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Abstract

We use the traveling wave model for simulating and analyzing nonlinear dynamics of
multisection ring and edge-emitting semiconductor laser devices. We introduce the con-
cept of instantaneous longitudinal optical modes and present an algorithm for their compu-
tation. A semiconductor ring laser was considered to illustrate the advantages of the mode
analysis.

1 Introduction

Multisection semiconductor edge-emitting and ring lasers (MSLs) are interesting devices for
different applications. Different mathematical models are used for simulation of dynamics of
MSLs. The models range from simple ODE or DDE systems (rate equations) to 2+1 or 3+1
dimensional PDEs. Simple ODE and DDE models usually are based on mean-field approxi-
mations and take into account only a few basic characteristics of the considered lasers or are
suited to describe particular MSL configurations [1, 2]. On the other hand, simulations of much
more precise multidimensional PDE models [3] are time-consuming, while application of analytic
methods becomes much more difficult.

Traveling Wave (TW) model [4, 5] is a compromise between simplicity and precision. It is
a 1+1-dimensional PDE system describing dynamics of longitudinal distributions of counter-
propagating slowly varying optical fields, polarization functions and carrier density. This model-
ing can take into account optical injections, field reflections and transmissions at the interfaces
of different laser parts, as well as delayed feedback of the optical fields. Comparing to ODE
and DDE models mentioned above, the TW model is computationally more demanding but still
enables an advanced analysis. The main aim of this paper is to introduce the basic structural
elements of our model, to explain the construction of different laser devices from these ele-
ments, to present an algorithm for computation of the instantaneous modes of MSLs, and to
demonstrate the application of these modes for analysis of different operation regimes of MSLs.

2 Model of the MSL

For simulations and analysis of MSLs, we apply our software kit LDSL-tool [6]. It allows to
consider a large variety of laser devices or coupled laser systems that can be schematically rep-
resented by a set of mutually interconnected sections Sk|k∈{1,...,n} and junctions Jl|l∈{1,...,m}.
According to our laser device construction, for any edge of any of n sections we can attribute
a unique junction. On the other hand, at least a single edge of some section joins each of m
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junctions Jl (see Fig. 1 where schemes of a few typical MSLs are presented). At the junctions
representing laser facets, we can apply one or several optical injections (panel (c)) and record
the emitted optical fields (panel (d)).
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Figure 1: Schemes of MSLs with an indication of sections Sk (bounded areas), junctions Jl
(thick bars), optical injections Oi (thick black arrows), and emitted fields (thick empty arrows).
Thin arrows show field propagation and transmission - reflection - out-coupling directions. (a):
Master-Slave laser system. (b): Laser with a delayed optical feedback. (c): Two section mode-
locked laser with dual optical injection. (d): Ring MSL with an out-coupling waveguide.

Each laser section Sk|k∈{1,...,n} is identified with a unique spatial interval (z′k, z
′′
k), where z′k

and z′′k (z′k, z
′′
k ∈ R, z′′k > z′k) are the spatial coordinates of the section edges (see Fig. 1) and

|Sk| = z′′k−z′k is the length of Sk. Within each laser section the field equations [4]

−i∂t Ψ(z, t) = H (β±) Ψ + Fsp, β±(z, t) = β̄(z, t)±∆β(z, t),

H =

(
vgH0(β±) + ivggp

2
I − ivggp

2
I

−iγp I (iγp + ωp) I

)
, H0 =

(
i∂z−β+ −κ−
−κ+ −i∂z−β−

)
(1)

govern the spatial-temporal dynamics of the four-component wave function Ψ(z, t) =
(
E
p

)
,

where E=(E
+

E−) and p=(p
+

p−) denote slowly varying counter-propagating optical fields and po-
larizations, respectively. Here, I is the 2×2 identity matrix, vg is the group velocity, gp, 2γp, and
ωp are the amplitude, the width and the relative central frequency of Lorentzian approximation
of the frequency dependent gain close to its maximum [4], and Fsp models the spontaneous
emission. The complex factors κ±(z) represent the distributed backscattering of the fields due
to, e.g., Bragg grating. Finally, β+ and β− are the complex propagation factors for forward- and
backward-propagating fields, respectively. Since we do not exploit the dependence of β± on the
carriers in this paper, we skip a more detailed description of β± and refer to [4, 7] instead. Note
only, that in contrast to linear MSLs the asymmetry factor ∆β in ring lasers is non-vanishing and
is mainly imposed by the dominance of the cross-gain over the self-gain saturation [2]. Thus, in
the sequel we use a pure imaginary ∆β , which for |E±|2�|E∓|2 reads as ∆β =±i|∆β|.

To complete the TW model (1), one needs to relate the fields that are entering and leaving all
laser sections. Assume that any junction Jl connects the left edges z′l′r (right edges z′′l′′r ) of the

sections Sl′r (Sl′′r ), and all such indices l′r (l′′r ) are components of the vector ~l′ (~l′′). Let |~l′| and

|~l′′| be the number of components in the corresponding vector, so that the total number of the
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section edges connected to Jl is |~l|= |(~l′~l′′)|= |
~l′|+|~l′′|≥1. Note also, that all junctions together

connect all 2n section edges:
∑m

l=1|~l|= 2n. If needed, one can also assume |~li| ≥ 0 optical
injectionsOlir

applied to some section edges joining Jl and record the emissionEout
l . According

to our modeling approach, the required optical fields E+
~l′

and E−~l′′ entering laser sections at any

Jl, as well as the emission Eout
l are determined by complex |~l|×|~l|, |~l|×|~li|, and 1×(|~l|+|~li|)

dimensional matrices Tl, T il and T ol :

(E+
~l′

E−~l′′

)
= Tl

(E+
~l′′

E−~l′

)
+ T il O~li , Eout

l = T ol

E+
~l′′

E−~l′
O~li

 , where

E±~l′ =

 E±(z′l′1
, t)

...
E±(z′l′|l′|

, t)

 , E±~l′′=

 E±(z′′l′′1
, t)

...
E±(z′′l′′|l′′|

, t)

 , O~li=

 Oli1
(t)
...

Oli
|li|

(t)

 .

(2)

3 Instantaneous optical modes

The instantaneous optical modes of MSLs are pairs (Ω(β±),Θ(z, β±)) of complex eigenval-
ues and eigenvectors of the spectral problem defined by Eq. (2) and the field operator H(β±)
from (1) determined at instantaneous distributions β±(z, t) [8]. The imaginary and the real
parts of Ω are mainly defining the angular frequency and the damping of the mode. The four-

component vector-eigenfunction Θ=(ΘE
Θp

) with Θυ=(Θ+
υ

Θ−υ
) and υ=E, p determines the spatial

distribution of the mode. Note also, that any stationary state of the MSL is determined by an
optical mode (ω̄,Θ(z)) with a real frequency ω̄: Ψ(z, t) = Θ(z)eiω̄t.

Let us consider an arbitrary MSL with no optical injections. For any fixed β±(z) the substitution
ofE(z, t) = Θ(z, β±)eiΩt into Eq. (1) and the elimination of Θ±p imply a linear system of ODEs
for Θ±E(z) within each section Sk|k∈{1,...,n}. The solution of this system in each laser section
can be written as

ΘE(z, β±) = e−i
∫ z
z′ ∆β(ξ)dξ ei

∫ z
z′ D(β̄(ξ),Ω)dξ ΘE(z′, β±), where

D(β̄,Ω)
def
=
(−β̄−v−1

g Ω−χ(Ω) −κ−
κ+ β̄+v−1

g Ω+χ(Ω)

)
, χ(Ω)

def
= gp

2
Ω−ω̄

γp+i(Ω−ωp)
.

This expression together with the boundary conditions (2) for the mode functions ΘE(z, β±)
give us 4n linear algebraic equations relating 4n mode function values s′±k and s′′±k at both
edges of all sections Sk, k ∈ {1, . . . , n}:(

s′′+k
s′′−k

)
= e−i〈∆β〉kei〈D(β̄,Ω)〉k

(
s′+k
s′−k

)∣∣∣
k∈{1,...,n}

,
(s′+~l′
s′′−~l′′

)
= Tl

(s′′+~l′′
s′−~l′

)∣∣∣
l∈{1,...,m}

,

〈y〉k
def
=
∫
Sk
y(z)dz, sν±k

def
= Θ±E(zνk , β

±), ν ∈ {′, ′′}, k ∈ {1, . . . , n},
⇒ M

(
Ω; β̄,∆β

)
S = 0, S def

=
(
s′+1 , s

′−
1 , s

′′+
1 , s

′′−
1 , . . . , s

′+
n , s

′−
n , s

′′+
n , s

′′−
n

)T
.

(3)

Assume that the resulting system of 4n linear homogeneous equations determined by a sparse
4n×4n-dimensional complex matrixM remains linearly independent for almost all Ω. Nontrivial
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solutions S (i.e., nontrivial eigenfunctions Θ of the spectral problem) will be available only for
those Ω which are the complex roots of the following characteristic equation:

detM
(
Ω; β̄,∆β

)
= 0. (4)

All complex Ω solving Eq. (4) are eigenvalues of the spectral problem. A finite set of most
important complex frequencies Ω is found by means of the Newton iteration and homotopy
method based numerical algorithm [8].

4 Mode analysis of the ring laser

Let us consider the ring MSL shown in Fig. 1(d). Here, n=m= 7, whereas optical injections
and matrices T il |l∈{1,...,7} in (2) are absent. At J1 Eqs. (2) are defined by

E±~1′ =
(
E±(z′1, t)
E±(z′7, t)

)
E±~1′′ =

(
E±(z′′5 , t)
E±(z′′6 , t)

) , T1 =


t1 it̃1 −r∗1 0
it̃1 t1 0 0
r1 0 t1 it̃1
0 0 it̃1 t1

, t21 + t̃21 + |r1|2 ≤ 1,

where r1 is a localized backscattering of the fields during coupling of the ring MSL to the output
waveguide [2, 10]. Other vectors and matrices in (2) are given by

E±~l′ = E±(z′l, t)|l∈{2,...,6}, E±~l′′ = E±(z′′l−1, t)|l∈{2,3,4,5}, E±~7′′ = E±(z′′7 , t),

E±~7′ = E±~6′′ = ∅, T2,...,5 = I, T6 = T7 = 0.

In the sequel, we shall also assume vanishing distributed backscattering, κ±= 0. The charac-
teristic equation (4) for the ring MSL in this case can be written as

ei〈χ(Ωk± )〉ei〈β̄〉eiτΩk± = t1 cosh |〈∆β〉| ± ν
√
t21 sinh2 |〈∆β〉| − |r1|2, (5)

where 〈y〉 def=
∑5

k=1〈y〉k, τ=〈v−1
g 〉 is the field propagation time along the ring, ν=±1 is such

that 〈∆β〉 = iν|〈∆β〉|, and k± are indices of the mode frequency pairs, Ωk− and Ωk+ . The
mode frequencies for small 〈χ(Ω)〉 and r1 are related by

Ωk ≈ Ω0 + 2π
τ
k, Ωk+−Ωk− ≈

{
2ν|r1|
τt1

for |〈∆β〉|<∆0, 〈∆β〉 → 0

−2ν|〈∆β〉|
τ

i for |〈∆β〉|>∆0

,

where ∆0(r1)
def
= ln

|r1|+
√
t21+|r1|2
t1

, |k| ∈ {0, 1, . . .}
(6)

For |〈∆β〉| = ∆0, one has a degenerate case of coinciding mode frequencies, Ωk+ = Ωk− .
Panels (a) and (b) of Fig. 2 show splitting of the complex frequencies Ωk+ and Ωk− by non-
vanishing 〈∆β〉 and |r1|, respectively. The distributions β± used for mode computations were
obtained by numerical integration of full TW model [4]. The corresponding stationary and alter-
nating oscillation states were governed by modes with zero or almost zero damping: see mode
frequencies within small boxes in Fig. 2(a) and (b), respectively.
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Figure 2: Main roots Ω of Eq. (5) for r1 = 0, 〈∆β〉 6= 0 (a) and 〈∆β〉 ≈ 0, r1 = 0.2 (b). Other
parameters: κ±= ω̄=0, t1 =

√
0.7, τ=24.666 ps. Small boxes indicate the modes dominating

the dynamical regimes.

Nonuniform spatial distributions of β± imply a weak coupling of the optical modes, so that the
growth or decay of any mode is slightly influenced by its neighbors [8]. Since the mode coupling
decreases with the increasing separation between the complex eigenvalues [9], the strongest
mode interaction in the considered ring MSL is between the adjacent k−-th and k+-th modes.
Note also, that a non-vanishing mode coupling permits the existence of neighboring modes
with slightly negative =mΩ (see Fig. 2(a)), which, however, do not induce instability of the
considered states [8]. In the rest of this paper, we analyze the relations of the adjacent modes
during dynamical regimes of ring MSLs [2, 5, 7, 10].

A mode with a real frequency Ω(β±)= ω̄ and complex factors s′+1 , s′′−5 representing amplitudes
of counter-propagating fields at junction J1 determines any stationary state of the ring MSL.
Once η = 10 log10(|s′+1 /s′′−5 |2) is close to zero, we have a bidirectional stationary state. For
|η|�0, the state is unidirectional.

Assume that r1 6=0, and the ring MSL operates at a stationary state determined by a mode with
the real frequency Ωk+ or Ωk− . Just above threshold the optical fields and the gain saturation
are small, so that 〈∆β〉≈0. The condition |〈∆β〉|<∆0 implies the estimate |η|≤ 20 ∆0

ln 10
, which

means that the emission intensities at both facets of the out-coupling waveguide should differ
by less than 2 dB for r1 = 0.2 and t1 =

√
0.7 used in Fig. 2(b). Thus, the stationary state at

small currents, if present, should be of bidirectional type.

For large currents, the asymmetry 〈∆β〉 can grow, so that |〈∆β〉|>∆0. Assume that 〈∆β〉=
i|〈∆β〉| (i.e. ν = 1), which occurs for dominating E+ field. The condition η > 0 (dominance
of s′+1 over s′′−5 ) is realized by k+-th mode, i.e., Ωk+ = ω̄ is real (small bullet on the x-axis of
Fig. 2(a)). A non-vanishing r1 implies an estimate η < 20 log10(t1/|r1|), what is about 12 dB
for r1 and t1 discussed above. The complex frequency of the adjacent k−-th mode is given by

Ωk− ≈ ω̄+ i
2|〈∆β〉|

τ
(see Eq. (6)), i.e., =mΩk−>0 and this mode is damped (empty bullet just

above the small box in Fig. 2(a)). During the switching to the coexisting stationary state deter-
mined by the counter-propagating field E− the factors β±(z) change as well. After this switch,
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〈∆β〉=−i|〈∆β〉| (i.e., ν =−1), Ωk−(β±) = ω̄ and the damping of the previously dominant

k+-th mode is positive again: =mΩk+≈
2|〈∆β〉|

τ
. Thus, bistable unidirectional stationary states

can be observed in ring MSLs at moderate and high field intensities admitting a well-pronounced
asymmetry 〈∆β〉.

Alternating oscillation (AO) of counter-propagating fields of small or moderate intensity is an-
other typical bidirectional dynamic state of ring MSLs. An asymmetry factor in this case is small,
|〈∆β〉| ≤ ∆0, so that the adjacent mode frequency separation is, approximately, 2|r1|

τt1
(see

Eq. (6) and Fig. 2(b)). A similar damping and a small mode frequency separation (strong cou-
pling) of a pair of dominant modes suggest a mutual operation (beating) of these modes. The
forward (backward) propagating complex optical field at the junction J1, E+(z′1, t) (E−(z′′5 , t)),
can be represented as a sum of two modes with constant in time complex amplitudes s′+k±,1
(s′′−k±,5), each rotating with the frequency <eΩk± . Whereas the mode beating (intensity oscil-

lation) frequency fao = |<e(Ωk+−Ωk−)|/2π ≈ |r1|
τt1π

, the phase difference of the oscillating
counter-propagating field intensities is given by

φ = arg

(
s′+k+,1

s′′−k+,5

s′+∗k−,1

s′′−∗k−,5

)
= 2 arg

(
sinh |〈∆β〉|+ i

√
|r1|2
t21
− sinh2 |〈∆β〉|

)
,

which converges to π when 〈∆β〉 → 0. Thus, the operation of two adjacent modes suggests
f−1
ao -periodic anti-phase oscillations of the counter-propagating fields.
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Figure 3: Anti-phase oscillating field intensities |Eout
6,7 |2 in the ring MSL (a), four main Ω(β±(t))

at several time instants (b), radio-frequency (c) and optical (d) spectra of Eout
6 . Parameters as

in Fig. 2(b).

The simulations of the ring MSL presented in Fig. 3 confirm our mode analysis. The period
of anti-phase oscillating counter-propagating fields (see panel (a)) is determined by the fre-
quency fao (see panel (c)), which is a separation of the frequencies of the adjacent modes with
=mΩ≈ 0 (panel (b)). The f−1

ao -periodic field intensity oscillations presented in panel (a) are
additionally modulated with a much higher frequency frt≈|Ωk± − Ω(k−1)±|/2π≈ τ−1 (panel
(c)) corresponding to the field round-trip time in the ring cavity. This weak high-frequency mod-
ulation is due to additional beating between the main and the neighboring weakly damped side
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mode pairs (panel (b)). Finally, the computed mode frequencies (panel (b)) allow us to distin-
guish between the “real” optical modes and the wave-mixing products in Fourier spectrum of the
optical field (panel (d)).

In conclusion, we present an algorithm for location of instantaneous longitudinal optical modes
in nearly arbitrary MSL, provided the optical field and carrier dynamics can be adequately de-
scribed by the 1+1-dimensional TW model. An interpretation of typical observable regimes of
ring MSLs performed in this paper reveals the advantages of mode analysis.
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