
Weierstraß-Institut
für Angewandte Analysis und Stochastik
Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 2198-5855

When do wireless network signals appear Poisson?

Paul Keeler1, Nathan Ross2, Aihua Xia2

submitted: December 8, 2014

1 Weierstrass Institute
Mohrenstr. 39
10117 Berlin
Germany
E-Mail: paul.keeler@wias-berlin.de

2 Department of Mathematics and Statistics
the University of Melbourne
Parkville, VIC 3010
Australia
E-Mail: nathan.ross@unimelb.edu.au

aihuaxia@unimelb.edu.au

No. 2044

Berlin 2014

2010 Mathematics Subject Classification. 60F05, 60G55.

Key words and phrases. Poisson point process, Cox point process, propagation process, vague topology, total variation dis-
tance.

P. Keeler was supported in part by Australian Research Council Discovery Grant DP110101663. A. Xia was supported in part
by Australian Research Council Discovery Grant DP120102398.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Publications Server of the Weierstrass Institute for Applied Analysis and Stochastics

https://core.ac.uk/display/289298927?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax: +49 30 20372-303
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/

preprint@wias-berlin.de
http://www.wias-berlin.de/


Abstract

We consider the point process of signal strengths from transmitters in a wireless network observed
from a fixed position under models with general signal path loss and random propagation effects. We
show via coupling arguments that under general conditions this point process of signal strengths can
be well-approximated by an inhomogeneous Poisson or a Cox point processes on the positive real
line. We also provide some bounds on the total variation distance between the laws of these point
processes and both Poisson and Cox point processes. Under appropriate conditions, these results
support the use of a spatial Poisson point process for the underlying positioning of transmitters in
models of wireless networks, even if in reality the positioning does not appear Poisson. We apply the
results to a number of models with popular choices for positioning of transmitters, path loss functions,
and distributions of propagation effects.

1 Introduction

In this article we study signal strengths in stochastic models of wireless networks such as ad hoc,
sensor, and mobile or cellular phone networks. The building blocks of the models considered are
point processes (from now on, we simply refer to them as processes) and stochastic geometry; for
background see [1, 2, 16, 15]. Details of models can differ depending on the type of network, but
the standard framework assumed throughout the article is that an observer is placed at the origin
of Rd and transmitters are located at positions ξ = {xi : i ∈ N := {1, 2, . . . }} ⊆ Rd/{0}
(equivalently we write ξ =

∑
i∈N δxi , where δx is the Dirac measure at x) either deterministically

or according to a random process. In the absence of propagation effects, the signal received by the
observer from a transmitter located at x ∈ Rd/{0} has strength given by a deterministic path loss
function `(x), typically taken to be a function of |x|, the distance to the origin; a standard assumption
is `(x) = C|x|−β for some β > 0, C > 0. The random propagation effects are assumed to
influence the strength of the signal via, for example, multipath fading (due to signals taking multiple
paths and colliding with each other) and shadow fading or shadowing (due to signals colliding with
large obstacles such as buildings). Although such effects may occur on different scales, we use the
general term “fading"to refer to all types of random propagation effects, which are incorporated into
the model via a sequence of i.i.d. positive random variables S, S1, S2, . . ., where the signal power
or strength from transmitter xi is given by

Pi = `(xi)Si =:
Si
g(xi)

; (1.1)

here and below g(x) := 1/`(x). Understanding the distribution of the process

Π := {Pi}i∈N, (1.2)

on R◦+ := (0,∞) and various functions of it (for example, the signal-to-interference ratio
{Pi/(

∑
j Pj−Pi)}i∈N, or the largest signal strength maxi{Pi}) under different assumptions on S,

g and ξ is a major goal of wireless network modeling.
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A common assumption is that the transmitter positions ξ are given by a homogeneous Poisson
process. In this case easy theory implies that Π is also a (typically inhomogeneous) Poisson pro-
cess (easy theory is the Poisson mapping theorem: the pairs {(xi, Si)}xi∈ξ form a Poisson process
and the points of Π are a measurable function of these points). The only potential difficulty with this
framework is with computing the mean measure of Π for explicit choices of S and g. The assumption
that the transmitters follow a Poisson process is usually justified by thinking of the observer as an “av-
erageöbserver with fixed transmitters, though empirical studies are less clear on the matter [21]. Our
main purpose is to investigate the behavior of Π when the Poisson process transmitter assumption
is relaxed and in particular to answer the titular question of the present article.

A first step is taken in [7, 8] where it is shown that if S =S(σ) = exp{σB − σ2/β} for B a
standard normal random variable and β > 2, g(x) = (K|x|)β for a constant K > 0, and ξ is such
that |ξ|(r), the number of points within distance r of the origin, satisfies |ξ|(r)/(πr2) → λ > 0
(a.s. if ξ is random), then as σ →∞, Π converges to a Poisson process. One of our main theorems
is to greatly generalize this result, providing simple criteria for Poisson convergence.

A critical point before stating the theorem: to match empirical observation, the signal power pro-
cess Π should have a large number of very weak signals, which means any approximating Poisson
process should have a mean measure with a (near) singularity at zero. To focus on the non-singular
part, we instead study the process on R◦+ of the inverses of the signal power values,

N = {P−1
i }i∈N =

{
g(xi)
Si

}
i∈N

,

though results about N typically can be translated to results for Π by inverting the points and using
the Poisson mapping theorem; see, for example, Remark 2.3 below. The processN on R◦+ is referred
to as propagation (loss) process [6] (or path loss with fading process [14]) generated by S, g and ξ.

We have the following result; denote convergence in probability by
P−→.

Theorem 1.1. Let ξ⊂ Rd/{0} be a locally finite set of points such that there is a nondecreasing
function D satisfying (almost surely if ξ is random)

lim
r→∞

|ξ|(r)
D(r)

= 1 and lim
r→0

D(r) = 0, (1.3)

and let g : Rd → R+ := [0,∞) such that g is positive on Rd/{0} and g(x) = h(|x|) for h a left
continuous and nondecreasing function with inverse h−1(y) := inf{x : h(x) > y}. Let (S(σ))σ≥0

be a family of positive random variables indexed by some non-negative parameter σ, N (σ) be the
propagation process generated by S(σ), g and ξ. If

(i) S(σ) P−→ 0 and (ii) ED(h−1(S(σ)t))→ L(t), ∀t ∈ C(L),

as σ →∞, where C(L) := {t ∈ R◦+ : lims→t L(s) = L(t)}, then N (σ) converges weakly to a
Poisson process on R◦+ with mean measure L.

Remark 1.2. The result of [7, Theorem 3] already mentioned is an easy consequence of The-
orem 1.1. Their assumptions are d = 2, S(σ) = exp{σB − σ2/β} for B a standard nor-
mal random variable and β > 2, g(x) = (K|x|)β for a constant K > 0, and ξ is such that
|ξ|(r)/(πr2) → λ > 0. Thus we set D(r) = λπr2 and then noting that ES(σ)2/β = 1, Theo-
rem 1.1 implies N (σ) converges weakly to a Poisson process with mean measure

L(t) =
λπt2/β

K2
.
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Notice that with the same choices of g and ξ, any S(σ) such that S(σ) P−→ 0 and ES(σ)2/β → 1
has the same Poisson process limit as that of the sequence of lognormal random variables.

In particular, the same result holds for composite fading models [25] of product type having

S(σ) = SL(σ)SF with SL(σ) P−→ 0 and ESL(σ)2/β → 1 (for example the lognormal ran-

dom variable above) and the random variable SF is independent of SL(σ) with ES2/β
F = 1. If SF

is an exponential random variable with rate Γ(1 + 2/β)β/2, and SL(σ) is the lognormal random
variable above, then S(σ) is known as a Suzuki model [25]. Actually, all that is required for conver-

gence is ES2/β
F < ∞ in which case N (σ) converges to a Poisson process with mean measure

L(t) = λES2/β
F πt2/β/K2, c.f., [8, Corollary 12].

Moreover, by applying the Poisson mapping theorem,it’s easy to see that the limiting Poisson
process can also be realized by applying the function g to the points of a homogenous Poisson
process on R2 with intensity λ.

Thus for modeling purposes, in many situations where Theorem 1.1 roughly applies (that is, the
fading variables are small with sufficiently large probability) then one may assume that the underlying
transmitter configuration is generated by a Poisson process.

Remark 1.3. Intuitively, because S(σ) tends to zero, most points of ξ are being sent out to infinity
in N (σ). Large values of S(σ) transform the far away points of ξ closer to the origin, so a non-
degenerate limit can only occur when, as σ → ∞, S(σ) becomes large on a set with probability
inversely proportional to the number of points of ξ at the appropriate distance. In particular, it’s nec-
essary that limr→∞D(r) = ∞ to have a non-degenerate limit process (that is, with L(t) not
identically zero).

Remark 1.4. In essence, the Poisson limit is due to the thinning of the points in ξ. However, as the
retained points are redistributed, the thinning scheme in this paper is very different from the classical
thinning schemes in the literature, e.g., [17,11,27,28].

Remark 1.5. The condition (1.3) on ξ is satisfied for transmitters placed on a regular lattice excluding
the origin or that are a realization of a stationary, ergodic process with no points at the origin; in the
former case we would take D(r) proportional to the volume of a ball of radius r in d dimensions.

Theorem 1.1 is one of a number of approximation and convergence results we establish in this
paper that apply to the inverse signal strength process N ; we state these in detail in Section 2. In
Section 3 we provide an overview of some standard wireless network models and apply our results
to these. Section 4 contains proofs and we conclude the paper with some discussion in Section 5.

2 Poisson process approximating signal powers

We state our formal setup.

Setup 2.1 (Main Setup). Let ξ⊂ Rd/{0} be a locally finite collection of points in Rd and g be a
measurable mapping from (Rd,B(Rd)) to (R+,B(R+)) such that {g(x) : x ∈ ξ} is locally finite;
here B(·) denotes the Borel σ-algebra. Write ξ = {xi : i ∈ Iξ} where Iξ is a finite or countable
index set (without loss, taken to be {1, . . . , n} in the finite case and N in the infinite case). Define
|ξ|(r) as the number of points of ξ within distance r of the origin and let {S, Si : i ∈ Iξ} be a
sequence of independent and identically distributed positive random variables. Set Yi = g(xi)/Si
and letN be the propagation process generated by the collection {Yi}i∈Iξ , that is,N =

∑
i∈Iξ δYi .

Let p(x)(t) = P(0 <g(x)/S ≤ t), x ∈ Rd, pi(t) = p(xi)(t), M(t) := M ξ(t) :=
∑

i∈Iξ pi(t)
and Z be a Poisson process on R◦+ having mean measure M(t). (Since M is non-decreasing
and non-negative, Z is well-defined.) For any Radon measure η on R◦+ and τ > 0, we define
η(τ) := η((0, τ ]) and η|τ as the Radon measure restricted to the interval (0, τ ].
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Recall the total variation distance between two probability measures ν1, ν2 on the same measur-
able space (D,F(D)) is defined as

dTV(ν1, ν2) = sup
A∈B(D)

|ν1(A)− ν2(A)|.

Total variation distance is a common and strong metric that bounds the maximum difference in proba-
bilities between two probability distributions. In our context, we takeD = H, the space of all locally fi-
nite point measures on R◦+ or Rd equipped with the vague topology [18, p. 169], andF(D) = B(H),
the Borel σ-algebra generated by the vague topology.

We now present a bound on the total variation distance between the distributions of processes
N |τ and Z|τ , where 1/τ can be interpreted as the smallest possible power value of interest for
an observer in the network. Here and below we use L(X) to denote the distribution of a random
element X .

Theorem 2.2. Assuming the main Setup 2.1, we have

1 ∧M(τ)−1

32

∑
i∈Iξ

pi(τ)2 ≤ dTV(L(Z|τ ),L(N |τ )) ≤
∑
i∈Iξ

pi(τ)2 ≤M(τ) sup
i∈Iξ

pi(τ).

Remark 2.3. Since the total variation distance is preserved under one to one mappings, Theorem 2.2
also implies that for Z ′ the Poisson process with mean measure M ′[τ,∞) = M(1/τ), and denot-
ing the restriction of Z ′ to [τ,∞) by Z ′|τ ,

dTV(L(Z ′|τ ),L(Π|τ )) ≤
∑
i∈Iξ

pi(1/τ)2 ≤M(1/τ) sup
i∈Iξ

pi(1/τ),

where Π is the process of signal powers defined in the introduction.

Remark 2.4. Theorem 2.2 shows that the main criterion for Poisson process convergence in the
wireless network setting is that, in the notation of the theorem, supi∈Iξ pi(τ) is small. The other
criterion is the convergence of the mean measure, though the theorem still technically applies even
if M(t) is infinite or zero.

Theorem 2.2 is an approximation theorem, but we can use it to prove convergence results in terms

of the vague topology, denoted by
d−→; note that such convergence implies convergence of natural

statistics of the process, e.g., point counts for finite collections of relatively compact Borel sets and
random variables that are integrals against the point measure of continuous and compactly supported
functions f : R◦+ → R+ [18, Theorem 4.2]. We have the following corollary of Theorem 2.2.

Corollary 2.5. For each n, let ξn = {xni}i∈In , In := Iξn , Sni and Yni satisfy the main Setup 2.1,
and define N (n) as the process generated by the {Yni}i∈In . If for all t ∈ C(L),

lim
n→∞

sup
i∈In

P(0 <Yni ≤ t) = 0 and lim
n→∞

EN (n)(t) = L(t),

then N (n) d−→ZL, where ZL is a Poisson process on R◦+ with mean measure L.

The caveat to Theorem 2.2 and Corollary 2.5 is that the mean measure of the processes may be
difficult to compute in practice. The following proposition provides alternative formulas for the mean
measure. Recall that for a non-decreasing function h we define the inverse h−1(y) = inf{x :
h(x) > y}.
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Proposition 2.6. Recall the notation of the main Setup 2.1 and assume g(x) = h(|x|) for some
function h. Then

M(t) := M ξ(t) :=
∑
i∈Iξ

pi(t) =
∫ ∞

0
P
(

0 <
h(r)
S
≤ t
)
|ξ|(dr). (2.4)

If in addition, h is positive on R◦+, left continuous and nondecreasing with inverse h−1, then

M(t) = E
[
|ξ|(h−1(St))

]
. (2.5)

2.1 Random transmitter positions

If the transmitters are placed according to a random process Ξ independent of the fading sequence,
then Theorem 2.2 holds conditionally, but the mean measure of the approximating Poisson process
may change for different realizations of Ξ and so in general we approximate N by a Cox process,
which is a Poisson process with a random intensity measure. Note that even in this case, each user
sees a Poisson process, but the intensity measures of users in different locations and at different
times may be different.

We change the main Setup 2.1 by replacing ξ with a process Ξ. According to [18, Lemma 2.3],
we can write Ξ =

∑
i∈IΞ δXi with (possibly random) index set IΞ. Again, we let {S, Si : i ∈ N}

be a sequence of positive i.i.d. random variables independent of Ξ and we define N := NΞ as in
the main Setup 2.1 but with Ξ replacing ξ.

Before stating our Cox process approximation result, we cover the important case where Ξ is
approximately a Poisson process, in which case Poisson process approximation is valid.

Theorem 2.7. With the setup above, let Θ be a Poisson process on Rd independent of {Si : i ∈ N}
and define Z =

∑
θi∈Θ δg(θi)/Si , as a process on R◦+. Then Z is a Poisson process with mean

measure

M(t) = EZ(t) = E
∫

P(0 <g(θ)/S ≤ t)Θ(dθ)

and
dTV(L(Z|τ ),L(N |τ )) ≤ dTV(L(Θ),L(Ξ)).

Theorem 2.7 shows that if Ξ is close to some Poisson process, then N is close to a Poisson
process. In general, random Ξ give rise to Cox processes which are Poisson processes with random
mean measures. More precisely, we say that Z is a Cox process directed by the random measureM
if conditional on M , Z is a Poisson process with mean measure M . We have the following result.

Theorem 2.8. Recall the main Setup 2.1, but with ξ replaced by a locally finite process Ξ independent
of {Si}i∈N. Define

MΞ(t) =
∫

Rd
p(x)(t)Ξ(dx).

Let Z be the Cox process directed by the measure MΞ, that is, conditional on Ξ, Z is a Poisson
process with mean measure MΞ. Then

dTV(L(Z|τ ),L(N |τ )) ≤ E
∫

Rd
p(x)(τ)2Ξ(dx)

The following conditional and unconditional analog of Proposition 2.6 holds for random ξ; we omit
the proof because it’s straightforward from Proposition 2.6.

5



Proposition 2.9. Recall the notation of the main Setup 2.1 with ξ replaced by a locally finite process
Ξ independent of S1, S2, . . . and assume g(x) = h(|x|) for some function h. Then

MΞ(t) :=
∫

Rd
p(x)(t)Ξ(dx) =

∫ ∞
0

P
(

0 <
h(r)
S
≤ t
)
|Ξ|(dr) (2.6)

and

M(t) :=
∫

Rd
p(x)(t)Λ(dx) = E

∫ ∞
0

P
(

0 <
h(r)
S
≤ t
)
|Ξ|(dr),

where Λ is the mean measure of Ξ. If in addition, h is positive on R◦+, left continuous and nonde-
creasing with inverse h−1, then

MΞ(t) = E
[
|Ξ|(h−1(St))

∣∣Ξ] (2.7)

and
M(t) = E

[
|Ξ|(h−1(St))

]
= E

[
|Λ|(h−1(St))

]
, (2.8)

where |Λ|(r) := E|Ξ|(r).

2.2 Poisson versus Cox

When the transmitters are randomly placed according to a process Ξ, it’s possible for the propagation
process N to be close to a Poisson process (Theorem 2.7) or Cox process with non-deterministic
mean measure (Theorem 2.8). There are realistic situations where we expect the propagation pro-
cess to be close to a Cox process, for example, if the fading distribution S is a mixture of distributions
(see Section 3.2 for an example) or the observer initially connects in a random way to one of a num-
ber of different networks that have different transmitter coverage densities or fading distributions (see
the example (iii) below for a toy model). However, it’s of interest to understand when a Poisson, rather
than Cox, process is appropriate. Theorem 2.8 suggests that if MΞ(t) is close to deterministic, then
N may be close to Poisson. The next result is a convergence version of this statement with easily
checkable conditions.

Theorem 2.10. Assume that Ξ is a process on Rd with a locally finite mean measure Λ such that
limr↓0 |Λ|(r) = 0 and as r →∞,

|Λ|(r)→∞, Var(|Ξ|(r))/(|Λ|(r))2 → 0. (2.9)

Let (S(σ))σ≥0 be a family of positive random variables,N (σ) be the propagation process generated
by S(σ), g and Ξ. Assume g(x) = h(|x|), where h is left continuous, nondecreasing and positive
on R◦+. If

(i) S(σ) P−→ 0 and (ii)
∫

Rd
P
(

0 <
g(x)
S(σ)

≤ t
)

Λ(dx)→ L(t) for all t ∈ C(L)

as σ →∞, then N (σ) converges weakly to a Poisson process ZL with mean measure L.

We provide a few easy examples to illustrate the result; Example (iii) shows that if (2.9) is not
satisfied then in general we can’t say the limit is Poisson.

Example 2.11.

(i) If Ξ = ξ is non-random, Var(|Ξ|(r)) = 0 and Theorem 2.10 reiterates Theorem 1.1 that the
limit process is Poisson.
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(ii) If Ξ is a Poisson process with intensity λ, then Var(|Ξ|(r))/(E|Ξ|(r))2 = (λπr2)−1 which
tends to zero as r →∞, so the limit process is Poisson.

(iii) If Ξ is a Cox process having intensity λi> 0 with probability 1/2 for i = 1, 2 and λ1 6=
λ2, then it is clear from Theorem 2.7 that N is a Cox process directed by a random mean
measure that takes two measures with equal probability. Using the generic formula Var(X) =
EVar[X|A] + Var(E[X|A]), valid for any random variable X and sigma-algebraA, we can
derive that

E|Ξ|(r) =
λ1 + λ2

2
πr2, Var(|Ξ|(r)) =

λ1 + λ2

2
πr2 +

(λ1 − λ2)2

4
π2r4,

and hence limr↓0 |Λ|(r) = 0, limr→∞ |Λ|(r) =∞ but

lim
r→∞

Var(|Ξ|(r))
(E|Ξ|(r))2 =

(λ1 − λ2)2

(λ1 + λ2)2
6= 0.

3 Applications

We assume throughout this section that g is a function on Rd such that g is positive on Rd/{0}
and g(x) = h(|x|) for h a left continuous and nondecreasing function with inverse h−1. We apply
Theorem 1.1 to fading tending to zero (Section 3.1), Theorem 2.8 to a composite model (Section 3.2),
Theorem 2.7 to transmitters placed according to a Poisson process (Section 3.3), and Theorem 2.10
to transmitters placed according to an α-Ginibre process (Section 3.4 where α-Ginibre processes
are defined).

3.1 Fading tending to zero

As already discussed in Remark 1.2, Theorem 1.1 can be applied to many standard models. We first
demand that ξ is such that there is a nondecreasing function D satisfying

lim
r→∞

|ξ|(r)
D(r)

= 1 and lim
r→0

D(r) = 0.

This condition is satisfied for lattices on Rd, stationary and ergodic processes. In particular, special-
izing to the case d = 2, if transmitters are at the vertices of a

� triangular lattice, edge lengths s, excluding the origin, then D(r) = 2πr2/(
√

3s2);

� hexagonal lattice, edge lengths s, excluding the origin, then D(r) = 4πr2/(3
√

3s2);

� square lattice, edge lengths s, excluding the origin, then D(r) = πr2/s2.

From this point, for a given h, we only need to have S(σ) P−→ 0 and ED(h−1(S(σ)t))→ L(t) for
t ∈ C(L). Computing this expectation is straightforward under nice distributions of S(σ); even for
composite models, for example, when S(σ) is a product of independent variables. Finally, it’s worth
repeating that if L equals zero or infinity, the theorem is still true (with the obvious interpretation of a
Poisson with mean zero or infinity) though not of practical interest.

3.2 Dependent composite fading

In Remark 1.2, we showed that if the transmitters are placed on R2, g(x) = (K|x|)β for β >
2,K > 0, ξ is such that |ξ|(r)/r2 → λπ, and the composite fading distribution is

S(σ) = exp{σB − σ2/β}SF

7



where B is a standard normal random variable independent of SF , and SF is exponential with rate

Γ(1 + 2/β)β/2 (or any other random variable such that ES2/β
F = 1 ), then N (σ) converges to

Poisson process with mean measure

M(t) =
λπt2/β

K2
.

(The rate of the exponential is only a scaling factor and convergence only demands that ES2/β
F be

finite, though this changes the mean measure.) Now assume instead that each Si(σ), i = 1, 2, . . .
is distributed as S(σ), but rather than being i.i.d. they share a common SF variable which is not
necessarily exponential. That is, define

Si = exp{σBi − σ2/β}SF

where B1, B2, . . . are i.i.d. standard normal random variables. Then conditional on SF , N (σ) con-
verges to a Poisson process with mean measure

MSF (t): =
S

2/β
F λπt2/β

K2
.

Thus N (σ) converges to a Cox process directed by MSF .

3.3 Transmitters placed according to a Poisson process

As mentioned in the introduction, a common assumption is that the locations of transmitters Ξ follow
a Poisson process. If Ξ is a Poisson process then Theorem 2.7 shows that N is a Poisson process.
Moreover, the mean measure of N is computed through (2.8). We compute the mean measure in
some examples.

Example A. If Ξ is a homogeneous Poisson process with intensity λ, g(x) = (K|x|)β , for some
β > 0,K > 0, then it’s well known (see [9, Section I.A]) that N is a Poisson process with in-
tensity measure depending on S only through ES2/β , which has been referred to as propagation
invariance.So h(r) = Kβrβ and the mean measure as given by (2.5) is

M(t) = λπE
[
h−1(St)2

]
= λπt2/βE

[
S2/β

]
/K2.

Example B. More generally, if h(r) = rβeαr (used in the empirical work [13]) andW is the Lambert
W-function, i.e., x = W (y) is the solution of xex = y, then h(r) = x gives r= h−1(x) : =
β
αW (αx1/β/β), so Proposition 2.9 implies

M(t) = πλE
(
β

α
W

(
α

β
(tS)1/β

))2

= πλE
[
(tS)2/βe

−2W
“
α
β

(tS)1/β
”]
,

where the second equality uses the fact that W (y)2 = y2e−2W (y).

Example C. Generalizations of the power-law path loss function are so-called multi-slope models
which have

h(r) =

(
k+1∑
i=1

1ri−1≤r<ribir
−βi

)−1

=
k+1∑
i=1

1ri−1≤r<rib
−1
i rβi ,
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where 1 is the indicator function, 0 = r0 <r1 < · · · < rk < rk+1 = ∞, βi > 0, and bi > 0 are
chosen to make h continuous; see [30] and references there. Since each interval [ri−1, ri) is disjoint
with all others, the inverse of the multi-slope model is simply

h−1(s) =
k+1∑
i=1

1si−1≤s<sicis
1/βi ,

where si = b−1
i rβii and ci = b

1/βi
i . Theorem 2.7 says that the propagation process is Poisson and

according to expression (2.8), the mean measure is

M(t) = 2πλE(h−1(tS)2) = 2πλ
k∑
i=1

t2/βiciE
[
1si−1≤tS<siS

2/βi
]
. (3.10)

Note that in contrast to the propagation invariance of the case of the power-law path loss function of
Example B above, where all S with the same 2/β moment induce a common propagation process
distribution, the form of the mean measure (3.10) suggests that no analogous simple invariance
property holds for the multi-slope model.

3.4 Transmitters placed as an α-Ginibre process

The assumption that transmitters are placed according to a Poisson process can be heuristically
justified by considering an “averageöbserver with fixed transmitters and is a convenient assumption
due to its tractability. There has been recent interest in modeling the transmitter locations accord-
ing to other processes, especially those that exhibit repulsion or clustering among the points (some
networks are designed to resemble lattices while others have clustering due to physical and tech-
nological considerations) [10] . One such process that exhibits repulsion is the α-Ginibre process
on the complex plane C which has been used to model mobile networks [22], [23]. The process is
defined through the factorial moment measures: for a locally finite process Ξ on a Polish space S ,
the n th order factorial moment measure ν(n) of Ξ is defined by the relation [18, pp. 109–110] (also
see [1, Chapter 9])

E

[∫
Sn
f(x1, . . . , xn)Ξ(dx1) (Ξ− δx1) (dx2) . . .

(
Ξ−

n−1∑
i=1

δxi

)
(dxn)

]

=
∫
Sn
f(x1, . . . , xn)ν(n)(dx1, . . . , dxn), (3.11)

where f ranges over all Borel measurable functions h : Sn → [0,∞). The special case ν(1) is
simply the mean measure of Ξ. To define the Ginibre process, for x ∈ C, let x̄ and |x| be the
complex conjugate and modulus of x.

Definition 3.1. We say the process Ξ on the complex plane C is an α-Ginibre process if its factorial
moment measures are given by

ν(n)(dx1, . . . , dxn) = ρ(n)(x1, . . . , xn)dx1 . . . dxn, n ≥ 1,

where ρ(n)(x1, . . . , xn) is the determinant of the n× n matrix with (i, j)th entry

Kα,c(xi, xj) =
c

π
e−

c
2α

(|xi|2+|xj |2)e
c
α
xix̄j , c > 0.

9



In particular, direct computation gives

ρ(1)(x) =
c

π
> 0 and ρ(2)(x, y) =

c2

π2
(1− e−

c
α
|x−y|2).

Theorem 3.2. Assume that Ξ is an α-Ginibre process on C, (S(σ))σ≥0 is a family of positive
random variables, g is a function such that g is positive on Rd/{0} and g(x) = h(|x|), with h a
left continuous and nondecreasing function with inverse h−1, and N (σ) is the propagation process
generated by S(σ), g and Ξ. If

(i) S(σ) P−→ 0 and (ii) λπE
[
h−1(S(σ)t))2

]
→ L(t) for all t ∈ C(L)

as σ →∞, then N (σ) converges weakly to a Poisson process ZL with mean measure L.

Proof of Theorem 3.2. We show Var(|Ξ|(r))/(E|Ξ|(r))2 → 0 as r → ∞ and then the result
follows by Theorem 2.10. Now, let Cr = {x ∈ C : |x| ≤ r}, we find

E[|Ξ|(r)2] = E
∫
Cr

∫
Cr

Ξ(dx)(Ξ− δx)(dy) + E
∫
Cr

Ξ(dx)

=
∫
Cr

∫
Cr

c2

π2

(
1− e−

c
α
|x−y|2

)
dxdy +

∫
Cr

c

π
dx

≤ c2r4 + cr2.

Since E|Ξ|(r) = cr2, we find that Var(|Ξ|(r)) ≤ cr2 and Var(|Ξ|(r))/(E|Ξ|(r))2 ≤ 1/(cr2)→
0 as r →∞.

For example, choosing g(x) = (K|x|)β for β > 2,K > 0, and

S(σ) = exp{σB − σ2/β}SF

where B is standard normal random variable, independent of SF and which satisfies ES2/β
F = 1

(for example SF = 1 or is exponential with rate Γ(1 + 2/β)β/2) then N (σ) converges to Poisson
process with mean measure

M(t) =
λπt2/β

K2
.

4 Proofs

Proof of Theorem 2.2. We first show the upper bounds. Let Zi be independent Poisson processes
on R◦+ with mean measures pi(t) and Ni be the process placing a single point at Yi. Notice that∑

i∈Iξ
Zi

d=Z, and
∑
i∈Iξ

Ni
d=N,

where
d= means they are equal in distribution, and by independence we can bound

dTV(L(Z|τ ),L(N |τ )) ≤
∑
i∈Iξ

dTV(L(Zi|τ ),L(Ni|τ )). (4.12)

Straightforward considerations show that for both Zi|τ and Ni|τ , given there is a single point in the
interval (0, τ ], it is distributed with density

pi(dt)
pi(τ)

, 0 < t ≤ τ.
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An alternative expression for the total variation distance, using Monge-Kantorovich duality [24], is

dTV(ν1, ν2) = inf
(ξ1,ξ2)

P(ξ1 6= ξ2),

where the infimum is over all couplings of ν1, ν2. So from the previous consideration, if Zi(τ) =
Ni(τ) (as above, Zi(τ) is the number of points of Zi in the interval (0, τ ]), then we can couple Zi|τ
and Ni|τ exactly. Thus, we easily find

dTV(L(Zi|τ ),L(Ni|τ ))=dTV(L(Zi(τ)),L(Ni(τ))) ≤ pi(τ)2; (4.13)

the last inequality follows by noting that Zi(τ) is Poisson with mean pi(τ) and Ni(τ) is a Bernoulli
with success probability pi(τ) and then using well-known bounds between Poisson random variables
and Bernoullis [20]; see also [5, Formula (1.8)]. Combining (4.12) and (4.13) proves the first upper
bound of the theorem and the second is simple.

For the lower bound, note that the number of points of N , respectively Z , falling in (0, τ ] is a
measurable function of N |τ , respectively Z|τ , so

dTV(L(N(τ)),L(Z(τ))) ≤ dTV(L(N |τ ),L(Z|τ )).

But as already observed,N(τ) is a sum of independent indicators andZ(τ) is a Poisson distribution
having mean M(τ) common with N(τ). Thus the lower bound of [4, Theorem 2] applies which is
exactly the lower bound of the theorem.

We use Theorem 2.2 to prove convergence results through the following lemma which is easily
proved from [18, Theorem 4.2].

Lemma 4.1. If N (n) is a sequence of processes on R◦+ such that there is a set {ti : i ∈ N} with

0 < ti ↑ ∞ and for each ti, N (n)|ti
d−→Z|ti as n→∞ in the vague topology for some process Z

on R◦+, then N (n) d−→Z as n→∞.

Proof of Corollary 2.5. (c.f., [17, 11, 27, 28]) For each t > 0, let χt (resp.Ht ⊂ χt) be the set of all
finite Radon measures (resp. point measures) on (0, t] and Kt be the set of all Lipschitz functions
on (0, t] with respect to the metric d0(x, y) = min{1, |x− y|}, i.e., Kt = {k : |k(x)− k(y)| ≤
d0(x, y), x, y ∈ (0, t]}. [3] introduce a Wasserstein metric d1t for finite measures η1, η2 ∈ χt as

d1t(η1, η2) =


1 if η1(t) 6= η2(t),
0 if η1(t) = η2(t) = 0,
supk∈Kt

˛̨̨R
(0,t] k(x)η1(dx)−

R
(0,t] k(x)η2(dx)

˛̨̨
η1(t) if η1(t) = η2(t) > 0.

Moreover, if η1 =
∑m

j=1 δxj and η2 =
∑m

j=1 δyj withm > 0 and {xj , yj : 1 ≤ j ≤ m} ⊂ (0, t],
one can write

d1t(η1, η2) = min
π

m−1
m∑
j=1

d0(xj , yπ(j))

 ,

where π ranges over all permutations of {1, . . . ,m} [24, Section 2.2]. The metric d1t quantifies the
vague (and the weak) topology on Ht [29]. [3] then introduce a Wasserstein metric d2t induced by
d1t for two distributions Q1 and Q2 onHt as

d2t(Q1, Q2) = sup
f

∣∣∣∣∫
Ht
fdQ1 −

∫
Ht
fdQ2

∣∣∣∣ ,
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where the supremum is taken over all d1t-Lipschitz functions onHt. Let Z(n) be a Poisson process
on R◦+ with mean measure M (n)(·) := EN (n)(·). Now applying the triangle inequality, using the
fact that d2t(Q1, Q2) ≤ dTV(Q1, Q2) and then applying the results [12, Theorem 1.5] and Theo-
rem 2.2, we obtain for t ∈ C(L),

d2t(L(N (n)|t),L(Z|t))
≤ d2t(L(N (n)|t),L(Z(n)|t)) + d2t(L(Z(n)|t),L(Z|t))
≤ dTV(L(N (n)|t),L(Z(n)|t)) + d1t(M (n)|t/M (n)(t), L|t/L(t)) + |M (n)(t)− L(t)|
≤
∑
i∈In

P(Yni ≤ t)2 + d1t(M (n)|t/M (n)(t), L|t/L(t)) + |M (n)(t)− L(t)| → 0

as n→∞. ThusN (n)|t
d−→Z|t as n→∞ for all t ∈ C(L) and the claim follows from Lemma 4.1.

Proof of Proposition 2.6. Both assertions follow from writing

|ξ|(r) =
∑
i∈Iξ

10<|xi|≤r.

The representation implies∫ ∞
0

P
(

0 <
h(r)
S
≤ t
)
|ξ|(dr) =

∑
i∈Iξ

P
(

0 <
g(xi)
S
≤ t
)

= M(t).

For the second assertion, the indicator representation and the fact that

h(x) ≤ y ⇐⇒ x ≤ h−1(y)

implies

E
[
|ξ|(h−1(St))

]
= E

∑
i∈Iξ

10<|xi|≤h−1(St) = E
∑
i∈Iξ

10<g(xi)≤St = M(t).

Proof of Theorem 2.7. That Z is a Poisson process follows since {(xi, Si) : xi ∈ Θ} is a Poisson
point process on Rd × R◦+ and the points of Z are a measurable function of this process. The
computation of the mean measure is straightforward and the bound on the total variation distance
is easy to see from the coupling definition of the total variation distance since one can construct a
coupling in such a way that if Θ = Ξ then Z = N .

Proof of Theorem 2.8. We use the following inequality relating the total variation distance of condi-
tioned random variables to the unconditional; see, for example, [26, Section 3],

dTV(L(X),L(Y )) ≤ EdTV(L(X|W ),L(Y |W )).

We use this inequality to find

dTV(L(Z|τ ),L(N |τ )) ≤ EdTV(L(ZΞ|τ ),L(NΞ|τ )), (4.14)

whereNΞ and ZΞ denote the processesN and Z conditional on Ξ. Since ZΞ is a Poisson process
with mean measure MΞ, we apply Theorem 2.2 to obtain

dTV(L(ZΞ|τ ),L(NΞ|τ )) ≤
∫

Rd
p

(x)
i (τ)2Ξ(dx)

and now taking expectations and using (4.14) implies the theorem.

12



Proof of Theorem 1.1. The theorem follows easily from Corollary 2.5 and (2.5) once we establish
that, for t ∈ C(L),

lim
σ→∞

ED(h−1(S(σ)t)) = lim
σ→∞

E|ξ|(h−1(S(σ)t)). (4.15)

To show (4.15), let ε > 0 and rε be such that for r≥rε

1− ε < |ξ|(r)
D(r)

< 1 + ε. (4.16)

Then denoting the distribution function of S(σ) by Fσ , we have

lim sup
σ→∞

E|ξ|(h−1(S(σ)t))

≤ lim sup
σ→∞

∫ h(rε)/t

0
|ξ|(h−1(st))Fσ(ds) + lim sup

σ→∞

∫ ∞
h(rε)/t

|ξ|(h−1(st))Fσ(ds)

= lim sup
σ→∞

∫ ∞
h(rε)/t

|ξ|(h−1(st))Fσ(ds); (4.17)

the equality is because S(σ) P−→ 0 and limy→0 h
−1(y) = 0. Now using the definition (4.16) of rε

and noting that s ≥ h(rε)/t implies h−1(st) ≥ rε, we bound (4.17) from above to find

lim sup
σ→∞

E|ξ|(h−1(S(σ)t)) ≤ (1 + ε) lim sup
σ→∞

∫ ∞
h(rε)/t

D(h−1(st))Fσ(ds)

≤ (1 + ε) lim sup
σ→∞

∫ ∞
0

D(h−1(st))Fσ(ds)

= (1 + ε) lim
σ→∞

ED(h−1(S(σ)t)).

As ε is arbitrary, this yields

lim sup
σ→∞

E|ξ|(h−1(S(σ)t)) ≤ lim
σ→∞

ED(h−1(S(σ)t)). (4.18)

Similarly,

lim inf
σ→∞

E|ξ|(h−1(S(σ)t)) ≥ (1− ε) lim inf
σ→∞

∫ ∞
h(rε)/t

D(h−1(st))Fσ(ds). (4.19)

But again using thatS(σ)→ 0 in probability, limy→0 h
−1(y) = 0, and now also that limr→0D(r)→

0,

lim
σ→∞

∫ ∞
h(rε)/t

D(h−1(st))Fσ(ds) = lim
σ→∞

∫ ∞
0

D(h−1(st))Fσ(ds),

and combining this with (4.19) implies

lim inf
σ→∞

E|ξ|(h−1(S(σ)t)) ≥ (1− ε) lim
σ→∞

ED(h−1(S(σ)t)).

Since ε was arbitrary, we have that

lim inf
σ→∞

E|ξ|(h−1(S(σ)t)) ≥ lim
σ→∞

ED(h−1(S(σ)t))

which, together with (4.18), proves (4.15).
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Proof of Theorem 2.10. Write p
(x)
σ (t) = P(0 <g(x)/S(σ) ≤ t), MΞ

σ (t) =
∫

Rd p
(x)
σ (t)Ξ(dx)

and MΛ
σ (t) =

∫
Rd p

(x)
σ (t)Λ(dx). We divide the proof into three steps.

(i) MΞ
σ

d−→L in the vague topology as σ →∞.
To show the claim, from [18, Theorem 4.2], it suffices to show that for each continuous function

f : R◦+ → R+ with compact support and bounded continuous first derivative,∫
R◦+
f(t)dMΞ

σ (t) d−→
∫

R◦+
f(t)dL(t). (4.20)

Now, let Fσ be the distribution function of S(σ) and let 0 < a < b < ∞ such that b ∈ C(L) and
the support of f is contained in [a, b] such that f(b) = f(a) = 0. It follows from (2.5) that

MΞ
σ (t) =

∫
R◦+
|Ξ|(h−1(st))dFσ(s)

and, by taking expectation,

MΛ
σ (t) =

∫
R◦+
|Λ|(h−1(st))dFσ(s).

Using Fubini’s Theorem and noting f(b) = f(a) = 0, we have∫
R◦+
f(t)dMΞ

σ (t) =
∫

R◦+

∫ t

a
f ′(s)dsdMΞ

σ (t) = −
∫ b

a
MΞ
σ (t)f ′(t)dt (4.21)

and hence∫
R◦+
f(t)dMΞ

σ (t) = −
∫ ∞

0

∫ b

a
|Ξ|(h−1(st))f ′(t)dtdFσ(s)

= −
∫ ∞
θ0

∫ b

a
[|Ξ|(h−1(st))− |Λ|(h−1(st))]f ′(t)dtdFσ(s)

−
∫ ∞

0

∫ b

a
|Λ|(h−1(st))f ′(t)dtdFσ(s)

+
∫ θ0

0

∫ b

a
|Λ|(h−1(st))f ′(t)dtdFσ(s)

−
∫ θ0

0

∫ b

a
|Ξ|(h−1(st))f ′(t)dtdFσ(s)

=: (I)+(II)+(III)+(IV),

where θ0 is chosen such that

Var
(
|Ξ|(h−1(sa))

)
|Λ|(h−1(sa))2

≤ 1, ∀s ≥ θ0.

We complete the proof of (4.20) by showing that, as σ →∞, (a) (I)
P−→ 0; (b) (II)→

∫
R◦+
f(t)dL(t);

(c) (III)→ 0 and (d) (IV)
P−→ 0.

(a) Let vσ be the variance of (I), write Ξ′(t) := |Ξ|(h−1(t)) and Λ′(t) := |Λ|(h−1(t)), then
using the geometric-arithmetic mean inequality AB ≤ (A2 + B2)/2 and symmetry to obtain the
first inequality, we have

vσ =
∫ ∞
θ0

∫ b

a

∫ ∞
θ0

∫ b

a
E
(

Ξ′(s1t1)
Λ′(s1t1)

− 1
)
f ′(t1)

(
Ξ′(s2t2)
Λ′(s2t2)

− 1
)
f ′(t2)
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× Λ′(s1t1)dt1dFσ(s1)Λ′(s2t2)dt2dFσ(s2)

≤
∫ ∞
θ0

∫ b

a

∫ ∞
θ0

∫ b

a

Var(Ξ′(s1t1))
Λ′(s1t1)2

f ′(t1)2Λ′(s1t1)dt1dFσ(s1)Λ′(s2t2)dt2dFσ(s2)

≤ ‖f ′‖2(b− a)EΛ′(S(σ)b)
∫ ∞
θ0

Λ′(s1b)
∫ b

a

Var(Ξ′(s1t1))
Λ′(s1t1)2

dt1dFσ(s1), (4.22)

where ‖f ′‖ = supt∈R◦+ |f
′(t)|. For each ε > 0, let Tε > θ0 such that

Var (Ξ′(sa))
Λ′(sa)2

≤ ε, ∀s ≥ Tε.

It follows from (4.22) that

vσ ≤ ‖f ′‖2(b− a)EΛ′(S(σ)b)
(∫ Tε

θ0

∫ b

a
+ε
∫ ∞
Tε

∫ b

a

)
Λ′(s1b)dt1dFσ(s1)

≤ ‖f ′‖2(b− a)2EΛ′(S(σ)b)
(
EΛ′(S(σ)b)1S(σ)≤Tε + εEΛ′(S(σ)b)

)
. (4.23)

Using that S(σ) P−→ 0, Λ′(S(σ)b)1S(σ)≤Tε ≤ Λ′(Tεb) < ∞, limt↓0 h
−1(t) = 0 and

limr↓0 |Λ|(r) = 0, we apply the bounded convergence theorem to obtain

lim
σ→∞

EΛ′(S(σ)b)1S(σ)≤Tε = 0, (4.24)

which, together with (4.23), ensures

lim sup
σ→∞

vσ ≤ ‖f ′‖2(b− a)2εL(b)2.

This yields limσ→∞ vσ = 0 due to the arbitrariness of ε.
(b) Applying the dominated convergence theorem, we have

−
∫ ∞

0

∫ b

a
|Λ|(h−1(st))f ′(t)dtdFσ(s)

= −
∫ b

a
E|Λ|(h−1(S(σ)t))f ′(t)dt

→ −
∫ b

a
f ′(t)L(t)dt =

∫ b

a
f(t)dL(t) =

∫
R◦+
f(t)dL(t),

where the penultimate equality is due to Fubini’s Theorem similar to (4.21).
(c) Use the same reasoning as that for (4.24); as σ →∞,∫ θ0

0

∫ b

a
|Λ|(h−1(st))|f ′(t)|dtdFσ(s) ≤ ‖f ′‖(b− a)E|Λ|(h−1(S(σ)b))1S(σ)≤θ0 → 0.

(d) It follows from (c) that, as σ →∞,

E
∫ θ0

0

∫ b

a
|Ξ|(h−1(st))|f ′(t)|dtdFσ(s) ≤ ‖f ′‖(b− a)E|Λ|(h−1(S(σ)b))1S(σ)≤θ0 → 0.

At this point the proof follows along the lines of Corollary 2.5.
(ii) With the notations in the proof of Corollary 2.5, let ZL be a Poisson process with mean measure
L, then for each t > 0,

d2t(L(N (σ)|t),L(ZL|t))
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≤
∫

Rd
p(x)
σ (t)2Λ(dx) + Ed1t(MΞ

σ |t/MΞ
σ (t), L|t/L(t)) + E1 ∧ |MΞ

σ (t)− L(t)|. (4.25)

To show (ii), let ZΞ
σ be a Cox process directed by the mean measure MΞ

σ , then

d2t(L(N (σ)|t),L(ZΞ
σ |t)) ≤ dTV (L(N (σ)|t),L(ZΞ

σ |t))

and the first term in the upper bound of (4.25) comes from Theorem 2.8. For a Poisson process Z̃
on R◦+ with mean measure λ, [12, Theorem 1.5] gives

d2t(L(Z̃|t),L(ZL|t)) ≤ d1t(λ|t/λ(t), L|t/L(t)) + 1 ∧ |λ(t)− L(t)|,

where 1 is because d2t ≤ 1. Hence,

d2t(L(ZΞ
σ |t),L(ZL|t)) = sup

f
|Ef(ZΞ

σ |t)− Ef(ZL|t)|

≤ E sup
f
|E[f(ZΞ

σ |t)|Ξ]− Ef(ZL|t)|

≤ Ed1t(MΞ
σ |t/MΞ

σ (t), L|t/L(t)) + E1 ∧ |MΞ
σ (t)− L(t)|,

where f ranges over all d1t-Lipschitz functions on Ht. This gives the remaining two terms in the
upper bound of (4.25).
(iii) N (σ) converges weakly to a Poisson process with mean measure L.

To prove this claim, Lemma 4.1 implies it suffices to show that for each fixed t ∈ C(L), the upper
bound of (4.25) converges to 0 as σ →∞. For the first term, we have, for each r > 0,∫

Rd
p(x)
σ (t)2Λ(dx) ≤ |Λ|(r) + P(S(σ) ≥ h(r)/t)E|Λ|(h−1(S(σ)t)),

which, together with the assumption S(σ) P−→ 0, implies

lim sup
σ→∞

∫
Rd
p(x)
σ (t)2Λ(dx) ≤ |Λ|(r).

Since r is arbitrary and limr→0 |Λ|(r) = 0, we obtain limσ→∞
∫

Rd p
(x)
σ (t)2Λ(dx) = 0. For the

second term in the upper bound of (4.25), as d1t(·, L|t/L(t)) is a continuous function on

{v : v is right continuous and nondecreasing on (0, t] with lim
s↓0

v(s) = 0, v(t) = 1}

that equals zero at L|t/L(t), it follows from (i) and the continuity theorem that, as σ →∞,

d1t(MΞ
σ |t/MΞ

σ (t), L|t/L(t)) d−→0

and hence Ed1t(MΞ
σ |t/MΞ

σ (t), L|t/L(t)) → 0. The third term converges to 0 due to (i) and the
bounded convergence theorem.

5 Final remarks

We show that under general conditions the wireless network signals appear to different observers
at different times as different Poisson processes or different realizations of the same Cox process.
This line of work strongly suggests that given the network is sufficiently large and stationary (or just
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isotropic) with strong enough random propagation effects such as fading and shadowing, then the
signal strengths can be modeled directly as a Poisson or Cox process on the real line and the de-
tails of the distribution of the positioning of transmitters on the plane can be safely ignored. From
the results presented here, there are many further directions of study: For a given transmitter con-
figuration, do some fading models induce a propagation process significantly closer to Poisson than
others? How do our results translate to functions of the propagation process, for example, the signal-
to-interference ratio discussed in the introduction (c.f., [19])? Can our results be extended to models
with short range (spatial) dependence between the fading variables?
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