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Abstract

We study a diffuse interface model for incompressible isothermal mixtures of two immiscible

fluids coupling the Navier–Stokes system with a convective nonlocal Cahn–Hilliard equation in two

dimensions of space. We apply recently proved well-posedness and regularity results in order to

establish existence of optimal controls as well as first-order necessary optimality conditions for an

associated optimal control problem in which a distributed control is applied to the fluid flow.

1 Introduction

In this paper, we consider the nonlocal Cahn–Hilliard/Navier–Stokes system

ϕt + u · ∇ϕ = ∆µ, (1.1)

µ = aϕ−K ∗ ϕ+ F ′(ϕ), (1.2)

ut − 2 div
(
ν(ϕ)Du

)
+ (u · ∇)u+∇π = µ∇ϕ+ v, (1.3)

div(u) = 0, (1.4)

in Q := Ω × (0, T ), where Ω ⊂ R2 is a bounded smooth domain with boundary ∂Ω and outward

unit normal field n, and where T > 0 is a prescribed final time. Moreover, D denotes the symmetric

gradient, which is defined by Du :=
(
∇u+∇Tu

)
/2.

This system models the flow and phase separation of an isothermal mixture of two incompressible

immiscible fluids with matched densities (normalized to unity), where nonlocal interactions between

the molecules are taken into account. In this connection, u is the (averaged) velocity field, ϕ is the

order parameter (relative concentration of one of the species), π is the pressure and v is the external

volume force density. The mobility in (1.1) is assumed to be constant equal to 1 for simplicity, while

in (1.3) we allow the viscosity ν to be ϕ−dependent. The chemical potential µ contains the spatial

convolution K ∗ ϕ over Ω, defined by

(K ∗ ϕ)(x) :=

∫
Ω

K(x− y)ϕ(y) dy, x ∈ Ω,

of the order parameterϕwith a sufficiently smooth interaction kernelK that satisfiesK(z) = K(−z).

Moreover, a is given by

a(x) :=

∫
Ω

K(x− y) dy,

for x ∈ Ω, and F is a double-well potential, which, in general, may be regular or singular (e.g., of

logarithmic or double obstacle type); in this paper, we have to confine ourselves to the regular case.

1



The system (1.1)–(1.4) is complemented by the boundary and initial conditions

∂µ

∂n
= 0, u = 0, on Σ := ∂Ω× (0, T ), (1.5)

u(0) = u0, ϕ(0) = ϕ0, in Ω, (1.6)

where, as usual, ∂µ/∂n denotes the directional derivative of µ in the direction of n.

Problem (1.1)–(1.6) is the nonlocal version of the so-called “Model H” which is known from the literature

(cf., e. g., [5, 28, 29, 34, 35, 36, 40]). The main difference between local and nonlocal models is given

by the choice of the interaction potential. Typically, the nonlocal contribution to the free energy has

the form
∫

Ω
K̃(x, y) |ϕ(x) − ϕ(y)|2 dy , with a given symmetric kernel K̃ defined on Ω × Ω; its

local Ginzburg–Landau counterpart is given by (σ/2)|∇ϕ(x)|2, where the positive parameter σ is a

measure for the thickness of the interface.

Although the physical relevance of nonlocal interactions was already pointed out in the pioneering

paper [43] (see also [14, 4.2] and the references therein) and studied (in case of constant velocity) in,

e.g., [6, 13, 23, 24, 25, 26, 38, 39], and, while the classical (local) Model H has been investigated by

several authors (see, e.g., [1, 2, 10, 11, 20, 21, 22, 32, 41, 44, 47, 50] and also [3, 9, 27, 37] for models

with shear dependent viscosity), its nonlocal version has been tackled (from the analytical viewpoint

concerning well-posedness and related questions) only more recently (cf., e.g., [12, 15, 16, 17, 18,

19]).

In particular, the following cases have been studied: regular potential F associated with constant

mobility in [12, 15, 16, 18]; singular potential associated with constant mobility in [17]; singular potential

and degenerate mobility in [19]; the case of nonconstant viscosity in [15]. In the two-dimensional case

it was shown in [18] that for regular potentials and constant mobilities the problem (1.1)–(1.6) enjoys

a unique strong solution. Recently, uniqueness was proved also for weak solutions (see [15]).

With the well-posedness results of [18] and in [15] at hand, the road is paved for studying optimal

control problems associated with (1.1)–(1.6) at least in the two-dimensional case. This is the purpose

of this paper. To our best knowledge, this has never been done before in the literature; in fact, while

there exist recent contributions to associated optimal control problems for the time-discretized local

version of the system (cf. [30, 31]) and to numerical aspects of the control problem (see [33]), it seems

that a rigorous analysis for the full problem without time discretization has never been performed be-

fore. Even for the much simpler case of the convective Cahn–Hilliard equation, that is, if the velocity

is prescribed so that the Navier–Stokes equation (1.3) is not present, only very few contributions exist

that deal with optimal control problems; in this connection, we refer to [48, 49] for local models in one

and two space dimensions and to the recent paper [42], in which first-order necessary optimality con-

ditions were derived for the nonlocal convective Cahn–Hilliard system in 3D in the case of degenerate

mobilities and singular potentials.

More precisely, the control problem under investigation in this paper reads as follows:

(CP) Minimize the tracking type cost functional

J (y,v) :=
β1

2
‖u− uQ‖2

L2(Q)2 +
β2

2
‖ϕ− ϕQ‖2

L2(Q) +
β3

2
‖u(T )− uΩ‖2

L2(Ω)2
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+
β4

2
‖ϕ(T )− ϕΩ‖2

L2(Ω) +
γ

2
‖v‖2

L2(Q)2 , (1.7)

where y := [u, ϕ] solves problem (1.1)-(1.6). We assume throughout the paper without further refer-

ence that in the cost functional (1.7) the quantities uQ ∈ L2(0, T ;Gdiv), ϕQ ∈ L2(Q), uΩ ∈ Gdiv,

and ϕΩ ∈ L2(Ω), are given target functions, while βi, i = 1 . . . 4, and γ are some fixed nonnegative

constants that do not vanish simultaneously. Moreover, the external body force density v, which plays

the role of the control, is postulated to belong to a suitable closed, bounded and convex subset (which

will be specified later) of the space of controls

V := L2(0, T ;Gdiv),

where

Gdiv :=
{
u ∈ C∞0 (Ω)2 : div(u) = 0

}L2(Ω)2

.

We recall that the spaces Gdiv and

Vdiv :=
{
u ∈ H1

0 (Ω)2 : div(u) = 0
}

are the classical Hilbert spaces for the incompressible Navier–Stokes equations with no-slip boundary

conditions (see, e.g., [46]).

We remark that controls in the form of volume force densities can occur in many technical applications.

For instance, they may be induced in the fluid flow from stirring devices, from the application of acoustic

fields (ultrasound, say) or, in the case of electrically conducting fluids, from the application of magnetic

fields.

The plan of the paper is as follows: in the next Section 2, we collect some preliminary results con-

cerning the well-posedness of system (1.1)–(1.6), and we prove some stability estimates which are

necessary for the analysis of the control problem. In Section 3, we prove the main results of this paper,

namely, the existence of a solution to the optimal control problem (CP), the Fréchet differentiability of

the control-to-state operator, as well as the first-order necessary optimality conditions for (CP).

2 Preliminary results

In this section, we first summarize some results from [12, 15, 18] concerning the well-posedness of

solutions to the system (1.1)–(1.6). We also establish a stability estimate that later will turn out to be

crucial for showing the differentiability of the associated control-to-state mapping.

Before going into this, we introduce some notation.

Throughout the paper, we set H := L2(Ω), V := H1(Ω), and we denote by ‖ · ‖ and (· , ·)
the standard norm and the scalar product, respectively, in H and Gdiv, as well as in L2(Ω)2 and

L2(Ω)2×2. The notations 〈· , ·〉X and ‖ · ‖X will stand for the duality pairing between a Banach
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space X and its dual X ′, and for the norm of X , respectively. Moreover, the space Vdiv is endowed

with the scalar product

(u1,u2)Vdiv := (∇u1,∇u2) = 2
(
Du1, Du2

)
∀u1,u2 ∈ Vdiv.

We also introduce the Stokes operator A with no-slip boundary condition (see, e.g., [46]). Recall that

A : D(A) ⊂ Gdiv → Gdiv is defined as A := −P∆, with domain D(A) = H2(Ω)2∩Vdiv, where

P : L2(Ω)2 → Gdiv is the Leray projector. Moreover, A−1 : Gdiv → Gdiv is a selfadjoint compact

operator in Gdiv. Therefore, according to classical results, A possesses a sequence of eigenvalues

{λj}j∈N with 0 < λ1 ≤ λ2 ≤ · · · and λj → ∞, and a family {wj}j∈N ⊂ D(A) of associated

eigenfunctions which is orthonormal in Gdiv. We also recall Poincaré’s inequality

λ1 ‖u‖2 ≤ ‖∇u‖2 ∀u ∈ Vdiv .

The trilinear form b appearing in the weak formulation of the Navier–Stokes equations is defined as

usual, namely,

b(u,v,w) :=

∫
Ω

(u · ∇)v ·w dx ∀u,v,w ∈ Vdiv .

We recall that we have

b(u,w,v) = − b(u,v,w) ∀u,v,w ∈ Vdiv,

and that in two dimensions of space there holds the estimate

|b(u,v,w)| ≤ Ĉ1 ‖u‖1/2 ‖∇u‖1/2 ‖∇v‖ ‖w‖1/2 ‖∇w‖1/2 ∀u,v,w ∈ Vdiv,

with a constant Ĉ1 > 0 that only depends on Ω.

We will also need to use the operator B := −∆ + I with homogeneous Neumann boundary con-

dition. It is well known that B : D(B) ⊂ H → H is an unbounded linear operator in H with the

domain

D(B) =
{
ϕ ∈ H2(Ω) : ∂ϕ/∂n = 0 on ∂Ω

}
,

and that B−1 : H → H is a selfadjoint compact operator on H . By a classical spectral theorem

there exist a sequence of eigenvalues µj with 0 < µ1 ≤ µ2 ≤ · · · and µj → ∞, and a family of

associated eigenfunctions wj ∈ D(B) such that Bwj = µj wj for all j ∈ N. The family {wj}j∈N

forms an orthonormal basis in H and is also orthogonal in V and D(B).

Finally, we recall two inequalities, which are valid in two dimensions of space and will be used repeat-

edly in the course of our analysis, namely the particular case of the Gagliardo-Nirenberg inequality

(see, e.g., [8])

‖v‖L4(Ω) ≤ Ĉ2 ‖v‖1/2 ‖v‖1/2
V ∀ v ∈ V, (2.1)

as well as Agmon’s inequality (see [4])

‖v‖L∞(Ω) ≤ Ĉ3 ‖v‖1/2 ‖v‖1/2

H2(Ω) ∀ v ∈ H2(Ω). (2.2)
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In both these inequalities, the positive constants Ĉ2, Ĉ3 depend only on Ω ⊂ R2.

We are ready now to state the general assumptions on the data of the state system. We remark that for

the well-posedness results cited below not always all of these assumptions are needed in every case;

however, they seem to be indispensable for the analysis of the control problem. Since we focus on the

control aspects here, we confine ourselves to these assumptions and refer the interested reader to

[12, 15, 18] for further details. We postulate:

(H1) It holds u0 ∈ Vdiv and ϕ0 ∈ H2(Ω).

(H2) F ∈ C4(R) satisfies the following conditions:

∃ ĉ1 > 0 : F ′′(s) + a(x) ≥ ĉ1 for all s ∈ R and a. e. x ∈ Ω. (2.3)

∃ ĉ2 > 0, ĉ3 > 0, p > 2 : F ′′(s) + a(x) ≥ ĉ2 |s|p−2 − ĉ3

for all s ∈ R and a. e. x ∈ Ω. (2.4)

∃ ĉ4 > 0, ĉ5 ≥ 0, r ∈ (1, 2] : |F ′(s)|r ≤ ĉ4 |F (s)|+ ĉ5 for all s ∈ R. (2.5)

(H3) ν ∈ C2(R), and there are constants ν̂1 > 0, ν̂2 > 0 such that

ν̂1 ≤ ν(s) ≤ ν̂2 ∀ s ∈ R. (2.6)

(H4) The kernel K satisfies K(x) = K(−x) for all x in its domain, as well as a(x) =
∫

Ω
K(x−

y) dy ≥ 0 for a. e. x ∈ Ω. Moreover, one of the following two conditions is fulfilled:

(i) It holds K ∈ W 2,1(Bρ), where ρ := diam Ω and Bρ := {z ∈ R2 : |z| < ρ}.

(ii) K is a so-called admissible kernel, which (cf. [7, Definition 1]) for the two-dimensional case

means that we have

K ∈ W 1,1
loc (R2) ∩ C3(R2 \ {0}); (2.7)

K is radially symmetric, K(x) = K̃(|x|), and K̃ is non-increasing; (2.8)

K̃ ′′(r) and K̃ ′(r)/r are monotone functions on (0, r0) for some r0 > 0; (2.9)

|D3K(x)| ≤ ĉ6 |x|−3 for some ĉ6 > 0. (2.10)

Remark 1. Notice that both the physically relevant two-dimensional Newtonian and Bessel kernels do

not fulfill the condition (i) in (H4); they are however known to be admissible in the sense of (ii). The

advantage of dealing with admissible kernels is due to the fact that such kernels have the property (cf.

[7, Lemma 2]) that for all p ∈ (1,+∞) there exists some constant Cp > 0 such that

‖∇(∇K ∗ ψ)‖Lp(Ω)2×2 ≤ Cp ‖ψ‖Lp(Ω) ∀ψ ∈ Lp(Ω). (2.11)

We also observe that under the hypothesis (H4) we have a ∈ W 1,∞(Ω).

The following result combines results that have been shown in the papers [12, 15, 18]; in particular,

we refer to [15, Thms. 5 and 6] and [18, Thm. 2 and Remarks 2 and 5].
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Theorem 1. Suppose that (H1)–(H4) are fulfilled. Then the state system (1.1)–(1.6) has for every

v ∈ L2(0, T ;Gdiv) a unique strong solution [u, ϕ] with the regularity properties

u ∈ C0([0, T ];Vdiv) ∩ L2(0, T ;H2(Ω)2), ut ∈ L2(0, T ;Gdiv), (2.12)

ϕ ∈ C0([0, T ];H2(Ω)), ϕt ∈ C0([0, T ];H) ∩ L2(0, T ;V ), (2.13)

µ := aϕ−K ∗ ϕ+ F ′(ϕ) ∈ C0([0, T ];H2(Ω)). (2.14)

Moreover, there exists a continuous and nondecreasing function Q1 : [0,+∞) → [0,+∞), which

only depends on the data F , K , ν, Ω, T , u0 and ϕ0, such that

‖u‖C0([0,T ];Vdiv)∩L2(0,T ;H2(Ω)2) + ‖ut‖L2(0,T ;Gdiv) + ‖ϕ‖C0([0,T ];H2(Ω)) + ‖ϕt‖C0([0,T ];H)∩L2(0,T ;V )

≤ Q1

(
‖v‖L2(0,T ;Gdiv)

)
. (2.15)

From Theorem 1 it follows that the control-to-state operator S : v 7→ S(v) := [u, ϕ], is well defined

as a mapping from L2(0, T ;Gdiv) into the Banach space defined by the regularity properties of

[u, ϕ] as given by (2.12) and (2.13).

We now establish some global stability estimates for the strong solutions to problem (1.1)–(1.6). Let

us begin with the following result (see [15, Thm. 6 and Lemma 2]).

Lemma 1. Suppose that (H1)–(H4) are fulfilled, and assume that controls vi ∈ L2(0, T ;Gdiv),

i = 1, 2, are given and that [ui, ϕi] := S(vi), i = 1, 2, are the associated solutions to (1.1)–(1.6).

Then there is a continuous function Q2 : [0,+∞)2 → [0,+∞), which is nondecreasing in both its

arguments and only depends on the data F , K , ν, Ω, T , u0 and ϕ0, such that we have for every

t ∈ (0, T ] the estimate

‖u2 − u1‖2
C0([0,t];Gdiv) + ‖u2 − u1‖2

L2(0,t;Vdiv) + ‖ϕ2 − ϕ1‖2
C0([0,t];H) + ‖∇(ϕ2 − ϕ1)‖2

L2(0,t;H)

≤ Q2

(
‖v1‖L2(0,T ;Gdiv), ‖v2‖L2(0,T ;Gdiv)

)
‖v2 − v1‖2

L2(0,T ;(Vdiv)′) . (2.16)

Proof. We follow the lines of the proof of [15, Thm. 6] (see also [15, Lemma 2]), just sketching the main

steps. We test the difference between (1.3), written for each of the two solutions, by u := u2 − u1 in

Gdiv, and the difference between (1.1), (1.2), written for each solution, by ϕ := ϕ2−ϕ1 inH . Adding

the resulting identities, and arguing exactly as in the proof of [15, Thm. 6], we are led to a differential

inequality of the form

1

2

d

dt

(
‖u(t)‖2 + ‖ϕ(t)‖2

)
+
ν̂1

4
‖∇u(t)‖2 +

ĉ1

4
‖∇ϕ(t)‖2

≤ γ(t)
(
‖u(t)‖2 + ‖ϕ(t)‖2

)
+

1

ν̂1

‖v(t)‖2
(Vdiv)′ for a. e. t ∈ (0, T ),

where γ ∈ L1(0, T ) is given by

γ(t) = c
(
1 + ‖∇u1(t)‖2 ‖u1(t)‖2

H2(Ω) + ‖∇u2(t)‖2 + ‖ϕ1(t)‖2
L4(Ω) + ‖ϕ2(t)‖2

L4(Ω)

+ ‖ϕ1(t)‖2
H2(Ω) + ‖∇ϕ1(t)‖2 ‖ϕ1(t)‖2

H2(Ω)

)
.

The desired stability estimate then follows from applying Gronwall’s lemma to the above differential

inequality.
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Lemma 1 already implies that the control-to-state mapping S is locally Lipschitz continuous as a

mapping from L2(0, T ; (Vdiv)
′) (and, a fortiori, also from L2(0, T ;Vdiv)) into the space

[C0([0, T ];Gdiv) ∩ L2(0, T ;Vdiv)] × [C0([0, T ];H) ∩ L2(0, T ;V )]. Since this result is not yet

sufficient to establish differentiability, we need to improve the stability estimate. The following higher

order stability estimate for the solution component ϕ will turn out to be the key tool for the proof of

differentiability of the control-to-state mapping.

Lemma 2. Suppose that the assumptions of Lemma 1 are fulfilled. Then there is a continuous function

Q3 : [0,+∞)2 → [0,+∞), which is nondecreasing in both its arguments and only depends on the

data F , K , ν, Ω, T , u0 and ϕ0, such that we have for every t ∈ (0, T ] the estimate

‖u2 − u1‖2
C0([0,t];Gdiv) + ‖u2 − u1‖2

L2(0,t;Vdiv) + ‖ϕ2 − ϕ1‖2
C0([0,t];V ) + ‖ϕ2 − ϕ1‖2

L2(0,t;H2(Ω))

+ ‖ϕ2 − ϕ1‖2
H1(0,t;H) ≤ Q3

(
‖v1‖L2(0,T ;Gdiv), ‖v2‖L2(0,T ;Gdiv)

)
‖v2 − v1‖2

L2(0,T ;(Vdiv)′) .

(2.17)

Proof. For the sake of a shorter exposition, we will in the following always avoid to write the time

variable t as argument of the involved functions; no confusion will arise from this notational convention.

Set u := u2 − u1 and ϕ := ϕ2 − ϕ1. Then it follows from (1.1), (1.2) that

ϕt = ∆µ̃− u · ∇ϕ1 − u2 · ∇ϕ, (2.18)

µ̃ := aϕ−K ∗ ϕ+ F ′(ϕ2)− F ′(ϕ1). (2.19)

We multiply (2.18) by µ̃t in H and integrate by parts, using the first boundary condition of (1.5) (which

holds also for µ̃). We obtain the identity

1

2

d

dt
‖∇µ̃‖2 + (ϕt, µ̃t) = − (u · ∇ϕ1, µ̃t)− (u2 · ∇ϕ, µ̃t). (2.20)

Thanks to (2.19), we can first rewrite the second term on the left-hand side of (2.20) as follows:

(ϕt, µ̃t) =
(
ϕt, a ϕt −K ∗ ϕt + (F ′′(ϕ2)− F ′′(ϕ1))ϕ2,t + F ′′(ϕ1)ϕt

)
=

∫
Ω

(
a+ F ′′(ϕ1)

)
ϕ2
t dx +

(
∆µ̃− u · ∇ϕ1 − u2 · ∇ϕ,−K ∗ ϕt

)
+
(
ϕt, (F

′′(ϕ2)− F ′′(ϕ1))ϕ2,t

)
=

∫
Ω

(
a+ F ′′(ϕ1)

)
ϕ2
t dx+ (∇µ̃,∇K ∗ ϕt)− (uϕ1,∇K ∗ ϕt)− (u2ϕ,∇K ∗ ϕt)

+
(
ϕt, (F

′′(ϕ2)− F ′′(ϕ1))ϕ2,t

)
. (2.21)

Here we have employed (2.18) in the second identity of (2.21), while in the third identity integrations

by parts have been performed using the boundary conditions ∂µ̃/∂n = 0 and ui = 0 on Σ, as

well as the incompressibility conditions for ui, i = 1, 2.

We now estimate the last four terms on the right-hand side of (2.21). Using Young’s inequality for

convolution integrals, we have, for every ε > 0,
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|(∇µ̃,∇K ∗ ϕt)| ≤ ‖∇µ̃‖ ‖∇K ∗ ϕt‖ ≤ ‖∇µ̃‖ ‖∇K‖L1(Bρ) ‖ϕt‖
≤ ε ‖ϕt‖2 + Cε,K ‖∇µ̃‖2 . (2.22)

Here, and throughout this proof, we use the following notational convention: by Cσ we denote positive

constants that may depend on the global data and on the quantities indicated by the index σ; however,

Cσ does not depend on the norms of the data of the two solutions. The actual value ofCσ may change

from line to line or even within lines. On the other hand, Γσ will denote positive constants that may not

only depend on the global data and on the quantities indicated by the index σ, but also on v1 and v2.

More precisely, we have

Γσ = Γ̂
(
‖v1‖L2(0,T ;Gdiv), ‖v2‖L2(0,T ;Gdiv)

)
with a continuous function Γ̂ : [0,+∞)2 → [0,+∞) which is nondecreasing in both its variables.

Also the actual value of Γσ may change even within the same line. Now, again using Young’s inequality

for convolution integrals, as well as Hölder’s inequality, we have

(uϕ1,∇K ∗ ϕt)| ≤ CK ‖u‖L4(Ω)2 ‖ϕ1‖L4(Ω) ‖ϕt‖ ≤ ε ‖ϕt‖2 + Γε,K ‖∇u‖2, (2.23)

|(u2 ϕ,∇K ∗ ϕt)| ≤ CK ‖u2‖L4(Ω)2 ‖ϕ‖L4(Ω) ‖ϕt‖ ≤ ε ‖ϕt‖2 + Γε,K ‖ϕ‖2
V . (2.24)

Moreover, invoking (H2), (2.15) and the Gagliardo-Nirenberg inequality (2.1), we infer that∣∣(ϕt, (F ′′(ϕ2)− F ′′(ϕ1))ϕ2,t

)∣∣ ≤ ‖ϕt‖ ‖F ′′(ϕ2)− F ′′(ϕ1)‖L4(Ω) ‖ϕ2,t‖L4(Ω)

≤ ΓF ‖ϕt‖ ‖ϕ‖L4(Ω) ‖ϕ2,t‖L4(Ω) ≤ ΓF ‖ϕt‖ ‖ϕ‖1/2 ‖ϕ‖1/2
V ‖ϕ2,t‖1/2 ‖ϕ2,t‖1/2

V

≤ ε ‖ϕt‖2 + Γε,F ‖ϕ2,t‖2
V ‖ϕ‖2 + Γε,F ‖ϕ‖2

V . (2.25)

As far as the terms on the right-hand side of (2.20) are concerned, we can in view of (2.19) write

(u · ∇ϕ1, µ̃t) =
(
u · ∇ϕ1, a ϕt −K ∗ ϕt + (F ′′(ϕ2)− F ′′(ϕ1))ϕ2,t + F ′′(ϕ1)ϕt

)
, (2.26)

(u2 · ∇ϕ, µ̃t) =
(
u2 · ∇ϕ, aϕt −K ∗ ϕt + (F ′′(ϕ2)− F ′′(ϕ1))ϕ2,t + F ′′(ϕ1)ϕt

)
, (2.27)

where the terms on the right-hand side of (2.26), (2.27) can be estimated in the following way:∣∣(u · ∇ϕ1, a ϕt −K ∗ ϕt
)∣∣ ≤ CK ‖u‖L4(Ω)2 ‖ϕ1‖H2(Ω) ‖ϕt‖

≤ ε ‖ϕt‖2 + Γε,K ‖∇u‖2 , (2.28)∣∣(u · ∇ϕ1, (F
′′(ϕ2)− F ′′(ϕ1))ϕ2,t

)∣∣ ≤ ΓF ‖u‖ ‖ϕ1‖H2(Ω) ‖ϕ‖L6(Ω) ‖ϕ2,t‖L6(Ω)

≤ ΓF ‖u‖ ‖ϕ‖V ‖ϕ2,t‖V ≤ ΓF ‖ϕ2,t‖2
V ‖u‖2 + ΓF ‖ϕ‖2

V , (2.29)∣∣(u · ∇ϕ1, F
′′(ϕ1)ϕt

)∣∣ ≤ ΓF ‖u‖L4(Ω)2 ‖ϕ1‖H2(Ω) ‖ϕt‖ ≤ ε ‖ϕt‖2 + Γε,F ‖∇u‖2 , (2.30)
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∣∣(u2 · ∇ϕ, aϕt −K ∗ ϕt
)∣∣ ≤ CK ‖u2‖L4(Ω)2 ‖∇ϕ‖L4(Ω)2 ‖ϕt‖ ≤ ΓK ‖∇ϕ‖1/2 ‖∇ϕ‖1/2

V ‖ϕt‖

≤ ε ‖ϕt‖2 + Γε,K ‖∇ϕ‖ ‖ϕ‖H2(Ω) ≤ ε ‖ϕt‖2 + ε ‖ϕ‖2
H2(Ω) + Γε,K ‖∇ϕ‖2 , (2.31)∣∣(u2 · ∇ϕ, (F ′′(ϕ2)− F ′′(ϕ1))ϕ2,t

)∣∣ ≤ ΓF ‖u2‖L4(Ω)2 ‖∇ϕ‖L4(Ω)2 ‖ϕ‖L4(Ω) ‖ϕ2,t‖L4(Ω)

≤ ΓF ‖ϕ‖H2(Ω) ‖ϕ‖1/2 ‖ϕ‖1/2
V ‖ϕ2,t‖1/2 ‖ϕ2,t‖1/2

V ≤ ε ‖ϕ‖2
H2(Ω) + Γε,F ‖ϕ‖ ‖ϕ‖V ‖ϕ2,t‖V

≤ ε ‖ϕ‖2
H2(Ω) + Γε,F ‖ϕ‖2

V + Γε,F ‖ϕ2,t‖2
V ‖ϕ‖2 , (2.32)

∣∣(u2 · ∇ϕ, F ′′(ϕ1)ϕt
)∣∣ ≤ ΓF ‖u2‖L4(Ω)2 ‖∇ϕ‖L4(Ω)2 ‖ϕt‖ ≤ ΓF ‖∇ϕ‖1/2 ‖∇ϕ‖1/2

V ‖ϕt‖

≤ ε ‖ϕt‖2 + Γε,F ‖∇ϕ‖ ‖ϕ‖H2(Ω) ≤ ε‖ϕt‖2 + ε ‖ϕ‖2
H2(Ω) + Γε,F ‖∇ϕ‖2 , (2.33)

where we have used the Hölder and Gagliardo-Nirenberg inequalities and (2.15) again.

We now insert the estimates (2.22)–(2.25) and (2.28)–(2.33) in (2.20), taking (2.21), (2.26) and (2.27)

into account. By the assumption (2.3) in hypothesis (H2), and choosing ε > 0 small enough (i. e.,

ε ≤ ĉ1/16), we obtain the estimate

d

dt
‖∇µ̃‖2 + ĉ1 ‖ϕt‖2 ≤ Cε,K ‖∇µ̃‖2 + Γε,K,F

(
‖∇u‖2 + ‖ϕ‖2

V

)
+ Γε,F ‖ϕ2,t‖2

V

(
‖u‖2 + ‖ϕ‖2

)
+ 6 ε ‖ϕ‖2

H2(Ω) . (2.34)

Next, we aim to show that the H2 norm of ϕ can be controlled by the H2 norm of µ̃. To this end, we

take the second-order derivatives of (2.19) to find that

∂2
ijµ̃ = a ∂2

ijϕ+ ∂ia ∂jϕ+ ∂ja ∂iϕ+ ϕ∂i(∂ja)− ∂i
(
∂jK ∗ ϕ

)
+
(
F ′′(ϕ2)− F ′′(ϕ1)

)
∂2
ijϕ2 + F ′′(ϕ1) ∂2

ijϕ

+
(
F ′′′(ϕ2)− F ′′′(ϕ1)

)
∂iϕ2 ∂jϕ2 + F ′′′(ϕ1) (∂iϕ2 ∂jϕ+ ∂iϕ∂jϕ1) . (2.35)

Let us we multiply (2.35) by ∂2
ijϕ in H and then estimate the terms on the right-hand side of the

resulting equality. We have, invoking (2.3),((
a+ F ′′(ϕ1)

)
∂2
ijϕ, ∂

2
ijϕ
)
≥ ĉ1 ‖∂2

ijϕ‖2, (2.36)

and, for every δ > 0 (to be fixed later),(
∂ia ∂jϕ+ ∂ja ∂iϕ, ∂

2
ijϕ
)
≤ CK ‖∇ϕ‖ ‖∂2

ijϕ‖ ≤ δ ‖∂2
ijϕ‖2 + Cδ,K ‖∇ϕ‖2, (2.37)(

ϕ∂i(∂ja)− ∂i(∂jK ∗ ϕ), ∂2
ijϕ
)
≤ CK ‖ϕ‖ ‖∂2

ijϕ‖ ≤ δ ‖∂2
ijϕ‖2 + Cδ,K ‖ϕ‖2, (2.38)

where the first inequality in the estimate (2.38) follows from (2.11) if K is admissible, while in the

case K ∈ W 2,1(Bρ) the first term in the product on the left-hand side of (2.38) can be rewritten as

ϕ∂2
ija−∂2

ijK ∗ϕ so that (2.38) follows immediately from Young’s inequality for convolution integrals.

Moreover, invoking Agmon’s inequality (2.2) and (2.15), we have((
F ′′(ϕ2)− F ′′(ϕ1)

)
∂2
ijϕ2, ∂

2
ijϕ
)
≤ ΓF ‖ϕ‖L∞(Ω) ‖ϕ2‖H2(Ω) ‖∂2

ijϕ‖
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≤ ΓF ‖ϕ‖1/2 ‖ϕ‖1/2

H2(Ω) ‖∂
2
ijϕ‖ ≤ ΓF‖ϕ‖1/2 ‖ϕ‖3/2

H2(Ω) ≤ δ ‖ϕ‖2
H2(Ω) + Γδ,F ‖ϕ‖2. (2.39)

In addition, by virtue of Hölder’s inequality and (2.15), we have((
F ′′′(ϕ2)− F ′′′(ϕ1)

)
∂iϕ2 ∂jϕ2, ∂

2
ijϕ
)
≤ ΓF ‖ϕ‖L6(Ω) ‖∂iϕ2‖L6(Ω) ‖∂jϕ2‖L6(Ω) ‖∂2

ijϕ‖

≤ ΓF ‖ϕ‖V ‖ϕ2‖2
H2(Ω) ‖∂2

ijϕ‖ ≤ δ ‖∂2
ijϕ‖2 + Γδ,F ‖ϕ‖2

V , (2.40)

and, invoking the Gagliardo-Nirenberg inequality (2.1) and (2.15),(
F ′′′(ϕ1) (∂iϕ2 ∂jϕ+ ∂iϕ∂jϕ1), ∂2

ijϕ
)

≤ ΓF
(
‖∂iϕ2‖L4(Ω) ‖∂jϕ‖L4(Ω) + ‖∂iϕ‖L4(Ω) ‖∂jϕ1‖L4(Ω)

)
‖∂2

ijϕ‖

≤ ΓF
(
‖ϕ1‖H2(Ω) + ‖ϕ2‖H2(Ω)

)
‖∇ϕ‖L4(Ω)2 ‖∂2

ijϕ‖ ≤ ΓF ‖∇ϕ‖1/2 ‖∇ϕ‖1/2
V ‖∂

2
ijϕ‖

≤ ΓF ‖∇ϕ‖1/2 ‖ϕ‖3/2

H2(Ω) ≤ δ‖ϕ‖2
H2(Ω) + Γδ,F ‖∇ϕ‖2. (2.41)

Hence, by means of (2.36)–(2.41), we obtain that(
∂2
ijµ̃, ∂

2
ijϕ
)
≥ ĉ1

2
‖∂2

ijϕ‖2 − 2 δ ‖ϕ‖2
H2(Ω) − Γδ,K ‖ϕ‖2

V ,

provided we choose 0 < δ ≤ ĉ1/6. On the other hand, we have(
∂2
ijµ̃, ∂

2
ijϕ
)
≤ ĉ1

4
‖∂2

ijϕ‖2 +
1

ĉ1

‖∂2
ijµ̃‖2,

and, by combining the last two estimates, we find that

‖∂2
ijµ̃‖2 ≥ ĉ2

1

4
‖∂2

ijϕ‖2 − 2 ĉ1 δ ‖ϕ‖2
H2(Ω) − Γδ,K,F ‖ϕ‖2

V ,

where the factor ĉ1 is absorbed in the constant Γδ,K,F . From this, taking the sum over i, j = 1, 2, and

fixing 0 < δ ≤ ĉ1/64, we get the desired control,

‖µ̃‖2
H2(Ω) ≥

ĉ2
1

8
‖ϕ‖2

H2(Ω) − ΓK,F‖ϕ‖2
V . (2.42)

Let us now prove that the H2 norm of µ̃ can be controlled in terms of the L2 norm of ϕt. Indeed, from

(2.18) we obtain, invoking the Hölder and Gagliardo-Nirenberg inequalities,

‖∆µ̃‖ ≤ ‖ϕt‖+ ‖u‖L4(Ω)2 ‖∇ϕ1‖L4(Ω)2 + ‖u2‖L4(Ω)2 ‖∇ϕ‖L4(Ω)2

≤ ‖ϕt‖+ C ‖∇u‖‖ϕ1‖H2(Ω) + C ‖u2‖L4(Ω)2‖∇ϕ‖1/2‖ϕ‖1/2

H2(Ω). (2.43)

Thanks to a classical elliptic regularity result (notice that ∂µ̃/∂n = 0 on ∂Ω), we can infer from (2.19),

(2.43) and (2.1) the estimate

‖µ̃‖H2(Ω) ≤ ce‖ −∆µ̃+ µ̃‖ ≤ ce‖∆µ̃‖+ ΓK,F ‖ϕ‖

≤ ce ‖ϕt‖+ Γ ‖∇u‖+ Γ ‖∇ϕ‖1/2‖ϕ‖1/2

H2(Ω) + ΓK,F ‖ϕ‖ , (2.44)

where ce > 0 depends only on Ω. Combining (2.42) with (2.44), we then deduce that

ĉ1

4
‖ϕ‖H2(Ω) ≤ ce ‖ϕt‖+ ΓK,F

(
‖∇u‖+ ‖ϕ‖V

)
. (2.45)
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With (2.45) now available, we can now go back to (2.34) and fix ε > 0 small enough (i.e, ε ≤ ε∗,

where ε∗ > 0 depends only on ĉ1 and ce) to arrive at the differential inequality

d

dt
‖∇µ̃‖2 +

ĉ1

2
‖ϕt‖2 ≤ CK ‖∇µ̃‖2 + ΓK,F

(
‖∇u‖2 + ‖ϕ‖2

V

)
+ ΓF ‖ϕ2,t‖2

V

(
‖u‖2 + ‖ϕ‖2

)
. (2.46)

Now observe that µ̃(0) = 0. Thus, applying Gronwall’s lemma to (2.46), and using (2.15) for ϕ2,t, we

obtain, for every t ∈ [0, T ],

‖∇µ̃(t)‖2 ≤ Γ
(∫ t

0

(
‖∇u(τ)‖2 + ‖ϕ(τ)‖2

V

)
dτ

+
(
‖u‖2

C0([0,t];Gdiv) + ‖ϕ‖2
C0([0,t];H)

) ∫ t

0

‖ϕ2,t(τ)‖2
V dτ

)
,

where, for the sake of a shorter notation, we have omitted the indexes K and F in the constant Γ.

Hence, using the stability estimate of Lemma 1, we obtain from the last two inequalities that

‖∇µ̃(t)‖2 ≤ Γ ‖v2 − v1‖2
L2(0,T ;(Vdiv)′). (2.47)

Now, taking the gradient of (2.19), and arguing as in the proof of [15, Lemma 2], it is not difficult to see

that we have

(∇µ̃,∇ϕ) ≥ ĉ1

4
‖∇ϕ‖2 − Γ ‖ϕ‖2,

and this estimate, together with

(∇µ̃,∇ϕ) ≤ ĉ1

8
‖∇ϕ‖2 +

2

ĉ1

‖∇µ̃‖2,

yields

‖∇µ̃‖2 ≥ ĉ2
1

16
‖∇ϕ‖2 − Γ ‖ϕ‖2 ,

where the factor ĉ1/2 is again absorbed in the constant Γ. This last estimate, combined with (2.47),

gives

‖ϕ(t)‖2
V ≤ Γ ‖v2 − v1‖2

L2(0,T ;(Vdiv)′). (2.48)

By integrating (2.46) in time over [0, t], and using (2.47) and the stability estimate of Lemma 1 again,

we also get

ĉ1

∫ t

0

‖ϕt(τ)‖2 dτ ≤ Γ ‖v2 − v1‖2
L2(0,T ;(Vdiv)′). (2.49)

The stability estimate (2.17) now follows from (2.48), (2.49), (2.45) and Lemma 1.
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3 Optimal control

We now study the optimal control problem (CP), where throughout this section we assume that the

cost functional J is given by (1.7) and that the general hypothesis (H1)–(H4) are fulfilled. Moreover,

we assume that the set of admissible controls Vad is given by

Vad :=
{
v ∈ L2(0, T ;Gdiv) : va,i(x, t) ≤ vi(x, t) ≤ vb,i(x, t),

a.e. (x, t) ∈ Q, i = 1, 2
}
, (3.1)

with prescribed functions va,vb ∈ L2(0, T ;Gdiv)∩L∞(Q)2. According with Theorem 1, the control-

to-state mapping

S : V → H, v ∈ V 7→ S(v) := [u, ϕ] ∈ H, (3.2)

where the spaceH is given by

H :=
[
H1(0, T ;Gdiv) ∩ C0([0, T ];Vdiv) ∩ L2(0, T ;H2(Ω)2)

]
×
[
C1([0, T ];H) ∩H1(0, T ;V ) ∩ C0([0, T ];H2(Ω))

]
, (3.3)

is well defined and locally bounded. Moreover, it follows from Lemma 2 that S is locally Lipschitz

continuous from V into the space

W :=
[
C0([0, T ];Gdiv) ∩ L2(0, T ;Vdiv)

]
×
[
H1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;H2(Ω))

]
. (3.4)

Notice also that problem (CP) is equivalent to the minimization problem

min
v∈Vad

f(v),

for the reduced cost functional defined by f(v) := J
(
S(v),v

)
, for every v ∈ V .

We have the following existence result.

Theorem 2. Assume that the hypotheses (H1)–(H4) are satisfied and that Vad is given by (3.1). Then

the optimal control problem (CP) admits a solution.

Proof. Take a minimizing sequence {vn} ⊂ Vad for (CP). Since Vad is bounded in V , we may assume

without loss of generality that

vn → v weakly in L2(0, T ;Gdiv),

for some v ∈ V . Since Vad is convex and closed in V , and thus weakly sequentially closed, we have

v ∈ Vad.

Moreover, since S is a locally bounded mapping from V into H, we may without loss of generality

assume that the sequence [un, ϕn] = S(vn), n ∈ N, satisfies with appropriate limit points [u, ϕ]

the convergences

un → u, weakly∗ in L∞(0, T ;Vdiv) and weakly in H1(0, T ;Gdiv) ∩ L2(0, T ;H2(Ω)2), (3.5)

12



ϕn → ϕ, weakly∗ in L∞(0, T ;H2(Ω)) and in W 1,∞(0, T ;H),

and weakly in H1(0, T ;V ). (3.6)

In particular, it follows from the compactness of the embedding H1(0, T ;V ) ∩ L∞(0, T ;H2(Ω))

⊂ C0([0, T ];Hs(Ω)) for 0 ≤ s < 2, that ϕn → ϕ strongly in C0(Q), whence we conclude that

also

µn := aϕn −K ∗ ϕn + F ′(ϕn)→ µ := aϕ−K ∗ ϕ+ F ′(ϕ) strongly in C0(Q),

ν(ϕn)→ ν(ϕ) strongly in C0(Q). (3.7)

We also have, by compact embedding,

un → u strongly in L2(0, T ;Gdiv),

and it obviously holds

un(t)→ u(t) weakly in Gdiv, for all t ∈ [0, T ]. (3.8)

Now, by passing to the limit in the weak formulation of problem (1.1)–(1.6), written for each solution

[un, ϕn] = S(vn), n ∈ N, and using the above weak and strong convergences (in particular, we

can use [12, Lemma 1] in order to pass to the limit in the nonlinear term − 2 div(ν(ϕn)Dun)), it

is not difficult to see that [u, ϕ] satisfies the weak formulation corresponding to v. Hence, we have

[u, ϕ] = S(v), that is, the pair ([u, ϕ],v) is admissible for (CP).

Finally, thanks to the weak sequential lower semicontinuity of J and to the weak convergences (3.5),

(3.6), (3.8), we infer that v ∈ Vad, together with the associated state [u, ϕ] = S(v), is a solution to

(CP).

The linearized system. Suppose that the general hypotheses (H1)–(H4) are fulfilled. We assume

that a fixed v ∈ V is given, that [u, ϕ] := S(v) ∈ H is the associated solution to the state system

(1.1)-(1.6) according to Theorem 1, and that h ∈ V is given. In order to show that the control-to-state

operator is differentiable at v, we first consider the following system, which is obtained by linearizing

the state system (1.1)-(1.6) at [u, ϕ] = S(v):

ξt − 2 div
(
ν(ϕ)Dξ

)
− 2 div

(
ν ′(ϕ) η Du

)
+ (u · ∇)ξ + (ξ · ∇)u+∇π̃

=
(
a η −K ∗ η + F ′′(ϕ) η

)
∇ϕ+ µ∇η + h in Q, (3.9)

ηt + u · ∇η = −ξ · ∇ϕ+ ∆
(
a η −K ∗ η + F ′′(ϕ) η

)
in Q, (3.10)

div(ξ) = 0 in Q, (3.11)

ξ = [0, 0]T ,
∂

∂n

(
a η −K ∗ η + F ′′(ϕ) η

)
= 0 on Σ, (3.12)

ξ(0) = [0, 0]T , η(0) = 0, in Ω, (3.13)

where

µ = aϕ−K ∗ ϕ+ F ′(ϕ). (3.14)

We first prove that (3.9)–(3.13) has a unique weak solution.
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Proposition 1. Suppose that the hypotheses (H1)–(H4) are satisfied. Then problem (3.9)–(3.13) has

for every h ∈ V a unique weak solution [ξ, η] such that

ξ ∈ H1(0, T ; (Vdiv)
′) ∩ C0([0, T ];Gdiv) ∩ L2(0, T ;Vdiv),

η ∈ H1(0, T ;V ′) ∩ C0([0, T ];H) ∩ L2(0, T ;V ). (3.15)

Proof. We will make use of a Faedo-Galerkin approximating scheme. Following the lines of [12], we

introduce the family {wj}j∈N of the eigenfunctions to the Stokes operator A as a Galerkin basis in

Vdiv and the family {ψj}j∈N of the eigenfunctions to the Neumann operator B := −∆ + I as a

Galerkin basis in V . Both these eigenfunction families {wj}j∈N and {ψj}j∈N are assumed to be

suitably ordered and normalized.

Moreover, recall that, since wj ∈ D(A), we have div(wj) = 0. Then we look for two functions of

the form

ξn(t) :=
n∑
j=1

a
(n)
j (t)wj , ηn(t) :=

n∑
j=1

b
(n)
j (t)ψj ,

that solve the following approximating problem:

〈∂tξn(t),wi〉Vdiv + 2
(
ν(ϕ(t))Dξn(t), Dwi

)
+ 2

(
ν ′(ϕ(t)) ηn(t)Du(t), Dwi

)
+ b(u(t), ξn(t),wi) + b(ξn(t),u(t),wi) (3.16)

=
(
(a ηn(t)−K ∗ ηn(t) + F ′′(ϕ(t)) ηn(t))∇ϕ(t),wi

)
+ (µ(t)∇ηn(t),wi) + (h(t),w) ,

〈∂tηn(t), ψi〉V = −
(
∇(a ηn −K ∗ ηn + F ′′(ϕ) ηn)(t),∇ψi

)
+ (u(t) ηn(t),∇ψi)

+ (ξn(t)ϕ(t),∇ψi), (3.17)

ξn(0) = [0, 0]T , ηn(0) = 0, (3.18)

for i = 1, . . . , n, and for almost every t ∈ (0, T ). Apparently, this is nothing but a Cauchy problem

for a system of 2n linear ordinary differential equations in the 2n unknowns a(n)
i , b(n)

i , in which,

owing to the regularity properties of [u, ϕ], all of the coefficient functions belong to L2(0, T ). Thanks

to Carathéodory’s theorem, we can conclude that this problem enjoys a unique solution a(n) :=

(a
(n)
1 , · · · , a(n)

n )T , b(n) := (b
(n)
1 , · · · , b(n)

n )T such that a(n), b(n) ∈ H1(0, T ; Rn).

We now aim to derive a priori estimates for ξn and ηn that are uniform in n ∈ N. For the sake of

keeping the exposition at a reasonable length, we will always omit the argument t. To begin with, let

us multiply (3.16) by a(n)
i , (3.17) by b(n)

i , sum over i = 1, · · · , n, and add the resulting identities. We

then obtain, almost everywhere in (0, T ),

1

2

d

dt

(
‖ξn‖2 + ‖ηn‖2

)
+ 2

(
ν(ϕ)Dξn, Dξn

)
+
(
(a+ F ′′(ϕ))∇ηn,∇ηn

)
= −b(ξn,u, ξn) − 2

(
ν ′(ϕ) ηnDu, Dξn

)
+
(
(a ηn −K ∗ ηn + F ′′(ϕ) ηn)∇ϕ, ξn

)
+ (µ∇ηn, ξn) + (h, ξn)−

(
ηn∇a−∇K ∗ ηn,∇ηn

)
− (ηn F

′′′(ϕ)∇ϕ,∇ηn
)

+ (u ηn,∇ηn) + (ξn ϕ,∇ηn). (3.19)
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Let us now estimate the terms on the right-hand side of this equation individually. In the remainder

of this proof, we use the following abbreviating notation: the letter C will stand for positive constants

that depend only on the global data of the system (1.1)–(1.6), on v, and on [u, ϕ], but not on n ∈ N;

moreover, by Cσ we denote constants that in addition depend on the quantities indicated by the index

σ, but not on n ∈ N. Both C and Cσ may change within formulas and even within lines.

We have, using Hölder’s inequality, the elementary Young’s inequality, and the global bounds (2.15) as

main tools, the following series of estimates:

|b(ξn,u, ξn)| ≤ ‖ξn‖L4(Ω)2 ‖∇u‖L4(Ω)2×2 ‖ξn‖ ≤ C ‖∇ξn‖ ‖u‖H2(Ω)2 ‖ξn‖

≤ ε ‖∇ξn‖2 + Cε ‖u‖2
H2(Ω)2 ‖ξn‖2, (3.20)∣∣2 (ν ′(ϕ) ηnDu, Dξn
)∣∣ ≤ C ‖ηn‖L4(Ω) ‖Du‖L4(Ω)2×2 ‖∇ξn‖

≤ ε ‖∇ξn‖2 + Cε
(
‖ηn‖2 + ‖ηn‖ ‖∇ηn‖

)
‖Du‖2

L4(Ω)2×2

≤ ε ‖∇ξn‖2 + Cε ‖u‖2
H2(Ω)2 ‖ηn‖2 + ε′ ‖∇ηn‖2 + Cε,ε′ ‖∇u‖2 ‖u‖2

H2(Ω)2 ‖ηn‖2

≤ ε ‖∇ξn‖2 + ε′ ‖∇ηn‖2 + Cε,ε′ ‖u‖2
H2(Ω)2 ‖ηn‖2, (3.21)∣∣((a ηn −K ∗ ηn + F ′′(ϕ) ηn)∇ϕ, ξn
)∣∣ ≤ C ‖ηn‖ ‖ϕ‖H2(Ω) ‖ξn‖L4(Ω)2

≤ C ‖ηn‖ ‖∇ξn‖ ≤ ε ‖∇ξn‖2 + Cε ‖ηn‖2, (3.22)

|(µ∇ηn, ξn)| = |(ηn∇µ, ξn)| ≤ ‖∇µ‖L4(Ω)2×2 ‖ηn‖ ‖ξn‖L4(Ω)2 ≤ C ‖∇ξn‖ ‖ηn‖

≤ ε ‖∇ξn‖2 + Cε ‖ηn‖2, (3.23)

|(h, ξn)| ≤ C ‖ξn‖2 + C ‖h‖2
V , (3.24)∣∣(ηn∇a−∇K ∗ ηn,∇ηn)∣∣ ≤ C ‖ηn‖ ‖∇ηn‖ ≤ ε′ ‖∇ηn‖2 + Cε′ ‖ηn‖2. (3.25)

Moreover, also employing the Gagliardo-Nirenberg inequality (2.1), we find that

|(ηn F ′′′(ϕ)∇ϕ,∇ηn
)
| ≤ C ‖ηn‖L4(Ω) ‖∇ϕ‖L4(Ω)2 ‖∇ηn‖

≤ C (‖ηn‖ + ‖ηn‖1/2 ‖∇ηn‖1/2
)
‖∇ηn‖ ≤ ε′ ‖∇ηn‖2 + Cε′ ‖ηn‖2, (3.26)

|(u ηn,∇ηn)| ≤ ‖u‖L4(Ω)2 ‖ηn‖L4(Ω) ‖∇ηn‖ ≤ C
(
‖ηn‖ + ‖ηn‖1/2 ‖∇ηn‖1/2

)
‖∇ηn‖

≤ ε′ ‖∇ηn‖2 + Cε′ ‖ηn‖2, (3.27)

|(ξn ϕ,∇ηn)| ≤ C ‖ϕ‖H2(Ω) ‖ξn‖ ‖∇ηn‖ ≤ ε′ ‖∇ηn‖2 + Cε′ ‖ξn‖2. (3.28)

Hence, inserting the estimates (3.20)–(3.28) in (3.19), applying the conditions (2.3) in (H2) and (2.6)

in (H3), respectively, to the second and third terms on the left-hand side of (3.19), and choosing ε > 0

and ε′ > 0 small enough, we obtain the estimate

15



d

dt

(
‖ξn‖2 + ‖ηn‖2

)
+ ν̂1 ‖∇ξn‖2 + ĉ1 ‖∇ηn‖2

≤ C
(
1 + ‖u‖2

H2(Ω)2

)(
‖ξn‖2 + ‖ηn‖2

)
+ C ‖h‖2

V . (3.29)

Since, owing to (2.15), the mapping t 7→ ‖u(t)‖2
H2(Ω)2 belongs to L1(0, T ), we may employ Gron-

wall’s lemma to conclude the estimate

‖ξn‖L∞(0,T ;Gdiv)∩L2(0,T ;Vdiv) ≤ C ‖h‖V ,
‖ηn‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ C ‖h‖V for all n ∈ N . (3.30)

Moreover, by comparison in (3.16), (3.17), we can easily deduce also the estimates for the time deriva-

tives ∂tξn and ∂tηn. Indeed, we have

‖∂tξn‖L2(0,T ;(Vdiv)′) ≤ C ‖h‖V , ‖∂tηn‖L2(0,T ;V ′) ≤ C ‖h‖V for all n ∈ N. (3.31)

From (3.30), (3.31) we deduce the existence of two functions ξ, η satisfying (3.15) and of two (not

relabelled) subsequences {ξn}, {ηn} (and {∂tξn}, {∂tηn}) converging weakly respectively to ξ, η

(and to ξt, ηt) in the spaces where the bounds given by (3.30) (and by (3.31)) hold.

Then, by means of standard arguments, we can pass to the limit as n → ∞ in (3.16)–(3.18) and

prove that ξ, η satisfy the weak formulation of problem (3.9)–(3.13). Notice that we actually have the

regularity (3.15), since the space H1(0, T ; (Vdiv)
′) ∩ L2(0, T ;Vdiv) is continuously embedded in

C0([0, T ];Gdiv); similarly we obtain that η ∈ C0([0, T ];H).

Finally, in order to prove that the solution ξ, η is unique, we can test the difference between (3.9),

(3.10), written for two solutions ξ1, η1 and ξ2, η2, by ξ := ξ1− ξ2 and by η := η1− η2, respectively.

Since the problem is linear, the argument is straightforward, and we may leave the details to the reader.

Remark 2. By virtue of the weak sequential lower semicontinuity of norms, we can conclude from the

estimates (3.30) and (3.31) that the linear mapping h 7→ [ξh, ηh] , which assigns to each h ∈ V
the corresponding unique weak solution pair [ξh, ηh] := [ξ, η] to the linearized system (3.9)–(3.13),

is continuous as a mapping between the spaces V and
[
H1(0, T ; (Vdiv)

′) ∩ C0([0, T ];Gdiv) ∩
L2(0, T ;Vdiv)

]
×
[
H1(0, T ;V ′) ∩ C0([0, T ];H) ∩ L2(0, T ;V )

]
.

Differentiability of the control-to-state operator. We now prove the following result:

Theorem 3. Suppose that the hypotheses (H1)–(H4) are fulfilled. Then the control-to-state operator

S : V → H is Fréchet differentiable on V when viewed as a mapping between the spaces V and Z ,

where

Z :=
[
C([0, T ];Gdiv) ∩ L2(0, T ;Vdiv)

]
×
[
C([0, T ];H) ∩ L2(0, T ;V )

]
.

Moreover, for any v ∈ V the Fréchet derivative S ′(v) ∈ L(V ,Z) is given by S ′(v)h = [ξh, ηh],

for all h ∈ V , where [ξh, ηh] is the unique weak solution to the linearized system (3.9)–(3.13) at

[u, ϕ] = S(v) that corresponds to h ∈ V .
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Proof. Let v ∈ V be fixed and [u, ϕ] = S(v). Recalling Remark 2, we first note that the linear

mapping h 7→ [ξh, ηh] belongs to L(V ,Z).

Now let Λ > 0 be fixed. In the following, we consider perturbations h ∈ V such that ‖h‖V ≤ Λ.

For any such perturbation h, we put

[uh, ϕh] := S(v + h), ph := uh − u− ξh, qh := ϕh − ϕ− ηh.

Notice that we have the regularity

ph ∈ H1(0, T ;V ′div) ∩ C0([0, T ];Gdiv) ∩ L2(0, T ;Vdiv),

qh ∈ H1(0, T ;V ′) ∩ C0([0, T ];H) ∩ L2(0, T ;V ) . (3.32)

By virtue of (2.15) in Theorem 1 and of (2.17) in Lemma 2, there is a constant C∗1 > 0, which may

depend on the data of the problem and on Λ, such that we have: for every h ∈ V with ‖h‖V ≤ Λ it

holds∥∥[uh, ϕh]
∥∥
H ≤ C∗1 , ‖ϕh‖C0(Q) ≤ C∗1 , (3.33)

‖uh − u‖2
C0([0,t];Gdiv)∩L2(0,t;Vdiv) + ‖ϕh − ϕ‖2

H1(0,t;H)∩C0([0,t];V )∩L2(0,t;H2(Ω)) ≤ C∗1 ‖h‖2
V

for every t ∈ (0, T ] . (3.34)

Now, after some easy computations, we can see that ph, qh (which, for simplicity, shall henceforth be

denoted by p, q) is a solution to the weak analogue of the following problem:

pt − 2 div
(
ν(ϕ)Dp

)
− 2 div

(
(ν(ϕh)− ν(ϕ))D(uh − u)

)
− 2 div

(
(ν(ϕh)− ν(ϕ)− ν ′(ϕ)ηh)Du

)
+ (p · ∇)u+ (u · ∇)p+

(
(uh − u) · ∇

)
(uh − u) +∇πh

= a (ϕh − ϕ)∇(ϕh − ϕ)−
(
K ∗ (ϕh − ϕ)

)
∇(ϕh − ϕ) + (a q −K ∗ q)∇ϕ

+ (aϕ−K ∗ ϕ)∇q +
(
F ′(ϕh)− F ′(ϕ)

)
∇(ϕh − ϕ) + F ′(ϕ)∇q

+
(
F ′(ϕh)− F ′(ϕ)− F ′′(ϕ) ηh

)
∇ϕ in Q, (3.35)

qt + (uh − u) · ∇(ϕh − ϕ) + p · ∇ϕ+ u · ∇q
= ∆

(
a q −K ∗ q + F ′(ϕh)− F ′(ϕ)− F ′′(ϕ)ηh

)
in Q, (3.36)

div(p) = 0 in Q, (3.37)

p = [0, 0]T ,
∂

∂n

(
aq −K ∗ q + F ′(ϕh)− F ′(ϕ)− F ′′(ϕ)ηh

)
= 0, on Σ, (3.38)

p(0) = [0, 0]T , q(0) = 0, in Ω. (3.39)

That is, p and q solve the following variational problem (where we avoid to write the argument t of the

involved functions):

〈pt,w〉Vdiv + 2
(
ν(ϕ)Dp, Dw

)
+ 2

(
(ν(ϕh)− ν(ϕ))D(uh − u), Dw

)
+ 2

(
(ν(ϕh)− ν(ϕ)− ν ′(ϕ)ηh)Du, Dw

)
+ b(p,u,w) + b(u,p,w)
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+ b(uh − u,uh − u,w)

=
(
a (ϕh − ϕ)∇(ϕh − ϕ),w

)
−
((
K ∗ (ϕh − ϕ)

)
∇(ϕh − ϕ),w

)
+
(
(a q −K ∗ q)∇ϕ,w

)
+
(
(aϕ−K ∗ ϕ)∇q,w

)
+
((
F ′(ϕh)− F ′(ϕ)

)
∇(ϕh − ϕ),w

)
+
(
F ′(ϕ)∇q,w

)
+
((
F ′(ϕh)− F ′(ϕ)− F ′′(ϕ)ηh

)
∇ϕ,w

)
, (3.40)

〈qt, ψ〉V +
(
(uh − u) · ∇(ϕh − ϕ), ψ

)
+
(
p · ∇ϕ, ψ

)
+
(
u · ∇q, ψ

)
= −

(
∇
(
a q −K ∗ q + F ′(ϕh)− F ′(ϕ)− F ′′(ϕ)ηh

)
,∇ψ

)
, (3.41)

for everyw ∈ Vdiv, every ψ ∈ V , and almost every t ∈ (0, T ).

We choose w = p(t) ∈ Vdiv and ψ = q(t) ∈ V as test functions in (3.40) and (3.41), respectively,

to obtain the equations (where we will again always suppress the argument t of the involved functions)

1

2

d

dt
‖p‖2 + 2

∫
Ω

ν(ϕ)Dp : Dp dx + 2

∫
Ω

((ν(ϕh)− ν(ϕ))D(uh − u) : Dp dx

+ 2

∫
Ω

ν ′(ϕ) q Du : Dp dx +

∫
Ω

ν ′′(σh
1 ) (ϕh − ϕ)2Du : Dp dx +

∫
Ω

(p · ∇)u · p dx

+

∫
Ω

(
(uh − u) · ∇

)
(uh − u) · p dx

=

∫
Ω

a (ϕh − ϕ)∇(ϕh − ϕ) · p dx−
∫

Ω

(
K ∗ (ϕh − ϕ)

)
∇(ϕh − ϕ) · p dx

+

∫
Ω

(a q −K ∗ q)∇ϕ · p dx +

∫
Ω

(aϕ−K ∗ ϕ)∇q · p dx

+

∫
Ω

(
F ′(ϕh)− F ′(ϕ)

)
∇(ϕh − ϕ) · p dx +

∫
Ω

F ′(ϕ)∇q · p dx

+

∫
Ω

F ′′(ϕ)q∇ϕ · p dx+
1

2

∫
Ω

F ′′′(σh
2 )(ϕh − ϕ)2∇ϕ · p dx , (3.42)

1

2

d

dt
‖q‖2 +

∫
Ω

(
(uh − u) · ∇(ϕh − ϕ)

)
q dx +

∫
Ω

(p · ∇ϕ) q dx

= −
∫

Ω

∇q · ∇
(
a q −K ∗ q + F ′(ϕh)− F ′(ϕ)− F ′′(ϕ)ηh

)
dx . (3.43)

In (3.42), we have used Taylor’s formula

ν(ϕh) = ν(ϕ) + ν ′(ϕ)(ϕh − ϕ) +
1

2
ν ′′(σh

1 )(ϕh − ϕ)2,

F ′(ϕh) = F ′(ϕ) + F ′′(ϕ)(ϕh − ϕ) +
1

2
F ′′′(σh

2 )(ϕh − ϕ)2,

where

σh
i = θh

i ϕ
h + (1− θh

i )ϕ, θh
i = θh

i (x, t) ∈ (0, 1), for i = 1, 2.

Moreover, in the integration by parts on the right-hand side of (3.43) we employed the second boundary

condition in (3.38), which is a consequence of ∂µh/∂n = ∂µ/∂n = 0 on Σ and of (3.12) (where

µh := aϕh −K ∗ ϕh + F ′(ϕh)).
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We now begin to estimate all the terms in (3.42). In this process, we will make repeated use of the

global estimates (3.33), (3.34), and of the Gagliardo-Nirenberg inequality (2.1). Again, we denote by

C positive constants that may depend on the data of the system, but not on the choice of h ∈ V with

‖h‖V ≤ Λ, while Cσ denotes a positive constant that also depends on the quantity indicated by the

index σ. We have, with constants ε > 0 and ε′ > 0 that will be fixed later, the following series of

estimates:∣∣∣2∫
Ω

(ν(ϕh)− ν(ϕ))D(uh − u) :Dp dx
∣∣∣ =

∣∣∣2 ∫
Ω

ν ′(σh
3 )(ϕh − ϕ)D(uh − u) :Dp dx

∣∣∣
≤ C ‖ϕh − ϕ‖L4(Ω) ‖D(uh − u)‖L4(Ω)2×2 ‖Dp‖

≤ ε ‖∇p‖2 + Cε ‖ϕh − ϕ‖2
V ‖∇(uh − u)‖

(
‖uh‖H2(Ω)2 + ‖u‖H2(Ω)2

)
≤ ε ‖∇p‖2 + Cε ‖∇(uh − u)‖

(
‖uh‖H2(Ω)2 + ‖u‖H2(Ω)2

)
‖h‖2

V , (3.44)

as well as ∣∣∣2∫
Ω

ν ′(ϕ) q Du :Dp dx
∣∣∣ ≤ C ‖q‖L4(Ω) ‖Du‖L4(Ω)2×2 ‖∇p‖

≤ ε ‖∇p‖2 + Cε ‖q‖ ‖q‖V ‖∇u‖ ‖u‖H2(Ω)2

≤ ε ‖∇p‖2 + ε′ ‖∇q‖2 + Cε,ε′
(
1 + ‖u‖2

H2(Ω)2

)
‖q‖2 . (3.45)

Moreover, by similar reasoning,∣∣∣ ∫
Ω

ν ′′(σh
1 ) (ϕh − ϕ)2Du :Dp dx

∣∣∣ ≤ C ‖ϕh − ϕ‖2
L8(Ω) ‖Du‖L4(Ω)2×2 ‖∇p‖

≤ ε ‖∇p‖2 + Cε ‖ϕh − ϕ‖4
V ‖u‖2

H2(Ω)2 ≤ ε ‖∇p‖2 + Cε ‖u‖2
H2(Ω)2 ‖h‖4

V , (3.46)

∣∣∣ ∫
Ω

(p · ∇)u · p dx
∣∣∣ ≤ ‖p‖L4(Ω)2 ‖∇u‖L4(Ω)2×2 ‖p‖

≤ ε ‖∇p‖2 + Cε ‖u‖2
H2(Ω)2 ‖p‖2 , (3.47)

∣∣∣ ∫
Ω

(
(uh − u) · ∇

)
(uh − u) · p dx

∣∣∣ =
∣∣∣ ∫

Ω

(
(uh − u) · ∇

)
p · (uh − u) dx

∣∣∣
≤ ε ‖∇p‖2 + Cε ‖uh − u‖4

L4(Ω)2 ≤ ε ‖∇p‖2 + Cε ‖uh − u‖2 ‖∇(uh − u)‖2

≤ ε ‖∇p‖2 + Cε ‖∇(uh − u)‖2 ‖h‖2
V , (3.48)∫

Ω

a (ϕh − ϕ)∇(ϕh − ϕ) · p dx = −
∫

Ω

(ϕh − ϕ)2

2
∇a · p dx

≤ C ‖p‖ ‖ϕh − ϕ‖2
L4(Ω) ≤ ‖p‖2 + C ‖ϕh − ϕ‖4

V ≤ ‖p‖2 + C ‖h‖4
V , (3.49)

−
∫

Ω

(
K ∗ (ϕh − ϕ)

)
∇(ϕh − ϕ) · p dx =

∫
Ω

(
∇K ∗ (ϕh − ϕ)

)
(ϕh − ϕ) · p dx

≤ C ‖ϕh − ϕ‖L4(Ω) ‖ϕh − ϕ‖ ‖p‖L4(Ω)2 ≤ ε ‖∇p‖2 + Cε ‖ϕh − ϕ‖2 ‖ϕh − ϕ‖2
V

≤ ε ‖∇p‖2 + Cε ‖h‖4
V , (3.50)
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∫
Ω

(a q −K ∗ q)∇ϕ · p dx ≤ C ‖q‖ ‖∇ϕ‖L4(Ω) ‖p‖L4(Ω)2 ≤ ε ‖∇p‖2 + Cε ‖q‖2 , (3.51)

∫
Ω

(aϕ−K ∗ ϕ)∇q · p dx ≤ C ‖ϕ‖H2(Ω) ‖∇q‖ ‖p‖ ≤ ε′ ‖∇q‖2 + Cε′ ‖p‖2 , (3.52)

∫
Ω

(
F ′(ϕh)− F ′(ϕ)

)
∇(ϕh − ϕ) · p dx =

∫
Ω

F ′′(σh
4 ) (ϕh − ϕ)∇(ϕh − ϕ) · p dx

≤ C ‖ϕh − ϕ‖L4(Ω) ‖∇(ϕh − ϕ)‖ ‖p‖L4(Ω)2 ≤ ε ‖∇p‖2 + Cε ‖ϕh − ϕ‖4
V

≤ ε ‖∇p‖2 + Cε ‖h‖4
V , (3.53)∫

Ω

F ′(ϕ)∇q · p dx ≤ C ‖∇q‖ ‖p‖ ≤ ε′ ‖∇q‖2 + Cε′ ‖p‖2 , (3.54)

∫
Ω

F ′′(ϕ) q∇ϕ · p dx ≤ C ‖q‖ ‖∇ϕ‖L4(Ω)2 ‖p‖L4(Ω)2 ≤ ε ‖∇p‖2 + Cε ‖q‖2 , (3.55)

1

2

∫
Ω

F ′′′(σh
4 ) (ϕh − ϕ)2∇ϕ · p dx ≤ C ‖ϕh − ϕ‖2

L4(Ω) ‖∇ϕ‖L4(Ω)2 ‖p‖L4(Ω)2

≤ ε ‖∇p‖2 + Cε ‖ϕh − ϕ‖4
V ≤ ε ‖∇p‖2 + Cε ‖h‖4

V . (3.56)

Observe that in the derivation of (3.48), (3.49), and (3.50), we have used (3.37) and the first boundary

condition in (3.38), while in (3.44), (3.53), and (3.56), we have set σh
j := θh

j ϕ
h + (1− θh

j )ϕ, where

θh
j = θh

j (x, t) ∈ (0, 1), for j = 3, 4.

Let us now estimate all the terms in (3.43). At first, we have∣∣∣ ∫
Ω

(
(uh − u) · ∇(ϕh − ϕ)

)
q dx

∣∣∣ ≤ ‖uh − u‖L4(Ω)2 ‖∇(ϕh − ϕ)‖ ‖q‖L4(Ω)

≤ C‖∇(uh − u)‖ ‖h‖V
(
‖∇q‖ + ‖q‖

)
≤ ε′ ‖∇q‖2 + ‖q‖2 + Cε′‖∇(uh − u)‖2‖h‖2

V , (3.57)

∣∣∣ ∫
Ω

(p · ∇ϕ) q dx
∣∣∣ ≤ ‖p‖L4(Ω)2 ‖∇ϕ‖L4(Ω)2 ‖q‖ ≤ C ‖p‖L4(Ω)2 ‖ϕ‖H2(Ω) ‖q‖

≤ ε ‖∇p‖2 + Cε ‖q‖2 . (3.58)

As far as the term on the right-hand side of (3.43) is concerned, we first observe that we can write

F ′(ϕh)− F ′(ϕ)− F ′′(ϕ) ηh = (ϕh − ϕ)

∫ 1

0

[
F ′′(τϕh + (1− τ)ϕ)− F ′′(ϕ)

]
dτ + F ′′(ϕ) q.

Therefore, we have

∇
(
F ′(ϕh)− F ′(ϕ)− F ′′(ϕ)ηh

)
= ∇(ϕh − ϕ)

∫ 1

0

[
F ′′(τϕh + (1− τ)ϕ)− F ′′(ϕ)

]
dτ

+ (ϕh − ϕ)

∫ 1

0

[
F ′′′(τϕh + (1− τ)ϕ)(τ∇ϕh + (1− τ)∇ϕ)− F ′′′(ϕ)∇ϕ

]
dτ
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+ F ′′(ϕ)∇q + q F ′′′(ϕ)∇ϕ

= ∇(ϕh − ϕ)

∫ 1

0

∫ 1

0

F ′′′
(
s(τϕh + (1− τ)ϕ) + (1− s)ϕ

)
(τϕh + (1− τ)ϕ− ϕ)ds dτ

+ (ϕh − ϕ)

∫ 1

0

[
F ′′′(τϕh + (1− τ)ϕ)τ∇(ϕh − ϕ)

+∇ϕ
∫ 1

0

F (4)
(
s(τϕh + (1− τ)ϕ) + (1− s)ϕ

)
(τϕh + (1− τ)ϕ− ϕ) ds

]
dτ

+ F ′′(ϕ)∇q + q F ′′′(ϕ)∇ϕ

= Ah (ϕh − ϕ)∇(ϕh − ϕ) +Bh (ϕh − ϕ)2∇ϕ+ F ′′(ϕ)∇q + qF ′′′(ϕ)∇ϕ, (3.59)

where we have set

Ah :=

∫ 1

0

τ

∫ 1

0

F ′′′(sτϕh + (1− sτ)ϕ) ds dτ +

∫ 1

0

τ F ′′′(τϕh + (1− τ)ϕ) dτ ,

Bh :=

∫ 1

0

τ

∫ 1

0

F (4)(sτϕh + (1− sτ)ϕ) ds dτ .

Observe that in view of the global bounds (3.33) we have

‖Ah‖L∞(Q) + ‖Bh‖L∞(Q) ≤ C∗2 , (3.60)

with a constant C∗2 > 0 that does not depend on the choice of h ∈ V with ‖h‖V ≤ Λ.

Now, on account of (3.59), the expression on the right-hand side of (3.43) takes the form

−
∫

Ω

∇q · ∇
(
a q −K ∗ q + F ′(ϕh)− F ′(ϕ)− F ′′(ϕ)ηh

)
dx

= −
(
∇q, (a+ F ′′(ϕ))∇q

)
−
(
∇q, q F ′′′(ϕ)∇ϕ

)
−
(
∇q, q∇a−∇K ∗ q

)
−
(
∇q, Ah (ϕh − ϕ)∇(ϕh − ϕ)

)
−
(
∇q, Bh (ϕh − ϕ)2∇ϕ

)
, (3.61)

and the last four terms in (3.61) can be estimated in the following way:∣∣(∇q, qF ′′′(ϕ)∇ϕ
)∣∣ ≤ C ‖∇q‖ ‖q‖L4(Ω) ‖∇ϕ‖L4(Ω)2

≤ C ‖∇q‖
(
‖q‖+ ‖q‖1/2 ‖∇q‖1/2

)
≤ ε′ ‖∇q‖2 + Cε′ ‖q‖2 , (3.62)∣∣(∇q, q∇a−∇K ∗ q)∣∣ ≤ C ‖∇q‖ ‖q‖ ≤ ε′ ‖∇q‖2 + Cε′ ‖q‖2 , (3.63)∣∣(∇q, Ah (ϕh − ϕ)∇(ϕh − ϕ)

)∣∣ ≤ C ‖∇(ϕh − ϕ)‖L4(Ω)2 ‖ϕh − ϕ‖L4(Ω) ‖∇q‖

≤ ε′ ‖∇q‖2 + Cε′ ‖ϕh − ϕ‖2
V ‖ϕh − ϕ‖2

H2(Ω)

≤ ε′ ‖∇q‖2 + Cε′ ‖ϕh − ϕ‖2
H2(Ω) ‖h‖2

V , (3.64)∣∣(∇q, Bh (ϕh − ϕ)2∇ϕ
)∣∣ ≤ C ‖∇q‖ ‖ϕh − ϕ‖2

L8(Ω) ‖∇ϕ‖L4(Ω)2

≤ ε′ ‖∇q‖2 + Cε′ ‖ϕh − ϕ‖4
V ≤ ε′ ‖∇q‖2 + Cε′ ‖h‖4

V . (3.65)
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We now insert the estimates (3.44)–(3.56) in (3.42) and the estimates (3.57), (3.58) and (3.62)–(3.65)

in (3.43) and recall (3.61) and the conditions (2.3) and (2.6). Adding the resulting inequalities, and

fixing ε > 0 and ε′ > 0 small enough (i.e., ε ≤ ν̂1/22 and ε′ ≤ ĉ1/16), we obtain that almost

everywhere in (0, T ) we have the inequality

d

dt

(
‖ph‖2 + ‖qh‖2

)
+ ν̂1 ‖∇ph‖2 + ĉ1 ‖∇qh‖2 ≤ α

(
‖ph‖2 + ‖qh‖2

)
+ βh, (3.66)

where the functions α, βh ∈ L1(0, T ) are given by

α(t) := C
(
1 + ‖u(t)‖2

H2(Ω)2

)
,

βh(t) := C ‖h‖4
V
(
1 + ‖u(t)‖2

H2(Ω)2

)
+ C ‖h‖2

V

(
‖∇(uh − u)(t)‖2 + ‖(ϕh − ϕ)(t)‖2

H2(Ω)

+ ‖∇(uh − u)(t)‖
(
‖uh(t)‖H2(Ω)2 + ‖u(t)‖H2(Ω)2

))
.

Now, since ‖h‖V ≤ Λ, it follows from the global bounds (3.33) and (3.34) that∫ T

0

βh(t) dt ≤ C ‖h‖3
V .

Taking (3.39) into account, we therefore can infer from Gronwall’s lemma that

‖ph‖2
C0([0,T ];Gdiv) + ‖ph‖2

L2(0,T ;Vdiv) + ‖qh‖2
C0([0,T ];H) + ‖qh‖2

L2(0,T ;V ) ≤ C ‖h‖3
V .

Hence, it holds

‖S(v + h)− S(v)− [ξh, ηh]‖Z
‖h‖V

=
‖[ph, qh]‖Z
‖h‖V

≤ C ‖h‖1/2
V → 0,

as ‖h‖V → 0, which concludes the proof of the theorem.

First-order necessary optimality conditions. From Theorem 3 we can deduce the following neces-

sary optimality condition:

Corollary 1. Suppose that the general hypotheses (H1)–(H4) are fulfilled, and assume that v ∈ Vad
is an optimal control for (CP) with associated state [u, ϕ] = S(v). Then it holds

β1

∫ T

0

∫
Ω

(u− uQ) · ξh dx dt + β2

∫ T

0

∫
Ω

(ϕ− ϕQ) ηh dx dt + β3

∫
Ω

(u(T )− uΩ) · ξh(T ) dx

+ β4

∫
Ω

(ϕ(T )− ϕΩ) ηh(T ) dx + γ

∫ T

0

∫
Ω

v · (v − v) dx dt ≥ 0 ∀v ∈ Vad, (3.67)

where [ξh, ηh] is the unique solution to the linearized system (3.9)–(3.13) corresponding to h =

v − v.

Proof. Introducing the reduced cost functional f : V → [0,∞) given by f(v) := J
(
S(v),v), for

all v ∈ V , where J : Z × V → [0,∞) is given by (1.7), and invoking the convexity of Vad, we have

(see, e.g., [45, Lemma 2.21])

f ′(v)(v − v) ≥ 0 ∀v ∈ Vad. (3.68)
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Obviously, by the chain rule,

f ′(v) = J ′y
(
S(v),v

)
◦ S ′(v) + J ′v

(
S(v),v

)
, (3.69)

where, for every fixed v ∈ V , J ′y
(
y,v
)
∈ Z ′ is the Fréchet derivative of J = J (y,v) with respect

to y at y ∈ Z and, for every fixed y ∈ Z , J ′v
(
y,v
)
∈ V ′ is the Fréchet derivative of J = J (y,v)

with respect to v at v ∈ V . We have

J ′y
(
y,v
)
(ζ) = β1

∫ T

0

∫
Ω

(u− uQ) · ζ1 dx dt + β2

∫ T

0

∫
Ω

(ϕ− ϕQ) ζ2 dx dt

+ β3

∫
Ω

(u(T )− uΩ) · ζ1(T ) dx + β4

∫
Ω

(ϕ(T )− ϕΩ) ζ2(T ) dx

∀ ζ = [ζ1, ζ2] ∈ Z, (3.70)

where y = [u, ϕ]. Moreover,

J ′v
(
y,v
)
(w) = γ

∫ T

0

∫
Ω

v ·w dx dt ∀w ∈ V . (3.71)

Hence, (3.67) follows from (3.68)–(3.71) on account of the fact that, thanks to Theorem 3, we have

S ′(v)(v − v) = [ξh, ηh],

where [ξh, ηh] is the unique solution to the linearized system (3.9)–(3.13) corresponding to h =

v − v.

The adjoint system and first-order necessary optimality conditions. We now aim to eliminate the

variables [ξh, ηh] from the variational inequality (3.67). To this end, let us introduce the following

adjoint system:

p̃t = − 2 div
(
ν(ϕ)Dp̃

)
− (u · ∇) p̃+ (p̃ · ∇T )u + q̃∇ϕ− β1(u− uQ) , (3.72)

q̃t = − (a∆q̃ + ∇K∗̇∇q̃ + F ′′(ϕ) ∆q̃)− u · ∇q̃ + 2 ν ′(ϕ)Du : Dp̃

−
(
a p̃ · ∇ϕ−K ∗ (p̃ · ∇ϕ) + F ′′(ϕ) p̃ · ∇ϕ

)
+ p̃ · ∇µ− β2(ϕ− ϕQ) , (3.73)

div(p̃) = 0, (3.74)

p̃ =0,
∂q̃

∂n
= 0 on Σ, (3.75)

p̃(T ) = β3(u(T )− uΩ), q̃(T ) = β4(ϕ(T )− ϕΩ). (3.76)

Here, we have set

(∇K∗̇∇q̃)(x) :=

∫
Ω

∇K(x− y) · ∇q̃(y) dy for a. e. x ∈ Ω .

Since uΩ ∈ Gdiv, ϕΩ ∈ H , the solution to (3.72)–(3.76) can only be expected to enjoy the regularity

p̃ ∈ H1(0, T ; (Vdiv)
′) ∩ C([0, T ];Gdiv) ∩ L2(0, T ;Vdiv),
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q̃ ∈ H1(0, T ;V ′) ∩ C([0, T ];H) ∩ L2(0, T ;V ). (3.77)

Hence, the pair [p̃, q̃] must be understood as a solution to the following weak formulation of the system

(3.72)–(3.75) (where the argument t is again omitted):

〈p̃t, z〉Vdiv − 2
(
ν(ϕ)Dp̃, Dz

)
= −b(u, p̃, z) + b(z,u, p̃)

+
(
q̃∇ϕ, z

)
− β1

(
(u− uQ), z

)
, (3.78)

〈q̃t, χ〉V −
(
(a+ F ′′(ϕ))∇q̃,∇χ

)
=
(
∇a+ F ′′′(ϕ)∇ϕ, χ∇q̃

)
−
(
∇K∗̇∇q̃, χ

)
−
(
u · ∇q̃, χ

)
+ 2

(
ν ′(ϕ)Du : Dp̃, χ

)
−
(
(ap̃ · ∇ϕ−K ∗ (p̃ · ∇ϕ) + F ′′(ϕ)p̃ · ∇ϕ), χ

)
+
(
p̃ · ∇µ, χ

)
− β2

(
(ϕ− ϕQ), χ

)
, (3.79)

for every z ∈ Vdiv, every χ ∈ V and almost every t ∈ (0, T ). We have the following result.

Proposition 2. Suppose that the hypotheses (H1)–(H4) are fulfilled. Then the adjoint system (3.72)–

(3.76) has a unique weak solution [p̃, q̃] satisfying (3.77).

Proof. We only give a sketch of the proof which can be carried out in a similar way as the proof of

Proposition 1. In particular, we omit the implementation of the Faedo-Galerkin scheme and only derive

the basic estimates that weak solutions must satisfy. To this end, we insert p̃(t) ∈ Vdiv in (3.78) and

q̃(t) ∈ H in (3.79), and add the resulting equations, observing that we have b(u(t), p(t), p(t)) =

(u(t) · ∇q̃(t), q̃(t)) = 0. Omitting the argument t again, we now estimate the resulting terms on the

right-hand side individually. We denote by C positive constants that only depend on the global data

and on [u, ϕ], while Cσ stands for positive constants that also depend on the quantity indicated by

the index σ. Using the elementary Young’s inequality, the Hölder and Gagliardo-Nirenberg inequali-

ties, Young’s inequality for convolution integrals, as well as the hypotheses (H1)–(H4) and the global

bound (2.15), we obtain (with postive constants ε and ε′ that will be fixed later) the following series of

estimates:∣∣∣ ∫
Ω

(p̃ · ∇T )u · p̃ dx
∣∣∣ ≤ ‖p̃‖ ‖∇u‖L4(Ω)2×2 ‖p̃‖L4(Ω)2 ≤ ε ‖∇p̃‖2 + Cε ‖u‖2

H2(Ω)2 ‖p̃‖2,

∣∣∣ ∫
Ω

q̃∇ϕ · p̃ dx
∣∣∣ ≤ ‖q̃‖ ‖∇ϕ‖L4(Ω)2 ‖p̃‖L4(Ω)2 ≤ ε ‖∇p̃‖2 + Cε ‖q̃‖2,

∣∣∣β1

∫
Ω

(u− uQ) · p̃ dx
∣∣∣ ≤ β1 ‖u− uQ‖ ‖p̃‖ ≤ ‖p̃‖2 +

β2
1

4
‖u− uQ‖2,

∣∣∣ ∫
Ω

q̃∇q̃ ·
(
∇a+ F ′′′(ϕ)∇ϕ

)
dx
∣∣∣ ≤ CK ‖q̃‖ ‖∇q̃‖ + C ‖q̃‖L4(Ω) ‖∇q̃‖ ‖∇ϕ‖L4(Ω)2

≤ CK ‖q̃‖ ‖∇q̃‖ + C
(
‖q̃‖+ ‖q̃‖1/2 ‖∇q̃‖1/2

)
‖∇q̃‖ ‖ϕ‖H2(Ω)

≤ ε′ ‖∇q̃‖2 + Cε′ ‖q̃‖2,∣∣∣ ∫
Ω

(
∇K∗̇∇q̃

)
q̃ dx

∣∣∣ ≤ CK ‖∇q̃‖ ‖q̃‖ ≤ ε′ ‖∇q̃‖2 + Cε′ ‖q̃‖2,

∣∣∣2∫
Ω

(
ν ′(ϕ)Du :Dp̃

)
q̃ dx

∣∣∣ ≤ C ‖Du‖L4(Ω)2×2 ‖Dp̃‖ ‖q̃‖L4(Ω)
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≤ C ‖Du‖L4(Ω)2×2 ‖Dp̃‖
(
‖q̃‖+ ‖q̃‖1/2 ‖∇q̃‖1/2

)
≤ ε ‖∇p̃‖2 + ε′ ‖∇q̃‖2 + Cε,ε′

(
1 + ‖u‖2

H2(Ω)2

)
‖q̃‖2,∣∣∣ ∫

Ω

(a p̃ · ∇ϕ) q̃ dx
∣∣∣ ≤ CK ‖p̃‖L4(Ω)2 ‖∇ϕ‖L4(Ω)2 ‖q̃‖ ≤ C ‖∇p̃‖ ‖q̃‖

≤ ε ‖∇p̃‖2 + Cε ‖q̃‖2,∣∣∣ ∫
Ω

K ∗ (p̃ · ∇ϕ) q̃ dx
∣∣∣ ≤ CK ‖p̃‖L4(Ω)2 ‖∇ϕ‖L4(Ω)2 ‖q̃‖ ≤ C ‖∇p̃‖‖ q̃‖

≤ ε ‖∇p̃‖2 + Cε ‖q̃‖2,∣∣∣ ∫
Ω

F ′′(ϕ)(p̃ · ∇ϕ) q̃ dx
∣∣∣ ≤ C ‖∇p̃‖ ‖q̃‖ ≤ ε ‖∇p̃‖2 + Cε ‖q̃‖2,

∣∣∣ ∫
Ω

(p̃ · ∇µ) q̃ dx
∣∣∣ ≤ ‖p̃‖L4(Ω)2 ‖∇µ‖L4(Ω)2 ‖q̃‖ ≤ C ‖µ‖H2(Ω) ‖∇p̃‖ ‖q̃‖ ≤ ε ‖∇p̃‖2 + Cε ‖q̃‖2,

∣∣∣β2

∫
Ω

(ϕ− ϕQ) q̃ dx
∣∣∣ ≤ β2 ‖ϕ− ϕQ‖ ‖q̃‖ ≤ ‖q̃‖2 +

β2
2

4
‖ϕ− ϕQ‖2 .

Fixing now ε > 0 and ε′ > 0 small enough (in particular, 7ε ≤ ν̂1/2 and 3ε′ ≤ ĉ1/2), and using

(2.3) and (2.6), we arrive at the following differential inequality:

d

dt

(
‖p̃‖2 + ‖q̃‖2

)
+ σ

(
‖p̃‖2 + ‖q̃‖2

)
+ θ ≥ ν̂1 ‖∇p̃‖2 + ĉ1 ‖∇q̃‖2, (3.80)

where the functions σ, θ ∈ L1(0, T ) are given by

σ(t) := C
(
1 + ‖u(t)‖2

H2(Ω)2

)
, θ(t) := C

(
β2

1 ‖(u− uQ)(t)‖2 + β2
2 ‖(ϕ− ϕQ)(t)‖2

)
.

By applying the (backward) Gronwall lemma to (3.80), we obtain

‖p̃(t)‖2 + ‖q̃(t)‖2 ≤
[
‖p̃(T )‖2 + ‖q̃(T )‖2 +

∫ T

t

θ(τ)dτ
]
e

R T
t σ(τ)dτ

≤ C
[
‖p̃(T )‖2 + ‖q̃(T )‖2 + β2

1 ‖u− uQ‖2
L2(0,T ;Gdiv) + β2

2 ‖ϕ− ϕQ‖2
L2(Q)

]
,

for all t ∈ [0, T ]. From this estimate, and by integrating (3.80) over [t, T ], we can deduce the estimates

for p̃ and q̃ in C0([0, T ];Gdiv)∩L2(0, T ;Vdiv) and in C0([0, T ];H)∩L2(0, T ;V ), respectively. By

a comparison argument in (3.72), (3.73), we also obtain the estimates for p̃t and q̃t in L2(0, T ;V ′div)

and in L2(0, T ;V ′), respectively. Therefore we deduce the existence of a weak solution to system

(3.72)–(3.76) satisfying (3.77). The proof of uniqueness is rather straightforward, and we therefore

may omit the details here.

Using the adjoint system, we can now eliminate ξh, ηh from (3.67). Indeed, we have the following

result.

Theorem 4. Suppose that the hypotheses (H1)–(H4) are fulfilled. Let v ∈ Vad be an optimal control

for the control problem (CP) with associated state [u, ϕ] = S(v) and adjoint state [p̃, q̃]. Then it
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holds the variational inequality

γ

∫ T

0

∫
Ω

v · (v − v) dx dt +

∫ T

0

∫
Ω

p̃ · (v − v) dx dt ≥ 0 ∀v ∈ Vad. (3.81)

Proof. Note that thanks to (3.76) we have for the sum (that we denote by I) of the first four terms on

the left-hand side of (3.67)

I := β1

∫ T

0

∫
Ω

(u− uQ) · ξh dx dt+ β2

∫ T

0

∫
Ω

(ϕ− ϕQ)ηh dx dt+ β3

∫
Ω

(u(T )− uΩ) · ξh(T ) dx

+ β4

∫
Ω

(ϕ(T )− ϕΩ)ηh(T ) dx = β1

∫ T

0

∫
Ω

(u− uQ) · ξh dx dt + β2

∫ T

0

∫
Ω

(ϕ− ϕQ)ηh dx dt

+

∫ T

0

(
〈p̃t(t), ξh(t)〉Vdiv + 〈ξh

t (t), p̃(t)〉Vdiv
)
dt

+

∫ T

0

(
〈q̃t(t), ηh(t)〉V + 〈ηh

t (t), q̃(t)〉V
)
dt . (3.82)

Now, recalling the weak formulation of the linearized system (3.9)–(3.13) for h = v − v, we obtain,

omitting the argument t,

〈ξh
t , p̃〉Vdiv = −2

(
ν(ϕ)Dξh, Dp̃

)
− 2

(
ν ′(ϕ) ηhDu, Dp̃) − b(u, ξh, p̃)

− b(ξh,u, p̃) +
(
(a ηh −K ∗ ηh + F ′′(ϕ) ηh)∇ϕ, p̃

)
+
(
µ∇ηh, p̃

)
+ (v − v, p̃) , (3.83)

〈ηh
t , q̃〉V = −

(
∇
(
a ηh −K ∗ ηh + F ′′(ϕ) ηh

)
,∇q̃

)
+ (u ηh,∇q̃)

+ (ξh ϕ,∇q̃) . (3.84)

Now, we insert these two equalities as well as (3.78) and (3.79) in (3.82). Integration by parts, using

the boundary conditions for the involved quantities and the fact that ξh and p̃ are divergence free

vector fields, and observing that the symmetry of the kernel K implies the identity∫
Ω

(K ∗ η)ω dx =

∫
Ω

(K ∗ ω) η dx ∀ η, ω ∈ H,

we arrive after a straightforward standard calculation (which can be omitted here) at the conclusion

that I can be rewritten as

I :=

∫ T

0

∫
Ω

p̃ · (v − v) dx dt .

Therefore, (3.81) follows from this identity and (3.67).

Remark 3. The system (1.1)–(1.6), written for [u, ϕ], the adjoint system (3.72)-(3.76) and the varia-

tional inequality (3.81) form together the first-order necessary optimality conditions. Moreover, since

Vad is a nonempty, closed and convex subset of L2(Q)2, then (3.81) is in the case γ > 0 equivalent

to the following condition for the optimal control v ∈ Vad,

v = PVad
(
− p̃
γ

)
,
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where PVad is the orthogonal projector in L2(Q)2 onto Vad. From standard arguments it follows from

this projection property the pointwise condition

vi(x, t) = max
{
va,i(x, t), min

{
−γ−1 p̃i(x, t), vb,i(x, t)

}}
, i = 1, 2, for a. e. (x, t) ∈ Q ,

where p̃i = p̃i, i = 1, 2.
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[38] P. Krejčí, E. Rocca, J. Sprekels, A nonlocal phase-field model with nonconstant specific heat,

Interfaces Free Bound., 9 (2007), 285-306.
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