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Abstract

In this paper we use a simplified model of cardiac excitation-contraction coupling to study
the effect of tissue deformation on the dynamics of alternans, i.e. alternations in the duration of
the cardiac action potential, that occur at fast pacing rates and are known to be pro-arrhythmic.
We show that small stretch-activated currents can produce large effects and cause a transition
from in-phase to off-phase alternations (i.e. from concordant to discordant alternans) and to
conduction blocks. We demonstrate numerically and analytically that this effect is the result of
a generic change in the slope of the conduction velocity restitution curve due to electromecha-
nical coupling. Thus, excitation-contraction coupling can potentially play a relevant role in the
transition to reentry and fibrillation.

1 Introduction

The origin of ventricular fibrillation, a life-threatening arrhythmia, lies in the formation and destabi-
lization of reentrant waves of electrical activity. During normal sinus rhythm, the cell transmembrane
potential propagates in the form of a pulse-shaped wave, triggering the contraction of the heart.
The initiation of reentry often occurs as the wave encounters refractory tissue, thereby resulting in
localized block, wavebreak, and the formation of reentrant spiral waves.

Cardiac alternans is a crucial factor in the emergence of wave breaks [1]. At the single cell level,
alternans is characterized by a beat-to-beat alternation in the duration of the excited phase of the
cardiac action potential. When propagating along tissue, this may result in spatially homogeneous
patterns of oscillations (concordant alternans), or in domains of out-of-phase oscillations (discor-
dant alternans) [2], as the nonlinear wave changes its width as it propagates [3, 4]. Strikingly, the
main characteristics of this instability can be captured considering a mesoscopic approach [5]. A
description in terms of coupled maps, relating the action potential duration (APD) and the con-
duction velocity (CV) of the action potential, at a given point, with the local time lapse between
the end of an excitation and the beginning of the following one (diastolic interval, DI), reproduces
the main characteristic observed during cardiac alternans. Furthermore, close to the transition to
alternans, the small oscillations in the APD have been shown to obey a Ginzburg-Landau type
equation with an additional nonlocal term that causes spontaneous nucleations of domains giving
rise to discordant alternans [6].

The dependencies of APD and conduction velocity on DI are known as APD and CV restitution
curves, respectively. They can be easily calculated numerically from simulations of ionic models
or measured in experiments. In the simplest formulation, the onset of alternans occurs when the
slope of the APD restitution curve is larger than one, giving rise to a period-doubling instability
of the underlying periodic rhythm [8, 9]. While the onset of alternans is determined by the APD
restitution, its phenomenology is strongly influenced by the CV-restitution [3, 4]. When the slope of
the CV-restitution curve is positive and different from zero at the onset of alternans, the transition is
always to discordant alternans, with a distance between out-of-phase domains inversely proportional
to this slope [6].

This phenomenological formulation has been extended to include such effects as memory [10], in-
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tracellular calcium dynamics [11], and non-monotonic APD [12] or CV-restitution curves [13]. In
this paper, we consider an effect that is usually neglected when studying the stability of cardiac
waves: the contraction of the tissue. This is often considered to be a passive consequence of electrical
activity. However, simulations of simplified models of excitation-contraction coupling [14], as well
as of reaction-diffusion equations in a medium with a varying (oscillatory) metric [15], suggest that
mechanical deformation play an important role for, e.g., the stability of spiral waves. This is due
to mechano-electric feedback whereby mechanical deformations (e.g. stretch) can modulate electric
activity [16]. Mechanoelectric feedback is mediated by stretch-activated channels in the cellular
membrane [17]. The main goal of this paper is to explore the possibility that contraction acts as a
proarrhythmic substrate through the induction of discordant alternans and localized block. For this,
we present a mechanism that explains how a small stretch activated current (SAC) can produce a
large macroscopic effect.

The paper is organized as follows: in Section 2 we present the ionic model, incorporating the effect of
mechano-electric feedback. In Section 3 we compute its restitution curves, that are used in Section
4 to derive coupled maps for the dynamics of the APD and DI. With these we check the appearance
of discordant alternans as a function of the strength of the stretch activated current and the length
of the system. To calculate the minimum tissue size necessary for the onset of discordant alternans,
we derive amplitude equations in Section 5 and compute their solutions analytical and numerically.
Finally, in the last section we present the conclusions and in the appendixes some more technical
details of the derivations.

2 Simplified tissue model with mechano-electric feedback (MEF)

The details of the interplay between excitation and contraction are very complex and involve the
dynamics of transmembrane potential, ionic currents, intracellular calcium concentration, stretch
activated currents, and strain and stresses of fibers [18]. To gain insight into the possible pro-
arrhythmic effects of mechano-electric feedback, an alternative approach is to consider simple models
which contain its basic dynamical ingredients [19]. In this spirit, we use a reduced mechano-electrical
model, introduced in [14], that considers a three-variable Fenton-Karma model [20] for electrical
activation, wherein active stress is coupled directly to the transmembrane potential. As proposed
in [21], a linear version of the elastic equations is solved to give rise to a global coupling term in the
reaction-diffusion equations. The resulting model reads:

∂u

∂t
= D∆u− Jfi(u, v) − Jso(u)− Jsi(u,w) − Jsa(u, Ta) (1)

∂v

∂t
= Θ(uc − u)(1 − v)/τ−v (u)−Θ(u− uc)v/τ

+
v (2)

∂w

∂t
= Θ(uc − u)(1 − w)/τ−w −Θ(u− uc)w/τ

+
w (3)

∂Ta

∂t
=

1

τT (u)
(u− Ta) (4)

with relaxation times τ−v (u) = Θ(u−uv)τ
−
v1 +Θ(uv −u)τ−v2, τT (u) = Θ(u−uT )τT1+Θ(uT −u)τT2,

and the currents

Jfi(u, v) = − v

τd
Θ(u− uc)(1− u)(u− uc)

Jso(u) =
u

τ0
Θ(uc − u) +

1

τr
Θ(u− uc)
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Abbildung 1: Simulations of Eqs. (1)-(4) for the parameters of the modified Beeler-Reuter model,
in a fiber of length L = 6 cm and with a stretch activated current conductance gs = 0.01 ms−1. a)
Transmembrane potential (solid blue line) and normalized active tension Ta/kT (dashed red line).
b) Fast inward (solid black), slow outward (dotted blue), slow inward (dot-dashed red) and stretch
activated (dashed green) currents.

Jsi(u,w) = − w

2τsi

{

1 + tanh[k(u− usic )]
}

Jsa(u, Ta) = gs(〈Ta〉 − Ta)Θ(〈Ta〉 − Ta)(u− Es)

where Θ(·) is the Heaviside unit step function, and the constants gs and Es give the conductance
and Nernst potential of the stretch activated current Jsa[22]. The variable u is a normalized voltage
u = (V −V0)/(Vfi −V0) and Ta the active tension, being 〈Ta〉 = (

∫ L
0 Ta(x)dx)/L the average active

tension along tissue. Thus, the stretch activated current (SAC) is only different from zero in those
regions where the local active tension is lower than the average value. The other three currents, a
slow inward (Jsi), a slow outward (Jso) and a fast inward current (Jfi) involve characteristic time
constants τsi, τ0, τd and characteristic activation voltages usic , uc [24].

We simulate this model on a 1D cable of length L with fixed boundaries and non-flux boundary
conditions for the nondimensional transmembrane potential u. Two sets of parameter values have
been selected for the model. A first set corresponds to parameters that fit the restitution curves of
the Beeler-Reuter model [23, 24, 20] (original Beeler-Reuter parameters), that are known to give
rise to discordant alternans due to CV-restitution. Alternatively, we have also used a model version
where we have modified one of the parameters (the recovery time of the w gate), which is set to
τ−w = 95 ms, instead of the original value τ−w = 41 ms. This change makes the onset of alternans
to appear in a regime where the CV-restitution curve is flat, so one would not expect to obtain
discordant alternans in this case. We will denote modified Beeler-Reuter to this set of parameters.
In Fig. 1 we show the transmembrane potential, active tension and the different currents for this
set of parameters.

In Fig. 2 we show plots of the spatial distribution of APD obtained with the Beeler-Reuter pa-
rameters. Below a given critical fiber length, in the absence of stretch-activated current (gs = 0),
concordant alternans appears (see Fig. 2a). However, if we include contraction and increase the
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Abbildung 2: Spatiotemporal plots of the transmembrane voltage (top panels) and APD for two
consecutive beats in a cable as a function of the position on the cable (bottom panels, one beat
in blue and the next one in dashed red), for the original Beeler-Reuter parameters and different
conductances of the SAC: a) gs = 0, showing concordant alternans, and b) gs = 0.0065ms−1,
resulting in discordant alternans. Besides the change in gs all the other parameters are the same.
The spacial and time discretizations are dx=0.025cm, for a total length L = 6 cm, and dt=0.01ms,
respectively. The pacing Tpace = 340 ms is obtained applying periodically a current of 1.0 (in
nondimensional units) during 0.01 ms at the first 10 grid points.
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Abbildung 3: a) APD and b) CV restitution curves for the original parameters of the Fenton-Karma
model, corresponding to the original Beeler-Reuter model (dashed red lines), and the modified
parameters, where we have changed the value of τ−w from 41 to 95 ms (solid blue lines). The
restitution curves are obtained in a cable of length L = 2 cm, using a S1S2 protocol, with S1=450
ms. c) APD and d) CV-restitution curves for the modified parameters and two values of the SAC
conductance, gs=0.005 ms−1 (solid line) and gs=0 ms−1 (dashed line), showing that, while the APD-
restitution curve remains constant, the CV-restitution curve becomes steeper as gs is increased.

strength of the stretch-activated current by a small amount, a transition to discordant alternans is
observed for otherwise identical model parameters (Fig. 2b). Thus, small changes in the SAC suffice
to transform the characteristics of alternans from concordant to discordant. This finding provokes
the question whether this proarrhythmic scenario is a general feature of action potential propagation
with electromechanical coupling provided by a stretch activated current.

3 Restitution maps

We can understand the effect of SAC uncovered in the previous section within the framework of the
restitution maps [5]. The change in a single parameter, from the Beeler-Reuter model to the modified
Beeler-Reuter model, modifies the APD-restitution curve, but not the CV-restitution (Figures 3a
and b), so at the onset of alternans the CV-restitution curve is flatter in the latter case than in
the former one. In the original parameters the slope of the APD-restitution curve becomes larger
than one at a diastolic internal of DIc = 117.2 ms, while for the modified parameters this value
is increased to DIc = 202.4 ms where the CV-restitution curve is almost flat. Since the minimum
tissue size necessary to obtain discordant alternans depends on this slope [7], we would not expect to
observe discordant alternans with the modified parameters unless we consider infinitely long cables.
More specifically, an estimate of the minimum tissue size to obtain alternans (for a stationary node)

5



was given in [7] as
Lmin = π

√
wΛ/2, (5)

with Λ = c2/2(dc/dDI), and w ∼ D/c a coefficient related with the left-right asymmetry in diffusive
coupling for a propagating pulse. For the modified parameters dc/dDI is very small so that Λ → ∞
and discordant alternans never appears in tissue.

Considering now the coupled excitation-contraction system in Eqs. (1)-(4) we observe that the
coupling with contraction changes the slope of the CV-restitution curve, but not that of the APD-
restitution (Fig. 3c and d), consistent with results obtained in more realistic electromechanical
models [25]. Thus, the onset of alternans (in cell) does not change, but the nature of alternans in
tissue (either concordant or discordant) may change due to this coupling. From the expressions for
the minimun tissue size neccessary to obtain discordant alternans given in Eq. (5) the problem seems
rather straightforward to solve. Just measure the slope of the CV-restitution curve at the onset of
alternans for different values of the stretch-activated current conductance gs and from this obtain
the minimum tissue size for the transition to discordant alternans as a function of gs. However, the
situation is more complex, since the change in the slope is not constant but depends on the position
in tissue at which it is measured. Thus, the formulae obtained in [7] to calculate the minimum tissue
size are not valid now and we have to obtain an equivalent expression that incorporates the effect
of mechano-electric feedback. This will be one of the goals of the following sections.

4 Coupled maps

The dynamics of the system can be studied on a mesoscopic description using the restitution curves
to obtain coupled map equations for the APD and pacing period T. In general, the dynamics of the
full model can be properly projected into a set of two maps (see full details in [6, 7]):

An+1 = f(T n −An)−w∂xA
n + ξ2∂2

xA
n (6)

T n(x) = Tpace +

∫ x

0

dx′

cn
−

∫ x

0

dx′

cn−1
(7)

where Tpace is the pacing period on one end of the cable, T n, cn, Dn, and An are the stimulation
interval, wave speed, DI, and APD of the nth pulse, and T n = An + Dn. It is important to
notice that Eq. (7) is strictly the definition of the period at a given position x while Eq. (6) is a
good approximation of the APD dynamics where the coefficients w and ξ2 are obtained from the
restitution curves (see Appendix A) giving in our case w ≃ 0.145 cm and ξ2 ∼ 0.2 cm2.

The dynamical system given by Eqs. (6) and (7) must be closed with an expression for the conduction
velocity c. In the absence of contraction, this is just cn = c(Dn). However, contraction introduces a
spatial dependence that makes the determination of c non-trivial. Indeed, we have measured the CV
along the tissue for different values of the SAC conductance parameter gs (Figure 4a) and observed
that the conduction velocity increases as the pulse travels along the tissue, up to a point where
the whole AP has entered the cable, and a constant conduction velocity is reached. Based on this
observation we consider that, once the whole action potential is in the cable, the conduction velocity
depends both on the diastolic interval of the previous beat and on the action potential duration
of the current one, so cn+1 = CV (Dn, An+1). Furthermore, according to Fig. 4b we may assume
that the dependence of conduction velocity with APD is linear. However, this general dependence
is not enough to close the system since it is only valid when the full action potential has entered
the cable. From Figure 4a we can assume that, while the action potential is entering the cable,
the conduction velocity increases linearly with the distance traveled by the pulse. This allows us to
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Abbildung 4: (a) Conduction velocity vs x for three different gs = 0.005 ms−1 (solid blue), 0.0075
ms−1 (long dashes, purple) and 0.01 ms−1 (short dashes, olive) (in normalized units of gs) for
Tpace = 533 ms (dynamic) and L = 15cm, showing how it accelerates until the whole AP is in
tissue, reaching a constant value. (b) Change of conduction velocity with APD, measured at a
given point in tissue, and for several values of gs. (c) Conduction velocity vs. distance along the
cable, calculated for a pacing period of T = 475 ms and a stretch-activated current conductance of
gs = 0.0125 ms−1. We fit the curve to the form given by Eq. (8), to calculate α for that value of L
and gs. d) Values of α as a function of gs, for different lengths of the system (L = 4, 6, 8, 10, 12, 15
cm). e) For the product αL, all the data collapses in a single curve, giving α = gs(0.06 + 2.8gs)/L.
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write the conduction velocity as:

cn+1 = CV (Dn) + αAn+1S(x− cn+1An+1) + αx/cn+1[1− S(x− cn+1An+1)] (8)

where S(·) is a sigmoidal function that interpolates between the regions where the conduction
velocity is constant or grows linearly with x. The coefficient α, that effectively measures the effect
of contraction on conduction velocity, can be calculated fitting the measured profiles of CV (x) with
the function given in Eq. (8) (Fig. 4c), for different values of the length of the system L and SAC
conductance gs. As shown in Fig. 4e, plotting the product αL as a function of gs all the data
collapses into a single curve, from which we get:

α =
gs
L
(0.06 + 2.8gs) (9)

With this, we close the system of equations and can compare the results of the coupled maps with
the full numerical simulations of the ionic model. When doing the comparison, however, one should
be cautious. Eq. (8) is just an approximation: the conduction velocity actually depends on the
length of the pulse at a given instant on time, and not on the duration of the pulse at a given point
in space, as considered here. Furthermore, for long tissues (or fast pacing rates) where more than
one pulse is present at the same time in the cable, one would have to consider the influence of this
second pulse. However, we found that for typical values of L and gs, the approximation given by
Eq. (8) reproduces well the numerical results from the ionic model.

The simulation of Eqs. (6), (7) together with Eqs. (8), (9), taking for the sigmoidal S(z) = [1 +
tanh(κz)]/2 allows us to analyze the details of the transition to discordant alternans as a function
of the length of the system and the strength of stretch-activated current. Both the full model (1)-
(4) with the parameters of the original and modfied Beeler-Reuter models and the coupled maps,
present a transition from concordant to discordant alternans induced by contraction (Figure 5). For
the parameters in the modified Beeler-Reuter model, the slope of CV-restitution is negligible at the
onset of alternans. Thus, discordant alternans never appears for gs = 0 (Figure 5b). Contraction
alone is able to provoke the transition from concordant to discordant alternans in this case, as
observed in simulations of the full model (Fig. 5b) and the coupled maps (Fig. 5d), changing gs for
fixed L. For the original parameters of the Beeler-Reuter model, there is a transition to discordant
alternans as the length L of the cable is increased, even in the absence of contraction, due to a
positive slope of the CV-restitution curve at the onset of alternans. The effect of contraction is to
shift this transition to lower values of L (Figs. 5a and 5c).

5 Amplitude equations

In the previous section we showed that numerical simulations of the coupled maps are in good
agreement with the results from the full model. We can, therefore, analyze in more detail the
coupled maps in Eqs. (6), (7) in order to obtain further information about the solutions and the
mechanism behind the transition from concordant to discordants alternans. Specifically, our goal
is to obtain a value for the minimum length necessary to obtain discordant alternans due to the
presence of stretch-activated currents.

Close to the bifurcation to alternans, we can consider small oscillations of the APD and stimulation
interval, An(x) ≃ A∗ + (−1)na(x, t), T n(x) ≃ T ∗ + (−1)nb(x, t), that are assumed to vary on slow
time and spatial scales around the values at the bifurcation point. Introducing these expresions in
Eqs. (6), (7) and (8) and carrying out some algebra (see Appendix B), it can be shown that the
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Abbildung 5: Phase-plot of the different solutions obtained with Eqs. (1)-(4) as a function of the
size of the system L and the normalized strength of the SAC gs, for the (a) original Beeler-Reuter
parameters, and T = 343.5 ms and (b) the modified Beeler-Reuter parameters, with T = 404
ms. The different solutions are: Concordant alternans (black circles), discordant alternans (green
squares), block and complex behavior (red triangles). The blue triangles correspond to supression
of alternans. Examples of the different solutions are shown above the phase-diagrams, including
localized and 2-1 block. In c) and d) we show the corresponding phase diagrams obtained with the
maps (6), (7) and (8), with S(x − cA) ≡ 0.5 {1 + tanh[1.2(x − cA)/(cA)]}, showing the transition
from concordant to discordant alternans as a function of gs.

small oscillations obey a Ginzburg-Landau type equation:

τ∂ta = σa− ga3 − w∂xa+ ξ2∂2
xa− b (10)

The effect of contraction is now hidden in the form of b, which is a complex function that depends on
the slope of CV-restitution and the strength of parameter α. In the limit when there is no dispersion
(dCV/dDI=0) and S(x− cA) is very steep and can be approximated by a Heaviside function, this
expression greatly simplifies to (see Appendix B):

b =
1

Π

∫ x

0
Θ(x′ − c∗A∗)a(x′)dx′ (11)

with Π = c∗2/2α, and c∗ the conduction velocity at the onset of alternans. This is similar to
the known expression due to CV-restitution [6] b ∼

∫ x
0 a(x′)dx′ but with b different from zero

9
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only for cables longer than c∗A∗, which corresponds to the width of the pulse at the onset of
the bifurcation. The reason for this is clear: if the system size is smaller than the width of the
pulses, then there is no difference in conduction velocity at alternative beats. From Eq. (8), and
considering S(·) a Heaviside function Θ(·), it is easy to see that, in that case, the CV does not
depend on An+1. Beyond that point, the mechanism behind discordant alternans is the same as for
conduction velocity dispersion. During alternans, a pulse with a long APD develops a higher active
tension, which stretches the tissue in front of it (Fig. 6a). Since the stretch-activated current appears
where the tissue is distended, it is precisely in the case of long (short) APD that the tissue ahead
of the front becomes more (less) depolarized. Then, a pulse with a long APD has a higher velocity
than a pulse with a short APD, due to a larger stretch-activated current (Fig. 6), and catches it up
as it travels along tissue, until a node is formed.

5.1 Stability analysis

We are interested in obtaining expressions for when the instability to alternans occurs and which
is the minimum tissue size necessary to observe discordant alternans. For that, we perform a linear
stability analysis of the amplitude equation (10) around the nonalternating solution a = 0, and
find an analytical expression for the eigenvalue and the eigenfunction corresponding to the marginal
mode of the linear dynamics. Let us consider a(x, t) = exp(Ωt/τ)Ψ(x). Then, linearizing we obtain:

0 = (σ − Ω)Ψ− w
dΨ

dx
+ ξ2

d2Ψ

dx2
− 1

Π

∫ x

x0

Ψdx′ (12)
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with x0 = c∗A∗. Thus, we have to solve:

0 = (σ − Ω)Ψ1 − w
dΨ1

dx
+ ξ2

d2Ψ1

dx2
, x < x0 (13)

0 = (σ − Ω)Ψ2 − w
dΨ2

dx
+ ξ2

d2Ψ2

dx2
− 1

Π

∫ x

x0

Ψ2dx
′ x > x0 (14)

in a semiinfinite line x ∈ [0,∞), with Ψ′
1(0) = 0, Ψ1(x0) = Ψ2(x0), and Ψ′

1(x0) = Ψ′
2(x0).

Let us introduce Ω̃ = Ω − σ and look first for a solution of Ψ1 in the form of exponential modes
Ψ1 ∼ eλx. We get the eigenvalue equation:

0 = −Ω̃− wλ+ ξ2λ2 (15)

so

λ =
1

2ξ2
[w ±

√

w2 + 4Ω̃ξ2] (16)

and the general solution as:
Ψ1 = [Aeλ1x +Beλ2x] (17)

being λ1 = [w +

√

w2 + 4Ω̃ξ2]/2ξ2 ≡ (w/2ξ2)[1 +
√
1 + φ] and λ2 = [w −

√

w2 + 4Ω̃ξ2]/2ξ2 ≡
(w/2ξ2)[1−

√
1 + φ], with φ = 4Ω̃ξ2/w2.

We can now write the condition of zero derivative at x = 0 as:

dΨ1

dx

∣

∣

∣

∣

x=0

= Aλ1 +Bλ2 = 0 (18)

which makes:

Ψ1(x) = C1w/ξ
2ewx/2ξ2

[

sinh
wx

√
1 + φ

2ξ2
−

√

1 + φ cosh
wx

√
1 + φ

2ξ2

]

. (19)

Thus, at x = x0, Ψ1 typically diverges exponentially, as Ψ1 ∼ ewx0/ξ2 unless φ ∼ e−wx0/ξ2 in
which case we can obtain modes that are order one in the whole domain. In this case we can set
φ = φ̃e−wx0/ξ2 , with φ̃ ∼ O(1). After some algebra, for Ψ1(x) we get the solution at first order:

Ψ1(x) ≃
w

ξ2
C1

[

−1 +
1

4

(

wx

ξ2
− 1

)

φ̃e−wx0/ξ2 − φ̃

4
ew(x−x0)/ξ2

]

. (20)

In order to match Ψ2 and Ψ1 at x = xo we can use the fraction Ψ1f = Ψ′
1/Ψ1 evaluated at x = xo,

which is independent of C1. Then:

Ψ1f (x = x0) =
λ1λ2(e

λ1x0 − eλ2x0)

λ2eλ1x0 − λ1eλ2x0

= −wφ

2ξ2

tanh wx0

√
1+φ

2ξ2

tanh wx0

√
1+φ

2ξ2 −
√
1 + φ

(21)

which after imposing φ = φ̃e−wx0/ξ2 reads Ψ1f (x = x0) ≃ (w/ξ2)φ̃/(4 + φ̃).

Now we have to solve the equation for Ψ2 matching to the slope given by (21) at x = x0. A general
solution can be searched in the form Ψ2 = Aeq(x−x1) where q is a complex number. Introducing this
function in Eq. (14) one notices that using the complex conjugate of q we can eliminate the new
term appearing in the integral. We find thus a particular solution which reads:

Ψ2 = C2

[

eq(x−x1) + eq
∗(x−x1)

]

= C2e
−ρ(x−x1) cos [k(x− x1)] (22)
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Abbildung 7: a) Comparison of the solutions given by the full maps, with S(z) ≡ Θ(z), the solutions
of the eigenvalue problem, and the analytical solution. b) Onset of discordant alternans, as given
by Eq. (32) and the full maps, with S(z) ≡ Θ(z), and S(zn) ≡ 0.5 {1 + tanh[1.2(x − cnAn)/cnAn]}

where q∗ is the complex conjugate of q = −ρ + ik with ρ and k being real values. Notice that the
scale of Lmin is given by the first zero of this function which is directly related with the wavenumber
k. Imposing that Eq. (22) satisfies the amplitude equation we get, after some algebra, the conditions:

tan k(x0 − x1) =
ρ

k
(23)

Ω̃ + ξ2k2 = 3ξ2ρ2 + 2wρ (24)

w + 2ξ2ρ =
1

Π(k2 + ρ2)
(25)

Besides this, we have to impose the matching condition at x = x0, Ψ1f = Ψ2f , that results into:

−2ρ =
λ1λ2(e

λ1x0 − eλ2x0)

λ2eλ1x0 − λ1eλ2x0

≃ w

ξ2
φ̃

4 + φ̃
=

w

ξ2
Ω̃

w2/ξ2 + Ω̃
(26)

The four equations (23)-(26) determine the four unknowns of the problem, i.e., Ω̃, k, ρ and x1.

To check the validity of the previous solution, we solved numerically the linear eigenvalue problem
associated with (10), linearized and discretized in space, using a finite difference representation
of the derivatives and the trapezoidal rule for the integral. Looking for exponentially growing or
decaying solutions ai(t) ∼ aie

Ωt/τ , we obtain a set of N coupled linear algebraic equations

Ωai = σai −
w

2dx
(ai+1 − ai−1) +

ξ2

dx2
(ai+1 + ai−1 − 2ai)−

dx

Λ

i−1
∑

j=j0

1

2
(aj + aj+1), i = 1 . . . N, (27)

where L = Ndx, j0 = x0/dx, with x0 = c∗A∗, and dx = 0.05 cm. The non-flux boundary conditions
now become a0 = a2, and aN+1 = aN−1. The resulting eigenvalue problem is then solved for the
complex growth rate Ω = Ωr + iΩi, and the corresponding eigenmodes.

In Figure 7 we show a comparison of the eigenmodes obtained from the analytical solution, the
solution of the eigenvalue problem and the full maps, showing an excellent agreement. This is
specially remarkable for the comparison with the full maps, and stresses the validity of the amplitude
equations formalism.
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5.2 Evaluation of Lmin as a function of the SAC conductance gs

Once we have the analytical solution, we can compute the minimum size of tissue neccessary to
obtain alternans (Lmin) as the first zero of the general solution Ψ. In this case, this is the first zero
of Ψ2, given by

Lmin = x1 +
π

2k
= x0 +

1

k

[π

2
− arctan

ρ

k

]

, (28)

where k should be determined from Eqs. (24)-(26). When φ = φ̃e−wx0/2ξ2 , we can neglect the term
Ω̃ in Eq. (24), so we get:

k2 = 3ρ2 +
2w

ξ2
ρ (29)

ρ(ρ+ w/2ξ2)2 =
1

8ξ2Π
(30)

Then, for a given value of Π, Eq. (30) gives the value of ρ that then can be used to obtain k and Ω̃
from Eqs. (29) and (26). In the limit Π → ∞ we have two possible solutions to Eq. (30): ρ = 0, or
ρ = −w/2ξ2. However, for large values of Π looking for a solution around ρ = 0 gives a very bad
approximation. For both typical and large values of Π, ρ is indeed small but not extremelly close
to zero. In this circumstance one can neglect the cubic term in Eq. (30) and obtain a very good
approximation solving the quadratic equation. One obtains

ρ =
w

8ξ2

[
√

1 +
8ξ4

w3Π
− 1

]

(31)

which introduced in Eq. (29) and (28) produces

Lmin ≃ x0 +
√
wΠ

[

π

2
− arctan

ξ2

2
√
w3Π

]

(32)

with x0 = c∗A∗. Recalling that Π = c2/2α and substituting the expression for α = gs(0.06+2.8gs)/L
obtained in Fig. 4, one obtains the limits Lmin ∼ 1/gs for gs → 0 and Lmin → c∗A∗, when gs ≫ 1
(see Fig. 5), consistent with the results obtained with coupled maps and the full ionic model.

6 Conclusion

In this paper, we have considered a mechano-electric model that couples active tension directly to a
simplified model of the cardiac excitability and analyzed an equivalent coupled map scenario, to show
that tissue contractions have a pro-arrythmic effect and may cause discordant alternans. The model
shows that a small contraction effect suffices to induce the transition from concordant to dicordant
alternans via its influence on the conduction velocity properties. In our model, stretch increases
the conduction velocity, in accordance to what has been observed in other numerical studies under
similar conditions [25]. The reason is that stretch opens the stretch activated channels, elevating
the resting potential, thus making it easier to depolarize.

We have performed a detailed analytical treatment in terms of coupled maps and their amplitude
equation. This has allowed us to uncover the basic mechanism for discordant alternans. With the
stretch-activated current, a pulse with a long APD has a higher velocity than a pulse with a short
APD, so the two pulses approach, decreasing the DI and thus the APD of the long pulse, until a
node is formed. This happens in situations where the derivative of the conduction velocity with
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the diastolic interval is zero which, in the case without stretch-activated currents, would make
discordant alternans impossible. An analysis of the amplitude equation has allowed us to show that
the minimum length of the system needed to have alternans increases as the inverse of the strength
of the stretch-activated as this goes to zero.

A limitation of our formulation is that it considers linear elasticity, whereas the elastic response
of real tissue is known to be highly nonlinear. Still, given that the transition from concordant to
discordant alternans occurs even at very small values of the stretch-activated conductance, this
would not affect the qualitative prediction of the model. Perhaps a bigger uncertainty remains in
the correct form of the stretch activated current. In fact, it has been observed that the conductance
of this current is not a constant, but varies with time, having an activation time of ∼ 20ms to peak
current, and then a decay to half the peak current value in about 50 ms [26]. The simple formulation
of the SAC used in this paper would consider average values and assume that the transients are fast
in the time scale of development of active tension. Furthermore, the coupling between excitation
and contraction in our model is very simplistic and does not take into account the role played by
intracellular calcium. In this respect, it cannot account for alternans due to intracellular calcium, or
for changes in the resting potential due to the effect of stretch on the dynamics of calcium handling
[27].

More importantly, our analysis assumes an increase of conduction velocity with stretch. Indeed,
there exists experimental and numerical evidence showing that this is the case for moderate values
of stretch [25, 28], although the relation has often been observed to be biphasic [28]. At larger
values of stretch the increase in the resting potential inactivates the sodium channels, resulting in
slower conduction and even conduction block. However, there are also experiments where conduction
velocity has been observed to be constant or to decrease with stretch [28, 29, 30, 31]. Thus, the
validity of our assumptions is not clear in this point. Even so, under the conditions considered in the
paper, the scenario unveiled here is general and the conclusions hold generally. Whenever stretch
is created in front of the pulse increasing the conduction velocity, a small stretch-activated current
together with the nonlocal nature of the interaction produce discordant alternans.

An open question is the generalization of our results to two- or three-dimensional tissue, which would
be the relevant case for the heart. In a 2D tissue, in the case where radial symmetry can be assumed,
the effect of stretch is the same as in 1D tissue [32] and one would get similar results. However,
in two dimensions the effect of contraction is very dependent on the position of the pacing point
and the form (and type) of the boundaries [33, 34]. This is specially relevant given the complex
interaction between walls in a real heart, a question that cannot be addressed without further
knowledge of heart contraction. Also interesting is the effect of MEF in the case where a spiral
is present in 2D tissue with standard boundary conditions. MEF is known to produce a drift of
the spiral, proportional to the strength of the SAC [25]. However, in the presence of alternans, the
topology of the spiral induces the formation of nodal lines [35], which can present complex dynamics
[36, 37]. Our results in 1D suggest that one would expect a transition from a straight nodal line
(corresponding to concordant alternans in the radial direction) to a spiralling one (corresponding
to discordant alternans) due to MEF, al least as long as there are not multiple arms of the spiral
in the tissue. Analyzing this latter case is a natural next step to understand the effect of MEF in
cardiac alternans.

A Calculation of the coefficents w, ξ2

We will calculate w and ξ2 as sketched in [7]. For that, we have to consider parameters for which
there is discordant alternans in the tissue. Computing D(x), we can find the position of a node x∗,
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Abbildung 8: a) Spatial distribution of DI at two consecutive beats during discordant alternans and
b) APD vs. DI for those two beats. In c) and d) we show the same graphs closer to the node where
Dn+1(x∗) = Dn(x∗). From these we calculate the gradient in DI(x) at two consecutive beats and
the splitting of the restitution curves. Parameters: T = 400ms, L = 10 cm, g = 1.45 · 10−3.

for which Dn+1(x∗) = Dn(x∗) = D∗. Since, from the restitution curve A = f(D), we would expect
to see the same value of the APD at two consecutive beats at that value of DI. If there is a different,
it must be due to the spatial terms, that cause a splitting of the restitution curves.

An+1(x) = fS1S2[D
n(x)]− w∂xD

n(x) + ξ2∂2
xD

n(x) (33)

Thus, since close to the node in DI, the second derivative is almost zero

An+1(x∗)−An(x∗) ≃ w[∂xD
n−1(x∗)− ∂xD

n(x∗)] (34)

Then

w ≃ An+1(x∗)−An(x∗)

∂xDn−1(x∗)− ∂xDn(x∗)
(35)

In the example shown in Fig. 8, we have:

w ≃ 4.25ms

29.28ms/cm
= 0.145cm (36)

For the coefficient ξ2 we will take the estimate ξ2 ∼ D ×APD ∼ 0.2 cm2.
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B Derivation of the amplitude equations

B.1 General approach

To derive the amplitude equation (10) from the maps (6), (7), we first consider the expression for
the pacing period at a given point in tissue, which reads:

T n(x) =

∫ L

0

dx′

c[Dn(x′), An+1(x′), An(x′)]
−

∫ L

0

dx′

c[Dn−1(x′), An(x′), An−1(x′)]
(37)

or, differentiating

dT n(x)

dx
=

1

c[Dn(x), An+1(x), An(x)]
− 1

c[Dn−1(x), An(x), An−1(x)]
(38)

As explained in the text, we will assume that the dependence of CV on the current and previous
APDs is negligible so that combining Eqs. 38 and (8) we can write:

dT n

dx
=

1

c(Dn) + αAn+1S(zn+1) + αx/cn+1(1− S(zn+1))
(39)

− 1

c(Dn−1) + αAnS(zn) + αx/cn(1− S(zn))
(40)

where we recall here again that zn = x− cnAn.

Now, if oscillations are small because we are close to the onset of alternans, we can expand the
period and the APD around their value at the onset (T ∗, A∗) :

T n(x) ≃ T ∗ + (−1)nb(x, t) (41)

An(x) ≃ A∗ + (−1)na(x, t) (42)

where a/A∗, b/T ∗ ≪ 1 vary slowly in time and space. The general goal before obtaining the final
amplitude equation is to be able to write db/dx as a function of b and a. To do it, we expand the
previous expressions up to first order in α and a, b to get:

c(Dn) ≃ c(D∗) + c′∗(−1)n(b− a) ≡ c∗ + c′∗(−1)n(b− a) (43)

S(zn) ≃ S(x− [c∗ + c′∗(−1)n(b− a)][A∗ + (−1)na])

≃ S(x− c∗A∗)− S′(x− c∗A∗)(−1)n[c∗a+ c′∗A∗(b− a)]

≡ S(z∗)− S′(z∗)(−1)nG(b, a) (44)

where, in Eq. (43), we have used that, at constant pacing, T n = An+Dn. Notice that to shorten the
notation we have defined c∗ ≡ c(D∗), c′∗ ≡ dc/dD(D∗), S(z∗) ≡ S(x−c∗A∗), S′(z∗) ≡ S′(x−c∗A∗),
and G(b, a) = (c∗ − c′∗A∗)a+ c′∗A∗b We can now use this expansion to expand the denominators of
Eq. (40) to get:

c(Dn) + αAn+1S + αx/cn+1(1 − S)

≃ c∗ + c′∗(−1)n(b− a) + α[A∗ + (−1)n+1a][S(z∗) + S′(z∗)(−1)n+1G(b, a)]

+ αx/c∗[1− S(z∗)− S′(z∗)(−1)n+1G(b, a)][1 − (−1)n
c′∗

c∗
(b− a)]

≃ c∗ + c′∗(−1)n(b− a)− α
xc′∗

c∗2
(−1)n(b− a) + (−1)n+1αS′(z∗)c′∗A∗(A∗ − x/c∗)b
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+ α(−1)n+1a
[

S(z∗) + S′(z∗)(c∗A∗ − c′∗A∗2 − x+ c′∗A∗x/c∗)
]

+ α[S(z∗)A∗ + (1− S(z∗))x/c∗] (45)

The term α [S(z∗)A∗ + (1− S(z∗))x/c∗] is just the change in conduction velocity due to the APD
that is present even in the absence of alternans (see Fig. 3c in the main text). The last term in Eq.
(45) is the combined effect due to contraction and alternans, and has two contributions: αaS(z∗),
that takes into account the fact that the APD is changing in consecutive beats, and so does its
effect on the velocity, and αaS(z′∗)(A∗c∗ − x), that takes into account that the length of the AP is
changing from beat to beat, and so does the point at which the speed reaches a plateau.

Using the former expression, it is not difficult to expand

1

cn
− 1

cn−1
≃ −(−1)n

2

c∗2

{

c′∗(b− a) + αxc′∗/c∗2(b− a) − αS′(z∗)c′∗A∗(A∗ − x/c∗)b

− αa[S(z∗) + S′(z∗)(c∗A∗ − c′∗A∗2 − x+ c′∗A∗x/c∗)]} (46)

in order to compute dT n/dx and, in this way to obtain an expression for b since dT n/dx ≃
(−1)ndb/dx using that oscillations in pacing period are much smaller that oscillations in APD,
i.e, b ≪ a::

db

dx
=

1

Λ
(1 +

x

2Π
)a+

1

Π
a[S(z∗) + S′(z∗)(c∗A∗ − c′∗A∗2 − x+ c′∗A∗x/c∗)] (47)

where we have defined the lengthscales Λ = c∗2/2c′∗ and Π = c∗2/2α that measure the relative
importance of CV-dispersion and excitation-contraction coupling, respectively.

B.2 Amplitude equation and its simplification

Once Eq. 47 has been obtained, we can now use the results (and derivation) of the amplitude
equation as described Echebarria & Karma, PRE (2007). Taking into account that the map for the
APD, Eq. (6), is not modified, one obtains:

τ∂ta = σa− ga3 − w∂xa+ ξ2∂2
xa− b (48)

with b obtained integrating Eq. (47), finally resulting in the amplitude equation:

τ∂ta = σa− ga3 − w∂xa+ ξ2∂2
xa (49)

−
∫ x

0

{

1

Λ

[

1 +
x

2Π

]

+
1

Π

[

S(z′∗) + S′(z′∗)(c∗A∗ − x′)

(

1− c∗A∗

Λ

)]}

adx′

Solving the above equation exactly is cumbersome, but we can obtain a fairly simplified expression by
doing some approximations. First, let us assume that, without contraction, dispersion is negligible.
This is actually the case for the second set of parameters which were chosen precisely to make
Λ → ∞. The amplitude equation for a reads as:

τ∂ta = σa− ga3 − w∂xa+ ξ2∂2
xa−

∫ x

0

{

1

Π
[S(z′∗) + S′(z′∗)(c∗A∗ − x′)]

}

adx′ (50)

Given that S(z) is a rather steep function let us write the hyperbolic tangent as:

S(z) = Θ(z) +R(z), S′(z) =
κ

2 cosh2(κz)
(51)
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with R(z) being the difference between the θ function and S(z). We can then write the amplitude
equations as

τ∂ta = σa− ga3 − w∂xa+ ξ2∂2
xa−

1

Π

∫ x

0
Θ(x′ − c∗A∗)adx′

− 1

Π

∫ x

0

[

R(x′ − c∗A∗)− κ(x′ − c∗A∗)

2 cosh2 κ(x′ − c∗A∗)

]

adx′ (52)

Now we can consider a rather important approximation. For large κ values in S(z), the difference
between S(z) with Θ(z) function becomes is small and we can take

∫ x

0
Θ(x′ − c∗A∗)adx′ =

∫ x

c∗A∗

adx′

∫ x

0
R(x′ − c∗A∗)adx ≃ 0

∫ x

0
S′(x′ − c∗A∗)(x′ − c∗A∗)adx′ ≃

∫ x

0
(x′ − c∗A∗)δ(x′ − c∗A∗)adx = 0

getting

τ∂ta = σa− ga3 − w∂xa+ ξ2∂2
xa− 1

Π

∫ x

c∗A∗

adx′ (53)

This amplitude equation is a good approximation of the coupled map dynamics whenever the
amplitude of the alternation is small and when the Θ function is a good representation of the
sigmoidal function S(z). The first is accomplished if we are close to the alternans threshold; the
second can depend on the particular implementation of the sigmoid function. We have used S =
tanh(x−cA) so far, but other implementations like S = tanh[(x−cA)/cA] (which leads to the same
amplitude equation) are possible. In the particular case of S = tanh[(x − cA)/cA], the amplitude
equation is a better approximation of the coupled model for shorter lengths and larger mechano-
electric coupling even when one could expect the amplitude equation to fail. Let us notice that,
using simulations of the full coupled model, we have tested these approximation. We know that
they generally overestimate the value of the characteristic length scale needed to obtain discordant
alternans but give the right order of magnitude.
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