (t)− u−τ (t)− (bτ (t)− b−τ (t))

)
dx

+
∫

Ω

W,e(cτ (t), ε(uτ (t)), zτ (t)) : ε(bτ (t)− b−τ (t)) dx+ δ〈Auτ (t), bτ (t)− b−τ (t)〉H2

with the error terms e1
τ (t), e2

τ (t), e3
τ (t) and e4

τ (t). Summing over the discrete time points and taking into
account the discrete integration by parts formula (28), we �nally obtain the claim. �

Proof of Theorem 3.5 We are going to establish the equalities and inequalities of the weak formulation
(17)-(22).

� (Cahn-Hilliard equation)
Because of the convergence properties (37), (36), (43) and (45) we may pass to the limit in (24) and
obtain (17).
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To establish (18), we �rst integrate (25) over time from t = 0 to t = T . The growth condition (9a)
and the convergence properties (45), (35), (36), (39), (43) and (37) allow us to pass to the limit in the
integrated version of (25) which shows (18).

� (Balance equation of forces)
By using the canonical embedding L2(Ω; Rn) ↪→ (H2

ΓD
(Ω; Rn))∗, it follows for all ζ ∈ H2

ΓD
(Ω; Rn)∫

Ω

∂tv̂τ (t) · ζ dx = 〈∂tv̂τ (t), ζ〉H2 .

Keeping this identity in mind, integrating (26) from t = 0 to t = T and passing to the limit τ ↘ 0 by
using (42) and (36), (39), (43) and (38), we obtain (19).

� (Variational inequality for z)
To obtain the variational inequalities (20) and (21), we can proceed as in [HK13a]. In particular, (20)
is valid for the subgradient

ξ = −χ{z=0}max
{

0,W,z(c, ε(u), z) + f ′(z)
}
, (52)

which satis�es (21), where χ{z=0} is the characteristic function of the set {z = 0}.

� (Energy inequality)
To treat the energy inequality (47), we set

Aτ (t) :=
∫

Ω

(1
p
|∇zτ (t)|p +

1
2
|∇cτ (t)|2 +W (c(t), ε(uτ (t)), zτ (t)) + f(zτ (t)) + Ψ(cτ (t))

)
dx

−
∫

Ω

(
1
p
|∇z0|p +

1
2
|∇c0|2 +W (c0, ε(u0), z0) + f(z0) + Ψ(c0)

)
dx

+
∫

Ω

1
2
|vτ (t)|2 dx−

∫
Ω

1
2
|v0|2 dx+

δ

2
〈Auτ (t), uτ (t)〉H2 − δ

2
〈Au0, u0〉H2

−
∫

Ω

vτ (t) · ∂tb̂τ (t) dx+
∫

Ω

v0 · ∂tb̂τ (0) dx

Bτ (t) :=
∫ tτ

0

∫
Ω

(
|∂tẑτ |2 + δ|∂tĉτ |2 +m(cτ , zτ )∇µτ · ∇µτ

)
dx ds

−
∫ tτ

0

∫
Ω

lτ ·
(
∂tûτ − ∂tb̂τ

)
dx ds

−
∫ tτ

0

∫
Ω

W,e(cτ , ε(uτ ), zτ ) : ε(∂tb̂τ ) dxds− δ
∫ tτ

0

〈Auτ (s), ∂tb̂τ (s)〉H2 ds

+
∫ tτ

0

∫
Ω

v−τ (s) · ∂tb̂τ (s)− ∂tb̂τ (s− τ)
τ

dxds,

E1
τ (t) :=

∫ tτ

0

e1
τ (s) ds, E2

τ (t) :=
∫ tτ

0

e2
τ (s) ds,

E3
τ (t) :=

∫ tτ

0

e3
τ (s) ds, E4

τ (t) :=
∫ tτ

0

e4
τ (s) ds.

Then, (47) is equivalent to

Aτ (t) +Bτ (t) + E1
τ (t) + E2

τ (t) + E3
τ (t) + E4

τ (t) ≤ 0. (53)

Furthermore, by the a priori estimates, we observe that

|Aτ (t)|+ |Bτ (t)|+ |E1
τ (t)|+ |E2

τ (t)|+ E3
τ (t)|+ |E4

τ (t)| < C (54)

for all t ∈ [0, T ] and for all τ > 0 (along a subsequence τk). Next, we consider the lim infτ↘0 of each
term in (53) separately.
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� By the already proven convergence properties and by lower semi-continuity arguments, we obtain

lim inf
τ↘0

∫ t2

t1

Aτ (t) dt ≥
∫ t2

t1

A(t) dt for all 0 ≤ t1 ≤ t2 ≤ T, (55)

where A is de�ned as Aτ but cτ , uτ , zτ , vτ and b̂τ are substituted by their continuous limits.
Note that this lim inf�estimate does not necessarily hold pointwise a.e. in t because, for instance,
we do not know vτ (t)→ v(t) weakly in L2(Ω; Rn) for a.e. t (see (41)).

� Let 0 ≤ t1 ≤ t2 ≤ T be arbitrary. By Fatou's lemma, by (44) and by a lower semi-continuity
argument, we obtain

lim inf
τ↘0

∫ t2

t1

∫ tτ

0

∫
Ω

|∂tẑτ (s)|2 dx dsdt ≥
∫ t2

t1

(
lim inf
τ↘0

∫ tτ

0

∫
Ω

|∂tẑτ (s)|2 dxds
)

dt

≥
∫ t2

t1

∫ t

0

∫
Ω

|∂tz(s)|2 dxdsdt. (56)

Analogously,

lim inf
τ↘0

∫ t2

t1

∫ tτ

0

∫
Ω

δ|∂tĉτ (s)|2 dx dsdt ≥
∫ t2

t1

∫ t

0

∫
Ω

δ|∂tc(s)|2 dxdsdt (57)

and, by (46),

lim inf
τ↘0

∫ t2

t1

∫ tτ

0

∫
Ω

m(c−τ (s), z−τ (s))∇µτ (s) · ∇µτ (s) dx dsdt

≥
∫ t2

t1

∫ t

0

∫
Ω

m(c(s), z(s))∇µ(s) · ∇µ(s) dxdsdt. (58)

Taking also (54) and the already known convergence properties into account, we obtain

lim inf
τ↘0

∫ t2

t1

Bτ (t) dt ≥
∫ t2

t1

B(t) dt, (59)

where B is de�ned as Bτ but cτ , ĉτ , uτ , ûτ , v
−
τ , zτ , ẑτ , µ̂τ and b̂τ are substituted by their

continuous counterparts and ∂tbbτ (t)−∂tbbτ (t−τ)
τ by ∂ttb(t).

� Due to the di�erentiability of C we have

C(z−τ ) = C(zτ ) + C′(zτ )(z−τ − zτ ) + r(z−τ − zτ ),
r(η)
η
→ 0 as η → 0. (60)

Hence, we obtain∫ t

0

∫
Ω

1
2
C(z−τ )−C(zτ )

τ

(
ε(u−τ )− e∗(c)

)
:
(
ε(u−τ )− e∗(c)

)
dx ds

=
∫ t

0

∫
{z−τ (s) 6=zτ (s)}

1
2

(
C′(zτ )

z−τ − zτ
τ

+
r(z−τ − zτ )
z−τ − zτ

z−τ − zτ
τ

)(
ε(u−τ )− e∗(c)

)
:
(
ε(u−τ )− e∗(c)

)
dxds (61)

Because of∥∥∥∥r(z−τ − zτ )
z−τ − zτ

∥∥∥∥
L∞({z−τ 6=zτ})

≤
∥∥∥∥C(z−τ )−C(zτ )

z−τ − zτ

∥∥∥∥
L∞({z−τ 6=zτ})

+
∥∥∥∥C′(zτ )

z−τ − zτ
z−τ − zτ

∥∥∥∥
L∞({z−τ 6=zτ})

< C,
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and
r(z−τ −zτ )

|z−τ −zτ |
→ 0 a.e. in ΩT as τ ↘ 0 we conclude by Lebesgue's generalized convergence theorem∥∥∥∥r(z−τ − zτ )

z−τ − zτ

∥∥∥∥
Lq({z−τ 6=zτ})

→ 0 for every q ≥ 1.

Using this and the already known convergence properties, we end up with

left hand side of (61)→
∫

Ωt

W,z(c, ε(u), z)∂tz dxds

and, consequently, E1
τ (t)→ 0 as τ ↘ 0. Together with the uniform boundedness (54), this implies∫ t2

t1

E1
τ (t) dt→ 0 as τ ↘ 0 for all 0 ≤ t1 ≤ t2 ≤ T. (62)

The convergence ∫ t2

t1

E4
τ (t) ds→ 0 as τ ↘ 0 for all 0 ≤ t1 ≤ t2 ≤ T, (63)

can be shown as above.

� Noticing the linearity of e∗, a short calculation yields∫ tτ

0

∫
Ω

W (c−τ , ε(u
−
τ ), z−τ )−W (cτ , ε(u−τ ), z−τ )

τ
dx

=
∫ tτ

0

∫
Ω

C(z−τ )
(
ε(u−τ )− e∗

(c−τ + cτ
2

))
: e∗(∂tĉτ ) dx ds.

Due to the already known convergence properties, we obtain∫ tτ

0

∫
Ω

W (c−, ε(u−), z−)−W (c, ε(u−), z−)
τ

dx ds→ −
∫

Ωt

W,c(c, ε(u), z)∂tcdxds

and, consequently, E2
τ (t)→ 0 as τ ↘ 0. Together with the uniform boundedness (54), this implies∫ t2

t1

E2
τ (t) dt→ 0 as τ ↘ 0 for all 0 ≤ t1 ≤ t2 ≤ T. (64)

� The claim

lim inf
τ↘0

∫ t2

t1

E3
τ (t) dt ≥ 0 for all 0 ≤ t1 ≤ t2 ≤ T (65)

can be shown by the following arguments: On the one hand, convexity of Ψ1 yields

Ψ1(c−τ )−Ψ1(cτ )
τ

+ Ψ′1(cτ )∂tĉτ ≥ 0.

On the other hand, by using the di�erentiability property of Ψ2, we obtain (cf. (60))

Ψ2(c−τ )−Ψ2(cτ )
τ

+ Ψ′2(cτ )∂tĉτ =
r(c−τ − cτ )

τ
with

r(η)
η
→ 0 as η → 0.

In the non-trivial case c−τ − cτ 6= 0, we can argue as follows. Since
r(c−τ −cτ )

τ = r(c−τ −cτ )

c−τ −cτ
c−τ −cτ
τ and

since
c−τ −cτ
τ is bounded in L2(ΩT ), it remains to show

r(c−τ − cτ )
c−τ − cτ

→ 0 in L2(ΩT ) as τ ↘ 0. (66)
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Indeed, it converges pointwise to 0 a.e. in ΩT and applying the mean value theorem yields (here
ξ ∈ [min{c−τ , cτ},max{c−τ , cτ}])∣∣∣∣r(c−τ − cτ )

c−τ − cτ

∣∣∣∣ =
∣∣∣∣Ψ2(c−τ )−Ψ2(cτ )

c−τ − cτ
−Ψ′2(cτ )

∣∣∣∣
≤ |Ψ′2(ξ)|+ |Ψ′2(cτ )|
≤ C(1 + |ξ|+ |cτ |)
≤ C(1 + |c−τ |+ 2|cτ |).

Therefore, the left hand side is bounded in L∞(0, T ;L2∗(Ω)). Lebesgue's generalized convergence
theorem yields (66). We end up with lim infτ↘0E

3
τ (t) ≥ 0 as τ ↘ 0. Fatou's lemma shows the

claim.

If we combine (55), (59), (62), (64), (63) and (65), we �nally obtain

0 ≥ lim inf
τ↘0

∫ t2

t1

(
Aτ (t) +Bτ (t) + E1

τ (t) + E2
τ (t) + E3

τ (t) + E4
τ (t)

)
dt

≥
∫ t2

t1

(A(t) +B(t)) dt.

for all 0 ≤ t1 ≤ t2 ≤ T . Thus, A(t) +B(t) ≤ 0 for a.e. t ∈ (0, T ) which is the desired energy inequality
(14).

Hence, we obtain existence of weak solutions in the sense of De�nition 3.4. �

4.2 Existence proof for the limit system

We now study the limit δ ↘ 0. For each δ > 0, we obtain a weak solution (cδ, uδ, zδ, µδ, ξδ) in the sense of
De�nition 3.4.

Lemma 4.6 (A priori estimates) There exists a constant C > 0 independent of δ such that

(i) ‖cδ‖L∞(0,T ;H1(Ω)) < C,
√
δ‖∂tcδ‖L2(0,T ;L2(Ω)) < C,

‖∂tcδ‖L2(0,T ;(H1(Ω))∗) < C,

(ii) ‖uδ‖L∞(0,T ;H1(Ω;Rn))∩W 1,∞(0,T ;L2(Ω;Rn)) < C,
√
δ‖uδ‖L∞(0,T ;H2(Ω;Rn)) < C,

‖uδ‖H2(0,T ;(H2
ΓD

(Ω;Rn))∗) < C,

(iii) ‖zδ‖L∞(0,T ;W 1,p(Ω))∩H1(0,T ;L2(Ω)) < C,

(iv) ‖µδ‖L2(0,T ;H1(Ω)) < C, ‖m(cδ, zδ)1/2∇µδ‖L2(0,T ;L2(Ω;Rn)) < C.

Proof. From the energy inequality (22), we infer the second inequality of (i), the �rst two inequalities of
(ii), (iii) and the second inequality of (iv). By considering (19), we get

〈∂ttuδ(t), ζ〉H2 ≤ C(‖ε(uδ(t))‖L2 + ‖cδ(t)‖L2)‖ε(ζ)‖L2 + δ‖∇ (∇uδ(t)) ‖L2‖∇ (∇ζ) ‖L2

+ ‖l‖L2‖ζ‖L2

and, therefore,

‖uδ‖H2(0,T ;(H2
ΓD

(Ω;Rn))∗) < C.

Due to
∫

Ω
cδ(t) dx = const. and the boundedness of ‖∇cδ(t)‖L2(Ω), we derive by Poincaré's inequality the

�rst inequality of (i).
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From (17) and (18) we obtain boundedness of
∫

Ω
µδ(t) dx. Since ‖∇µδ(t)‖L2(ΩT ) is also bounded, Poincaré's

inequality yields the �rst inequality of (iv).

Finally, we know from the boundedness of {∇µδ} in L2(ΩT ; Rn) that {∂tcδ} is also bounded in L2(0, T ; (H1(Ω))∗)
with respect to δ by applying equation (17). Hence, the third inequality of (i) is satis�ed. �

Lemma 4.7 (Convergence properties) There exist functions

c ∈ L∞(0, T ;H1(Ω)) ∩H1(0, T ; (H1(Ω))∗),

u ∈ L∞(0, T ;H1(Ω; Rn)) ∩W 1,∞(0, T ;L2(Ω; Rn)) ∩H2(0, T ; (H2
ΓD

(Ω; Rn))∗),

z ∈ L∞(0, T ;W 1,p(Ω)) ∩H1(0, T ;L2(Ω)),

µ ∈ L2(0, T ;H1(Ω))

and subsequences (omitting the subscript) such that for all r ≥ 1 and s < 2∗:

cδ → c weakly-star in L∞(0, T ;H1(Ω)) ∩H1(0, T ; (H1(Ω))∗), (67)

strongly in L2(ΩT ), a.e. in ΩT , (68)

uδ → u weakly-star in L∞(0, T ;H1(Ω; Rn)), (69)

weakly-star in W 1,∞(0, T ;L2(Ω; Rn)), (70)

zδ → z weakly-star in L∞(0, T ;W 1,p(Ω)) ∩H1(0, T ;L2(Ω)), (71)

strongly in Lr(0, T ;Lr(Ω; Rn)), a.e. in ΩT , (72)

strongly in Lp(0, T ;W 1,p(Ω; Rn)), (73)

strongly in C(ΩT ), (74)

µδ → µ weakly in L2(0, T ;H1(Ω)), (75)

m(cδ, zδ)1/2∇µδ → m(c, z)1/2∇µ weakly in L2(0, T ;L2(Ω,Rn)) (76)

as δ ↘ 0.

Proof. Lemma 4.6 reveals the existence of functions

c ∈ L∞(0, T ;H1(Ω))

u ∈ L∞(0, T ;H1(Ω; Rn)) ∩W 1,∞(0, T ;L2(Ω; Rn)) ∩H2(0, T ; (H2
ΓD

(Ω; Rn))∗),

z ∈ L∞(0, T ;W 1,p(Ω)) ∩H1(0, T ;L2(Ω)),

µ ∈ L2(0, T ;H1(Ω)),

m(c, z)1/2∇µ ∈ L2(0, T ;L2(Ω,Rn))

and subsequences indexed by δk such that

cδk → c weakly-star in L∞(0, T ;H1(Ω)), (77)

uδk → u weakly-star in L∞(0, T ;H1(Ω; Rn)) ∩W 1,∞(0, T ;L2(Ω; Rn)), (78)

zδk → z weakly-star in L∞(0, T ;W 1,p(Ω)) ∩H1(0, T ;L2(Ω)), (79)

µδk → µ weakly in L2(0, T ;H1(Ω)), (80)

m(cδk , zδk)1/2∇µδk → w weakly in L2(0, T ;L2(Ω; Rn)). (81)

Due to the strong convergence properties of {cδk}, {zδk} and the growth assumptions on the mobility function
m, we infer

w = m(c, z)1/2∇µ.

In the following, we omit the subscript k. Furthermore, property (i) of Lemma 4.6 shows that {cδ} converges
strongly to an element c in L2(ΩT ) as δ ↘ 0 for a subsequence by a compactness result due to Aubin and
Lions ([Sim86]). By choosing a further subsequence we also obtain pointwise almost everywhere convergence.
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By applying the same technique as for Lemma 4.4, strong convergence of ∇zδ in Lp(ΩT ; Rn) can be obtained.
Note that we need the assumption C′(·) ≥ 0, see (8). We conclude that

zδ → z strongly in Lp(0, T ;W 1,p(Ω)).

Furthermore, by Lemma 4.6 (iii), we �nd

zδ → z strongly in C(ΩT )

for a subsequence by an Aubin-Lions type compactness result (cf. [Sim86]). �

Next, we will proof our main result.

Proof of Theorem 3.3

� (Cahn-Hilliard equation)
Writing (17) in the form∫

ΩT

(cδ − c0)∂tζ dxdt =
∫

ΩT

m(cδ, zδ)∇µδ · ∇ζ dxdt,

by only allowing test-functions ζ ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω)) with ζ(T ) = 0 we may pass to
the limit by means of the convergence properties (68), (73) and (75) and receive (11).

Equation (12) can be obtained by integrating (18) over time and taking advantage of the convergence
properties (75), (67), (68), (69), (73) and Lemma 4.6 (i).

� (Balance equation of forces)

Integrating (19) from 0 to T and using (68), (69), (74) and the convergence
∫ T

0
δ〈Auδ, ζ〉H2 dt→ 0 due

to Lemma 4.6 (ii) we conclude∫ T

0

〈∂ttu, ζ〉H2 dt+
∫

ΩT

W,e(c, ε(u), z) : ε(ζ) dx dt =
∫

ΩT

l · ζ dxdt (82)

for all ζ ∈ L∞(0, T ;H2
ΓD

(Ω; Rn)). Therefore, (13) is true for all ζ ∈ H2
ΓD

(Ω; Rn) and a.e. t ∈ (0, T ).
Using the density of the setH2

ΓD
(Ω; Rn) inH1

ΓD
(Ω; Rn) (here we need the assumption that the boundary

parts ΓD and ΓN have �nitely many path-connected components, see [Ber11]), we can identify ∂ttu(t) ∈
(H1

ΓD
(Ω; Rn))∗ and (13) is true for all ζ ∈ H1

ΓD
(Ω; Rn) and a.e. t ∈ (0, T ). Furthermore, ∂ttu ∈

L∞(0, T ; (H1
ΓD

(Ω; Rn))∗).

� (Variational inequality for z)
The variational inequality can be shown as in [HK13a]. We choose the following cluster points with
respect to a subsequence:

χδ := χ{zδ>0} → χ weakly-star in L∞(ΩT ), (83)

ηδ := χ{zδ=0}∩{W,z(cδ,ε(uδ),zδ)+f ′(zδ)≤0} → η weakly-star in L∞(ΩT ), (84)

Fδ := χ{zδ>0}

√
C′(zδ)

2
(ε(uδ)− e∗(cδ))→ F weakly in L2(ΩT ; Rn×n), (85)

Gδ := χ{zδ=0}∩{W,z(cδ,ε(uδ),zδ)+f ′(zδ)≤0}× (86)

×
√

C′(zδ)
2

(ε(uδ)− e∗(cδ))→ G weakly in L2(ΩT ; Rn×n). (87)

Note that since C′(·) is symmetric and positive de�nite matrix, its square root exists. By (69) and
(74), we obtain for a.e. x ∈ {z > 0}

χ(x) = 1, η(x) = 0, F (x) =

√
C′(z(x))

2
(ε(u)(x)− e∗(c(x))), G(x) = 0 (88)

20



because of the following arguments:

Let ζ ∈ L2(ΩT ; Rn×n) with supp(ζ) ⊆ {z > 0}. Then, by (74), we obtain supp(ζ) ⊆ {zδ > 0} for all
su�ciently small δ > 0. By (85), we �nd∫

ΩT

Fδ : ζ dxdt→
∫

ΩT

F : ζ dxdt.

On the other hand, by (69), (note that δ can be chosen arbitrarily small)∫
ΩT

Fδ : ζ dxdt =
∫

ΩT

√
C′(zδ)

2
(ε(uδ)− e∗(cδ)) : ζ dxdt

→
∫

ΩT

√
C′(z)

2
(ε(u)− e∗(c)) : ζ dxdt

Thus, ∫
ΩT

√
C′(z)

2
(ε(u)− e∗(c)) : ζ dxdt =

∫
ΩT

F : ζ dxdt

The other identities in (88) follow analogously.

Now let ζ ∈ L∞(0, T ;W 1,p
− (Ω)). Taking (52) into account, inequality (12) becomes by integration over

time

0 ≤
∫

ΩT

(
|∇zδ|p−2∇zδ · ∇ζ + ∂tzδζ

)
dxdt+

∫
{zδ>0}

(W,z(cδ, ε(uδ), zδ) + f ′(zδ)) ζ dx dt

+
∫
{zδ=0}∩{W,z(cδ,ε(uδ),zδ)+f ′(zδ)≤0}

(W,z(cδ, ε(uδ), zδ) + f ′(zδ)) ζ dxdt.

Applying lim supδ↘0 on both sides and multiplying by −1 yield

0 ≥ lim
δ↘0

∫
ΩT

(
|∇zδ|p−2∇zδ · ∇(−ζ) + ∂tzδ(−ζ)

)
dx dt

+ lim inf
δ↘0

∫
ΩT

(Fδ)2(−ζ) dxdt+ lim inf
δ↘0

∫
ΩT

χδ f
′(zδ)(−ζ) dxdt

+ lim inf
δ↘0

∫
ΩT

(Gδ)2(−ζ) dx dt+ lim inf
δ↘0

∫
ΩT

ηδ f
′(zδ)(−ζ) dxdt.

Weakly lower semicontinuous arguments, the uniformly convergence property (74) and the properties
listed in (88) give

0 ≥
∫

ΩT

(
|∇z|p−2∇z · ∇(−ζ) + ∂tz(−ζ)

)
dx dt

+
∫
{z>0}

(W,z(c, ε(u), z) + f ′(z)) (−ζ) dxdt

+
∫
{z=0}

(
(F 2 +G2) + (χ+ η)f ′(z)

)
(−ζ) dx dt.

This inequality may also be written in the following form:

0 ≤
∫

ΩT

(
|∇z|p−2∇z · ∇ζ + (W,z(c, ε(u), z) + f ′(z) + ∂tz) ζ

)
dx dt

+
∫
{z=0}

(
(F 2 +G2) + (χ+ η)f ′(z)−W,z(c, ε(u), z)− f ′(z)

)
ζ dxdt.

Therefore,

0 ≤
∫

ΩT

(
|∇z|p−2∇z · ∇ζ + (W,z(c, ε(u), z) + f ′(z) + ∂tz + ξ) ζ

)
dx dt
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with
ξ := χ{z=0}min

{
0, (F 2 +G2) + (χ+ η − 1)f ′(z)−W,z(c, ε(u), z)

}
.

This proves (14) and (15).

� (Energy inequality)
To prove the energy inequality (16), we can proceed as in the proof of Theorem 3.5. Integrating (22)
with respect to time on [t1, t2] yields (0 ≤ t1 ≤ t2 ≤ T )∫ t2

t1

(Aδ(t) +Bδ(t) + Cδ(t)) dt ≤ 0 (89)

with

Aδ(t) :=
∫

Ω

(1
p
|∇zδ(t)|p +

1
2
|∇cδ(t)|2 +W (cδ, ε(uδ(t)), zδ(t)) + f(zδ(t)) + Ψ(cδ(t))

)
dx

−
∫

Ω

(
1
p
|∇z0|p +

1
2
|∇c0|2 +W (c0, ε(u0), z0) + f(z0) + Ψ(c0)

)
dx

+
∫

Ω

1
2
|∂tuδ(t)|2 dx−

∫
Ω

1
2
|v0|2 dx−

∫
Ω

∂tuδ(t) · ∂tb(t) dx+
∫

Ω

v0 · ∂tb0 dx,

Bδ(t) :=
∫

Ωt

(
|∂tzδ|2 + δ|∂tcδ|2 +m(cδ, zδ)∇µδ · ∇µδ

)
dxds

−
∫

Ωt

W,e(cδ, ε(uδ), zδ) : ε(∂tb) dxds+
∫

Ωt

∂tuδ · ∂ttbdx ds

−
∫

Ωt

l · (∂tuδ − ∂tb) dxds,

Cδ(t) :=
δ

2
〈Auδ(t), uδ(t)〉H2 − δ

2
〈Au0, u0〉H2 − δ

∫ t

0

〈Auδ(t), ∂tb(t)〉H2 dt.

Let A be the corresponding integral expression to Aδ, where cδ, uδ and zδ are replaced by c, u and z,
respectively. Furthermore, let

B(t) :=
∫

Ωt

(
|∂tz|2 +m(c, z)∇µ · ∇µ

)
dxds−

∫
Ωt

W,e(c, ε(u), z) : ε(∂tb) dx ds

+
∫

Ωt

∂tu · ∂ttbdxds−
∫

Ωt

l · (∂tu− ∂tb) dx ds.

The limit passage in (89) can be performed as follows.

� Weakly lower semi-continuity arguments show

lim inf
δ↘0

∫ t2

t1

Aδ(t) dt ≥
∫ t2

t1

A(t) dt.

� Fatou's lemma and weakly lower semicontinuous arguments for ∇µδ as well as the convergence
property for cδ, uδ, zδ (see (67), (68), (69), (71), (72)) show (cf. (56)-(58))

lim inf
δ↘0

∫ t2

t1

Bδ(t) dt ≥
∫ t2

t1

B(t) dt.

� We have

Cδ(t) ≥ −
δ

2
〈Au0, u0〉H2 − δ‖uδ(t)‖H2(Ω;Rn)‖∂tb(t)‖H2(Ω;Rn).

By Lemma 4.6 (ii), we obtain

lim inf
δ↘0

∫ t2

t1

Cδ(t) dt ≥ 0.

We end up with
∫ t2
t1
A(t) +B(t) dt ≤ 0 for all 0 ≤ t1 ≤ t2 ≤ T . This proves (16).

Putting all steps together, Theorem 3.3 is proven. �
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