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Abstract

Let Sn+ ⊂ Sn be the cone of positive semi-definite matrices as a subset of the vector
space of real symmetric n× n matrices. The intersection of Sn+ with a linear subspace of
Sn is called a spectrahedral cone. We consider spectrahedral cones K such that every
element of K can be represented as a sum of rank 1 matrices in K . We shall call such
spectrahedral cones rank one generated (ROG). We show that ROG cones which are
isomorphic as convex cones are also isomorphic as linear sections of the positive semi-
definite matrix cone, which is not the case for general spectrahedral cones. We give many
examples of ROG cones and show how to construct new ROG cones from given ones
by different procedures. We provide classifications of some subclasses of ROG cones, in
particular, we classify all ROG cones for matrix sizes not exceeding 4. Further we prove
some results on the structure of ROG cones. ROG cones are in close relation with the
exactness of semi-definite relaxations of quadratically constrained quadratic optimization
problems or of relaxations approximating the cone of nonnegative functions in squared
functional systems.

1 Introduction

Let Sn be the real vector space of n × n real symmetric matrices and Sn+ ⊂ Sn the cone of
positive semi-definite matrices. The intersection of the cone Sn+ with an affine subspace of Sn is
called a spectrahedron. Spectrahedra appear as the feasible sets of semi-definite programs and
are thus of importance for convex optimization. If the affine subspace happens to be a linear
subspace L ⊂ Sn, then the intersection K = L ∩ Sn+ is a spectrahedral cone. The facial
structure of spectrahedra and spectrahedral cones has been studied in [13].

The subject of this contribution are spectrahedral cones K satisfying the following property.

Property 1. Every matrix in K can be represented as a sum of rank 1 matrices in K .

We shall call such spectrahedral cones rank 1 generated (ROG). A convex cone in some real
vector space will be called ROG cone if it is linearly isomorphic to a spectrahedral cone pos-
sessing Property 1. The corresponding isomorphism will define a representation of the ROG
cone. We shall adopt the convention that the empty sum evaluates to zero, such that the zero
matrix can be represented as an empty sum. Clearly the cone Sn+ itself is ROG.

The condition of being a ROG spectrahedral cone can equivalently be stated in terms of bounded
spectrahedra. Namely, the conic hull K of a bounded spectrahedron C not containing the zero
matrix is ROG if and only if C is the convex hull of the rank 1 matrices in C . Therefore, if C
is a compact section of a ROG spectrahedral cone, then minimizing a linear function over the
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nonconvex set of rank 1 matrices in C is equivalent to minimizing this linear function over the
bounded spectrahedron C .

Thus Property 1 is in close relation with the exactness of semi-definite relaxations of noncon-
vex problems in the case when the relaxation is obtained by dropping a rank constraint. Many
nonconvex optimization problems which are arising in computational practice fall into this frame-
work, i.e., they can be cast as semi-definite programs with an additional rank constraint. It is this
rank constraint which makes the problem nonconvex and difficult to solve. At the same time,
dropping the rank constraint provides a convenient way of relaxing the problem into an easily
solvable semi-definite program.

A classical example is the MAXCUT problem [4], which can be formulated as the problem of
maximizing a linear function over the set of positive semi-definite rank 1 matrices whose diago-
nal elements all equal 1. By dropping the rank 1 condition, one obtains a semi-definite program
which yields an upper bound on the maximum cut.

We shall now consider two applications of ROG spectrahedral cones.

Quadratically constrained quadratic problems. The most general class of problems which
can be formulated as semi-definite programs with an additional rank 1 constraint are the quadrat-
ically constrained quadratic problems [13],[10]. This class includes also problems with binary
decision variables, as the condition x ∈ {a, b} can be cast as the quadratic condition (x −
a)(x− b) = 0.

A generic quadratically constrained quadratic problem can be written as

min
x∈Rn

xTSx : xTAix = 0, i = 1, . . . , k; xTBx = 1.

HereA1, . . . , Ak;B;S are real symmetric n×nmatrices defining the homogeneous quadratic
constraints, the inhomogeneous quadratic constraint, and the quadratic cost function, respec-
tively. Introducing the matrix variable X = xxT ∈ Sn+, we can write the problem as

min
X∈K
〈S,X〉 : 〈B,X〉 = 1, rkX = 1, (1)

where K = L ∩ Sn+, and L ⊂ Sn is the linear subspace given by {X ∈ Sn | 〈Ai, X〉 =
0 ∀ i = 1, . . . , k}. The cone K is hence a linear section of the positive semi-definite matrix
cone. Problem (1) can be relaxed to a semi-definite program by dropping the rank constraint,

min
X∈K
〈S,X〉 : 〈B,X〉 = 1. (2)

Naturally, the question arises when the semi-definite relaxation (2) obtained from the nonconvex
problem (1) is exact, i.e., yields the same optimal value as (1). In general, this question is NP-
hard [13]. One NP-hard instance is, for example, the MAXCUT problem [3]. However, Property
1 of the spectrahedral cone K provides a simple sufficient condition.

Lemma 1. Let the linear subspace L ⊂ Sn be such that the cone K = L ∩ Sn+ is rank 1
generated. Then either problems (1),(2) are both infeasible, or problem (2) is unbounded, or
problems (1),(2) have the same optimal value.
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Proof. Define the spectrahedron C = {X ∈ K | 〈B,X〉 = 1}. Then the feasible set of
problem (2) is C , while that of problem (1) is C1 = {X ∈ C | rkX = 1}. If C = ∅, then both
problems are infeasible. Assume that C 6= ∅. ThenK 6= {0}, and by Property 1 every extreme
ray of the cone K is generated by a rank 1 matrix. If problem (2) is bounded, then its optimal
value is achieved at an extreme point X ∈ C . Since X generates an extreme ray of K , we
must have rkX = 1. ThusX is feasible also for problem (1), and the optimal value of (1) is not
greater than that of (2). But C1 ⊂ C , and hence the optimal value of (1) is not smaller than that
of (2). Therefore both optimal values must coincide.

In particular, if the spectrahedron C is bounded, then problems (1) and (2) are equivalent.

Squared functional systems. Another motivation for the study of ROG spectrahedral cones
comes from squared functional systems [11]. Let ∆ be an arbitrary set and F an n-dimensional
real vector space of real-valued functions on ∆. Choose basis functions u1, . . . , un ∈ F .
The squared functional system generated by these basis functions is the set {uiuj | i, j =
1, . . . , n} of product functions. This system spans another real vector space V of real-valued
functions on ∆. Clearly V does not depend on the choice of the basis functions ui, since it is
also the linear span of the squares f 2, f ∈ F .

Let us define a linear map Λ : V ∗ → Sn and its adjoint Λ∗ : Sn → V by Λ∗(A) =∑n
i,j=1Aijuiuj . Here the space Sn is identified with its dual by means of the Frobenius scalar

product1. By definition of V the map Λ∗ is surjective, and hence the map Λ is injective.

The sum of squares (SOS) cone Σ ⊂ V , given by the set of all functions of the form
∑N

k=1 f
2
k

for f1, . . . , fN ∈ F , can be represented as the image Λ∗[Sn+] of the positive semi-definite
matrix cone and has nonempty interior. The dual Σ∗ of the SOS cone is given by the set of all
dual vectors w ∈ V ∗ such that Λ(w) � 0 [11, Theorem 17.1]. By injectivity of Λ it follows that
Σ∗ is linearly isomorphic to its image K = Λ[Σ∗] ⊂ Sn. This image equals the intersection
of Sn+ with the linear subspace L = ImΛ. It follows that Σ∗ is isomorphic to a spectrahedral
cone.

Let P ⊂ V be the cone of nonnegative functions in V . Since every sum of squares of real
numbers is nonnegative, we have the inclusion Σ ⊂ P . It is then interesting to know when the
cones P and Σ coincide. The following result shows that the coneK being ROG is a necessary
condition.

Lemma 2. Assume above notations. If P = Σ, then the spectrahedral cone K = L ∩ Sn+ is
rank 1 generated.

Proof. For x ∈ ∆, define the dual vector wx ∈ V ∗ by 〈wx, v〉 = v(x) for all v ∈ V . We first
show that for all x ∈ ∆ we have that Λ(wx) is contained in the set K1 = {X ∈ K | rkX ≤
1}.

1The reason for defining the operator Λ by virtue of its adjoint Λ∗ is to stay in line with the notations in [11]. This
definition explicitly uses a basis of the space F . In a coordinate-free definition, the source space of Λ∗ should be
the space Sym2(F ) of contravariant symmetric 2-tensors over F , and the operator Λ∗ itself should be defined by
linear continuation of the map f ⊗ f 7→ f2, f ∈ F .
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Fix x ∈ ∆ and define the vector s ∈ Rn element-wise by si = ui(x), i = 1, . . . , n. Then we
have for all A ∈ Sn that

〈Λ(wx), A〉 = 〈wx,Λ∗(A)〉 =
n∑

i,j=1

Aij〈wx, uiuj〉 =
n∑

i,j=1

Aijui(x)uj(x) = 〈ssT , A〉.

It follows that Λ(wx) = ssT . it follows that the rank of Λ(wx) does not exceed 1. Moreover, we
have Λ(wx) � 0 and wx ∈ V ∗, and hence Λ(wx) ∈ K . This proves our claim.

For the sake of contradiction, assume now that K = Λ[Σ∗] is not ROG. Then there exists a
dual vector y ∈ Σ∗ such that the matrix Λ(y) can be strictly separated from the convex hull of
K1. In other words, there exists A ∈ Sn such that 〈A,Λ(y)〉 < 0, but 〈A,X〉 ≥ 0 for every
X ∈ K1.

Consider the function q = Λ∗(A) ∈ V . For every x ∈ ∆ we have q(x) = 〈wx,Λ∗(A)〉 =
〈Λ(wx), A〉 ≥ 0, because Λ(wx) ∈ K1. Hence we have q ∈ P . But 〈q, y〉 = 〈Λ∗(A), y〉 =
〈A,Λ(y)〉 < 0, and therefore y 6∈ P ∗.
It follows that P ∗ 6= Σ∗ and hence P 6= Σ. This completes the proof.

Thus in every squared functional system where the cone of nonnegative functions coincides
with the SOS cone Σ, the dual SOS cone Σ∗ is isomorphic to a ROG spectrahedral cone. This
allows us to construct ROG cones from such squared functional systems. Let us consider two
examples.

� The first example is taken from [11, Section 3.1]. Here ∆ = R, and F is the space of
all polynomials of degree not exceeding n − 1, equipped with the basis of monomials
1, x, . . . , xn−1. It is well-known that a univariate polynomial is nonnegative if and only if
it is a sum of squares of polynomials of lower degree. The corresponding ROG cone K
is the cone of all Hankel matrices in Sn+ and has dimension 2n− 1. We shall denote this
cone by Hann+.

� Let ∆ = R3 and let F be the 6-dimensional space of homogeneous quadratic polyno-
mials on R3, equipped with the basis x2

1, x
2
2, x

2
3, x2x3, x1x3, x1x2. The space V is then

the 15-dimensional space of ternary quartics, and in this space the cone of nonnegative
polynomials coincides with the SOS cone [8]. The corresponding ROG cone K is given
by all matrices in S6

+ of the form

A =


a1 a6 a5 a7 a11 a10

a6 a2 a4 a13 a8 a12

a5 a4 a3 a15 a14 a9

a7 a13 a15 a4 a9 a8

a11 a8 a14 a9 a5 a7

a10 a12 a9 a8 a7 a6

 , a1, . . . , a15 ∈ R.

Besides the motivations coming from optimization, the ROG spectrahedral cones may represent
an interesting subject of study in their own right.
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The remainder of the paper is structured as follows. In Section 2 we study the most basic
properties of ROG cones. In particular, we establish that the minimal polynomial of a ROG
cone, when the latter is viewed as an algebraic interior, is determinantal, and the degree of the
cone is given by the maximal rank of the matrices it contains (Subsection 2.1). In Subsection
2.2 we study the facial structure of ROG cones and establish the identity of the rank and the
Carathéodory number of its elements. In particular, the rank is an invariant of the elements of
a ROG cone under linear isomorphisms. In Subsection 2.3 we prove that the geometry of a
ROG cone as a conic convex subset of a real vector space determines its representations as
ROG spectrahedral cones uniquely up to a trivial notion of isomorphism, which is not true for
spectrahedral cones in general. In Section 3 we describe different methods to construct ROG
cones of higher degree from ROG cones of lower degree. The most simple way is taking direct
sums, which is considered in Subsection 3.1. This leads to the notion of simple ROG cones,
which are defined as those not representable as a nontrivial direct sum. In Subsections 3.2,
3.3 we consider two other ways of constructing ROG cones. The second one can be seen
as a generalization of taking direct sums. In Section 4 we consider some examples of ROG
cones. In Subsection 4.1 we investigate ROG cones defined by conditions of the type that a
subset of entries in the representing matrices vanishes. This class of ROG cones is linked to
chordal graphs and has been studied in [1],[12], see also [9] for a generalization to higher matrix
ranks. We show that these cones can be constructed from full matrix cones Sk+ by the methods
presented in Section 3. In Subsection 4.2 we construct an example of a continuous family of
mutually non-isomorphic ROG cones. In Section 5 we consider ROG cones of low codimension
(Subsections 5.1, 5.2) and simple ROG cones of low dimension (Subsection 5.3). In Section
6 we consider the variety of extreme rays of ROG cones. We show that the discrete part of
this variety factors out and does not interfere with the part corresponding to the continuous
components. Finally, we give a complete classification of ROG cones for degrees n ≤ 4 up to
isomorphism in Section 7. We conclude the paper with an outlook on future work.

For n ∈ N, we define two operators Ln,Fn from the set of linear subspaces of Rn into the set
of linear subspaces of Sn and the set of faces of the cone Sn+, respectively. Let H ⊂ Rn be a
linear subspace. Then Ln(H), Fn(H) will be defined as the linear span and the convex hull
of the set {xxT ∈ Sn |x ∈ H}, respectively. Note that Fn(H) is linearly isomorphic to the
cone SdimH

+ , and Ln(H) is isomorphic to the matrix space SdimH , although the isomorphisms
are not unique. For a matrix X ∈ Sn+, the smallest face of Sn+ containing X is then given by
Fn(ImX), where ImX ⊂ Rn is the image of the matrix X .

In order to indicate the size n of the matrices making up a spectrahedral cone K , we shall write
K = L∩Sn+ orK ⊂ Sn+, where L ⊂ Sn is a linear subspace. Later in the paper we shall also
work with ROG cones as abstract convex conic subsets of a real vector space. They may then
have representations in matrix spaces of different sizes.

2 Basic properties

In this section we establish some basic properties of ROG cones.
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2.1 Minimal defining polynomial

In this subsection we consider aspects of spectrahedral and ROG cones which emanate from
real algebraic geometry.

Definition 1. [7, Section 2.2] A closed set C ⊂ Rm is an algebraic interior if there exists
a polynomial p on Rm such that C equals the closure of a connected component of the set
{x ∈ Rm | p(x) > 0}. Such a polynomial is called defining polynomial.

Lemma 3. [7, Lemma 2.1] Let C be an algebraic interior. Then the defining polynomial p of
C with minimal degree is unique up to multiplication by a positive constant. Any other defining
polynomial of C is divisible by p.

Definition 2. The defining polynomial with minimal degree of an algebraic interior C is called
minimal defining polynomial. The degree of C is defined as the degree of the minimal defining
polynomial.

Lemma 4. [7, Theorem 2.2] Every spectrahedron is a convex algebraic interior.

From Lemma 3 it follows that the minimal defining polynomial of a spectrahedral cone is homo-
geneous. Indeed, under a homothety of the cone the minimal defining polynomial transforms to
another minimal defining polynomial, which must differ from the original one by a multiplicative
positive constant.

Definition 3. We say that a spectrahedral cone K = L ∩ Sn+ is non-degenerate if the interior
of K consists of positive definite matrices.

Note that non-degeneracy is not an invariant under linear isomorphisms of spectrahedral cones
as conic convex subsets of real vector spaces. This property depends on the spectrahedral
representation of the abstract cone as a linear section of a positive semi-definite matrix cone.

From a degenerate spectrahedral cone K = L ∩ Sn+ we may always construct an isomorphic
non-degenerate spectrahedral cone by replacing Sn+ by the minimal face of Sn+ that contains K
[7, Lemma 2.3]. This replacement has no effect on Property 1. Hence for every ROG spectra-
hedral cone there exists an isomorphic non-degenerate ROG spectrahedral cone.

For a non-degenerate spectrahedral cone K ⊂ Sn+, a defining polynomial of K is given by the
restriction of the determinant in Sn to spanK . We shall call this polynomial the determinantal
defining polynomial. In contrast to the minimal defining polynomial, the determinantal defining
polynomial explicitly uses the representation of K as a linear section of a positive semi-definite
matrix cone. Linearly isomorphic spectrahedral cones may have determinantal defining polyno-
mials of different degrees. Our main result in this subsection is that this cannot happen if K is
a ROG cone, because the determinantal and minimal defining polynomials coincide.

Theorem 1. Let K = L ∩ Sn+ be a non-degenerate ROG spectrahedral cone. Then the deter-
minantal defining polynomial d of K is a minimal defining polynomial.

Proof. Let X ∈ K be positive definite. Since K is ROG, there exist vectors x1, . . . , xN ∈ Rn

such that X =
∑N

i=1 xix
T
i and xixTi ∈ K for all i = 1, . . . , N . Since X � 0, the linear
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span of {x1, . . . , xN} equals Rn. In particular, among the xi there are n linearly independent
vectors, let these be x1, . . . , xn.

Denote the linear span of the matrices x1x
T
1 , . . . , xnx

T
n ∈ K byD, and the intersectionD∩K

byKD. We haveD ⊂ L, and henceD∩Sn+ = D∩L∩Sn+ = KD. However, in the coordinates
defined by the basis {x1, . . . , xn} of Rn the subspace D ⊂ Sn is the subspace of diagonal
matrices. Hence KD = D ∩ Sn+ equals the convex conic hull of {x1x

T
1 , . . . , xnx

T
n}, which in

turn is linearly isomorphic to the nonnegative orthant Rn
+. Moreover, the relative interior of KD

consists of positive definite matrices and is hence contained in the relative interior of K . On the
other hand, the boundary of KD is contained in the boundary of K .

Let p : L → R be a minimal defining polynomial of K . Since the determinantal defining
polynomial d has degree n, the degree of p is at most n. By Lemma 3 p divides d. Since d > 0
on the relative interior of K , we also have p > 0 on the relative interior of K . Hence p > 0 on
the relative interior of KD. On the other hand, p = 0 on the boundary of KD, because p = 0
on the boundary of K . Therefore the restriction of p on D is a defining polynomial for the cone
KD
∼= Rn

+.

However, the degree of the algebraic interior Rn
+ is n, and hence p has degree at least n. It

follows that deg p = n, and d must be a minimal defining polynomial of K .

Note that Theorem 1 is applicable to any non-degenerate spectrahedral coneK ⊂ Sn+ such that
there exist linearly independent vectors x1, . . . , xn ∈ Rn satisfying xixTi ∈ K , i = 1, . . . , n,
because the proof uses only this condition.

Corollary 1. Let K = L ∩ Sn+ be a ROG spectrahedral cone. Then the degree of K is given
by degK = maxX∈K rkX .

Proof. Let m = maxX∈K rkX . Then the minimal face F of Sn+ which contains K is isomor-
phic to Sm+ , and the linear span of F is isomorphic to Sm. As outlined in [7, Lemma 2.3], we
can then construct a determinantal defining polynomial of K by considering K as a subset
of spanF ∼= Sm. This polynomial has degree m. The proof is concluded by application of
Theorem 1.

Corollary 2. Let K ⊂ Sn+ be a ROG cone of degree m. Then K is linearly isomorphic to a
non-degenerate ROG cone K ′ ⊂ Sm+ . Moreover, every non-degenerate ROG cone which is
isomorphic to K is represented by matrices of size m.

Proof. As outlined above, for every ROG cone K there exists a linearly isomorphic non-dege-
nerate ROG cone.

Let K ′ be such a non-degenerate ROG cone. We have degK = degK ′, and hence by Corol-
lary 1 the interior ofK ′ consists of matrices of rankm. Since these matrices are positive definite
by the non-degeneracy condition, the size of the matrices in K ′ must be m.

In other words, a ROG cone of degree m possesses a non-degenerate ROG spectrahedral
representation of size m, and every non-degenerate ROG spectrahedral representation has
this size.
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2.2 Facial structure

In this subsection we study the facial structure and the Carathéodory number of ROG cones.
We shall call an element of a cone K extreme if it generates an extreme ray of K .

Lemma 5. LetK ⊂ Sn+ be a ROG spectrahedral cone. Then the set of extreme elements ofK
is given by {X ∈ K | rkX = 1}.

Proof. Since K is ROG, every X ∈ K with rkX > 1 can be represented as sum of elements
Xi ∈ K of rank 1. Hence such X cannot be extreme. On the other hand, every X ∈ K with
rkX = 1 generates an extreme ray of Sn+. Extremality inK for suchX follows immediately.

Let us recall the results of [13] on the facial structure of general spectrahedral cones. Let K =
L ∩ Sn+ be a spectrahedral cone. Then the faces of K are given by the intersections of L with
the faces of Sn+ [13, Theorem 1], see also [14, Prop. 2.1]. In particular, the kernel of the matrices
X ∈ K is constant over the relative interior of each face of K , and every face of K is exposed
[13, Corollary 1]. It follows that the faces of spectrahedral cones are also spectrahedral cones.

The smallest face of K = L ∩ Sn+ containing a matrix X ∈ K is given by the intersections
L∩Fn(ImX) = L∩Sn+∩Ln(ImX) = K∩Ln(ImX), becauseFn(ImX) is the smallest
face of Sn+ containing X . The smallest face of Sn+ containing K is given by Fn(ImX), where
X is an arbitrary matrix in the interior of K .

Lemma 6. Every face of a ROG cone is a ROG cone.

Proof. Let K = L∩Sn+ be a ROG cone and K ′ ⊂ K a face of K . Then there exists a face F
of Sn+ such that K ′ = L ∩ F . Let X ∈ K ′ be an arbitrary nonzero matrix. Since X ∈ K and

K is ROG, there exist rank 1 matrices X1, . . . , Xl ∈ K such that X =
∑l

i=1Xi. At the same
time, X ∈ F . Since F is a face of Sn+, the rank 1 matrices Xi ∈ Sn+ must also be elements of
this face. It follows that Xi ∈ K ′, and X can be represented as sum of rank 1 matrices in K ′.
Thus K ′ is ROG.

Definition 4. [5, p.59] Let K ⊂ Rm be a closed pointed convex cone. The Carathéodory
number κ(x) of a point x ∈ K is the minimal number k such that there exist extreme elements
x1, . . . , xk of K satisfying x =

∑k
i=1 xi.

The Carathéodory number κ(K) of the cone K is the maximum of κ(x) over x ∈ K .

Lemma 7. Let K ⊂ Sn+ be a spectrahedral cone. The Carathéodory number of X ∈ K
satisfies κ(X) ≤ rkX .

Proof. We proceed by induction. If rkX ≤ 1, then by virtue of Lemma 5 we trivially have
κ(X) = rkX . Suppose the relation κ(X) ≤ rkX is proven for rkX ≤ k − 1, and let
X ∈ K with rkX = k ≥ 2.

Without loss of generality we may assume n = k, otherwise we replace K by KX = L ∩
Fn(ImX), the minimal face of K which contains X . Neither the rank nor the Carathéodory
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number of X will change by this substitution of the ambient cone, but now Fn(ImX) ∼= Sk+
and KX can be seen as a spectrahedral cone defined by k × k matrices.

Then the boundary of K consists of matrices Y with rkY < k = n, and hence κ(Y ) <
k by the induction hypothesis. Let E ∈ K an extreme element of K , normalized such that
trE = trX . Consider the compact line segment l which is defined by the intersection of
K with the affine line passing through X and E. Since X is in the interior of K , it is also in
the interior of the segment l. One endpoint of l is given by E, while the other one is some
matrix Y ∈ ∂K . Then there exists λ ∈ (0, 1) such that X = λE + (1 − λ)Y . Hence
κ(X) ≤ κ(E) + κ(Y ) ≤ 1 + (k − 1) = k.

This completes the proof.

Lemma 8. Let K ⊂ Sn+ be a ROG spectrahedral cone. The Carathéodory number of X ∈ K
is given by κ(X) = rkX .

Proof. We have κ(X) ≥ rkX , because by virtue of Lemma 5 all generators of extreme rays
of K have rank 1, and a matrix X cannot be the sum of less that rkX matrices of rank 1. On
the other hand, κ(X) ≤ rkX by Lemma 7.

Corollary 3. The Carathéodory number of a ROG cone equals its degree.

Proof. The claim follows immediately from Lemma 8 and Corollary 1.

Corollary 4. LetK ⊂ Sn+ be a ROG spectrahedral cone, and letX ∈ K be an element of rank

k. Then there exist rank 1 matrices Xi = xix
T
i ∈ K , i = 1, . . . , k, such that X =

∑k
i=1Xi

and the vectors x1, . . . , xk are linearly independent. In particular, if d = degK , then there
exist d linearly independent vectors r1, . . . , rd ∈ Rn such that rirTi ∈ K for i = 1, . . . , d.

Proof. The first claim of the Corollary is a consequence of Lemmas 5 and 8. The second claim
follows from the first claim, Lemma 8, and Corollary 3.

As a consequence, we have the following result on the diagonalization of matrices in a ROG
cone.

Lemma 9. Let K ⊂ Sn+ be a ROG spectrahedral cone, and let X ∈ K be an element of rank
k. Then there exists a basis of Rn such that in the corresponding coordinates we have X =
diag(1, . . . , 1, 0, . . . , 0), and all diagonal matrices of the form diag(d1, . . . , dk, 0, . . . , 0),
where di ≥ 0, i = 1, . . . , k, are in K .

Proof. By Corollary 4 there exist linearly independent vectors x1, . . . , xk ∈ Rn such thatXi =
xix

T
i ∈ K , i = 1, . . . , k, and X =

∑k
i=1Xi. Extend the set {x1, . . . , xk} to a basis of Rn,

then in the coordinates defined by this basis we have X = diag(1, . . . , 1, 0, . . . , 0).

Moreover, for all d1, . . . , dk ≥ 0 we have
∑k

i=1 dixix
T
i ∈ K , and in the coordinates defined

above this matrix has the form diag(d1, . . . , dk, 0, . . . , 0).
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2.3 Isomorphisms and invariants

In this paper we consider spectrahedral cones as linear sections of cones of positive semi-
definite matrices. Two such sections may be linearly isomorphic as subsets of their linear hull,
while the matrices put into relation by the isomorphism may have very different properties. We
must therefore distinguish between isomorphisms of the spectrahedral cones as convex conic
subsets of a real vector space and isomorphisms between spectrahedral cones together with
their defining representations. In order to formalize the latter notion, we introduce the following
definition.

Definition 5. Let L ⊂ Sn, L′ ⊂ Sn′ be linear subspaces of matrix spaces, and suppose that
n ≤ n′. We call L,L′ isomorphic if there exists an injective linear map f : Rn → Rn′ with
coefficient matrix A ∈ Rn′×n such that the induced map f̃ : Sn → Sn′ given by f̃ : X 7→
AXAT takes L onto L′.

Note that the linear map f̃ defines an isomorphism between the cone Sn+ and a face of Sn′+ .
Therefore, if L ⊂ Sn, L′ ⊂ Sn′ are isomorphic subspaces, then the spectrahedral cones
K = L ∩ Sn+, K ′ = L′ ∩ Sn′+ are linearly isomorphic. For general spectrahedral cones, the
isomorphism between L and L′ in the sense of Definition 5 is a much stronger condition than
the usual linear isomorphism between K and K ′. For instance, a linear isomorphism between
spectrahedral cones in general does not preserve the rank, while the map f̃ is rank-preserving.

In particular, the isomorphisms of linear subspaces of matrix spaces preserve Property 1 of the
spectrahedral cones these subspaces define. For ROG cones, however, the rank is even an
invariant of linear isomorphisms, as the following result shows.

Lemma 10. Let K ⊂ Sn+, K ′ ⊂ Sn′+ be linearly isomorphic ROG cones, and let I : L → L′

realize the linear isomorphism, where L,L′ are the linear hulls of K,K ′, respectively. Then
rk I(X) = rkX for all X ∈ K .

Proof. The claim follows from Lemma 8 and the fact that the Carathéodory number is an invari-
ant under linear isomorphisms.

We shall now show that for ROG cones, the two notions of isomorphism considered above
define the same equivalence relation. The proof requires some auxiliary results on the image
of the Plücker embedding of Grassmanians. We begin with results on the rank 1 completion of
partially specified matrices.

Definition 6. A real partially specified n × m matrix is defined by an index subset P ⊂
{1, . . . , n}×{1, . . . ,m}, called a pattern, together with a collection of real numbers (Aij)(i,j)∈P .
A completion of a partially specified matrix (P , (Aij)(i,j)∈P) is a real n×m matrix C such that
Cij = Aij for all (i, j) ∈ P .

We shall be concerned with the question when a partially specified matrix possesses a comple-
tion of rank 1. This problem has been solved in [2], see also [6]. In order to formulate the result,
we need to define a weighted bipartite graph G associated to the partially specified matrix. The
two groups of vertices will be the row indices 1, . . . , n and the column indices 1, . . . ,m. The
edges will be the elements of P , with the weight of (i, j) equal to Aij .
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Lemma 11. [6, Theorem 5] A partially specified matrix (P , (Aij)(i,j)∈P) has a rank 1 comple-
tion if and only if the following conditions are satisfied. If for some (i, j) ∈ P we have Aij = 0,
then eitherAij′ = 0 for all (i, j′) ∈ P , orAi′j = 0 for all (i′, j) ∈ P . Further, for every cycle i1-
j1-i2-· · · -ik-jk-i1 of the bipartite graphG corresponding to the partially specified matrix, where
i1 in the representation of the cycle is a row index, we have

∏k
l=1Ailjl = Aikj1 ·

∏k−1
l=1 Ail+1jl .

Note that the relation in the second condition of the lemma depends only on the cycle itself, but
not on its starting point or on the direction in which the edges are traversed. Since the products
in the lemma are multiplicative under the concatenation of paths [6, p.2171], we may also restrict
the condition to elementary cycles. Moreover, for an elementary cycle i1-j1-i1 of length 2 the
relation reduces to Ai1j1 = Ai1j1 and is hence trivially satisfied.

Corollary 5. Let A = (P , (Aij)(i,j)∈P) be a partially specified matrix such that Aij = ±1
for all (i, j) ∈ P , and G the corresponding bipartite graph. Assume further that for every
elementary cycle i1-j1-· · · -jk-i1 of G with k ≥ 2, where the representation of the cycle begins
with a row index, we have

∏k
l=1Ailjl = Aikj1 ·

∏k−1
l=1 Ail+1jl . Then there exists a rank 1

completion C = efT of A such that e ∈ {−1,+1}n, f ∈ {−1,+1}m.

Proof. By Lemma 11 there exists a rank 1 completion C̃ = ẽf̃T ofA, where ẽ ∈ Rn, f̃ ∈ Rm.
Suppose there exists an index i such that ẽi = 0. Then all elements of the i-th row of C̃ vanish,
and all elements of this row are unspecified in A. We may then set ẽi = 1 and ẽf̃T would
still be a completion of A. Hence assume without loss of generality that all elements of ẽ are
nonzero. In a similar manner, we may assume that the elements of f̃ are nonzero.

We then define the vectors e ∈ Rn, f ∈ Rm element-wise by the signs of the elements of

ẽ, f̃ , respectively. For every (i, j) ∈ P we then have eifj =
ẽif̃j

|ẽif̃j |
=

Aij

|Aij | = Aij , because

Aij = ±1. It follows that C = efT is also a completion of A.

We now come to the Grassmanian Gr(n,Rm), i.e., the space of linear n-planes in Rm. Fix
a basis in Rm. Then an n-plane Λ can be represented by an n-tuple of linear independent
vectors in Rm, namely those spanning Λ. Let us treat these vectors as row vectors and stack
them into an n × m matrix M . The matrix M is determined only up to left multiplication by
a nonsingular n × n matrix, reflecting the ambiguity in the choice of vectors spanning Λ. The
Plücker coordinate ∆i1...in of Λ, where 1 ≤ i1 < · · · < in ≤ m, is given by the determinant
of the n × n submatrix formed of the columns i1, . . . , in of M . The vector ∆ of all Plücker
coordinates is determined by the n-plane Λ up to multiplication by a nonzero constant and
corresponds to a point in projective space.

Lemma 12. Let Λ,Λ′ ⊂ Rm be two n-planes with Plücker coordinate vectors ∆,∆′, respec-
tively. Suppose there exists a positive constant c such that |∆i1...in| = c|∆′i1...in| for all n-tuples
(i1, . . . , in). Then there exists a linear automorphism of Rm, given by a diagonal coefficient
matrix Σ = diag(σ1, . . . , σm), where σi ∈ {−1,+1} for all i = 1, . . . ,m, which takes the
n-plane Λ to Λ′.

Proof. Assume the conditions of the lemma. Let without restriction of generality ∆1...n 6= 0,
then also ∆′1...n 6= 0. Otherwise we may permute the basis vectors of Rm to obtain these
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inequalities. Then we may choose the n × m matrix M representing Λ such that the first
n columns of M form the identity matrix. Make a similar choice for the n × m matrix M ′

representing Λ′. Then we have ∆1...n = ∆′1...n = 1 and hence c = 1 for this choice of M,M ′.
If m = n, then we may take Σ as the identity matrix. Let m > n.

Let k, l be indices such that 1 ≤ k ≤ n, n < l ≤ m. The determinant ∆1,...,k−1,k+1,...,n,l is
then given by (−1)n−kMkl. Likewise, ∆′1,...,k−1,k+1,...,n,l = (−1)n−kM ′

kl, and hence |Mkl| =
|M ′

kl| by the assumption on ∆,∆′. We then get |Mkl| = |M ′
kl| also for all k = 1, . . . , n,

l = 1, . . . ,m.

Let now P be the set of index pairs (k, l) such that Mkl 6= 0, and set Akl =
M ′kl

Mkl
∈

{−1,+1} for (k, l) ∈ P . Then for every completion C of the partially specified matrix A =
(P , (Akl)(k,l)∈P) we have M ′ = M • C , where • denotes the Hadamard matrix product.

We shall now show that the partially specified matrix A satisfies the condition of Corollary 5.
Let i1-j1-· · · -jk-i1 be an elementary cycle of the bipartite graph G corresponding to A, where
k ≥ 2, i1, . . . , ik are row indices, and j1, . . . , jk are column indices. Since the cycle is el-
ementary, the row and column indices are mutually distinct. The k × k submatrix M̂ of M
consisting of elements with row indices i1, . . . , ik and column indices j1, . . . , jk does not have
any nonzero elements except those specified by the edges of the cycle, because any such el-
ement would render the cycle non-elementary. In particular, every row and every column of M̂
contains exactly two nonzero elements. The index set {j1, . . . , jk} then has an empty intersec-
tion with {1, . . . , n}, because the first n columns of M contain strictly less than two nonzero
elements each. Moreover, in the Leibniz formula for the determinant det M̂ only two products
are nonzero, and the corresponding permutations are related by a cyclic permutation, which has

sign (−1)k−1. Therefore we have | det M̂ | =
∣∣∣∏k

l=1Miljl − (−1)kMikj1 ·
∏k−1

l=1 Mil+1jl

∣∣∣.
Consider the n × n submatrix of M consisting of columns with indices in ({1, . . . , n} \
{i1, . . . , ik}) ∪ {j1, . . . , jk}. The determinant of this submatrix has absolute value | det M̂ |
by construction. A similar formula holds for the absolute value of the determinant of the corre-
sponding n× n submatrix of M ′. By the assumption on ∆,∆′ we then have∣∣∣∣∣

k∏
l=1

Miljl − (−1)kMikj1 ·
k−1∏
l=1

Mil+1jl

∣∣∣∣∣ =

∣∣∣∣∣
k∏
l=1

M ′
iljl
− (−1)kM ′

ikj1
·
k−1∏
l=1

M ′
il+1jl

∣∣∣∣∣ .
It follows that either(

1−
k∏
l=1

Ailjl

)
k∏
l=1

Miljl =

(
1− Aikj1 ·

k−1∏
l=1

Ail+1jl

)
(−1)kMikj1 ·

k−1∏
l=1

Mil+1jl

or (
1 +

k∏
l=1

Ailjl

)
k∏
l=1

Miljl =

(
1 + Aikj1 ·

k−1∏
l=1

Ail+1jl

)
(−1)kMikj1 ·

k−1∏
l=1

Mil+1jl .

Note that all the involved elements of M are nonzero, while those of A equal ±1. The re-
lation

∏k
l=1Ailjl = −Aikj1 ·

∏k−1
l=1 Ail+1jl would then imply that in each of the two equa-

tions above, one side is zero while the other is not. Therefore we must have
∏k

l=1Ailjl =

Aikj1 ·
∏k−1

l=1 Ail+1jl , and the condition in Corollary 5 is fulfilled.
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By this corollary there exists a rank 1 completion C = efT of A such that e ∈ {−1,+1}n,
f ∈ {−1,+1}m. We then have M ′ = M • (efT ) = diag(e) ·M · diag(f). Setting Σ =
diag(f) completes the proof.

We now are in a position to prove the main result of this subsection.

Lemma 13. Let K,K ′ ⊂ Sn+ be linearly isomorphic non-degenerate ROG cones. Then their
linear hulls L,L′ ⊂ Sn are also isomorphic.

Proof. Denote the determinantal polynomial on Sn by d. Then p = d|L, p′ = d|L′ are the
determinantal defining polynomials ofK,K ′, respectively. By Theorem 1 both p, p′ are minimal
defining polynomials.

Let f̃ : L → L′ be an invertible linear map realizing the isomorphism between K and K ′. By
Lemma 3 there exists a positive constant c > 0 such that p = c · (p′ ◦ f̃). Our goal is to extend
f̃ to an automorphism of Sn.

For every nonzero x ∈ Rn such that xxT ∈ K , the image f̃(xxT ) ∈ K ′ is a rank 1 matrix
by Lemma 10. Hence there exists a vector y ∈ Rn such that f̃(xxT ) = yyT . This vector is
determined up to a sign. We shall now construct an automorphism f of Rn such that f̃(xxT ) =
f(x)f(x)T for all such x.

Let x1, . . . , xm ∈ Rn be such that the set {xixTi | i = 1, . . . ,m} forms a basis of L. This is
possible because K is a ROG cone. Let y1, . . . , ym ∈ Rn be such that f̃(xix

T
i ) = yiy

T
i for

all i = 1, . . . ,m. By virtue of the relation p = c · (p′ ◦ f̃) we then have det(
∑m

i=1 δixix
T
i ) =

c det(
∑m

i=1 δiyiy
T
i ) identically in the variables δ1, . . . , δm. In particular, for every n-tuple of

indices (i1, . . . , in) we have det(
∑n

k=1 xikx
T
ik

) = c det(
∑n

k=1 yiky
T
ik

).

Assemble the column vectors xi into an n×mmatrixX and the column vectors yi into an n×m
matrix Y . The above relation is then equivalent to det(Xi1...inX

T
i1...in

) = c det(Yi1...inY
T
i1...in

),
where Xi1...in , Yi1...in are the n × n submatrices formed of the columns i1, . . . , in of X, Y ,
respectively. This finally yields | detXi1...in| =

√
c| detYi1...in| for all n-tuples (i1, . . . , in).

Thus the n-planes spanned in Rm by the row vectors of X, Y , respectively, fulfill the conditions
of Lemma 12. By this lemma there exist a nonsingular n × n matrix S and a diagonal matrix
Σ = diag(σ1, . . . , σm) with σi ∈ {−1,+1} such that Y = SXΣ, or equivalently Y Σ =
SX .

Define a linear automorphism f of Rn by the coefficient matrix S. Then we have for every
i = 1, . . . ,m that f(xi) = Sxi = σiyi, and hence f(xi)f(xi)

T = yiy
T
i = f̃(xix

T
i ). Thus

the automorphism A 7→ SAST of Sn which is generated by f extends the map f̃ between the
subspaces L,L′. In particular, it defines an isomorphism between L and L′.

Theorem 2. LetK ⊂ Sn+, K ′ ⊂ Sn
′

+ be linearly isomorphic ROG cones. Then their linear hulls
L,L′ are also isomorphic in the sense of Definition 5.

Proof. Let without loss of generality n ≤ n′ and denote by k the degree of K and K ′. Let
H ⊂ Rn, H ′ ⊂ Rn′ be the images of arbitrary matrices in the interiors of K,K ′, respectively.
By Corollary 1 we have dimH = dimH ′ = k. The minimal faces of Sn+,Sn

′
+ containing
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K,K ′, respectively, are given by Fn(H) and Fn′(H ′). The linear hulls of Fn(H),Fn′(H ′)
are given by Ln(H) and Ln′(H ′), respectively, which are both isomorphic to the space Sk.

Let us view the cones K,K ′ as subsets of Sk by means of the corresponding isomorphisms.
Then by Lemma 13 there exists an automorphism of Sk which takes L onto L′. In other words,
there exists an invertible linear map f : H → H ′ such that f(x)f(x)T ∈ L′ for all x ∈ H
such that xxT ∈ L. Let us extend this linear map to an injective linear map ϕ : Rn → Rn′ , and
define by Φ its coefficient matrix. By construction, we then have ΦxxTΦT = f(x)f(x)T ∈ L′
for all x ∈ Rn such that xxT ∈ L. Thus the map X 7→ ΦXΦT is the sought isomorphism of
L and L′.

Theorem 2 states that the geometry of a ROG cone as a subset of real space determines its
representations as linear sections of a positive semi-definite matrix cone uniquely up to iso-
morphisms as in Definition 5. Of course, this does not preclude the existence of nonisomorphic
representations as a spectrahedral cone, but in these the cone will not be ROG. In the se-
quel, when we speak of a representation of a ROG cone, we will always mean a spectrahedral
representation where the cone is ROG.

Corollary 6. Let K,K ′ ⊂ Sn+ be linearly isomorphic ROG cones. Then the conic subsets
XK = {x ∈ Rn |xxT ∈ K} and XK′ = {x ∈ Rn |xxT ∈ K ′} of Rn are linearly
isomorphic and hence define projectively equivalent varieties in real projective space RP n−1.

Proof. Let L,L′ ⊂ Sn be the linear spans of K,K ′, respectively. By Theorem 2 there exists a
linear automorphism f of Rn with coefficient matrix A, such that L′ is the image of L under the
automorphism f̃ of Sn given by f̃ : X 7→ AXAT .

Let x ∈ XK . Then xxT ∈ L, and hence f̃(xxT ) = (Ax)(Ax)T = f(x)f(x)T ∈ L′. Since
f(x)f(x)T is positive semi-definite, we also have f(x)f(x)T ∈ K ′ and hence f(x) ∈ XK′ .
It follows that f [XK ] ⊂ XK′ . In the same way one proves that f−1[XK′ ] ⊂ XK , which implies
that f is the sought isomorphism between XK and XK′ .

3 Construction of new ROG cones from given ones

In this section we consider several ways to construct ROG spectrahedral cones of higher degree
from given ones. By iterating these procedures, one may construct ROG cones of arbitrarily high
complexity.

3.1 Direct sums

In this subsection we consider direct sums of ROG cones and introduce the notion of a simple
ROG cone2. The following definition is standard.

2We propose to reserve the notion irreducible for ROG cones K ⊂ Sn
+ such that the real projective variety

defined by the set {x ∈ Rn |xxT ∈ K} is irreducible.
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Definition 7. Let K ⊂ Rn, K ′ ⊂ Rn′ be convex cones. Their direct sum K ⊕K ′ is defined
as the set {(x, x′) ∈ Rn ⊕ Rn′ |x ∈ K, x′ ∈ K ′}.
Let A ∈ Sn, A′ ∈ Sn′ be matrices. Their direct sum A ⊕ A′ ∈ Sn+n′ is defined as the
block-diagonal matrix diag(A,A′).

These notions naturally extend to an arbitrary number of factors.

If K = L ∩ Sn+, K ′ = L′ ∩ Sn′+ are spectrahedral cones, then their direct sum is linearly

isomorphic to a spectrahedral cone. The isomorphism K ⊕K ′ ∼= (L ⊕ L′) ∩ Sn+n′

+ assigns
the block-diagonal matrix A ⊕ A′ ∈ (L ⊕ L′) ∩ Sn+n′

+ to the element (A,A′) ∈ K ⊕ K ′.
In other words, direct sums of spectrahedral cones are spectrahedral cones with corresponding
block-diagonal matrix representations. We shall show that for ROG cones also the converse is
true, i.e., if a ROG cone has a block-diagonal representation, then it is the direct sum of the
ROG cones defined by the individual blocks.

First we show the forward implication for ROG cones.

Lemma 14. Let K1, . . . , Km be ROG cones of degrees n1, . . . , nm. Then their direct sum

K = ⊕mk=1Kk is also a ROG cone, which has degree n =
∑m

k=1 nk. If Kk = Lk ∩ S
n′k
+ are

representations of Kk, then the block-diagonal representation of K = ⊕mk=1Kk constructed
from these representations of Kk is also ROG. In particular the cone K possesses a block-
diagonal non-degenerate representation with block sizes n1, . . . , nm, such that block k defines
a non-degenerate representation of Kk.

Proof. Let Kk = Lk ∩ S
n′k
+ be arbitrary representations of the cones Kk as ROG cones.

Let X = ⊕mk=1Xk = diag(X1, . . . , Xm) be an arbitrary element of K in the corresponding
block-diagonal representation, whereXk ∈ Kk. Since the factor conesKk are ROG, everyXk

decomposes into a sum of rank 1 matrices rk,j ∈ Kk, j = 1, . . . , ηk. For every such rank 1
matrix rk,j , the matrix Rk,j = diag(0, . . . , 0, rk,j, 0, . . . , 0) is a rank 1 matrix in K , where the
non-zero block is located at position k. Then X =

∑m
k=1

∑ηk

j=1Rk,j , which proves that K is
ROG.

By Corollary 2, for every k the coneKk has a non-degenerate representation as a linear section
of Snk

+ . The ROG spectrahedral representation ofK given by the corresponding block-diagonal
representation has the required block structure. It is also non-degenerate, because a block-
diagonal matrix with all blocks being positive definite is itself positive definite. Hence K has
degree n =

∑m
k=1 nk by Corollary 1.

Corollary 7. Let K1, . . . , Km be regular convex cones and K = ⊕mk=1Kk their direct sum.
Then K is ROG if and only if all cones Kk are ROG.

Proof. If the Kk are ROG, then K is ROG by Lemma 14. Let K be ROG. Each of the cones
Kk is isomorphic to a face of K , and hence ROG by Lemma 6.

Consider a ROG cone which is a direct sum of other cones. The next result shows that every
ROG spectrahedral representation of such a cone can be brought to a corresponding block-
diagonal form by an appropriate choice of the coordinate system.
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Lemma 15. Let the ROG cone K = ⊕mk=1Kk be a direct sum of lower-dimensional cones.
Then the factor cones Kk are ROG. Moreover, for every representation K ⊂ Sn+ there exists
a direct sum decomposition Rn = ⊕mk=1Hk into subspaces of dimensions dimHk ≥ degKk

such that the intersection Fk = Ln(Hk)∩K is linearly isomorphic toKk for all k = 1, . . . ,m,
and K =

∑m
k=1 Fk. If n = degK , then dimHk = degKk for k = 1, . . . ,m.

Proof. By Corollary 7 each factor cone Kk is ROG, denote its degree by nk.

By Lemma 14 we have degK =
∑m

k=1 nk and K possesses a block-diagonal representation
as a linear section of SdegK

+ with block sizes nk, such that block k defines a representation of
the factor cone Kk. By Theorem 2 an arbitrary representation of K as a linear section of Sn+ is
isomorphic to this block-diagonal representation. Let f : RdegK → Rn be the injective linear
map from Definition 5 which defines the isomorphism, and denote by H ⊂ Rn the image of
f . The map f then puts the direct sum decomposition of RdegK defined by the block struc-
ture of the block-diagonal representation in correspondence to some direct sum decomposition
H = ⊕mk=1H

′
k, where dimH ′k = degKk. Let Rn = ⊕mk=1Hk be an arbitrary direct sum

decomposition such that H ′k ⊂ Hk for all k = 1, . . . ,m. By construction this decomposition
has the required properties.

If n = degK , then f is bijective, and Hk = H ′k is the only possible choice for Hk. It follows
that dimHk = degKk in this case.

On the other hand, a ROG cone possessing a block-diagonal representation is isomorphic to
the direct sum of the ROG cones defined by the individual blocks.

Lemma 16. Let K = L ∩ Sn+ be a ROG cone. Let Rn = H1 ⊕ · · · ⊕ Hm be a direct sum
decomposition of Rn and suppose that L ⊂

∑m
k=1 Ln(Hk). Then K is the sum of the ROG

cones Kk = K ∩ Ln(Hk), k = 1, . . . ,m, and is canonically isomorphic to their direct sum.

Proof. First note that the cones Kk are faces of K and hence indeed ROG cones by Lemma
6. Moreover, the sum

∑m
k=1Kk is canonically isomorphic to the direct sum ⊕mk=1Kk, because

we have dim(
∑m

k=1 Ln(Hk)) =
∑m

k=1 dimLn(Hk).

Clearly
∑m

k=1Kk ⊂ K , because Kk ⊂ K for all k and K is a convex cone.

Let nowX ∈ K be arbitrary. By Property 1 there exist rank 1 matricesXi ∈ K , i = 1, . . . , N ,
such that X =

∑N
i=1Xi. Now for every i we have Xi ∈ L ⊂

∑m
k=1 Ln(Hk). Since Xi

is rank 1, there must exist ki ∈ {1, . . . ,m} such that Xi ∈ Ln(Hki
). It follows that Xi ∈

Ln(Hki
) ∩K = Kki

. Therefore X ∈
∑m

k=1Kk, and hence K ⊂
∑m

k=1Kk.

Thus we get K =
∑m

k=1Kk, which completes the proof.

Definition 8. We call a ROG cone K simple if it is not isomorphic to a nontrivial direct sum of
lower-dimensional cones.

The decomposition of K into simple factor cones is unique up to permutation of the factors.

Lemma 17. A non-degenerate ROG cone K ⊂ Sn+ is simple if and only if there does not exist
a nontrivial decomposition Rn = H1 ⊕ · · · ⊕Hm such that spanK ⊂

∑m
k=1 Ln(Hk).
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Proof. If K is not simple, then Lemma 15 applies with a nontrivial direct sum decomposition of
Rn. The assertion of this lemma then implies spanK ⊂

∑m
k=1 Ln(Hk).

On the other hand, if there exists a nontrivial decomposition Rn = H1 ⊕ · · · ⊕Hm such that
spanK ⊂

∑m
k=1 Ln(Hk), then by Lemma 16 K is isomorphic to the direct sum of the ROG

cones Kk = K ∩ Ln(Hk), k = 1, . . . ,m. Since K ⊂ Sn+ is non-degenerate, we have
degKk = dimHk > 0 for all k, and the direct sum is nontrivial.

Lemma 18. Let K ⊂ Sn+ be a non-degenerate ROG cone. Then there exists a unique (up to
a permutation of factors) direct sum decomposition Rn = H1 ⊕ · · · ⊕Hm such that K is the
sum of the faces Kk = Ln(Hk) ∩K , and such that the factor cones Kk are simple.

Proof. The claim of the lemma follows from Lemma 15, applied to the unique decomposition of
K into simple factor cones, and the fact that the subspaces Hk are uniquely determined by the
faces Kk representing the factor cones.

Thus there are two different criteria that allow to check whether a ROG cone K is composed,
i.e., not simple. On the one hand, one may consider the geometric decomposition of K into
factor cones. On the other hand, one has the algebraic criterion whether in a non-degenerate
representation, K is contained in the sum of two complementary faces of the ambient matrix
cone. This second criterion is not valid for general spectrahedral cones, as for example the
1-dimensional cone generated by the identity matrix shows.

3.2 Full extensions

In this subsection we consider a special class of ROG cones which are essentially determined
by ROG cones of smaller degree.

Let K = L ∩ Sn+ be a spectrahedral cone, and suppose that there exists a linear subspace
E ⊂ Rn of dimension k such that all matrices of the form xyT + yxT for x ∈ Rn, y ∈ E are
contained in L. Denote the linear subspace spanned by these matrices by LE . Let H ⊂ Rn

be an (n − k)-dimensional linear subspace which is complementary to E. Then we have the
decompositions Sn = Ln(H)⊕ LE , L = (L ∩ Ln(H))⊕ LE .

The next result shows that the faceKH = Ln(H)∩K = (L∩Ln(H))∩Sn+ ofK is essentially
independent of the choice of the subspace H .

Lemma 19. Assume above notations. LetE ⊂ Rn be a k-dimensional subspace. LetH,H ′ ⊂
Rn be (n− k)-dimensional subspaces which are complementary to E. Then the intersections
L ∩ Ln(H), L ∩ Ln(H ′) ⊂ Sn are isomorphic.

Proof. Let Π be the canonical projection on the quotient space Rn/E. Then the restrictions
Π|H ,Π|H′ are isomorphisms between H,H ′ and Rn/E. There exists a unique automorphism
f of Rn such that f |H = (Π|H′)−1 ◦ Π|H and f |E = IdE . In other words, f is the unique
automorphism that projects H onto H ′ along E and leaves E point-wise invariant.
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The automorphism f induces an automorphism f̃ of Sn by X 7→ AXAT , where A is the
coefficient matrix of f . Let us show that f̃ defines the sought isomorphism between Ln(H)∩L
and Ln(H ′) ∩ L.

Since f [H] = H ′, we have f̃ [Ln(H)] = Ln(H ′). Let now x ∈ Rn be arbitrary, and denote
by d ∈ E the difference f(x) − x. Then we have f̃(xxT ) = (x + d)(x + d)T = xxT +
xdT + dxT + ddT . It follows that f̃(xxT )− xxT ∈ LE . By linearity we get f̃(X)−X ∈ LE
for every matrix X ∈ Sn. By virtue of the inclusion LE ⊂ L, for every X ∈ L we then have
f̃(X) ∈ L. It follows that f̃ [L] = L.

Therefore f̃ [Ln(H) ∩ L] = Ln(H ′) ∩ L, which proves our claim.

It follows that the faces KH = Ln(H) ∩ K , KH′ = Ln(H ′) ∩ K defined above and their
representations as linear sections of Sn+ are isomorphic. Moreover, since L = (Ln(H)∩L)⊕
LE , the knowledge of the cone KH ⊂ Ln(H) is sufficient to recover the cone K ⊂ Sn+.

Definition 9. Let k, n be positive integers, k < n, and let K ′ = L′ ∩ Sn−k+ , K = L ∩ Sn+ be
spectrahedral cones. We callK a full extension ofK ′ if there exists a direct sum decomposition
Rn = H ⊕E into subspaces of dimensions n− k, k, respectively, and a corresponding direct
sum decomposition of Sn into subspaces LE = span{xyT +yxT |x ∈ Rn, y ∈ E},Ln(H),
with the following properties. The inclusion LE ⊂ L holds, and the subspaces L′ ⊂ Sn−k,
Ln(H) ∩ L ⊂ Sn are isomorphic.

A spectrahedral cone K ⊂ Sn+ is hence a full extension of some other spectrahedral cone
if and only if there exists a linear subspace L ⊂ Sn and a nonzero vector y ∈ Rn such that
K = L∩Sn+ and xyT +yxT ∈ L for all x ∈ Rn. It is also easy to see that dimK = dimK ′+

(maxX∈K′ rkX)k+ k(k+1)
2

, and K ⊂ Sn+ is non-degenerate if and only if K ′ ⊂ Sn−k+ is non-
degenerate.

Lemma 20. Let K = L ∩ Sn+ be a full extension of K ′ = L′ ∩ Sn−k+ . Then K is ROG if and
only if K ′ is ROG.

Proof. Assume the notations of Definition 9.

If K is ROG, then the face KH = Ln(H) ∩K = (Ln(H) ∩ L) ∩ Sn+ of K is also ROG by
Lemma 6. The isomorphism between L′ and Ln(H)∩L induces an isomorphism between K ′

and KH , and hence K ′ is also ROG. This proves one direction of the equivalence.

Adopt a basis of Rn such that H is spanned by the first n− k basis vectors, and E by the last

k basis vectors. Let X =

(
X11 X12

XT
12 X22

)
∈ K be an arbitrary matrix, with the partition adapted

to the decomposition Rn = H ⊕E. Define the matrix Y =

(
X11 0
0 0

)
. Then we have Y � 0

by virtue of X � 0. Moreover, X − Y ∈ LE ⊂ L, and hence Y = X − (X − Y ) ∈ L. It
follows that Y ∈ KH .

Assume now that K ′ is ROG. Since L′ and Ln(H) ∩ L are isomorphic, the face KH is also
ROG. Therefore Y is representable as a sum of rank 1 matrices in KH . In other words, there

exist vectors v1, . . . , vN ∈ Rn−k such that X11 =
∑N

i=1 viv
T
i and Vi =

(
viv

T
i 0

0 0

)
∈ L for
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all i. Let V be the (n− k)×N matrix formed of the column vectors vi. The condition X � 0
implies that the columns of X12 are in the image of X11 = V V T . Therefore there exists a
k × N matrix W such that X12 = VW T . Let the columns of W be w1, . . . , wN ∈ Rk. We
then have the representation

X =

(
V
W

)(
V
W

)T
+

(
0 0
0 X22 −WW T

)
=

N∑
i=1

(
vi
wi

)(
vi
wi

)T
+

(
0 0
0 X22 −WW T

)
.

Denote the rank 1 matrix

(
vi
wi

)(
vi
wi

)T
by Ui, i = 1, . . . , N . We have Ui − Vi ∈ LE ⊂ L,

and henceUi ∈ L for all i. The k×k matrixX22−WW T is the Schur complement ofX11 inX
and is hence positive semi-definite. It can then we written as a sum

∑N ′

j=1 zjz
T
j with zj ∈ Rk.

The rank 1 matrices Zj =

(
0 0
0 zjz

T
j

)
are also in LE , and hence X =

∑N
i=1 Ui +

∑N ′

j=1 Zj

is a sum of rank 1 matrices inK . This shows thatK is also ROG and proves the other direction
of the equivalence.

Note that the full extension of a ROG cone is simple.

3.3 Intertwinings

In this subsection we present a way to construct new ROG cones from pairs of given ROG
cones of smaller degree.

Definition 10. Let K = L∩Sn+ be a spectrahedral cone. We call a face F of K full if it is also
a face of Sn+. The number k = maxX∈F rkX is called the rank of the face.

A faceF of a ROG cone is full if and only if dimF = degF (degF+1)
2

. Indeed,F is a linear section
of the minimal face S of Sn+ which contains F . Hence F = S if and only if dimF = dimS.

But dimS = degF (degF+1)
2

by Corollary 1.

We shall need the following auxiliary result.

Lemma 21. Let M =

 A B 0
BT C D
0 DT E

 be a block-partitioned positive semi-definite ma-

trix. Then there exists a decomposition C = C1 + C2 such that the matrices

(
A B
BT C1

)
,(

C2 D
DT E

)
are positive semi-definite.

Proof. The Schur complement of A in M is given by

(
C −BTA†B D

DT E

)
and is positive

semi-definite. Here A† is the pseudo-inverse of A, which is also positive semi-definite. Setting
C1 = BTA†B, C2 = C −BTA†B yields the desired decomposition.

19



Lemma 22. Let F1, F2 be faces of the positive semi-definite matrix cone Sn+ and L1, L2 their
linear hulls. Let L ⊂ Sn be a linear subspace such that L1∩L2 ⊂ L = (L∩L1) + (L∩L2).
Then the spectrahedral cone K = L ∩ Sn+ equals the sum of its faces K1 = L1 ∩ K ,
K2 = L2 ∩K .

Proof. Clearly K1 +K2 ⊂ K , because K is a convex cone.

There exist linear subspaces H1, H2 ⊂ Rn such that Li = Ln(Hi), i = 1, 2. Set H = H1 ∩
H2. Then L1∩L2 = Ln(H). Introduce a direct sum decomposition Rn = H ′1⊕H⊕H ′2⊕H0

such thatH1 = H ′1⊕H ,H2 = H⊕H ′2. Adopt a coordinate system in Rn which is adapted to
this decomposition and partition the matrices in Sn accordingly. Then every matrix in L1 + L2,

and hence also in L, has the form X =


X11 X12 0 0
XT

12 X22 X23 0
0 XT

23 X33 0
0 0 0 0

. Moreover, every matrix

whose only nonzero block is X22 is in L1 ∩ L2 and hence in L.

Let now X ∈ K be an arbitrary matrix, partitioned as above. By Lemma 21 there exists a
decomposition X22 = X22,1 +X22,2 such that the matrices

X1 =


X11 X12 0 0
XT

12 X22,1 0 0
0 0 0 0
0 0 0 0

 , X2 =


0 0 0 0
0 X22,2 X23 0
0 XT

23 X33 0
0 0 0 0


are positive semi-definite. On the other hand, since X ∈ L = (L ∩ L1) + (L ∩ L2), there
exists a decomposition X = X3 +X4 such that

X3 =


X11 X12 0 0
XT

12 X22,3 0 0
0 0 0 0
0 0 0 0

 ∈ L ∩ L1, X4 =


0 0 0 0
0 X22,4 X23 0
0 XT

23 X33 0
0 0 0 0

 ∈ L ∩ L2.

We have D1 = X1 − X3 ∈ L1 ∩ L2 ⊂ L, D2 = X2 − X4 ∈ L1 ∩ L2 ⊂ L. Hence
X1 = D1 + X3 ∈ L1 ∩ L, X2 = D2 + X4 ∈ L2 ∩ L. It follows that X1 ∈ K1, X2 ∈ K2.
Therefore X = X1 +X2 ∈ K1 +K2. Thus K ⊂ K1 +K2, which completes the proof.

Lemma 23. Assume the conditions of Lemma 22. Then K is a ROG cone if and only if K1, K2

are ROG cones.

Proof. If K is ROG, then K1, K2 are ROG by Lemma 6.

Assume that K1, K2 are ROG, and let X ∈ K be arbitrary. Since K = K1 + K2, there exist
X1 ∈ K1, X2 ∈ K2 such that X = X1 + X2. Since K1, K2 are ROG, both X1 and X2

can be represented as a sum of rank 1 matrices in K1 and K2, respectively. Hence X can be
represented as a sum of rank 1 matrices in K1 ∪K2 ⊂ K . Thus K is ROG.

Lemma 22 hence presents a way to construct new ROG cones from pairs of lower-dimensional
ROG cones. Note that in this lemma both faces K1, K2 of K contain the intersection F =
F1 ∩ F2 of faces of Sn+. The face F is hence a full face of both K1 and K2.
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Let us now start from two ROG cones K1, K2, each of which has a full face of the same
rank k. Denote these faces by Φ1,Φ2. Both faces are isomorphic to Sk+ and hence they are
also mutually isomorphic. Let f : span Φ1 → span Φ2 be an arbitrary isomorphism between
Φ1,Φ2. Set n = degK1 + degK2 − k and choose linear subspaces H1, H2 ⊂ Rn such
that dimH1 = degK1, dimH2 = degK2, dimH = k, where H = H1 ∩ H2. Then
Fn(H1)∩Fn(H2) = Fn(H) is a face of Sn+ of degree k, and Ln(H1)∩Ln(H2) = Ln(H).

We may then embedK1, K2 as linear sections of the facesFn(H1),Fn(H2) in a way such that
both full faces Φ1,Φ2 are represented byFn(H), and thatX1 ∈ Φ1, X2 ∈ Φ2 are represented
by the same matrix in Fn(H) if and only if f(X1) = X2. Then we have spanKi ⊂ Ln(Hi),
i = 1, 2, and spanK1 ∩ spanK2 = Ln(H1)∩Ln(H2). Set L = spanK1 + spanK2. Then
the conditions of Lemma 22 are fulfilled and by Lemma 23 the sum K = K1 +K2 = L ∩ Sn+
is also a ROG cone. The next result shows that the isomorphism class of the cone K depends
only on f .

Lemma 24. Assume above notations. Then the cone K is isomorphic to a linear projection of
the direct sum K1⊕K2. The kernel of this projection is given by pairs (X1, X2) ∈ spanK1⊕
spanK2 such that X1 ∈ span Φ1, X2 ∈ span Φ2, and f(X1) +X2 = 0.

Proof. The first claim follows from Lemma 22, by defining the projection by Π : (X1, X2) →
X1 + X2. Now spanK1 ∩ spanK2 = Ln(H), and hence for every (X1, X2) ∈ spanK1 ⊕
spanK2 such that X1 + X2 = 0 we must have X1 ∈ span Φ1, X2 ∈ span Φ2. Further,
X1 +X2 = 0 if and only if X1 and−X2 are represented by the same element of Ln(H). This
is the case if and only if f(X1) = −X2.

Definition 11. Let K1, K2 be ROG cones, let Φ1 ⊂ K1, Φ2 ⊂ K2 be full faces of rank k, and
let f : span Φ1 → span Φ2 be an isomorphism between Φ1,Φ2. Define the linear subspace
Λ = {(X1, X2) |X1 ∈ span Φ1, X2 ∈ span Φ2, f(X1) + X2 = 0} of the direct sum
spanK1 ⊕ spanK2. Then the projection K of the direct sum K1 ⊕K2 on the quotient space
(spanK1 ⊕ spanK2)/Λ is called an intertwining of K1, K2.

Since the intertwining of two ROG cones K1, K2 depends on the choice of the full faces Φ1 ⊂
K1, Φ2 ⊂ K2 as well as on the isomorphism f between these faces, there can be many non-
isomorphic such intertwinings for given cones K1, K2. We shall give two examples in the next
section.

Note that a 1-dimensional face of a ROG cone is generated by a rank 1 matrix and hence is
always full. We obtain the following result.

Corollary 8. LetK1, K2 be ROG cones andX1 ∈ K1,X2 ∈ K2 rank 1 matrices. Define the 1-
dimensional subspace Λ ⊂ spanK1⊕ spanK2 as the linear span of the element (X1,−X2).
Then the image of the sum K1 ⊕K2 under the natural projection Π : spanK1 ⊕ spanK2 →
(spanK1 ⊕ spanK2)/Λ is a ROG cone.

Proof. There exists a unique linear map f : spanX1 → spanX2 such that f(X1) = X2,
and this map defines an isomorphism between the 1-dimensional faces defined byX1, X2. The
corollary now follows from Lemmas 23 and 24.
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Note that a direct sum of ROG cones can also be seen as an intertwining, defined by virtue of
the 0-dimensional full face of the factor cones.

4 Examples of ROG cones

In this section we consider two nontrivial examples of ROG cones. We show that the class of
ROG cones defined by chordal graphs can be constructed from the full matrix cones Sk+ by
applying the constructive procedures presented in the previous section. We also provide an
example of a continuous family of mutually non-isomorphic ROG cones.

4.1 Cones defined by chordal graphs

In this subsection we consider spectrahedral conesKG = LG∩Sn+ defined by linear subspaces
of the form LG = {X ∈ Sn |Xij = 0 ∀ (i, j) 6∈ E(G)}, where E(G) is the edge set of a
graph G on the vertices 1, . . . , n. Note that the identity matrix is an element of KG. Hence KG

has a nonempty intersection with the interior of Sn+, and the linear span of KG equals LG.

Lemma 25. [1, Theorem 2.3], [12, Theorem 2.4] Assume above notations. Then the cone KG

is ROG if and only if the graph G is chordal.

Chordal graphs are characterized by the condition that they admit a perfect elimination ordering
of the vertices 1, . . . , n. This is an ordering such that for every k = 1, . . . , n, the subset
Nk = {l < k | (l, k) ∈ E(G)} ∪ {k} of vertices forms a clique, i.e., the subgraph of G
defined by Nk is complete.

Lemma 26. LetG be a chordal graph with vertex set {1, . . . , n}, and letKG be the correspond-
ing ROG cone. Then KG can be constructed out of full matrix cones by iterated intertwinings or
taking direct sums.

Proof. Assume that the vertices are arranged in a perfect elimination ordering. For a subset
I ⊂ {1, . . . , n} of indices, define the linear subspace HI = {x ∈ Rn |xi = 0 ∀ i 6∈ I}. For
k = 1, . . . , n, set Kk = KG ∩ Fn(H{1,...,k}).

Note that K1 is isomorphic to the full matrix cone S1
+. We shall now show for all k = 2, . . . , n

that the cone Kk is either an intertwining of Kk−1 with a full matrix cone, or a direct sum
Kk−1 ⊕ S1

+.

Since G is chordal, the set Nk = {l < k | (l, k) ∈ E(G)} ∪ {k} and its subset N ′k =
{l < k | (l, k) ∈ E(G)} define cliques of G. Therefore the faces Fn(HNk

),Fn(HN ′k
) of Sn+

are contained in K and are full faces of this cone. In particular, Fn(HN ′k
) is a full face of both

Fn(HNk
) and Kk−1. On the other hand, Kk = Kk−1 + Fn(HNk

) by definition of Nk. Hence
Kk is an intertwining of Kk−1 with the full matrix cone Fn(HNk

) in case that N ′k 6= ∅, and a
direct sum Kk−1 ⊕Fn(H{k}) in case that N ′k = ∅.
The proof is completed by the observation that KG = Kn.
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Lemma 27. Let G be a chordal graph with vertex set {1, . . . , n}, and let KG be the corre-
sponding ROG cone. Then degKG = n, and KG is simple if and only if G is connected.

Proof. By construction KG ⊂ Sn+ contains the identity matrix, and hence degKG = n by
Corollary 1.

Suppose that KG is not simple. Then there exists a nontrivial direct sum decomposition Rn =
H ⊕H ′ such that for every rank 1 matrix xxT ∈ KG, either x ∈ H or x ∈ H ′. In particular,
if x = ei is a canonical basis vector, then eieTi ∈ KG by construction of KG and hence
ei ∈ H ∪ H ′ for all i = 1, . . . , n. Define the index sets I = {i | ei ∈ H} and I ′ =
{i | ei ∈ H ′}. Then I ∩ I ′ = ∅ and I ∪ I ′ = {1, . . . , n}, because Rn = H ⊕ H ′ is a
direct sum decomposition. It follows that H = span{ei | i ∈ I} and H ′ = span{ei | i ∈ I ′}.
Let now x ∈ Rn be a nonzero vector such that X = xxT ∈ KG. Then for every index pair
(i, j) ∈ I × I ′ we have xixj = 0 and hence Xij = 0. From the fact that KG is a ROG cone
it follows that Xij = 0 for all X ∈ spanKG = LG in general for (i, j) ∈ I × I ′. But then
(i, j) 6∈ E(G), and there is no edge in G which connects the vertex subsets I, I ′. Hence G is
not connected.

Suppose, on the other hand, that G is not connected. Let I, I ′ be disjoint nonempty vertex
sets such that I ∪ I ′ = {1, . . . , n} and there is no edge in G which connects I to I ′. Then by
definition for everyX ∈ LG we haveXij = xixj = 0 for every index pair (i, j) ∈ I×I ′. Define
subspaces H = span{ei | i ∈ I}, H ′ = span{ei | i ∈ I ′} of Rn. Then Rn = H ⊕H ′ is by
construction a nontrivial direct sum decomposition. It then follows thatLG ⊂ Ln(H)+Ln(H ′),
and the cone KG is not simple.

4.2 A continuous family of non-isomorphic cones

In this subsection we construct a family of mutually non-isomorphic ROG cones in S6 which
depends on a real parameter. Fix mutually distinct angles ϕ1, . . . , ϕ4 ∈ [0, π). For ϕ ∈
[0, π), let l(ϕ) ⊂ R2 be the line through the origin with incidence angle ϕ. Then the lines
l(ϕ1), . . . , l(ϕ4) define a quadruple of points in real projective space RP 1.

Consider the 11-dimensional subspace Lϕ1,ϕ2,ϕ3,ϕ4 ⊂ S6 of matrices of the form
α1 α2 α3 cosϕ1 α4 cosϕ2 α5 cosϕ3 α6 cosϕ4

α2 α7 α3 sinϕ1 α4 sinϕ2 α5 sinϕ3 α6 sinϕ4

α3 cosϕ1 α3 sinϕ1 α8 0 0 0
α4 cosϕ2 α4 sinϕ2 0 α9 0 0
α5 cosϕ3 α5 sinϕ3 0 0 α10 0
α6 cosϕ4 α6 sinϕ4 0 0 0 α11

 , α1, . . . , α11 ∈ R.

(3)
Let H0, . . . , H4 ⊂ R6 be the two-dimensional subspaces spanned by the columns of the

23



matrices
1 0
0 1
0 0
0 0
0 0
0 0

 ,


cosϕ1 0
sinϕ1 0

0 1
0 0
0 0
0 0

 ,


cosϕ2 0
sinϕ2 0

0 0
0 1
0 0
0 0

 ,


cosϕ3 0
sinϕ3 0

0 0
0 0
0 1
0 0

 ,


cosϕ4 0
sinϕ4 0

0 0
0 0
0 0
0 1

 , (4)

respectively. Then Lϕ1,ϕ2,ϕ3,ϕ4 =
∑4

i=0 L6(Hi).

Let us define subspaces Lj =
∑j

i=0 L6(Hi) ⊂ S6 and spectrahedral cones Kj = Lj ∩ S6
+,

j = 0, . . . , 4. Then Lϕ1,ϕ2,ϕ3,ϕ4 = L4, and K0 = F6(H0) is a ROG cone.

Lemma 28. The cone Kj , j = 1, . . . , 4, is a ROG cone given by the sum
∑j

i=0F6(Hi).

Proof. We prove the lemma by induction over j. Assume thatKj−1 =
∑j−1

i=0 F6(Hi) is a ROG
cone. We shall show that Kj is an intertwining of Kj−1 with the face F6(Hj) of S6

+, which

would imply Kj =
∑j

i=0F6(Hi) by Lemma 22 and that Kj is ROG by Lemma 23.

To this end we have to show that the conditions of Lemma 22 apply to the faces F6(
∑j−1

i=0 Hi)
and F6(Hj) of S6

+ and to the subspace Lj ⊂ S6, i.e., that

L6(
∑j−1

i=0
Hi) ∩ L6(Hj) ⊂ Lj = (Lj ∩ L6(

∑j−1

i=0
Hi)) + (Lj ∩ L6(Hj)).

Indeed, the intersection ∆j = (
∑j−1

i=0 Hi) ∩ Hj is 1-dimensional and is contained in H0.
Namely, ∆j is the linear span of the first column of the matrix generating Hj in (4). We obtain
L6(
∑j−1

i=0 Hi) ∩ L6(Hj) = L6(∆j) ⊂ L6(H0) ⊂ Lj , which proves the required inclusion.

Further, we have (Lj ∩ L6(
∑j−1

i=0 Hi)) = Lj−1, (Lj ∩ L6(Hj)) = L6(Hj). But Lj =
Lj−1 +L6(Hj) by definition, which proves the required equality. This completes the proof.

Lemma 29. The coneKϕ1,ϕ2,ϕ3,ϕ4 = Lϕ1,ϕ2,ϕ3,ϕ4 ∩S6
+ is a ROG cone. Two conesKϕ1,ϕ2,ϕ3,ϕ4 ,

Kϕ′1,ϕ
′
2,ϕ
′
3,ϕ
′
4

of this form are isomorphic if and only if the corresponding quadruples of lines
l(ϕ1), . . . , l(ϕ4) ⊂ R2 and l(ϕ′1), . . . , l(ϕ

′
4) ⊂ R2 define projectively equivalent quadruples

of points in RP 1.

Proof. The first part of the lemma follows from Lemma 28 for j = 4.

Let us prove the second part. Consider cones Kϕ1,ϕ2,ϕ3,ϕ4 , Kϕ′1,ϕ
′
2,ϕ
′
3,ϕ
′
4

for quadruples
(ϕ1, . . . , ϕ4), (ϕ′1, . . . , ϕ

′
4) of mutually distinct angles. Let H0, . . . , H4 and H ′0, . . . , H

′
4, re-

spectively, be the corresponding 2-dimensional subspaces of R6 as defined by the column
spaces of the matrices (4). Note that H0 = H ′0. By Lemma 28 the set {x ∈ R6 |xxT ∈
Kϕ1,ϕ2,ϕ3,ϕ4} is given by the union

⋃4
j=0Hj , and the set {x ∈ R6 |xxT ∈ Kϕ′1,ϕ

′
2,ϕ
′
3,ϕ
′
4
} by

the union
⋃4
j=0H

′
j . Therefore, by virtue of Corollary 6, the conesKϕ1,ϕ2,ϕ3,ϕ4 andKϕ′1,ϕ

′
2,ϕ
′
3,ϕ
′
4

are isomorphic if and only if there exists an invertible linear map f : R6 → R6 which takes⋃4
j=0Hj to

⋃4
j=0H

′
j .
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Suppose that such a map f exists. The intersections l(ϕi) = H0 ∩Hi, l(ϕ′i) = H ′0 ∩H ′i, i =
1, 2, 3, 4, are 1-dimensional, while the intersections Hi ∩Hj , H ′i ∩H ′j , i 6= j, i, j = 1, . . . , 4,
are 0-dimensional. Hence we must have f [H0] = H ′0 and f [Hi] = H ′σ(i), i = 1, . . . , 4, where
σ ∈ S4 is a permutation of the index set {1, . . . , 4}. Moreover, f |H0 [li] = l′σ(i), i = 1, . . . , 4. It
follows that l(ϕ1), . . . , l(ϕ4) ⊂ H0 and l(ϕ′1), . . . , l(ϕ

′
4) ⊂ H0 define projectively equivalent

quadruples of points in the projectivization of H0.

Suppose now that the lines l(ϕ1), . . . , l(ϕ4) ⊂ H0 and l(ϕ′1), . . . , l(ϕ
′
4) ⊂ H0 define pro-

jectively equivalent quadruples of points in the projectivization of H0. Then there exists an
invertible linear map h : H0 → H0 and a permutation σ ∈ S4 such that h[li] = l′σ(i),
i = 1, . . . , 4. Let now xi ∈ Hi \ li, x′i ∈ H ′i \ l′i, i = 1, . . . , 4, be arbitrary points.
We then have Hi = span(li ∪ {xi}), H ′i = span(l′i ∪ {x′i}), i = 1, . . . , 4. Moreover,
span(H0 ∪ {x1, x2, x3, x4}) = span(H0 ∪ {x′1, x′2, x′3, x′4}) = R6. We then can extend the
map h to a linear map f : R6 → R6 such that f(xi) = x′σ(i), i = 1, . . . , 4. This map is invert-

ible by construction and f [Hi] = H ′σ(i), i = 1, . . . , 4. It follows that f [
⋃4
j=0Hj] =

⋃4
j=0H

′
j ,

which completes the proof.

It is well-known that there exist infinitely many projectively non-equivalent quadruples of points
in RP 1. The equivalence classes are parameterized by the orbits of the cross-ratio

λ(ϕ1, ϕ2, ϕ3, ϕ4) = (l1, l2; l3, l4) =
(cotϕ1 − cotϕ3)(cotϕ2 − cotϕ4)

(cotϕ2 − cotϕ3)(cotϕ1 − cotϕ4)

with respect to the action of the symmetric group S4 on the arguments ϕ1, . . . , ϕ4. Thus there
exists a continuum of mutually non-isomorphic ROG cones defined by subspaces L ⊂ S6 of
type (3).

The coneKϕ1,ϕ2,ϕ3,ϕ4 is obtained from the faceF6(H0) ∼= S2
+ by consecutive intertwining with

the faces F6(Hi) ∼= S2
+, i = 1, . . . , 4. It is hence an intertwining of 5 positive semi-definite

matrix cones S2
+. More complicated ROG cones can be obtained by starting with a matrix cone

Sn+ and consecutively intertwining it with matrix cones Sk1+ , . . . ,Skm
+ along full faces of ranks

d1, . . . , dm, where di < min(n, ki), i = 1, . . . ,m. In this way, families of mutually non-
isomorphic ROG cones can be obtained which are parameterized by an arbitrary number of
real parameters.

5 Dimension and degree of ROG cones

In this section we consider the relation between the dimension and the degree of a ROG cone
K . Evidently we have the inequality chain degK ≤ dimK ≤ degK(degK+1)

2
, with equality

on the left if and only if K is isomorphic to the nonnegative orthant, and equality on the right
if and only if K is isomorphic to the full cone of positive semi-definite matrices. We shall say
that a ROG cone K has codimension k if dimK = degK(degK+1)

2
− k. In this case k can be

interpreted as the number of linearly independent linear constraints on the matrices X ∈ K .

Lemma 30. Let K be a ROG cone of degree n and dimension n(n+1)
2
− k. Then K has a

representation K = {X ∈ Sn+ | 〈X,Qi〉 = 0 ∀ i = 1, . . . , k}, where Q1, . . . , Qk are
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linearly independent quadratic forms on Rn such that every nonzero form in the linear span
span{Q1, . . . , Qk} is indefinite.

Proof. Consider a representation ofK as a linear section of Sn+. We have dimSn−dimK =
k, and the orthogonal complement of spanK in the space of quadratic forms on Rn has di-
mension k. Let {Q1, . . . , Qk} be a basis of this complement. Then by construction we have
K = spanK ∩ Sn+ = {X ∈ Sn+ | 〈X,Qi〉 = 0 ∀ i = 1, . . . , k}.
Since degK = n, by Corollary 1 there exists a positive definite matrix X ∈ K . Now suppose
for the sake of contradiction that there exists a nonzero linear combination Q of Q1, . . . , Qk

which is semi-definite. By possibly replacing Q by −Q, we may assume that Q is positive
semi-definite. Then 〈Q,X〉 > 0, leading to a contradiction.

In the next subsections we consider ROG cones of codimensions 1 and 2, and give a lower
bound on the dimension of simple cones K of fixed degree.

5.1 ROG cones of codimension 1

Lemma 31. Let L ⊂ Sn be a linear subspace of dimension n(n+1)
2
−d. Then the spectrahedral

cone K = L ∩ Sn+ has no extreme elements of rank k > −1
2

+
√

1
4

+ 2(d+ 1).

Proof. LetX lie on an extreme ray ofK , and let k = rkX . Then the minimal face of Sn+ which

containsX has dimension k(k+1)
2

. Denote this face by F . The minimal face ofK which contains
X is given by the intersection F ∩L and has dimension 1. But since L has codimension d, we
have 1 = dim(F ∩ L) ≥ dimF − d = k(k+1)

2
− d. This yields k(k + 1) ≤ 2(d+ 1), which

implies k ≤ −1
2

+
√

1
4

+ 2(d+ 1).

Corollary 9. Let L ⊂ Sn be a linear subspace of dimension n(n+1)
2
− 1. Then the cone

K = L ∩ Sn+ is ROG.

Proof. By Lemma 31 the cone K has no extreme elements of rank k ≥ 2 > −1+
√

17
2

. Thus K
is ROG.

Corollary 10. Every ROG cone of degree n and codimension 1 has a representation of the
form K = {X ∈ Sn+ | 〈X,Q〉 = 0} for some indefinite quadratic form Q, and every cone of
this form is ROG of degree n and codimension 1. Two such cones K,K ′, defined by indefinite
quadratic forms Q,Q′, respectively, are isomorphic if and only if either Q,Q′ or Q,−Q′ have
the same signature.

Proof. The first claim follows from Lemma 30.

Let now Q be an indefinite quadratic form. Then the cone K = {X ∈ Sn+ | 〈X,Q〉 = 0} is
ROG by Corollary 9. Since Q is indefinite, there exists a positive definite matrix X such that
〈X,Q〉 = 0. Hence K intersects the interior of Sn+, and therefore dimK = dimSn − 1.
Moreover, by Corollary 1 K is of degree n.
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Let now the conesK,K ′ be defined by indefinite quadratic formsQ,Q′, respectively. By Theo-
rem 2 the conesK,K ′ are isomorphic if and only if their linear hulls L = {X ∈ Sn | 〈X,Q〉 =
0}, L′ = {X ∈ Sn | 〈X,Q′〉 = 0} are isomorphic. This holds if and only if the orthogonal
complements of L,L′, namely the 1-dimensional subspaces generated by Q and Q′, are iso-
morphic. The last claim now easily follows.

It is not hard to establish that there are [n
2

4
] isomorphism classes of ROG cones of degree n

and codimension 1. For n ≥ 3 all of them are simple.

5.2 ROG cones of codimension 2

In this subsection we classify the ROG cones of degree n and dimension n(n+1)
2
− 2.

By Lemma 31, a spectrahedral cone K ⊂ Sn+ of dimension n(n+1)
2
− d, where d ≤ 4, can only

have extreme elements of rank k ≤ 2. Therefore such a cone is ROG if and only if there exist
no extreme elements of rank 2.

Let L ⊂ Sn be a subspace of codimension d, 2 ≤ d ≤ 4. We can represent L as the set
{X ∈ Sn | 〈X,Qi〉 = 0, i = 1, . . . , d}, whereQ1, . . . , Qd are linearly independent quadratic
forms on Rn. The next result establishes in which cases the spectrahedral cone K = L ∩ Sn+
has an extreme element of rank 2.

Lemma 32. Assume above notations and conditions. The cone K is ROG if and only if for all
pairs of vectors x, y ∈ Rn the d× 3 matrix

M(x, y) =

x
TQ1x 2xTQ1y yTQ1y

...
...

...
xTQdx 2xTQdy yTQdy


either has rank < 2 or its kernel does not contain a vector (a, b, c)T such that the matrix(
a b
b c

)
is definite.

Proof. A vector (a, b, c)T is contained in the kernel of M(x, y) if and only if〈(
a b
b c

)
,

(
xTQix xTQiy
xTQiy yTQiy

)〉
= 〈axxT+b(xyT+yxT )+cyyT , Qi〉 = 0 ∀ i = 1, . . . , d,

(5)
or equivalently, if axxT +b(xyT +yxT )+cyyT ∈ L. Therefore, if x, y are linearly independent,
then the dimension of the intersection span{xxT , xyT+yxT , yyT}∩L = Ln(span{x, y})∩L
equals the dimension of kerM(x, y).

Suppose that there exist x, y ∈ Rn and a, b, c ∈ R such that rkM(x, y) ≥ 2, (a, b, c)T

is in the kernel of M(x, y), and

(
a b
b c

)
� 0. Since rkM(x, y) ≥ 2, the vectors x, y are

linearly independent. Set H = span{x, y}. Then Fn(H) is a face of Sn+ of rank 2, and F =
Fn(H)∩L is a face of K . Define the matrix X = axxT + b(xyT + yxT ) + cyyT ∈ Ln(H).
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We have the representation X =
(
x y

)(a b
b c

)(
x y

)T
. Hence X is positive semi-definite

of rank 2 and is contained in the relative interior of Fn(H). Further, by (5) we have X ∈ L,
and hence X ∈ F . Since rkM(x, y) ≥ 2, the kernel of M(x, y) has dimension 1. Therefore
dim(Ln(H) ∩ L) = 1, and every matrix in this intersection is proportional to X . It follows that
the face F ofK is 1-dimensional and the rank 2 matrixX generates an extreme ray ofK . Thus
K is not ROG.

Suppose now that K is not ROG. By Lemma 31 there exists a matrix X ∈ K of rank 2 which
generates an extreme ray ofK . LetH ⊂ Rn be the image ofX , and let {x, y} be a basis ofH .

Then there exist a, b, c ∈ R such that X = axxT + b(xyT + yxT ) + cyyT and

(
a b
b c

)
� 0.

The inclusion X ∈ L then implies (5) and hence (a, b, c)T ∈ kerM(x, y). The matrix X is
contained in the relative interior of Fn(H), the minimal face of Sn+ which contains X . Hence
the dimension of the intersection Fn(H) ∩ L, which contains X , equals the dimension of
Ln(H) ∩ L. But Fn(H) ∩ L is the minimal face of K which contains X , and has dimension
1 by the extremality of X . By the above, the kernel of M(x, y) then also has dimension 1. It
follows that rkM(x, y) = 2.

This completes the proof.

Corollary 11. Let L = {X ∈ Sn | 〈X,Q1〉 = 〈X,Q2〉 = 0} be a linear subspace, where
Q1, Q2 are linearly independent quadratic forms. Then the cone K = L ∩ Sn+ is ROG if and
only if the bi-quartic polynomial given by

p(x, y) = (yTQ1y · xTQ2x− xTQ1x · yTQ2y)2 (6)

−4(xTQ1y · yTQ2y − xTQ2y · yTQ1y)(xTQ1x · xTQ2y − xTQ1y · xTQ2x)

is nonnegative for all x, y ∈ Rn.

Proof. By Lemma 32 the cone K is not ROG if and only if there exist x, y ∈ Rn such that the
2× 3 matrix

M(x, y) =

(
xTQ1x 2xTQ1y yTQ1y
xTQ2x 2xTQ2y yTQ2y

)
has full rank and its kernel contains a vector (a, b, c)T such that ac − b2 > 0. Now note that
M(x, y) has full rank if and only if the cross product xTQ1x

2xTQ1y
yTQ1y

×
 xTQ2x

2xTQ2y
yTQ2y

 =

2(xTQ1y · yTQ2y − xTQ2y · yTQ1y)
yTQ1y · xTQ2x− xTQ1x · yTQ2y

2(xTQ1x · xTQ2y − xTQ1y · xTQ2x)


is nonzero, and in this case the kernel of M(x, y) is generated by this cross product. The claim
of the corollary now easily follows.

We now prove an auxiliary result on real symmetric matrix pencils. Recall that y is called an
eigenvector of the pencil Q1 + λQ2 if the linear forms Q1y,Q2y are linearly dependent.
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Lemma 33. Let Q1, Q2 be quadratic forms on Rn such that the pencil Q1 +λQ2 possesses n
linearly independent real eigenvectors. Then there exists a direct sum decomposition Rn =
H0 ⊕ H1 ⊕ · · · ⊕ Hm, non-degenerate quadratic forms Φk on Hk, k = 1, . . . ,m, and
mutually distinct angles ϕ1, . . . , ϕm ∈ [0, π) with the following properties. For every vec-
tor x =

∑m
k=0 xk, where xk ∈ Hk, we have Q1(x) =

∑m
k=1 cosϕkΦk(xk), Q2(x) =∑m

k=1 sinϕkΦk(xk). Moreover, the set of real eigenvectors of the pencil Q1 +λQ2 is given by
the union

⋃m
k=1(H0 +Hk).

Proof. We define the subspace H0 as the intersection kerQ1 ∩ kerQ2. For every real eigen-
vector y 6∈ H0 of the pencil Q1 + λQ2, the linear span of the set {Q1y,Q2y} of linear
forms has then dimension 1. Hence there exists a unique angle ϕ(y) ∈ [0, π) such that
sinϕ(y)Q1y − cosϕ(y)Q2y = 0.

By assumption we find linearly independent real eigenvectors y1, . . . , yn−dimH0 of the pencil
Q1 + λQ2 such that span(H0 ∪ {y1, . . . , yn−dimH0}) = Rn. Regroup these vectors into
subsets {y11, . . . , y1d1}, . . . , {ym1, . . . , ymdm} such that ϕ(ykl) = ϕk, k = 1, . . . ,m,
l = 1, . . . , dk, where ϕ1, . . . , ϕm ∈ [0, π) are mutually distinct angles, and dk is the num-
ber of eigenvectors corresponding to angle ϕk. Define the subspace Hk as the linear span of
yk1, . . . , ykdk

, k = 1, . . . ,m. Then by construction we have that H0 ⊕ H1 ⊕ · · · ⊕ Hm is a
direct sum decomposition of Rn. Moreover, every vector y ∈ Hk is an eigenvector and we have
sinϕkQ1y−cosϕkQ2y = 0 for all y ∈ Hk, k = 1, . . . ,m. It follows that there exist quadratic
forms Φk on Hk, k = 1, . . . ,m, such that Q1|Hk

= cosϕkΦk, Q2|Hk
= sinϕkΦk.

Let now k, k′ ∈ {1, . . . ,m} be distinct indices and y ∈ Hk, y′ ∈ Hk′ be arbitrary vectors. By
construction we have sinϕkQ1y − cosϕkQ2y = sinϕk′Q1y

′ − cosϕk′Q2y
′ = 0. Therefore

sinϕky
TQ1y

′ − cosϕky
TQ2y

′ = sinϕk′y
TQ1y

′ − cosϕk′y
TQ2y

′ = 0. But ϕk, ϕk′ are
distinct, and thus this linear system on yTQiy

′ has only the trivial solution yTQ1y
′ = yTQ2y

′ =
0. The decomposition formulasQ1(x) =

∑m
k=1 cosϕkΦk(xk),Q2(x) =

∑m
k=1 sinϕkΦk(xk)

now readily follow.

Let 1 ≤ k ≤ m. Suppose there exists a vector y ∈ Hk such that Φky = 0. Then we have
Q1y = Q2y = 0, and y ∈ H0. Thus y = 0, and the form Φk must be non-degenerate.

Let now x =
∑m

k=0 xk be a real eigenvector of the pencil Q1 + λQ2, where xk ∈ Hk. Then
we have sinϕQ1x − cosϕQ2x = 0 for some angle ϕ ∈ [0, π). Let zk ∈ Hk, k = 0, . . . ,m
be arbitrary vectors, and set z =

∑m
k=0 zk. Then we have xTQ1z =

∑m
k=1 cosϕkΦk(xk, zk),

xTQ2z =
∑m

k=1 sinϕkΦk(xk, zk). It follows that

0 = sinϕxTQ1z − cosϕxTQ2z =
m∑
k=1

(sinϕ cosϕkΦk(xk, zk)− cosϕ sinϕkΦk(xk, zk))

=
m∑
k=1

sin(ϕ− ϕk)Φk(xk, zk).

Here Φk(xk, zk) = 1
4
(Φk(xk + zk) − Φk(xk − zk)) is as usual the bilinear form defined

by the quadratic form Φk. Since this holds identically for all zk ∈ Hk and the forms Φk are
non-degenerate, we must have either ϕ = ϕk or xk = 0 for each k = 1, . . . ,m. Therefore
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x ∈ H0 + Hk for some k. On the other hand, every vector x ∈ H0 + Hk is an eigenvector of
the pencil Q1 + λQ2, since it satisfies sinϕkQ1x− cosϕkQ2x = 0.

Let K be a ROG cone of degree 2. Then the dimension of K is either 2 or 3, and K cannot be
of codimension 2. We shall henceforth consider ROG cones of degree n ≥ 3.

Lemma 34. LetK = {X ∈ Sn+ | 〈X,Q1〉 = 〈X,Q2〉 = 0} be a ROG cone of degree n ≥ 3,
where Q1, Q2 are linearly independent quadratic forms. Then there exists z ∈ Rn such that
zTQ1z = zTQ2z = 0 and the linear forms Q1z,Q2z are linearly independent.

Proof. By Corollary 1 the cone K has a nonempty intersection with the interior of Sn+. Hence
the linear span of K is given by L = spanK = {X ∈ Sn | 〈X,Q1〉 = 〈X,Q2〉 = 0}.
For the sake of contradiction, assume that for every z ∈ Rn such that zTQ1z = zTQ2z = 0
the linear forms Q1z,Q2z are linearly dependent. Let Z = zzT be an arbitrary rank 1 matrix
in K . Then zTQ1z = zTQ2z = 0, and by our assumption z is an eigenvector of the pencil
Q1 + λQ2.

Since the degree ofK is n, by Corollary 4 there exist n linearly independent vectors z1, . . . , zn ∈
Rn such that the rank 1 matrices zkzTk are in K for k = 1, . . . , n. This implies that the pencil
Q1 +λQ2 has n linearly independent real eigenvectors. Therefore the conditions of Lemma 33
are satisfied. Let Rn = H0⊕H1⊕· · ·⊕Hm be the direct sum decomposition from this lemma.
If m ≤ 1, then the forms Q1, Q2 are linearly dependent, which contradicts our assumptions.
Hence m ≥ 2.

Let x1 ∈ H1, x2 ∈ H2 be nonzero vectors. Consider the matrix X = x1x
T
2 + x2x

T
1 . We have

〈Qi, X〉 = 2xT1Qix2 = 0 for i = 1, 2, and hence X ∈ L. On the other hand, L is spanned by
all rank 1 matrices in K because K is ROG. However, if z ∈ Rn is such that zzT ∈ K , then
by Lemma 33 we have z ∈

⋃m
k=1(H0 + Hk). It follows that L ⊂

∑m
k=1 Ln(H0 + Hk). But

X 6∈
∑m

k=1 Ln(H0 +Hk), leading to a contradiction.

Lemma 35. Let K = {X ∈ Sn+ | 〈X,Q1〉 = 〈X,Q2〉 = 0} be a ROG cone of degree
n ≥ 3, where Q1, Q2 are linearly independent quadratic forms. Let z ∈ Rn be such that
zTQ1z = zTQ2z = 0. Suppose that the linear forms q1 = Q1z, q2 = Q2z are linearly
independent. Then there exists a linear form u which is linearly independent form q1, q2 and
such that Q1 = u⊗ q1 + q1 ⊗ u, Q2 = u⊗ q2 + q2 ⊗ u.

Proof. By virtue of the condition zTQ1z = zTQ2z = 0 the polynomial p(x, y) defined by (6)
vanishes for x = z and all y ∈ Rn. By Corollary 11 this polynomial is nonnegative. Therefore
∂p(x,y)
∂x

∣∣∣
x=z

= 0 for all y ∈ Rn. By virtue of zTQ1z = zTQ2z = 0, at x = z this gradient is

given by

∂p(x, y)

∂x

∣∣∣∣
x=z

= −8(qT1 y · yTQ2y − qT2 y · yTQ1y)(qT2 y · q1 − qT1 y · q2) = 0.

Since q1, q2 are linearly independent, the linear form qT2 y · q1 − qT1 y · q2 is nonzero if qT1 y 6= 0
or qT2 y 6= 0. Therefore qT1 y · yTQ2y = qT2 y · yTQ1y for all such y, i.e., for a dense subset of
Rn. It follows that qT1 y · yTQ2y = qT2 y · yTQ1y identically for all y ∈ Rn.
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In particular, for every y ∈ Rn such that qT1 y = 0, qT2 y 6= 0 we have yTQ1y = 0. This subset
of vectors y is dense in the kernel of q1, and henceQ1 is zero on this kernel. It follows that there
exists a linear form u1 such thatQ1 = q1⊗u1+u1⊗q1. In a similar manner, there exists a linear
form u2 such that Q2 = q2 ⊗ u2 + u2 ⊗ q2. It follows that qT1 y · qT2 y · uT2 y = qT2 y · qT1 y · uT1 y
identically for all y ∈ Rn. For all y ∈ Rn such that qT1 y 6= 0 and qT2 y 6= 0 it follows that
uT2 y = uT1 y. Since the set of such vectors y is dense in Rn, we get that u1, u2 are equal to the
same linear form u.

Note that qT1 z = qT2 z = 0 by assumption. We obtain q1 = Q1z = qT1 z ·u+uT z ·q1 = uT z ·q1,
and hence uT z = 1. Therefore u must be linearly independent of q1, q2.

Theorem 3. LetK = {X ∈ Sn+ | 〈X,Q1〉 = 〈X,Q2〉 = 0} be a ROG cone of degree n ≥ 3,
whereQ1, Q2 are linearly independent quadratic forms. ThenK is isomorphic to the direct sum
S1

+ ⊕ S2
+ if n = 3 and to a full extension of this sum if n > 3.

Proof. By Lemma 34 Lemma 35 is applicable. By choosing an appropriate basis of Rn, we can
assume that the linear forms u, q1, q2 from Lemma 35 are the first elements of the dual basis.
Then the cone K is given by the set {X ∈ Sn+ |X12 = X13 = 0}. The claim of the theorem
now easily follows.

5.3 Lower bound on the dimension of simple ROG cones

In this section we show that for simple ROG cones K the dimension is bounded from below by
2 · degK − 1. We shall need the following auxiliary result.

Lemma 36. Let x1, . . . , xm ∈ Rn be linearly independent vectors, and let S ⊂ Sn be the m-
dimensional subspace spanned by the rank 1 matrices x1x

T
1 , . . . , xmx

T
m. Let further H ⊂ Rn

be a linear subspace. Then the dimension of the intersection S∩Ln(H) is given by the number
of indices i such that xi ∈ H . In particular, dim(S ∩ Ln(H)) ≤ dimH .

Proof. Define the index set I = {i |xi ∈ H}. Let A =
∑m

i=1 αixix
T
i be an arbitrary element

of S, where αi are scalar coefficients. Suppose there exists an index j 6∈ I such that αj 6= 0.
Let y ∈ Rn be a vector such that yTxj = 1, and yTxi = 0 for all i 6= j. Such a vector y exists
by the linear independence of x1, . . . , xm. We then getAy =

∑m
i=1 αi(y

Txi)xi = αjxj 6= H .
Hence A 6∈ Ln(H).

It follows that every matrix in the intersection S ∩ Ln(H) is of the form A =
∑

i∈I αixix
T
i for

some scalars αi. On the other hand, for every such matrix A and every vector y ∈ Rn we have
Ay =

∑
i∈I(y

Txi)xi ∈ H , and A ∈ Ln(H). Therefore the intersection S ∩ Ln(H) equals
the linear span of the set {xixTi | i ∈ I}. The claims of the lemma now easily follow.

Theorem 4. Let K be a simple ROG cone of degree n. Then dimK ≥ 2n− 1.

Proof. Represent K as a linear section of Sn+. Recall that by Lemma 6 every face of K is a
ROG cone, and that K itself is the face of K of largest degree n. Denote by F the set of faces
F of K such that dimF ≥ 2 degF − 1. The set F is not empty, because every extreme ray
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of K is an element of F. Set k = maxF∈F degF . Assume for the sake of contradiction that
K 6∈ F, and hence k < n. Let Fk ∈ F be a face of K which achieves the maximal degree k.
Denote the linear span of K by L, and the linear span of Fk by Lk. By construction we have
dimLk ≥ 2k − 1.

By Corollary 1 the maximal rank of matrices in Fk equals k. Let Y ∈ Fk be a matrix of maximal
rank k, and let the k-dimensional subspace H ⊂ Rn be its image. Then we have Lk =
L∩Ln(H) and Fk = L∩Fn(H). By Corollary 4 there exists a basis {r1, . . . , rk} of H such
that rirTi ∈ K for all i = 1, . . . , k, and Y =

∑k
i=1 rir

T
i . By virtue of degK = n and the

last part of Corollary 4 we may complete this basis of H to a basis {r1, . . . , rn} of Rn such
that rirTi ∈ K for all i = 1, . . . , n. Adopt the coordinate system defined by this basis. Then
all diagonal matrices are in L, and the subspace Lk consists of the matrices in L all whose
non-zero elements are located in the upper left k × k block.

SinceK is simple, there exists a rank 1 matrix zzT ∈ K such that the vector z = (z1, . . . , zn)T

is neither in H nor in span{rk+1, . . . , rn}. In other words, the subvector zH = (z1, . . . , zk)
T

is not zero, and not all of the elements zk+1, . . . , zn are zero. Without loss of generality, let the
nonzero elements in the second group be zk+1, . . . , zk+m. By scaling the vector z, we may also
assume that zT z = 1.

Denote by Fk+m the face of K which consists of all matrices in K whose non-zero elements
are located in the upper left (k + m) × (k + m) block. Denote the linear span of Fk+m by
Lk+m. Since all diagonal matrices are in L, the maximal rank of the matrices in Fk+m equals
k + m. By Corollary 1 we get degFk+m = k + m > k. By our definition of k we then have
Fk+m 6∈ F, and hence dimLk+m < 2(k +m)− 1. Let S be the (dimLk +m)-dimensional
subspace of Lk+m spanned by Lk and the rank 1 matrices rk+1r

T
k+1, . . . , rk+mr

T
k+m.

We have zzT ∈ Fk+m. Consider the matrixX = diag(Ik+m, 0, . . . , 0)−zzT ∈ Lk+m, where
Ik+m is the (k+m)×(k+m) identity matrix. By zT z = 1 the matrixX is positive semi-definite
of rank k +m− 1, with z as kernel vector. It follows that X ∈ Fk+m, and by Corollary 4 there
exist k + m − 1 linearly independent vectors x1, . . . , xk+m−1 ∈ Rn such that xixTi ∈ Fk+m
for all i = 1, . . . , k+m−1, andX =

∑k+m−1
i=1 xix

T
i . Since zTXz =

∑k+m−1
i=1 (zTxi)

2 = 0,
it follows that zTxi = 0 for all i = 1, . . . , k +m− 1.

Consider the (k +m− 1)-dimensional subspace S ′ ⊂ Lk+m spanned by the rank 1 matrices
xix

T
i , i = 1, . . . , k + m − 1. Let us bound the dimension of the intersection S ∩ S ′. Let

A ∈ S ∩ S ′ be arbitrary. Since A ∈ S, the matrix A has a block-diagonal structure A =
diag(AH , ak+1, . . . , ak+m, 0, . . . , 0), withAH a block of size k×k. On the other hand,A ∈ S ′
implies Az = 0. It follows that ak+1zk+1 = · · · = ak+mzk+m = 0 and ak+1 = · · · = ak+m =
0, because the corresponding elements of z are non-zero. The image of A is hence contained
in the intersection of the subspaceH with the orthogonal complement of z. By virtue of zH 6= 0
this intersection has dimension k − 1. By Lemma 36 we then get that dim(S ∩ S ′) ≤ k − 1.

Thus dim(S+S ′) = dimS+dimS ′−dim(S∩S ′) ≥ (dimLk+m)+(k+m−1)−(k−1) ≥
2k − 1 + 2m, leading to a contradiction with the bound dimLk+m < 2(k + m) − 1. This
completes the proof.
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6 Isolated extreme rays

The extreme rays of a ROG cone are generated by its rank 1 matrices. In this section we study
the situation when an extreme ray of a ROG cone K is isolated. We shall show that in this case
K is a direct sum of S1

+ with a lower-dimensional ROG cone, and the isolated extreme ray is
the face of K corresponding to the factor S1

+. We will need the following concept.

Definition 12. The vectors x1, . . . , xk+1 ∈ Rn are called minimally linearly dependent if they
are linearly dependent, but every k of them are linearly independent.

Lemma 37. A set of vectors x1, . . . , xk+1 ∈ Rn is minimally linearly dependent if and only
if their span has dimension k and there exist nonzero real numbers c1, . . . , ck+1 such that∑k+1

i=1 cixi = 0.

Proof. Denote by L the linear span of {x1, . . . , xk+1}, and let X be the n × (k + 1) matrix
formed of the column vectors xi.

Let x1, . . . , xk+1 ∈ Rn be minimally linearly dependent. Then the dimension of L equals
k, because there exist k linearly independent vectors in L. The matrix X then has rank k
and its kernel has dimension 1. Let (c1, . . . , ck+1)

T ∈ Rk+1 be a generator of kerX . Then∑k+1
i=1 cixi = 0 and not all ci are zero. Let I ⊂ {1, . . . , k + 1} be the set of indices i such

that ci 6= 0. Then the vectors in the set {ci | i ∈ I} are linearly dependent. By assumption, no
k vectors are linearly dependent, and therefore I has not less than k + 1 elements. It follows
that ci 6= 0 for all i.

Let now c1, . . . , ck+1 be nonzero real numbers such that
∑k+1

i=1 cixi = 0, and suppose dimL =
k. Then x1, . . . , xk+1 are linearly dependent. Moreover, rkX = k, and hence the vector
(c1, . . . , ck+1)

T generates the kernel of X . In particular, there is no nonzero kernel vector
with a zero element. It follows that every subset of k vectors is linearly independent. Thus
x1, . . . , xk+1 are minimally linearly dependent.

Lemma 38. Let S ⊂ Rn be a subset and x ∈ S a nonzero vector. Then either

1) there exists a subspace H ⊂ Rn of dimension n− 1 which does not contain x, such that for
every y ∈ S either y ∈ H or y is a multiple of x,

or 2) there exists a minimally linearly dependent subset T ⊂ S of size at least 3 such that
x ∈ T .

Proof. Let L ⊂ Rn be the linear span of S, and let k be its dimension. Let us complete x1 = x
to a basis {x1, . . . , xk} ⊂ S ofL. Then every vector y ∈ S can be in a unique way represented
as a sum y =

∑k
i=1 cixi. We have two possibilities.

1) For every vector y =
∑k

i=1 cixi ∈ S, either c1 = 0, or c2 = · · · = ck = 0. Then we can
take H as any hyperplane which contains the span of {x2, . . . , xk} but not x1, and are in the
situation 1) of the lemma.

2) There exists y =
∑k

i=1 cixi ∈ S such that c1 6= 0 and at least one of the coeffi-
cients c2, . . . , ck is not zero. Let without loss of generality the nonzero coefficients among the
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c2, . . . , ck be the coefficients c2, . . . , cl, l ≥ 2. Then we obtain y−
∑l

i=1 cixi = 0, and the set
{x1, . . . , xl, y} ⊂ S is minimally linearly dependent by Lemma 37. Thus we are in the situation
2) of the lemma.

Lemma 39. Let K be a ROG cone and let R1, . . . , Rk+1 ∈ K be extreme rays of K . Let
the rank 1 matrices Xi = xix

T
i be generators of these extreme rays, respectively, in some

representation of K as a linear section of a positive semi-definite matrix cone Sn+. Whether the
set {x1, . . . , xk+1} ⊂ Rn is minimally linearly dependent then depends only on the extreme
rays R1, . . . , Rk+1 of K , but not on the representation of K , its size, or the generators Xi.

Proof. Let c1, . . . , ck+1 be non-zero real numbers. Then a subset {x1, . . . , xk+1} ⊂ Rn is
minimally linearly dependent if and only if the subset {c1x1, . . . , ck+1xk+1} is minimally linearly
dependent. This follows directly from Definition 12. Hence the property does not depend on
the generators Xi of the extreme rays for a given representation of K . Let now Xi = xix

T
i ,

Yi = yiy
T
i be generators of the rays Ri in different representations of sizes n,m, respectively.

Let n ≤ m without loss of generality. By Theorem 2 there exists an injective linear map f :
Rn → Rm such that f(xi) = σiyi, where σi ∈ {−1,+1}, for all i = 1, . . . , k + 1. By the
injectivity of f , we have for every index subset I ⊂ {1, . . . , k + 1} that the set {xi}i∈I is
linearly dependent if and only if the set {σiyi}i∈I is linearly dependent. Hence {x1, . . . , xk+1}
is minimally linearly dependent if and only if the set {y1, . . . , yk+1} is. This completes the
proof.

Lemma 39 allows to make the following definition.

Definition 13. Let K be a ROG cone. We call a subset {R1, . . . , Rk+1} of extreme rays of K ,
generated by rank 1 matrices Xi = xix

T
i , respectively, an MLD set, if the set {x1, . . . , xk+1}

is minimally linearly dependent.

Lemma 40. Let K be a ROG cone of degree n ≥ 2, possessing an MLD set {R1, . . . , Rn+1}
of extreme rays. Then the following holds:

i) the cone K is simple;

ii) the extreme rays R1, . . . , Rn+1 of K are not isolated.

Proof. Represent K as a linear section of Sn+, and let the rank 1 matrices Xi = xix
T
i be

generators of the extreme rays Ri, i = 1, . . . , n + 1. Then the set {x1, . . . , xn+1} ⊂ Rn is
minimally linearly dependent. Denote the linear span of K by L.

Suppose for the sake of contradiction that K is not simple. Then there exists a nontrivial direct
sum decomposition Rn = H1⊕H2 such that K ⊂ Ln(H1) +Ln(H2) and hence xi ∈ H1 ∪
H2 for all i = 1, . . . , n + 1. Let n1, n2 be the dimensions of H1, H2, respectively, and n′1, n

′
2

the number of indices i such that xi ∈ H1 or xi ∈ H2, respectively. Then n′1, n
′
2 > 0, because

the vectors x1, . . . , xn+1 span the whole space Rn and the decomposition Rn = H1 ⊕ H2

is nontrivial. On the other hand, we have n1 + n2 = n and n′1 + n′2 = n + 1. Hence either
n′1 > n1, or n′2 > n2, and there exists a strict subset of the set {x1, . . . , xn+1} which is
linearly dependent, leading to a contradiction. This proves i).
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We shall now prove ii). For n = 2 we have K = S2
+, and the assertion is evident. Suppose

n ≥ 3.

By the definition of minimal linear dependence the vectors x1, . . . , xn form a basis of Rn.
Choose a coordinate system in which this is the canonical basis. By Lemma 37 there exist
nonzero scalars c1, . . . , cn+1 such that

∑n+1
i=1 cixi = 0. We may normalize these scalars by a

common factor to achieve cn+1 = −1. Then we have xn+1 = (c1, . . . , cn)T .

The subspace L ⊂ Sn contains the (n + 1)-dimensional linear span L̃ of the rank 1 ma-
trices xixTi , i = 1, . . . , n + 1. Let d1, . . . , dn > 0 be positive scalars, and set dn+1 =

−
(∑n

i=1 d
−1
i c2i

)−1
. Then the matrix M =

∑n+1
i=1 dixix

T
i is an element of L̃. Moreover, for

every vector r = (r1, . . . , rn)T we have

rTMr =
n+1∑
i=1

di(r
Txi)

2 =
n∑
i=1

dir
2
i −

(
∑n

i=1 ciri)
2∑n

i=1 d
−1
i c2i

=
n∑
i=1

(√
diri −

ci
∑n

j=1 cjrj√
di
∑n

j=1 d
−1
j c2j

)2

≥ 0.

It follows that M � 0 and hence M ∈ K .

Moreover, we have rTMr = 0 if and only if
√
diri =

ci
Pn

j=1 cjrj√
di

Pn
j=1 d

−1
j c2j

for all i = 1, . . . , n. An

equivalent condition is that r = αs for some scalar α, where s = (s1, . . . , sn)T is a vector
given by si = d−1

i ci for all i = 1, . . . , n. Hence M is of rank n− 1, in particular, it is not rank
1.

Let H be the (n − 1)-dimensional subspace of vectors v ∈ Rn such that vT s = 0. Then the
minimal face of Sn+ which contains M is given by Fn(H). It consists of all matrices X ∈ Sn+
such that Xs = 0. The linear span Ln(H) of this face is given by all X ∈ Sn such that Xs =
0. We shall now compute the intersection Ln(H)∩ L̃. Let X =

∑n+1
i=1 αixix

T
i ∈ Ln(H)∩ L̃.

Then we have

Xs =
n+1∑
i=1

αi(x
T
i s)xi =

n∑
i=1

αisixi + αn+1 ·
n∑
j=1

cjsj ·
n∑
i=1

cixi

=
n∑
i=1

(
αid
−1
i + αn+1

n∑
j=1

d−1
j c2j

)
cixi = 0.

It follows that αidn+1 = αn+1di for all i = 1, . . . , n. An equivalent condition is that the vectors
α = (α1, . . . , αn+1)

T and d = (d1, . . . , dn+1)
T are proportional, and henceX is proportional

to M . It follows that Ln(H) ∩ L̃ is the 1-dimensional subspace generated by M .

By Lemma 8 there exist n − 1 linearly independent vectors y1, . . . , yn−1 ∈ Rn such that
yiy

T
i ∈ K for all i and M =

∑n−1
i=1 yiy

T
i . Note that yiyTi ∈ Ln(H) for all i, and hence

yiy
T
i ∈ Ln(H) ∩ L.

Assume for the sake of contradiction that the extreme ray R1 generated by the rank 1 matrix
x1x

T
1 is an isolated extreme ray of K . Then there exists β > 0 such that for every vector

z ∈ Rn, not proportional to x1 and such that zzT ∈ K , we have
∑n

i=2(z
Txi)

2 > β(zTx1)
2.
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Since the intersection Ln(H) ∩ L̃ does not contain a rank 1 matrix, x1x
T
1 ∈ L̃, and yiyTi ∈

Ln(H), we have that yi is not proportional to x1 for every i = 1, . . . , n − 1. It follows that∑n
j=2(y

T
i xj)

2 > β(yTi x1)
2 for all i = 1, . . . , n− 1. Therefore

n∑
j=2

(
dj + dn+1c

2
j

)
=

n∑
j=2

xTjMxj =
n−1∑
i=1

n∑
j=2

(xTj yi)
2 > β

n−1∑
i=1

(yTi x1)
2 = βxT1Mx1

= β
(
d1 + dn+1c

2
1

)
. (7)

Fix now d2, . . . , dn and let d1 → +∞. Then dn+1 → −
(∑n

i=2 d
−1
i c2i

)−1
, and the leftmost

term in (7) tends to a finite value. On the other hand, the rightmost term in (7) tends to +∞,
leading to a contradiction.

For the other extreme rays of K the reasoning is similar after an appropriate permutation of the
MLD set {R1, . . . , Rn+1}.
Corollary 12. Let k ≥ 2 and let K be a ROG cone possessing an MLD set {R1, . . . , Rk+1}
of extreme rays. Then the following holds:

i) the dimension and degree of K satisfy dimK ≥ 2k − 1, degK ≥ k;

ii) the extreme rays R1, . . . , Rk+1 of K are not isolated.

Proof. Represent K as a linear section of Sn+ for some n, and let the rank 1 matrices Xi =
xix

T
i be generators of the extreme rays Ri, i = 1, . . . , k + 1. Then the set {x1, . . . , xk+1} ⊂

Rn is minimally linearly dependent. By Lemma 37 the linear spanH of the vectors x1, . . . , xk+1

is a subspace of dimension k. Then KH = Ln(H)∩K is a face of K and hence a ROG cone
by Lemma 6. Moreover,KH contains the rank 1 matrices x1x

T
1 , . . . , xk+1x

T
k+1 and is of degree

k. In particular, the set {R1, . . . , Rk+1} is also an MLD set of extreme rays for KH .

Applying Lemma 40 to the coneKH , we see thatKH is simple and the extreme raysR1, . . . , Rk+1

of KH are not isolated for all i = 1, . . . , k + 1. By Theorem 4 we have dimKH ≥ 2k − 1.
But dimK ≥ dimKH , degK ≥ degKH , and every extreme ray of KH is also an extreme
ray of K . The claim of the corollary now easily follows.

Corollary 13. Let K be a ROG cone of degree n, and let R be an isolated extreme ray of K .
Then K can be represented as a direct sum K ′ ⊕ S1

+, where K ′ is a ROG cone of degree
n− 1, such that the extreme ray R is given by the set {0} ⊕ S1

+.

Proof. RepresentK as a linear section of the cone Sn+, and let x ∈ Rn be such thatX = xxT

generates the isolated extreme ray R of K .

Define the set S = {y ∈ Rn | yyT ∈ K} and note that x ∈ S. By virtue of Corollary 12
the vector x cannot be contained in a minimally linearly dependent subset of S of cardinality at
least 3. By Lemma 38 there exists a subspace H ⊂ Rn of dimension n − 1 such that x 6∈ H
and S ⊂ H ∪ span{x}.
Hence spanK = span{yyT | y ∈ S} ⊂ Ln(H) + spanR, and by Lemma 16 we have
K = K ′ + R, where K ′ = K ∩ Ln(H) is the face of K generated by H , and the sum is
isomorphic to the direct sum of the summands. By Lemma 14 the cone K ′ has degree n − 1.
This completes the proof.
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Theorem 5. Let K be a ROG cone of degree n. Then the number of its isolated extreme rays
does not exceed n. Let R1, . . . , Rk be the isolated extreme rays of K . Then K is isomorphic
to a direct sum K ′ ⊕ Rk

+, where K ′ is a ROG cone of degree n − k without isolated extreme
rays, and the extreme rays R1, . . . , Rk correspond to the extreme rays of the summand Rk

+.

Proof. We prove the theorem by induction over n. If n = 1, then K = R+, and the assertion
is evident. Suppose now that n ≥ 2 and the assertion is proven for cones of degrees not
exceeding n− 1.

If K has no isolated extreme ray, then the assertion of the theorem holds with K ′ = K .

Assume now that R is an isolated extreme ray of K . By Corollary 13 K can be represented as
a direct sum K1 ⊕ R+, where K1 is a ROG cone of degree n − 1. By the assumption of the
induction, the number of isolated extreme rays of K1 is finite and does not exceed n − 1, let
these be ρ2, . . . , ρk′ , 1 ≤ k′ ≤ n. Moreover, K1 is isomorphic to a direct sum K ′ ⊕ Rk′−1

+ ,
where K ′ is a ROG cone of degree n − k′ without isolated extreme rays. It follows that K ∼=
K ′ ⊕ Rk′

+ .

Now every extreme ray of the direct sum K ′ ⊕ Rk′
+ is either an extreme ray of the factor K ′ or

an extreme ray of the factor Rk′
+ , and it is isolated in the direct sum if and only if it is isolated in

the factor. The extreme rays of K ′ are not isolated in K ′, and hence they are not isolated in K .
The factor Rk′

+ has k′ extreme rays, and all of them are isolated. These k′ rays hence exhaust
the isolated extreme rays of K ′ ⊕ Rk′

+ . It follows that k′ = k and the assertion of the theorem
readily follows.

The discrete and the continuous part of the set of extreme rays of K thus generate separate
factors of the coneK . The factor generated by the discrete part is isomorphic to the nonnegative
orthant, with the discrete extreme rays of K being its generators.

Corollary 14. Let K be a simple ROG cone of degree degK ≥ 2. Then K has no isolated
extreme rays.

Proof. The corollary is an immediate consequence of Theorem 5.

Lemma 41. Let K ⊂ Sn+ be a ROG cone, and let x ∈ Rn be such that the rank 1 matrix xxT

generates an extreme ray ofK which is not isolated. Then there exists a vector y ∈ Rn, linearly
independent of x, such that xyT + yxT ∈ spanK .

Proof. Assume the conditions of the lemma. Then there exists a sequence v1, v2, . . . of nonzero
vectors in Rn such that xTvk = 0, (x + vk)(x + vk)

T ∈ K for all k, and limk→∞ vk = 0.

Set yk = vk

||vk||
. Then we have (x+vk)(x+vk)T−xxT

||vk||
= xyTk + ykx

T +
vkv

T
k

||vk||
∈ spanK . Since

limk→∞
vkv

T
k

||vk||
= 0 and spanK is closed, we have xyT + yxT ∈ spanK for every accumula-

tion point of the sequence y1, y2, . . . . But such accumulation points exist due to the compact-
ness of the unit sphere, and every such accumulation point is orthogonal to x. This completes
the proof.
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Corollary 15. Let K ⊂ Sn+ be a simple ROG cone of degree degK ≥ 2. Then for every
nonzero vector x ∈ Rn such that xxT ∈ K there exists a vector y ∈ Rn, linearly independent
of x, such that xyT + yxT ∈ spanK .

Proof. The corollary is an immediate consequence of Lemma 41 and Corollary 14.

Lemma 42. Let K be a simple ROG cone of degree degK ≥ 2. If K has a face F ⊂ K such
that dimK − dimF = 2, then K is isomorphic to an intertwining of F and S2

+.

Proof. Assume the conditions of the lemma, and set n = degK , k = degF . RepresentK as
a linear section of the cone Sn+, and letX ∈ F be a matrix of maximal rank k. Denote the image
of X by H . Then F = Ln(H) ∩ K . By the last part of Corollary 4 there exist linearly inde-
pendent vectors rk+1, . . . , rn ∈ Rn such that Rn = span(H ∪ {rk+1, . . . , rn}) and rjrTj ∈
K , j = k + 1, . . . , n. We obtain dimK ≥ dimF + dim span{rk+1r

T
k+1, . . . , rnr

T
n} =

(dimK − 2) + (n − k). It follows that k ≥ n − 2. If k = n − 2, then spanK =
spanF + span{rn−1r

T
n−1, rnr

T
n} and K is isomorphic to the direct sum F ⊕ R2

+, contra-
dicting the simplicity of K .

Hence k = n− 1. Set x = rn for simplicity of notation. By Corollary 15 there exists a nonzero
vector y ∈ H such that xyT + yxT ∈ spanK .

Since the codimension ofF inK is two, we have spanK = spanF⊕spanxxT⊕span(xyT+
yxT ). SinceK is simple, there exists a vector z ∈ Rn such that z 6∈ H ∪ span{x} and zzT ∈
K . Let z = zH +βx be the decomposition of z corresponding to the direct sum decomposition
Rn = H ⊕ span{x}. Then zH 6= 0, β 6= 0, zzT = zHz

T
H + β(zHx

T + xzTH) + β2xxT . On
the other hand, we have the decomposition zzT = ZF + α1xx

T + α2(xy
T + yxT ), where

ZF ∈ spanF .

Let l be a linear form which is zero on H , but l(x) = 1. Contracting both decompositions of
the rank 1 matrix zzT with l, we obtain βzH + β2x = α1x + α2y, and hence α1 = β2,
βzH = α2y, α2 6= 0, ZF = zHz

T
H = (β−1α2)

2yyT ∈ spanF .

Hence yyT ∈ F ⊂ K . Thus Ln(span{x, y}) ⊂ spanK and

Fn(span{x, y}) = Ln(span{x, y}) ∩K

is a face of K which is isomorphic to S2
+. By construction K is an intertwining of the faces F

andFn(span{x, y}), with the intersection F ∩Fn(span{x, y}) generated by yyT . This yields
the assertion of the lemma.

7 Classification for small degrees

In this section we classify all simple ROG cones K of degree n = degK ≤ 4 up to isomor-
phism. Denote by Trin+ the cone of all tridiagonal matrices in Sn+.
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7.1 Cones of degree n ≤ 3

For n = 1 the only ROG cone is S1
+.

For n = 2 we have the ROG cones S1
+ ⊕ S1

+ and S2
+, of which only the latter is simple.

For n = 3 the only ROG cone of dimension 6 is S3
+, which is simple. By Theorem 4 any other

simple ROG cone must have dimension 5, i.e., is given by K = {X ∈ S3
+ | 〈X,Q〉 = 0} for

some indefinite quadratic form Q. The isomorphism class of K depends only on the signature
of Q, and the forms±Q define the same cone K . Moreover, every cone K of this form is ROG
by Corollary 9. The possible isomorphism classes are hence given by the signatures (+ +−)
and (+− 0) of Q. It is easily seen that the corresponding ROG cones are isomorphic to Han3

+

and the full extension of S1
+ ⊕ S1

+, respectively. The latter cone is isomorphic to Tri3+.

7.2 Auxiliary results

For the classification of all simple ROG cones of degree n = 4 we shall need a couple of
auxiliary results.

Lemma 43. Let e1, . . . , e4 be the canonical basis vectors of R4. LetP ⊂ R4 be a 2-dimensional
subspace which is transversal to all coordinate planes spanned by pairs of basis vectors. Define
the set of vectors

R = {αei |α ∈ R, i = 1, 2, 3, 4} ∪
{z = (z1, z2, z3, z4)

T ∈ R4 | zi 6= 0 ∀ i = 1, . . . , 4; (z−1
1 , z−1

2 , z−1
3 , z−1

4 )T ∈ P}.

Let L ⊂ S4 be the linear span of the set {zzT | z ∈ R}. Then dimL = 7, and the spectrahe-
dral cone K = L ∩ S4

+ is isomorphic to the cone Han4
+ of positive semi-definite 4× 4 Hankel

matrices.

Proof. Let (r1 cosϕ1, . . . , r4 cosϕ4)
T , (r1 sinϕ1, . . . , r4 sinϕ4)

T ∈ R4 be two linearly inde-
pendent vectors spanning P . By the transversality property of P all 2 × 2 minors of the 4 × 2
matrix composed of these vectors are nonzero. Hence the angles ϕ1, . . . , ϕ4 are mutually dis-
tinct modulo π, and the scalars r1, . . . , r4 are nonzero. We may also assume without loss of
generality that none of the angles ϕi is a multiple of π, otherwise we choose slightly different
basis vectors in P .

For all ξ ∈ [0, π) we then have that the vector (r1 sin(ϕ1 + ξ), . . . , r4 sin(ϕ4 + ξ))T is an
element of P . More precisely, we get

R = {αei |α ∈ R, i = 1, 2, 3, 4} ∪

∪

{
α

(
1

r1 sin(ϕ1 + ξ)
, . . . ,

1

r4 sin(ϕ4 + ξ)

)T
|α ∈ R, ξ 6= ϕi mod π

}
.

Now set cos ξ = 1−t2
1+t2

, sin ξ = 2t
1+t2

, and s = t − 1
t
. Then 1

ri sin(ϕi+ξ)
= 1+t2

rit(2 cosϕi−s sinϕi)
.

Define the vector µ(s) =
(

1
r1(2 cosϕ1−s sinϕ1)

, . . . , 1
r4(2 cosϕ4−s sinϕ4)

)T
for all s ∈ R except

39



the values s = 2 cotϕi, i = 1, . . . , 4. We then get

R = {αei |α ∈ R, i = 1, 2, 3, 4} ∪ {αµ(s) |α ∈ R, s ∈ R, s 6= 2 cotϕi} ∪

∪

{
α

(
1

r1 sinϕ1

, . . . ,
1

r4 sinϕ4

)T
|α ∈ R

}
.

Multiplying the vector µ(s) by the common denominator of its elements, we obtain the vector

ν(s) = µ(s) ·
4∏
i=1

(2 cosϕi − s sinϕi)

= diag(r−1
1 , r−1

2 , r−1
3 , r−1

4 ) ·M · diag(8,−4, 2,−1) · η(s), (8)

where η(s) = (1, s, s2, s3)T and the matrix M is given by(
cos ϕ2 cos ϕ3 cos ϕ4 sin ϕ2 sin ϕ3 sin ϕ4 + sin(ϕ2 + ϕ3 + ϕ4) cos ϕ2 cos ϕ3 cos ϕ4 − cos(ϕ2 + ϕ3 + ϕ4) sin ϕ2 sin ϕ3 sin ϕ4
cos ϕ1 cos ϕ3 cos ϕ4 sin ϕ1 sin ϕ3 sin ϕ4 + sin(ϕ1 + ϕ3 + ϕ4) cos ϕ1 cos ϕ3 cos ϕ4 − cos(ϕ1 + ϕ3 + ϕ4) sin ϕ1 sin ϕ3 sin ϕ4
cos ϕ1 cos ϕ2 cos ϕ4 sin ϕ1 sin ϕ2 sin ϕ4 + sin(ϕ1 + ϕ2 + ϕ4) cos ϕ1 cos ϕ2 cos ϕ4 − cos(ϕ1 + ϕ2 + ϕ4) sin ϕ1 sin ϕ2 sin ϕ4
cos ϕ1 cos ϕ2 cos ϕ3 sin ϕ1 sin ϕ2 sin ϕ3 + sin(ϕ1 + ϕ2 + ϕ3) cos ϕ1 cos ϕ2 cos ϕ3 − cos(ϕ1 + ϕ2 + ϕ3) sin ϕ1 sin ϕ2 sin ϕ3

)
.

Here for the calculus of M we used the formulas

sinϕi cosϕj cosϕk + sinϕj cosϕi cosϕk + sinϕk cosϕi cosϕj = sinϕi sinϕj sinϕk + sin(ϕi + ϕj + ϕk),

sinϕ2 sinϕ3 cosϕ4 + sinϕ2 sinϕ4 cosϕ3 + sinϕ3 sinϕ4 cosϕ2 = cosϕi cosϕj cosϕk − cos(ϕi + ϕj + ϕk).

Note that the vector ν(s) can also be defined by the right-hand side of (8) for s = 2 cotϕi,
and for this value of s it is proportional to ei. Defining η(∞) = e4 and

ν(∞) = diag(r−1
1 , r−1

2 , r−1
3 , r−1

4 ) ·M · diag(8,−4, 2,−1) · η(∞),

we finally get
R = {αν(s) |α ∈ R, s ∈ R ∪ {∞}}.

A symbolic computation with a computer algebra system yields

detM = sin(ϕ1−ϕ2) sin(ϕ1−ϕ3) sin(ϕ1−ϕ4) sin(ϕ2−ϕ3) sin(ϕ2−ϕ4) sin(ϕ3−ϕ4) 6= 0.

Hence the matrix product diag(r−1
1 , r−1

2 , r−1
3 , r−1

4 )·M ·diag(8,−4, 2,−1) is non-degenerate,
and the subspace L = span{zzT | z = ν(s), s ∈ R ∪ {∞}} is isomorphic to the subspace
L′ = span{zzT | z = η(s), s ∈ R ∪ {∞}}.
The subspace L′, however, is the subspace of Hankel matrices in S4. The claim of the lemma
now easily follows.

Lemma 44. LetK ⊂ S4
+ be a simple ROG cone of dimension 7 and degree 4. Suppose that the

subspace of block-diagonal matrices consisting of two blocks of size 2× 2 each is contained in
spanK . Then K is isomorphic to the cone Tri4+ of positive semi-definite tridiagonal matrices.

Proof. The subspace of block-diagonal matrices as defined in the formulation of the lemma
is 6-dimensional. Hence there exist scalars a13, a14, a23, a24, not all equal zero, such that the
linear span of K is given by all matrices of the form

A =
7∑
i=1

αiAi =


α1 α2 α7a13 α7a14

α2 α3 α7a23 α7a24

α7a13 α7a23 α4 α5

α7a14 α7a24 α5 α6

 , α1, . . . , α7 ∈ R,
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where the matrices A1, . . . , A7 are defined by the above identity. Since K is ROG, there exists
a rank 1 matrix Z = zzT =

∑7
i=1 ζiAi with ζ7 6= 0. Its upper right 2× 2 block is also rank 1.

Hence a13a24 = a14a23 and there exist angles ϕ1, ϕ2 and a positive scalar r such that a13 =
r cosϕ1 cosϕ2, a14 = r cosϕ1 sinϕ2, a23 = r sinϕ1 cosϕ2, a24 = r sinϕ1 sinϕ2. Define
a basis of R4 by the vectors x1 = (− sinϕ1, cosϕ1, 0, 0)T , x2 = (cosϕ1, sinϕ1, 0, 0)T ,
x3 = (0, 0, cosϕ2, sinϕ2)

T , x4 = (0, 0,− sinϕ2, cosϕ2)
T . In the coordinates given by this

basis K equals the cone Tri4+, which proves our claim.

Lemma 45. Let K ⊂ Sn+ be a ROG cone, let e1, . . . , en be the canonical basis vectors of Rn,
and let y = (0, y2, . . . , yn)T ∈ Rn be a vector such that y2, . . . , yn 6= 0. If e1eT1 , . . . , ene

T
n ,

e1y
T + yeT1 ∈ spanK , then K is simple and dimK ≥ 2n− 1.

Proof. Suppose for the sake of contradiction that K is not simple. Then there exists a nontrivial
direct sum decomposition Rn = H1 ⊕ H2 such that for every rank 1 matrix xxT ∈ K we
have either x ∈ H1 or x ∈ H2. Hence ei ∈ H1 ∪H2 for i = 1, . . . , n. It follows that H1, H2

are spanned by complementary subsets of the canonical basis of Rn. Hence there exists a
permutation of the basis vectors such that in the corresponding coordinate system every matrix
in K , and hence also in spanK , becomes block-diagonal with a nontrivial block structure. But
this is in contradiction with the assumption e1yT + yeT1 ∈ spanK . Hence K must be simple.

Since the identity matrix is an element ofK , we have degK = n. The bound on the dimension
now follows from Theorem 4.

Corollary 16. Let K ⊂ S4
+ be a simple ROG cone of dimension 7 and degree 4. Suppose

there exist linearly independent vectors z1, z2, z3 ∈ R4 and nonzero scalars α, β such that
z1z

T
1 , z2z

T
2 , z3z

T
3 , α(z1z

T
2 + z2z

T
1 ) + β(z1z

T
3 + z3z

T
1 ) ∈ spanK . Then K is isomorphic to

either Tri4+, or the full extension of S1
+ ⊕ S1

+ ⊕ S1
+, or an intertwining of Han3

+ and S2
+.

Proof. Denote by H ⊂ R4 the hyperplane spanned by z1, z2, z3. The face F = L4(H) ∩K
of K is a ROG cone by Lemma 6. Applying Lemma 45 to F , we obtain dimF ≥ 5.

However, dimF 6= 6, because a ROG cone K with a face F of codimension 1 in K is isomor-
phic to F ⊕S1

+ and hence not simple. Therefore F has codimension 2 in K . By Lemma 42 the
cone K is isomorphic to an intertwining of F with S2

+.

In the previous subsection we established that a simple ROG cone of dimension 5 and degree
3 is isomorphic to either Han3

+ or Tri3+. If F ∼= Han3
+, then K is isomorphic to an intertwining

of Han3
+ and S2

+. If F ∼= Tri3+, then there exist two possibilities for K , because Tri3+ has two
non-isomorphic types of extreme rays. It is not hard to see that an intertwining of Tri3+ with S2

+

along these two types of extreme rays leads to cones which are isomorphic to Tri4+ or the full
extension of S1

+ ⊕ S1
+ ⊕ S1

+, respectively.

Lemma 46. Let K ⊂ S4
+ be a simple ROG cone of dimension 7 and degree 4. Suppose that

K has a face which is isomorphic to S2
+. Then K fulfills the conditions of Corollary 16.

Proof. By assumption there exist linearly independent vectors x1, x2 ∈ R4 such that x1x
T
1 ,

x2x
T
2 , x1x

T
2 + x2x

T
1 ∈ spanK . By Corollary 4 we may complete x1, x2 with vectors x3, x4 to

a basis of R4 such that x3x
T
3 , x4x

T
4 ∈ K . Pass to the coordinate system defined by this basis.
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By Corollary 15 there exists a nonzero vector y = (y1, y2, 0, y4)
T such that x3y

T + yxT3 ∈
spanK .

If y1 = y2 = 0, then x3x
T
4 + x4x

T
3 ∈ spanK and K fulfills the conditions of Lemma 44.

Hence K is isomorphic to Tri4+. The claim of the lemma then immediately follows in this case.

Suppose now that y1, y2 are not simultaneously zero.

Let us first consider the case y4 = 0. Let F = L4(span{x1, x2, x3}) ∩K be the face of K
which consists of matrices X ∈ K whose last column vanishes. Then x1x

T
1 , x2x

T
2 , x1x

T
2 +

x2x
T
1 , x3x

T
3 , x3y

T + yxT3 ∈ spanF , and dimF ≥ 5. Since dimF = 6 is not possible by the
simplicity ofK , we then must have spanF = span{x1x

T
1 , x2x

T
2 , x1x

T
2 +x2x

T
1 , x3x

T
3 , x3y

T +
yxT3 }. It follows that F is isomorphic to Tri3+. From Lemma 42 it follows that K is isomorphic
to an intertwining of Tri3+ and S2

+, which proves the claim of the lemma in this case.

Suppose now that y4 6= 0. Define the nonzero vector z3 = (y1, y2, 0, 0)T . Then z3z
T
3 ∈ K

and y = αx4 + βz3 with α = y4 and β = 1. The linearly independent vectors z1 = x3,
z2 = x4, z3, and scalars α, β then satisfy the conditions of Corollary 16.

We are now in a position to classify the simple ROG cones of degree 4.

7.3 Cones of degree 4

Let K be a ROG cone of degree degK = 4.

If dimK = 10, then K = S4
+.

If dimK = 9, then K is of the form {X ∈ S3
+ | 〈X,Q〉 = 0} for some indefinite quadratic

form Q. As in the case n = 3, the isomorphism class of K is defined by the signature of Q,
where ±Q yields the same cone K . The possible isomorphism classes of K are then defined
by the signatures (+− 00), (+ +−0), (+ +−−), and (+ + +−) of Q. In the first two cases
K is a full extension of S1

+ ⊕ S1
+ and Han3

+, respectively. In the third case K is isomorphic to
the cone of positive semi-definite 4 × 4 matrices consisting of four 2 × 2 symmetric blocks. It
can be interpreted as the moment cone of the homogeneous biquadratic forms on R2 × R2. It
is not hard to see that all four isomorphism classes consist of simple cones.

Let dimK = 8. IfK is simple, then by Theorem 3 it is isomorphic to a full extension of S1
+⊕S2

+.

By Theorem 4 any other simple ROG cone must have dimension 7.

Theorem 6. Let K be a simple ROG cone of degree degK = 4 and dimension dimK = 7.
Then K is isomorphic to either Tri4+, or the full extension of S1

+ ⊕S1
+ ⊕S1

+, or an intertwining
of Han3

+ and S2
+, or Han4

+.

Proof. Let K ⊂ S4
+ be a simple ROG cone of degree 4 and dimension 7. By Corollary 4 there

exist linearly independent vectors x1, x2, x3, x4 such that xixTi ∈ K , i = 1, . . . , 4. Pass to the
coordinate system defined by the basis {x1, x2, x3, x4}. Then all diagonal matrices are in the
linear span ofK . Moreover, by Corollary 15 there exist nonzero vectors yi = (yi1, yi2, yi3, yi4)

T

such that xTi yi = yii = 0 and xiyTi + yix
T
i ∈ spanK , i = 1, 2, 3, 4. Therefore spanK
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contains all matrices of the form
α1 α5y12 + α6y21 α5y13 + α7y31 α5y14 + α8y41

α5y12 + α6y21 α2 α6y23 + α7y32 α6y24 + α8y42

α5y13 + α7y31 α6y23 + α7y32 α3 α7y34 + α8y43

α5y14 + α8y41 α6y24 + α8y42 α7y34 + α8y43 α4

 , α1, . . . , α8 ∈ R.

(9)
Since the dimension of spanK is 7, the matrices at the coefficients α1, . . . , α8 must be linearly
dependent. This is equivalent to the condition that the matrix

Y =


y12 y21 0 0
y13 0 y31 0
y14 0 0 y41

0 y23 y32 0
0 y24 0 y42

0 0 y34 y43

 (10)

is rank-deficient, rkY ≤ 3. Here the rows of Y correspond to the elements (1, 2), (1, 3), (1, 4),
(2, 3), (2, 4), (3, 4) of (9), respectively, and the columns to the expressions at the coefficients
α5, . . . , α8, respectively. By construction every column of Y is nonzero.

If there exists a column of Y with exactly one nonzero element, let it be yij , then xixTi , xjxTj ,
xix

T
j + xjx

T
i ∈ spanK and K has a face which is isomorphic to S2

+. By Lemma 46 the cone
K is then isomorphic to either Tri4+, or the full extension of S1

+ ⊕ S1
+ ⊕ S1

+, or an intertwining
of Han3

+ and S2
+.

If there exists a column of Y with exactly two nonzero elements, let them be yij, yik, then the
linearly independent vectors z1 = xi, z2 = xj , z3 = xk and scalars α = yij , β = yik satisfy
the conditions of Corollary 16, and K is again isomorphic to one of the aforementioned cones.

Let us now assume that all elements yij for i 6= j are nonzero. Then rkY = 3, and the
subspace spanned by the set {xixTi , xiyTi + yix

T
i | i = 1, 2, 3, 4} has dimension 7. Since this

subspace is contained in spanK , it must actually equal spanK . There exists a nonzero vector
β = (β1, β2, β3, β4)

T such that Y β = 0. It is easy to see that no three columns of Y can
be linearly dependent, and hence all elements βi are nonzero. By possibly multiplying yi by the
nonzero constant βi, we may assume without loss of generality that β = (1, 1, 1, 1)T . Then
yij = −yji for all i, j = 1, . . . , 4, i 6= j.

It is not hard to check that spanK can then alternatively be written as the set
{X ∈ S4 | 〈X,Qi〉 = 0, i = 1, 2, 3}, where the linearly independent quadratic forms
Q1, Q2, Q3 are given by

0 y13y23 −y12y23 0
y13y23 0 y12y13 0
−y12y23 y12y13 0 0

0 0 0 0

 ,


0 y14y24 0 −y12y24

y14y24 0 0 y12y14

0 0 0 0
−y12y24 y12y14 0 0

 ,


0 0 y14y34 −y13y34

0 0 0 0
y14y34 0 0 y13y14

−y13y34 0 y13y14 0

 ,
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respectively.

The rank 1 matrices inK are then given by zzT such that z 6= 0 and zTQiz = 0 for i = 1, 2, 3.
Let us determine the set of vectors z = (z1, z2, z3, z4)

T which satisfy this quadratic system of
equations. It is not hard to see that if a solution z is not equal to a canonical basis vector, then
all elements of z are nonzero. For such z the quadratic system can be written as

y−1
23 z

−1
1 − y−1

13 z
−1
2 + y−1

12 z
−1
3 = 0,

y−1
24 z

−1
1 − y−1

14 z
−1
2 + y−1

12 z
−1
4 = 0, (11)

y−1
34 z

−1
1 − y−1

14 z
−1
3 + y−1

13 z
−1
4 = 0.

This is a linear system in the unknowns z−1
i . If the coefficient matrix of this system is full rank,

then the solution (z−1
1 , . . . , z−1

4 ) is proportional to (0, y−1
12 , y

−1
13 , y

−1
14 ) and does not correspond

to a real vector z. In this case the only rank 1 matrices in the subspace spanK are the matrices
xix

T
i , i = 1, . . . , 4, and K is not ROG.

Thus the coefficient matrix of system (11) is rank deficient. This implies that all 3× 3 minors of
this matrix vanish, which leads to the condition y−1

14 y
−1
23 − y−1

13 y
−1
24 + y−1

12 y
−1
34 = 0. The general

solution of system (11) is then given by
z−1
1

z−1
2

z−1
3

z−1
4

 = γ1


y−2

12 + y−2
13 + y−2

14

y−1
13 y

−1
23 + y−1

14 y
−1
24

y−1
14 y

−1
34 − y−1

12 y
−1
23

−y−1
12 y

−1
24 − y−1

13 y
−1
34

+ γ2


0
y−1

12

y−1
13

y−1
14

 , γ1, γ2 ∈ R.

It can be checked by direct calculation that none of the 2 × 2 minors of the 4 × 2 matrix com-
posed of the two vectors at γ1, γ2, respectively, vanishes. Hence the 2-dimensional subspace
of solutions of system (11) is transversal to all coordinate planes spanned by pairs of canonical
basis vectors. By Lemma 43 the cone K is then isomorphic to Han4

+.

8 Conclusions and open questions

In this contribution we have defined and considered a special class of spectrahedral cones, the
rank 1 generated cones. These cones are characterized by Property 1. They have applications
in optimization, namely for the approximation of difficult optimization problems by semi-definite
programs, in the common case where the semi-definite program is obtained by dropping a rank
1 constraint on the matrix-valued decision variable. They are closely linked to the property of
such a semi-definite relaxation being exact.

We provided many examples of ROG cones and several structural results. One of the main
results has been that the geometry of a ROG cone as a convex conic subset of a real vector
space uniquely determines its representation as a linear section of the positive semi-definite
matrix cone, if this representation is required to satisfy Property 1, up to isomorphism (Theorem
2). In particular, every point of the cone has the same rank in every such representation. The
rank also equals its Carathéodory number (Lemma 8). The Carathéodory number of the cone
itself equals its degree as an algebraic interior (Corollary 3).
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There exist surprisingly many ROG cones. This is due to the fact that there are several non-trivial
ways to construct ROG cones of higher degree out of ROG cones of lower degree, which we
have called full extensions (Subsection 3.2) and intertwinings (Subsection 3.3). Besides, there
is the obvious way of taking direct sums (Subsection 3.1). Iterating these procedures, one may
obtain families of mutually non-isomorphic ROG cones with arbitrarily many real parameters.
One may call ROG cones that are neither direct sums nor intertwinings nor full extensions of
other ROG cones elementary. Examples of elementary ROG cones are the cones of positive
semi-definite Hankel matrices and the cones K = {X ∈ Sn+ | 〈X,Q〉 = 0} of codimension 1
(Subsection 5.1), whereQ is an indefinite non-degenerate quadratic form. Besides these infinite
series of elementary ROG cones, there exists the exceptional moment cone of the ternary
quartics of dimension 15 and degree 6. It is unknown whether there exist other elementary
cones.

We classified the isomorphism classes of simple ROG cones, i.e., those not representable as
non-trivial direct sums, up to degree 4. There are 1,1,3,10 equivalence classes of such cones
for degrees 1,2,3,4, respectively.

The set of extreme rays of a ROG cone defines a real projective variety (Corollary 6). The
varieties defined by direct sums or intertwinings are finite unions of other projective varieties.
The classification of the irreducible varieties defined by ROG cones is an open question. It would
follow from a classification of the elementary ROG cones.

In this contribution we dealt with real symmetric matrices. The concept of ROG cones can
equally well be defined for complex hermitian or quaternionic hermitian matrices.
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