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Abstract

Let S]ﬁ C S™ be the cone of positive semi-definite matrices as a subset of the vector
space of real symmetric n X n matrices. The intersection of Sﬁ with a linear subspace of
S™ is called a spectrahedral cone. We consider spectrahedral cones K such that every
element of K can be represented as a sum of rank 1 matrices in K. We shall call such
spectrahedral cones rank one generated (ROG). We show that ROG cones which are
isomorphic as convex cones are also isomorphic as linear sections of the positive semi-
definite matrix cone, which is not the case for general spectrahedral cones. We give many
examples of ROG cones and show how to construct new ROG cones from given ones
by different procedures. We provide classifications of some subclasses of ROG cones, in
particular, we classify all ROG cones for matrix sizes not exceeding 4. Further we prove
some results on the structure of ROG cones. ROG cones are in close relation with the
exactness of semi-definite relaxations of quadratically constrained quadratic optimization
problems or of relaxations approximating the cone of nonnegative functions in squared
functional systems.

1 Introduction

Let S™ be the real vector space of n x n real symmetric matrices and S C S the cone of
positive semi-definite matrices. The intersection of the cone S’} with an affine subspace of S™ is
called a spectrahedron. Spectrahedra appear as the feasible sets of semi-definite programs and
are thus of importance for convex optimization. If the affine subspace happens to be a linear
subspace L C S", then the intersection K = L N S is a spectrahedral cone. The facial
structure of spectrahedra and spectrahedral cones has been studied in [13].

The subject of this contribution are spectrahedral cones /K satisfying the following property.

Property 1. Every matrix in X can be represented as a sum of rank 1 matrices in K .

We shall call such spectrahedral cones rank 1 generated (ROG). A convex cone in some real
vector space will be called ROG cone if it is linearly isomorphic to a spectrahedral cone pos-
sessing Property 1. The corresponding isomorphism will define a representation of the ROG
cone. We shall adopt the convention that the empty sum evaluates to zero, such that the zero
matrix can be represented as an empty sum. Clearly the cone S itself is ROG.

The condition of being a ROG spectrahedral cone can equivalently be stated in terms of bounded
spectrahedra. Namely, the conic hull K of a bounded spectrahedron C' not containing the zero
matrix is ROG if and only if C' is the convex hull of the rank 1 matrices in C. Therefore, if C'
is a compact section of a ROG spectrahedral cone, then minimizing a linear function over the



nonconvex set of rank 1 matrices in C' is equivalent to minimizing this linear function over the
bounded spectrahedron C.

Thus Property 1 is in close relation with the exactness of semi-definite relaxations of noncon-
vex problems in the case when the relaxation is obtained by dropping a rank constraint. Many
nonconvex optimization problems which are arising in computational practice fall into this frame-
work, i.e., they can be cast as semi-definite programs with an additional rank constraint. It is this
rank constraint which makes the problem nonconvex and difficult to solve. At the same time,
dropping the rank constraint provides a convenient way of relaxing the problem into an easily
solvable semi-definite program.

A classical example is the MAXCUT problem [4], which can be formulated as the problem of
maximizing a linear function over the set of positive semi-definite rank 1 matrices whose diago-
nal elements all equal 1. By dropping the rank 1 condition, one obtains a semi-definite program
which yields an upper bound on the maximum cut.

We shall now consider two applications of ROG spectrahedral cones.

Quadratically constrained quadratic problems. The most general class of problems which
can be formulated as semi-definite programs with an additional rank 1 constraint are the quadrat-
ically constrained quadratic problems [13],[10]. This class includes also problems with binary
decision variables, as the condition z € {a, b} can be cast as the quadratic condition (x —
a)(x —b) =0.

A generic quadratically constrained quadratic problem can be written as

m]%n TSy 2TAx=0,i=1,....k z'Bx=1.
TeER™
Here A1, ..., Ay; B; S are real symmetric n X n matrices defining the homogeneous quadratic

constraints, the inhomogeneous quadratic constraint, and the quadratic cost function, respec-
tively. Introducing the matrix variable X = za” € S”, we can write the problem as

in(S,X): (B, X)=1, rkX =1 1
min(S, X) « (B, X)=1, 1 , (1)
where K = L NS}, and L C 8" is the linear subspace given by {X € S™|(A4;, X) =
0Vi=1,...,k}. The cone K is hence a linear section of the positive semi-definite matrix
cone. Problem (1) can be relaxed to a semi-definite program by dropping the rank constraint,

min
XeK

($,X): (B,X)=1. ()
Naturally, the question arises when the semi-definite relaxation (2) obtained from the nonconvex
problem (1) is exact, i.e., yields the same optimal value as (1). In general, this question is NP-
hard [13]. One NP-hard instance is, for example, the MAXCUT problem [3]. However, Property
1 of the spectrahedral cone K provides a simple sufficient condition.

Lemma 1. Let the linear subspace L C S™ be such that the cone K = L N S is rank 1
generated. Then either problems (1),(2) are both infeasible, or problem (2) is unbounded, or
problems (1),(2) have the same optimal value.



Proof. Define the spectrahedron C' = {X € K |(B,X) = 1}. Then the feasible set of
problem (2) is C', while that of problem (1) is C; = {X € C'| tk X = 1}.If C' = (), then both
problems are infeasible. Assume that C' # (). Then K # {0}, and by Property 1 every extreme
ray of the cone K is generated by a rank 1 matrix. If problem (2) is bounded, then its optimal
value is achieved at an extreme point X € C. Since X generates an extreme ray of K, we
must have rk X = 1. Thus X is feasible also for problem (1), and the optimal value of (1) is not
greater than that of (2). But C'; C (', and hence the optimal value of (1) is not smaller than that
of (2). Therefore both optimal values must coincide. O

In particular, if the spectrahedron C' is bounded, then problems (1) and (2) are equivalent.

Squared functional systems. Another motivation for the study of ROG spectrahedral cones
comes from squared functional systems [11]. Let A be an arbitrary set and F' an n-dimensional
real vector space of real-valued functions on A. Choose basis functions u1,...,u, € F.
The squared functional system generated by these basis functions is the set {uiuj li,j =
1,...,n} of product functions. This system spans another real vector space V' of real-valued
functions on A. Clearly V' does not depend on the choice of the basis functions u;, since it is
also the linear span of the squares f2, f € F.

Let us define a linear map A : V* — 8™ and its adjoint A* : §" — V by A*(A) =
Z;szl A;ju;u;. Here the space S is identified with its dual by means of the Frobenius scalar
product'. By definition of V' the map A* is surjective, and hence the map A is injective.

The sum of squares (SOS) cone > C V/, given by the set of all functions of the form Z]kvz1 f?
for fi,..., fn € F, can be represented as the image A*[S?] of the positive semi-definite
matrix cone and has nonempty interior. The dual X* of the SOS cone is given by the set of alll
dual vectors w € V* such that A(w) »= 0 [11, Theorem 17.1]. By injectivity of A it follows that
Y* is linearly isomorphic to its image K = A[X*] C S™. This image equals the intersection
of S7 with the linear subspace L = ImA. It follows that X" is isomorphic to a spectrahedral
cone.

Let P C V be the cone of nonnegative functions in 1. Since every sum of squares of real
numbers is nonnegative, we have the inclusion > C P. It is then interesting to know when the
cones P and X coincide. The following result shows that the cone K being ROG is a necessary
condition.

Lemma 2. Assume above notations. If P = ¥, then the spectrahedral cone K = L N S} is
rank 1 generated.

Proof. For z € A, define the dual vector w, € V* by (w,,v) = v(z) forallv € V. We first
show that for all x € A we have that A(w,) is contained in the set K1 = {X € K| rkX <

1.

The reason for defining the operator A by virtue of its adjoint A* is to stay in line with the notations in [11]. This
definition explicitly uses a basis of the space F'. In a coordinate-free definition, the source space of A* should be
the space Sme(F) of contravariant symmetric 2-tensors over F, and the operator A* itself should be defined by
linear continuation of the map f @ f +— f2, f € F.




Fix z € A and define the vector s € R™ element-wise by s; = u;(x),i = 1,...,n. Then we
have for all A € S™ that

(Awa), A) = (we, A*(A)) = Y Aij{we, wig) = D Ayjui(w)uy(x) = (ss”, A).

ij=1 ij=1

It follows that A(w,) = ss”. it follows that the rank of A(w, ) does not exceed 1. Moreover, we
have A(w,) > 0 and w, € V*, and hence A(w,) € K. This proves our claim.

For the sake of contradiction, assume now that K = A[X*] is not ROG. Then there exists a
dual vector y € >* such that the matrix A(y) can be strictly separated from the convex hull of
K. In other words, there exists A € 8™ such that (4, A(y)) < 0, but (A, X) > 0 for every
X € K.

Consider the function ¢ = A*(A) € V. For every x € A we have q(z) = (w,, A*(A))
(A(wy), Ay > 0, because A(w,) € K. Hence we have ¢ € P.But (¢,y) = (A*(A),y)
(A, A(y)) < 0, and therefore y & P*.

It follows that P* # >* and hence P # .. This completes the proof. O

Thus in every squared functional system where the cone of nonnegative functions coincides
with the SOS cone 3, the dual SOS cone X.* is isomorphic to a ROG spectrahedral cone. This
allows us to construct ROG cones from such squared functional systems. Let us consider two
examples.

B The first example is taken from [11, Section 3.1]. Here A = R, and F' is the space of
all polynomials of degree not exceeding n — 1, equipped with the basis of monomials
1,z,...,2" % ltis well-known that a univariate polynomial is nonnegative if and only if
it is a sum of squares of polynomials of lower degree. The corresponding ROG cone K
is the cone of all Hankel matrices in S* and has dimension 2n — 1. We shall denote this
cone by Han'} .

B Let A = RR? and let F' be the 6-dimensional space of homogeneous quadratic polyno-
mials on R?, equipped with the basis 2, 23, x3, Tox3, T173, T1To. The space V is then
the 15-dimensional space of ternary quartics, and in this space the cone of nonnegative
polynomials coincides with the SOS cone [8]. The corresponding ROG cone K is given
by all matrices in SJGr of the form

ap aes Gz ar ap; A
g Az Q4 Q13 Gag A12
as a4 a3 15 A4 Qg
A= s al,...,a15€R.
ar 13 ais a4 Q9 d4g
11 ag G4 Q9 A a7

1o a2 a9 ag a7 Qg

Besides the motivations coming from optimization, the ROG spectrahedral cones may represent
an interesting subject of study in their own right.



The remainder of the paper is structured as follows. In Section 2 we study the most basic
properties of ROG cones. In particular, we establish that the minimal polynomial of a ROG
cone, when the latter is viewed as an algebraic interior, is determinantal, and the degree of the
cone is given by the maximal rank of the matrices it contains (Subsection 2.1). In Subsection
2.2 we study the facial structure of ROG cones and establish the identity of the rank and the
Carathéodory number of its elements. In particular, the rank is an invariant of the elements of
a ROG cone under linear isomorphisms. In Subsection 2.3 we prove that the geometry of a
ROG cone as a conic convex subset of a real vector space determines its representations as
ROG spectrahedral cones uniquely up to a trivial notion of isomorphism, which is not true for
spectrahedral cones in general. In Section 3 we describe different methods to construct ROG
cones of higher degree from ROG cones of lower degree. The most simple way is taking direct
sums, which is considered in Subsection 3.1. This leads to the notion of simple ROG cones,
which are defined as those not representable as a nontrivial direct sum. In Subsections 3.2,
3.3 we consider two other ways of constructing ROG cones. The second one can be seen
as a generalization of taking direct sums. In Section 4 we consider some examples of ROG
cones. In Subsection 4.1 we investigate ROG cones defined by conditions of the type that a
subset of entries in the representing matrices vanishes. This class of ROG cones is linked to
chordal graphs and has been studied in [1],[12], see also [9] for a generalization to higher matrix
ranks. We show that these cones can be constructed from full matrix cones S_’i by the methods
presented in Section 3. In Subsection 4.2 we construct an example of a continuous family of
mutually non-isomorphic ROG cones. In Section 5 we consider ROG cones of low codimension
(Subsections 5.1, 5.2) and simple ROG cones of low dimension (Subsection 5.3). In Section
6 we consider the variety of extreme rays of ROG cones. We show that the discrete part of
this variety factors out and does not interfere with the part corresponding to the continuous
components. Finally, we give a complete classification of ROG cones for degrees n < 4 up to
isomorphism in Section 7. We conclude the paper with an outlook on future work.

For n € N, we define two operators L,,, F,, from the set of linear subspaces of R into the set
of linear subspaces of S™ and the set of faces of the cone S, respectively. Let H C R" be a
linear subspace. Then L,,(H), F,,(H) will be defined as the linear span and the convex hull
of the set {xzT € 8" |z € H}, respectively. Note that J,,(H ) is linearly isomorphic to the
cone S¢™H and £,,(H) is isomorphic to the matrix space S4™ , although the isomorphisms
are not unique. For a matrix X € S, the smallest face of ' containing X is then given by
Fo(ImX), where ImX C R" is the image of the matrix X.

In order to indicate the size n of the matrices making up a spectrahedral cone K, we shall write
K =LNSYor K C 87, where L C 8" is alinear subspace. Later in the paper we shall also
work with ROG cones as abstract convex conic subsets of a real vector space. They may then
have representations in matrix spaces of different sizes.

2 Basic properties

In this section we establish some basic properties of ROG cones.



2.1 Minimal defining polynomial

In this subsection we consider aspects of spectrahedral and ROG cones which emanate from
real algebraic geometry.

Definition 1. [7, Section 2.2] A closed set C' C R is an algebraic interior if there exists
a polynomial p on R™ such that C' equals the closure of a connected component of the set
{z € R™|p(x) > 0}. Such a polynomial is called defining polynomial.

Lemma 3. [7, Lemma 2.1] Let C' be an algebraic interior. Then the defining polynomial p of
C' with minimal degree is unique up to multiplication by a positive constant. Any other defining
polynomial of C' is divisible by p.

Definition 2. The defining polynomial with minimal degree of an algebraic interior C' is called
minimal defining polynomial. The degree of C' is defined as the degree of the minimal defining
polynomial.

Lemma 4. [7, Theorem 2.2] Every spectrahedron is a convex algebraic interior.

From Lemma 3 it follows that the minimal defining polynomial of a spectrahedral cone is homo-
geneous. Indeed, under a homothety of the cone the minimal defining polynomial transforms to
another minimal defining polynomial, which must differ from the original one by a multiplicative
positive constant.

Definition 3. We say that a spectrahedral cone K = L N S is non-degenerate if the interior
of K consists of positive definite matrices.

Note that non-degeneracy is not an invariant under linear isomorphisms of spectrahedral cones
as conic convex subsets of real vector spaces. This property depends on the spectrahedral
representation of the abstract cone as a linear section of a positive semi-definite matrix cone.

From a degenerate spectrahedral cone K = L N Sﬁ we may always construct an isomorphic
non-degenerate spectrahedral cone by replacing S* by the minimal face of S* that contains K
[7, Lemma 2.3]. This replacement has no effect on Property 1. Hence for every ROG spectra-
hedral cone there exists an isomorphic non-degenerate ROG spectrahedral cone.

For a non-degenerate spectrahedral cone K C S”, a defining polynomial of K is given by the
restriction of the determinant in S™ to span K. We shall call this polynomial the determinantal
defining polynomial. In contrast to the minimal defining polynomial, the determinantal defining
polynomial explicitly uses the representation of KA as a linear section of a positive semi-definite
matrix cone. Linearly isomorphic spectrahedral cones may have determinantal defining polyno-
mials of different degrees. Our main result in this subsection is that this cannot happen if K is
a ROG cone, because the determinantal and minimal defining polynomials coincide.

Theorem 1. Let K = L N 8" be a non-degenerate ROG spectrahedral cone. Then the deter-
minantal defining polynomial d of K is a minimal defining polynomial.

Proof. Let X € K be positive definite. Since K is ROG, there exist vectors x1, ..., zy € R”
such that X = vazl z;xl and z;2l € Kforalli = 1,...,N. Since X > 0, the linear



span of {z1, ..., xy} equals R". In particular, among the x; there are n linearly independent
vectors, let these be x4, ..., z,.

Denote the linear span of the matrices xlxlT, cee xnxz; € K by D, and the intersection DN K
by Kp.Wehave D C L,and hence DNS} = DNLNS! = Kp. However, in the coordinates
defined by the basis {z1, ..., z,} of R" the subspace D C S™ is the subspace of diagonal
matrices. Hence Kp = D N S’ equals the convex conic hull of {z127, ..., z,27 }, which in
turn is linearly isomorphic to the nonnegative orthant R’ . Moreover, the relative interior of K'p
consists of positive definite matrices and is hence contained in the relative interior of /. On the
other hand, the boundary of K is contained in the boundary of K.

Let p : L — R be a minimal defining polynomial of K. Since the determinantal defining
polynomial d has degree n, the degree of p is at most n. By Lemma 3 p divides d. Since d > 0
on the relative interior of K, we also have p > 0 on the relative interior of K. Hence p > 0 on
the relative interior of K. On the other hand, p = 0 on the boundary of K, because p = 0
on the boundary of K. Therefore the restriction of p on D is a defining polynomial for the cone
Kp =R%.

However, the degree of the algebraic interior R’} is n, and hence p has degree at least n. It
follows that deg p = n, and d must be a minimal defining polynomial of K. O

Note that Theorem 1 is applicable to any non-degenerate spectrahedral cone K C S such that
there exist linearly independent vectors x4, ..., xr, € R" satisfying xixiT eK,i1=1,...,n,
because the proof uses only this condition.

Corollary 1. Let K = L N S} be a ROG spectrahedral cone. Then the degree of K is given
by deg K = maxxecx rk X.

Proof. Let m = maxyxcx rk X. Then the minimal face I’ of S’ which contains K is isomor-
phic to S”", and the linear span of F' is isomorphic to S™. As outlined in [7, Lemma 2.3], we
can then construct a determinantal defining polynomial of K by considering K as a subset
of span F' = S§™. This polynomial has degree m. The proof is concluded by application of
Theorem 1. O

Corollary 2. Let K C S be a ROG cone of degree m. Then K is linearly isomorphic to a
non-degenerate ROG cone K' C S, Moreover, every non-degenerate ROG cone which is
isomorphic to K is represented by matrices of size m.

Proof. As outlined above, for every ROG cone K there exists a linearly isomorphic non-dege-
nerate ROG cone.

Let K’ be such a non-degenerate ROG cone. We have deg K = deg K’, and hence by Corol-
lary 1 the interior of K consists of matrices of rank m. Since these matrices are positive definite
by the non-degeneracy condition, the size of the matrices in K must be m. O

In other words, a ROG cone of degree m possesses a non-degenerate ROG spectrahedral
representation of size m, and every non-degenerate ROG spectrahedral representation has
this size.



2.2 Facial structure

In this subsection we study the facial structure and the Carathéodory number of ROG cones.
We shall call an element of a cone K extreme if it generates an extreme ray of K.

Lemmas. Let K C Sl} be a ROG spectrahedral cone. Then the set of extreme elements of K
isgivenby {X € K| rkX = 1}.

Proof. Since K is ROG, every X € K with rk X > 1 can be represented as sum of elements
X; € K of rank 1. Hence such X cannot be extreme. On the other hand, every X € K with
rk X' = 1 generates an extreme ray of S’}. Extremality in K for such X follows immediately. [

Let us recall the results of [13] on the facial structure of general spectrahedral cones. Let K =
L N 87 be a spectrahedral cone. Then the faces of K are given by the intersections of L with
the faces of Sﬁ [13, Theorem 1], see also [14, Prop. 2.1]. In particular, the kernel of the matrices
X € K is constant over the relative interior of each face of K, and every face of K is exposed
[13, Corollary 1]. It follows that the faces of spectrahedral cones are also spectrahedral cones.

The smallest face of X' = L N S containing a matrix X € K is given by the intersections
LNF,(ImX) = LNSTNL,(ImX) = KNL,(ImX), because F,(ImX) is the smallest
face of S containing X. The smallest face of S containing K is given by F,,(/m.X), where
X is an arbitrary matrix in the interior of /.

Lemma 6. Every face of a ROG cone is a ROG cone.

Proof. Let K = L NS} be a ROG cone and K’ C K aface of K. Then there exists a face F’
of ST suchthat K’ = L N F. Let X € K’ be an arbitrary nonzero matrix. Since X € K and
K is ROG, there exist rank 1 matrices X1, ..., X; € K suchthat X = 22:1 X;. At the same
time, X € F. Since I is a face of ST, the rank 1 matrices X; € S” must also be elements of
this face. It follows that X; € K’, and X can be represented as sum of rank 1 matrices in K.
Thus K’ is ROG. O

Definition 4. [5, p.59] Let K C R™ be a closed pointed convex cone. The Carathéodory
number k(x) of a point x € K is the minimal number k such that there exist extreme elements
x1,...,xy of K satisfying x = Zle x;.

The Carathéodory number r.(K) of the cone K is the maximum of k(z) overx € K.

Lemma 7. Let K C S be a spectrahedral cone. The Carathéodory number of X € K
satisfies r(X) < rk X.

Proof. We proceed by induction. If rk X < 1, then by virtue of Lemma 5 we trivially have
k(X) = rk X. Suppose the relation k(X ) < rk X is proven for rk X < k — 1, and let
X € Kwithtk X =k > 2.

Without loss of generality we may assume n = k, otherwise we replace K by Ky = LN
Fn(ImX), the minimal face of K which contains X. Neither the rank nor the Carathéodory



number of X will change by this substitution of the ambient cone, but now F,,(ImX) = S*
and K x can be seen as a spectrahedral cone defined by k& x k matrices.

Then the boundary of K consists of matrices Y with tkY < k = n, and hence k(YY) <
k by the induction hypothesis. Let £ € K an extreme element of K, normalized such that
tr £ = tr X. Consider the compact line segment [ which is defined by the intersection of
K with the affine line passing through X and E. Since X is in the interior of K, it is also in
the interior of the segment [. One endpoint of [ is given by FE, while the other one is some
matrix Y € OK. Then there exists A € (0,1) such that X = AE + (1 — A\)Y". Hence
RX)<kR(E)+kY)<1+4+(k—-1)=k.

This completes the proof. O

Lemma 8. Let K C S be a ROG spectrahedral cone. The Carathéodory number of X € K
is given by k(X)) = rk X.

Proof. We have x(X) > rk X, because by virtue of Lemma 5 all generators of extreme rays
of K have rank 1, and a matrix X cannot be the sum of less that rk X matrices of rank 1. On
the other hand, x(X) < rk X by Lemma 7. O

Corollary 3. The Carathéodory number of a ROG cone equals its degree.

Proof. The claim follows immediately from Lemma 8 and Corollary 1. O

Corollary 4. Let K C S be a ROG spectrahedral cone, and let X € K be an element of rank
k. Then there exist rank 1 matrices X; = x;xl € K,i = 1,...,k, such that X = Zle X;
and the vectors x1, ..., x;, are linearly independent. In particular, if d = deg K, then there
exist d linearly independent vectors 1, ... ,rq € R" such thatr;r] € K fori =1,...,d.

Proof. The first claim of the Corollary is a consequence of Lemmas 5 and 8. The second claim
follows from the first claim, Lemma 8, and Corollary 3. O

As a consequence, we have the following result on the diagonalization of matrices in a ROG
cone.

Lemma 9. Let K C S be a ROG spectrahedral cone, and let X € K be an element of rank
k. Then there exists a basis of R™ such that in the corresponding coordinates we have X =
diag(1,...,1,0,...,0), and all diagonal matrices of the form diag(dy,...,d,0,...,0),
whered; > 0,1 =1,...,k,arein K.

Proof. By Corollary 4 there exist linearly independent vectors 1, . .., xx € R" such that X; =
vl € K,i=1,...,k,and X = Zle X;. Extend the set {1, ..., x}} to a basis of R",
then in the coordinates defined by this basis we have X = diag(1,...,1,0,...,0).

Moreover, for all d1, . ..,d; > 0 we have Zle dla:zxf € K, and in the coordinates defined
above this matrix has the form diag(dy, ..., dx,0,...,0). O



2.3 Isomorphisms and invariants

In this paper we consider spectrahedral cones as linear sections of cones of positive semi-
definite matrices. Two such sections may be linearly isomorphic as subsets of their linear hull,
while the matrices put into relation by the isomorphism may have very different properties. We
must therefore distinguish between isomorphisms of the spectrahedral cones as convex conic
subsets of a real vector space and isomorphisms between spectrahedral cones together with
their defining representations. In order to formalize the latter notion, we introduce the following
definition.

Definition 5. Let L C 8", L’ C S™ be linear subspaces of matrix spaces, and suppose that
n < n'. We call L, L' isomorphic if there exists an injective linear map f : R" — R™ with
coefficient matrix A € R™*™ such that the induced map f . 8" — 8" given by f X =
AXAT takes L onto L.

Note that the linear map f defines an isomorphism between the cone Sﬁ and a face of S_'ﬁ/.
Therefore, if L C S*, L' C S are isomorphic subspaces, then the spectrahedral cones
K=LNnSY, K'=Ln Sﬁ' are linearly isomorphic. For general spectrahedral cones, the
isomorphism between L and L’ in the sense of Definition 5 is a much stronger condition than
the usual linear isomorphism between K and K. For instance, a linear isomorphism between
spectrahedral cones in general does not preserve the rank, while the map f is rank-preserving.

In particular, the isomorphisms of linear subspaces of matrix spaces preserve Property 1 of the
spectrahedral cones these subspaces define. For ROG cones, however, the rank is even an
invariant of linear isomorphisms, as the following result shows.

Lemma 10. Let K C ST, K' C Sﬁ/ be linearly isomorphic ROG cones, and let I : L — L/
realize the linear isomorphism, where L, L’ are the linear hulls of K, K', respectively. Then
rk I(X) =1k X forall X € K.

Proof. The claim follows from Lemma 8 and the fact that the Carathéodory number is an invari-
ant under linear isomorphisms. O

We shall now show that for ROG cones, the two notions of isomorphism considered above
define the same equivalence relation. The proof requires some auxiliary results on the image
of the Pliicker embedding of Grassmanians. We begin with results on the rank 1 completion of
partially specified matrices.

Definition 6. A real partially specified n X m matrix is defined by an index subset P C
{1,...,n}x{1,...,m}, called a pattern, together with a collection of real numbers (A;;) . j)cp-
A completion of a partially specified matrix (P, (Aij) ;) ep) is a realn x m matrix C' such that
Cij = A;jforall (i,j) € P.

We shall be concerned with the question when a partially specified matrix possesses a comple-
tion of rank 1. This problem has been solved in [2], see also [6]. In order to formulate the result,
we need to define a weighted bipartite graph (G associated to the partially specified matrix. The
two groups of vertices will be the row indices 1,...,n and the column indices 1, ..., m. The
edges will be the elements of P, with the weight of (7, j) equal to A;;.
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Lemma 11. [6, Theorem 5] A partially specified matrix (P, (Ai;) (. cp) has a rank 1 comple-
tion if and only if the following conditions are satisfied. If for some (i, j) € P we have A;; = 0,
then either A;;; = 0 forall (i, j') € P, or Ayy; = Oforall (', j) € P. Further, for every cycle i, -
J1-io- - - -ig-Jr-i1 Of the bipartite graph G corresponding to the partially specified matrix, where

. . . : k k-1
i1 in the representation of the cycle is a row index, we have [ [,_, Ai.j, = Aiji - 1121 Aivivii-

Note that the relation in the second condition of the lemma depends only on the cycle itself, but
not on its starting point or on the direction in which the edges are traversed. Since the products
in the lemma are multiplicative under the concatenation of paths [6, p.2171], we may also restrict
the condition to elementary cycles. Moreover, for an elementary cycle i1-j1-i1 of length 2 the
relation reduces to A;,;, = A;,j, and is hence trivially satisfied.

Corollary 5. Let A = (P, (Aij)qij)ep) be a partially specified matrix such that A;; = +1
for all (i,j) € P, and G the corresponding bipartite graph. Assume further that for every
elementary cycle i1-j,- - - -jr-i1 of G with k > 2, where the representation of the cycle begins
with a row index, we have Hle Aiy = Aigjy ;:11 Aj,j,- Then there exists a rank 1
completion C' = ef” of A suchthate € {—1,+1}", f € {-1,+1}™.

Proof. By Lemma 11 there exists a rank 1 completion C' = éf7 of A, where é € R”, f € R™.
Suppose there exists an index ¢ such that €¢; = 0. Then all elements of the i-th row of C:’ vanish,
and all elements of this row are unspecified in A. We may then set ¢; = 1 and éf7 would
still be a completion of A. Hence assume without loss of generality that all elements of ¢ are
nonzero. In a similar manner, we may assume that the elements of f are nonzero.

We then define the vectors e € R", f € R™ element-wise by the signs of the elements of

é, f, respectively. For every (i,7) € P we then have e, f; = ‘Z% = ‘f‘f?' = A,;, because
if; ij

A;; = £1. Itfollows that C' = ef7 is also a completion of A. O

We now come to the Grassmanian Gr(n,R™), i.e., the space of linear n-planes in R™. Fix
a basis in R™. Then an n-plane A can be represented by an n-tuple of linear independent
vectors in R™, namely those spanning A. Let us treat these vectors as row vectors and stack
them into an n X m matrix M. The matrix M is determined only up to left multiplication by
a nonsingular n X n matrix, reflecting the ambiguity in the choice of vectors spanning A. The
Pliicker coordinate A;, . ; of A, where 1 < i; < --- < i, < m, is given by the determinant
of the n x n submatrix formed of the columns 7y, ..., of M. The vector A of all Plicker
coordinates is determined by the n-plane A up to multiplication by a nonzero constant and
corresponds to a point in projective space.

Lemma 12. Let A, A’ C R™ be two n-planes with Pliicker coordinate vectors A\, /', respec-
tively. Suppose there exists a positive constant c such that |A;, ;.| = c|A;] ;| for alln-tuples
(1,...,1,). Then there exists a linear automorphism of R™, given by a diagonal coefficient
matrix ¥ = diag(o1,...,0m,), where o; € {—1,+1} foralli = 1,...,m, which takes the

n-plane A to \'.

Proof. Assume the conditions of the lemma. Let without restriction of generality A, _,, # 0,
then also A}, # 0. Otherwise we may permute the basis vectors of R to obtain these

11



inequalities. Then we may choose the n X m matrix M representing A such that the first
n columns of M form the identity matrix. Make a similar choice for the n x m matrix M’
representing A’. Then we have A, _,, = A} , = 1 and hence ¢ = 1 for this choice of M, M’.
If m = n, then we may take X as the identity matrix. Let m > n.

Let k, [ be indices such that 1 < k < n,n <[ < m. The determinant Ay 1 j+1,..n, IS

then given by (—1)"""Mj,. Likewise, A ;1 11, = (=1)""FMj,;, and hence \Mkl] =
|M},| by the assumption on A, A’. We then get ]Mkl| = |Mj,| also forall k = 1,...,n,
I=1.....m

Let now P be the set of index pairs (k,1) such that My, # 0, and set Ay = % €

{=1,41} for (k,l) € P. Then for every completion C' of the partially specified matrix A =
(P, (Ak) (k,)ep) we have M’ = M o C', where e denotes the Hadamard matrix product.

We shall now show that the partially specified matrix A satisfies the condition of Corollary 5.
Let i1-71-- - - -jx-i1 be an elementary cycle of the bipartite graph G corresponding to A, where
k > 2,11,...,1 are row indices, and ji, ..., jr are column indices. Since the cycle is el-
ementary, the row and column indices are mutually distinct. The £ X k submatrix M of M
consisting of elements with row indices %1, . . . , 75 and column indices j1, . . . , jx does not have
any nonzero elements except those specified by the edges of the cycle, because any such el-
ement would render the cycle non-elementary. In particular, every row and every column of M
contains exactly two nonzero elements. The index set {j, . . . , jx } then has an empty intersec-
tion with {1,...,n}, because the first n columns of M contain strictly less than two nonzero
elements each. Moreover, in the Leibniz formula for the determinant det M only two products
are nonzero, and the corresponding permutations are related by a cyclic permutation which has

sign (—1)¥1. Therefore we have | det M| = [\, My,;, — (—1)*M,,;, - T115,

'Ll+1]l

Consider the n x n submatrix of M consisting of columns with indices in ({1,...,n} \
{ir, ..., ix}) U {1, ..., ju}. The determinant of this submatrix has absolute value | det M |
by construction. A similar formula holds for the absolute value of the determinant of the corre-
sponding n X n submatrix of M’. By the assumption on A, A’ we then have

k
lz]i - Mlk]l ' | | 11 | | zm Zk]l | | 1l+1jl :

It follows that either

k k k—1 k-1
(1 - H Ailjl) H Mizjz = <1 - Aikjl ’ H Aiz+1jz> (_1)kMikj1 ) H Miz+1jz
=1

=1

or

k k k—1 k—1
(1 + H Aim) H Mizjl = (1 + Aikjl ) H Ail+1jz> (_1)kMikj1 ) H Mil+1jz'
=1 =1 =1 =1
Note that all the involved elements of M are nonzero, while those of A equal +1. The re-
lation Hle A = —Aig ;:11 A, j, would then imply that in each of the two equa-
tions above, one side is zero while the other is not. Therefore we must have Hle Aij, =
A A and the condition in Corollary 5 is fulfilled.

g1 " L li=1 “agage
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By this corollary there exists a rank 1 completion C' = ef7 of A such thate € {—1,+1}",
f € {—1,+1}™ We then have M’ = M e (efT) = diag(e) - M - diag(f). Setting &> =
diag(f) completes the proof. O

We now are in a position to prove the main result of this subsection.

Lemma 13. Let K, K' C Sﬁ be linearly isomorphic non-degenerate ROG cones. Then their
linear hulls L, L' C 8™ are also isomorphic.

Proof. Denote the determinantal polynomial on 8™ by d. Then p = d|., p' = d| are the
determinantal defining polynomials of K, K, respectively. By Theorem 1 both p, p’ are minimal
defining polynomials.

Let f : L — L' be an invertible linear map realizing the isomorphism between K and K'. By
Lemma 3 there exists a positive constant ¢ > 0 suchthatp = ¢ (p' o f). Our goal is to extend
f to an automorphism of S™.

For every nonzero x € R™ such that v27 € K, the image f(xxT) € K'is arank 1 matrix
by Lemma 10. Hence there exists a vector y € R™ such that f(zz”) = yy7. This vector is
determined up to a sign. We shall now construct an automorphism f of R™ such that f(:m:T) =
f(x)f(x)T for all such .

Let 21, ..., 2, € R" be such that the set {z;z] |i = 1,...,m} forms a basis of L. This is
possible because K is a ROG cone. Let 1, ..., 4, € R" be such that f(xla:lT) = yyl for
alli =1,...,m. By virtue of the relation p = ¢ - (p' o f) we then have det(3 7", d;z;aT) =
cdet(3°7, diyiyl) identically in the variables 41, . .., d,,. In particular, for every n-tuple of
indices (i1, . . ., 4n) we have det(}_)_ ;2] ) = cdet(3o,_ vi,yih ).

Assemble the column vectors x; into an n. X m matrix X and the column vectors ¥; into an n xm
matrix Y. The above relation is then equivalent to det(X;, ;, X7 ;) = cdet(Y;, ;, Yi' , ),

where X, ;. .Y, i arethe n X n submatrices formed of the columns 4,...,%, of X, Y,
respectively. This finally yields | det X;, ;. | = /c|det Y}, ;| for all n-tuples (i1, ..., i,).

Thus the n-planes spanned in R™ by the row vectors of X, Y, respectively, fulfill the conditions
of Lemma 12. By this lemma there exist a nonsingular n X n matrix S and a diagonal matrix
Y = diag(oy,...,0,) with o; € {—1,+1} such that Y = SX¥, or equivalently Y =
SX.

Define a linear automorphism f of R™ by the coefficient matrix .S. Then we have for every
i=1,....,mthat f(z;) = Sv; = 0;y;, and hence f(z;)f(z:)" = yiyl = f(x:2T). Thus
the automorphism A +— SAST of S™ which is generated by f extends the map f between the
subspaces L, L'. In particular, it defines an isomorphism between L and L. O

Theorem 2. Let K C ST, K' C Sf:/ be linearly isomorphic ROG cones. Then their linear hulls
L, L' are also isomorphic in the sense of Definition 5.

Proof. Let without loss of generality n < n’ and denote by k the degree of K and K’. Let

H c R™, H' C R"™ be the images of arbitrary matrices in the interiors of I, K, respectively.
By Corollary 1 we have dim H = dim H' = k. The minimal faces of Sﬁ,&’ﬁ/ containing
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K, K', respectively, are given by F,,(H) and F,,(H'). The linear hulls of F,,(H), F, (H’)
are given by £,,(H) and L,/ (H'), respectively, which are both isomorphic to the space S*.

Let us view the cones K, K’ as subsets of S* by means of the corresponding isomorphisms.
Then by Lemma 13 there exists an automorphism of S* which takes L onto L’. In other words,
there exists an invertible linear map f : H — H' such that f(z)f(z)T € L' forallz € H
such that 727 € L. Let us extend this linear map to an injective linear map ¢ : R" — R™, and
define by ® its coefficient matrix. By construction, we then have ®xz” &7 = f(z)f(z)" € L/
for all z € R"™ such that zz” € L. Thus the map X +— ®X®7 is the sought isomorphism of
Land L' O

Theorem 2 states that the geometry of a ROG cone as a subset of real space determines its
representations as linear sections of a positive semi-definite matrix cone uniquely up to iso-
morphisms as in Definition 5. Of course, this does not preclude the existence of nonisomorphic
representations as a spectrahedral cone, but in these the cone will not be ROG. In the se-
quel, when we speak of a representation of a ROG cone, we will always mean a spectrahedral
representation where the cone is ROG.

Corollary 6. Let K, K' C S be linearly isomorphic ROG cones. Then the conic subsets
Xg = {z € R*|22" € K} and Xy» = {x € R"|z2T € K'} of R" are linearly
isomorphic and hence define projectively equivalent varieties in real projective space RP™*.

Proof. Let L, L' C 8™ be the linear spans of K, K, respectively. By Theorem 2 there exists a
linear automorphism f of R™ with coefficient matrix A, such that L' is the image of L under the
automorphism f of S” givenby f : X s AX AT,

Let z € Xk. Then zz” € L, and hence f(zz”) = (Az)(Az)T = f(z)f(z)T € L. Since
f(z)f(z)" is positive semi-definite, we also have f(x)f(z)T € K’ and hence f(r) € Xy
It follows that f[X x| C X-. Inthe same way one proves that f ! [X /] C X, which implies
that f is the sought isomorphism between X i and X . O

3 Construction of new ROG cones from given ones

In this section we consider several ways to construct ROG spectrahedral cones of higher degree
from given ones. By iterating these procedures, one may construct ROG cones of arbitrarily high
complexity.

3.1 Direct sums

In this subsection we consider direct sums of ROG cones and introduce the notion of a simple
ROG cone?. The following definition is standard.

2We propose to reserve the notion irreducible for ROG cones K C Sﬁ such that the real projective variety
defined by the set {z € R™ |z2T € K} is irreducible.
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Definition 7. Let K C R", K’  R"™ be convex cones. Their direct sum K & K’ is defined
astheset{(z,2') e R*"®R" |z € K, 2/ € K'}.

Let A € 8", A’ € 8" be matrices. Their direct sum A & A’ € S"t" is defined as the
block-diagonal matrix diag(A, A’).

These notions naturally extend to an arbitrary number of factors.

f K = LNS?, K' = L' NS are spectrahedral cones, then their direct sum is linearly
isomorphic to a spectrahedral cone. The isomorphism K @& K' = (L & L") N Sffr”/ assigns
the block-diagonal matrix A ® A’ € (L @ L') N ST to the element (A, A') € K @ K.
In other words, direct sums of spectrahedral cones are spectrahedral cones with corresponding
block-diagonal matrix representations. We shall show that for ROG cones also the converse is
true, i.e., if a ROG cone has a block-diagonal representation, then it is the direct sum of the
ROG cones defined by the individual blocks.

First we show the forward implication for ROG cones.

Lemma 14. Let K4, ..., K,, be ROG cones of degrees ni,...,n,,. Then their direct/ sum
K = @K} is also a ROG cone, which has degreen = >_1* ny. If K = L, N S.,* are
representations of Ky, then the block-diagonal representation of K = @}, K}, constructed
from these representations of K, is also ROG. In particular the cone K possesses a block-
diagonal non-degenerate representation with block sizesn, . . . , n,,, such that block k defines
a non-degenerate representation of K.

Proof. Let K}, = L; N Si;" be arbitrary representations of the cones K as ROG cones.
Let X = &7, X = diag(Xy,...,X,,) be an arbitrary element of K in the corresponding
block-diagonal representation, where X, € K. Since the factor cones K, are ROG, every X},
decomposes into a sum of rank 1 matrices r, ; € Ky, 7 = 1,...,n. For every such rank 1
matrix 7, ;, the matrix Ry, ; = diag(0,...,0,7%;,0,...,0) is arank 1 matrix in /{, where the
non-zero block is located at position k. Then X = > )" | 37 | Ry ;, which proves that K is
ROG.

By Corollary 2, for every k the cone K, has a non-degenerate representation as a linear section
of Sﬁ’“. The ROG spectrahedral representation of /K given by the corresponding block-diagonal
representation has the required block structure. It is also non-degenerate, because a block-
diagonal matrix with all blocks being positive definite is itself positive definite. Hence K has
degree n = > ;" | ny by Corollary 1. O

Corollary 7. Let Ky, ..., K,, be regular convex cones and K = @]’ K}, their direct sum.
Then K is ROG if and only if all cones K. are ROG.

Proof. If the K, are ROG, then K is ROG by Lemma 14. Let K be ROG. Each of the cones
K. is isomorphic to a face of K, and hence ROG by Lemma 6. O

Consider a ROG cone which is a direct sum of other cones. The next result shows that every

ROG spectrahedral representation of such a cone can be brought to a corresponding block-
diagonal form by an appropriate choice of the coordinate system.
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Lemma 15. Let the ROG cone K = @} | K}, be a direct sum of lower-dimensional cones.
Then the factor cones K, are ROG. Moreover, for every representation K C Sﬁ there exists
a direct sum decomposition R" = @} | Hy, into subspaces of dimensions dim Hj, > deg K},
such that the intersection Fy, = L,,(Hy) N K is linearly isomorphic to Ky, forallk = 1,...,m,
and K =% "' Fy. Ifn = deg K, thendim Hy, = deg K, fork =1,...,m.

Proof. By Corollary 7 each factor cone K is ROG, denote its degree by ny.

By Lemma 14 we have deg K’ = >/ | nj, and K possesses a block-diagonal representation
as a linear section of SiegK with block sizes 7, such that block k defines a representation of
the factor cone K;,. By Theorem 2 an arbitrary representation of /X as a linear section of Sﬁ is
isomorphic to this block-diagonal representation. Let f : R4 % — R" pe the injective linear
map from Definition 5 which defines the isomorphism, and denote by H C R" the image of
f. The map f then puts the direct sum decomposition of R3¢ K defined by the block struc-
ture of the block-diagonal representation in correspondence to some direct sum decomposition
H = &7 H], where dim H; = deg Kj. Let R* = @}, H; be an arbitrary direct sum
decomposition such that H; C Hj for all k = 1,...,m. By construction this decomposition
has the required properties.

If n = deg K, then f is bijective, and Hy, = Hj is the only possible choice for Hy. It follows
that dim Hj, = deg K} in this case. O

On the other hand, a ROG cone possessing a block-diagonal representation is isomorphic to
the direct sum of the ROG cones defined by the individual blocks.

Lemma 16. Let K = L N S} be a ROG cone. LetR" = H, @ --- & H,, be a direct sum
decomposition of R"™ and suppose that L. C ZZ;I L, (Hy). Then K is the sum of the ROG
cones K, = KN L, (Hy), k=1,...,m, and is canonically isomorphic to their direct sum.

Proof. First note that the cones ;. are faces of K and hence indeed ROG cones by Lemma

6. Moreover, the sum > ;" | K, is canonically isomorphic to the direct sum &}, K}, because
we have dim() ", £, (Hy)) = > -, dim £, (Hy).

Clearly Y7 . K}, C K, because K, C K for all k and K is a convex cone.
k=1

Let now X € K be arbitrary. By Property 1 there exist rank 1 matrices X; € K,2=1,..., N,
such that X = Zf\il X;. Now for every i we have X; € L C Y ;- L,(Hy). Since X;
is rank 1, there must exist k; € {1,...,m} such that X; € L, (Hyg,). It follows that X; €
L,(Hy,) N K = Ky,. Therefore X € > " | Ky, and hence K C > ;" | Kj.

Thus we get K = Z?Zl K., which completes the proof. O

Definition 8. We call a ROG cone K simple if it is not isomorphic to a nontrivial direct sum of
lower-dimensional cones.

The decomposition of K into simple factor cones is unique up to permutation of the factors.

Lemma 17. A non-degenerate ROG cone K C S is simple if and only if there does not exist
a nontrivial decomposition R™ = Hy & - - - & H,, such thatspan K C Y, | L, (Hy).
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Proof. If K is not simple, then Lemma 15 applies with a nontrivial direct sum decomposition of
IR™. The assertion of this lemma then implies span K’ C » ;" | L, (Hy).

On the other hand, if there exists a nontrivial decomposition R” = H; & - - - & H,, such that
span K C > 7", L,(H}), then by Lemma 16 K is isomorphic to the direct sum of the ROG
cones K, = K N L,(H), k = 1,...,m. Since K C S is non-degenerate, we have
deg K;, = dim H; > 0 for all k£, and the direct sum is nontrivial. O

Lemma 18. Let K C S be a non-degenerate ROG cone. Then there exists a unique (up to
a permutation of factors) direct sum decomposition R™ = H, & --- @& H,, such that K is the
sum of the faces K, = L,,(Hy) N K, and such that the factor cones K, are simple.

Proof. The claim of the lemma follows from Lemma 15, applied to the unique decomposition of
K into simple factor cones, and the fact that the subspaces H, are uniquely determined by the
faces K, representing the factor cones. O

Thus there are two different criteria that allow to check whether a ROG cone K is composed,
i.e., not simple. On the one hand, one may consider the geometric decomposition of K into
factor cones. On the other hand, one has the algebraic criterion whether in a non-degenerate
representation, K is contained in the sum of two complementary faces of the ambient matrix
cone. This second criterion is not valid for general spectrahedral cones, as for example the
1-dimensional cone generated by the identity matrix shows.

3.2 Full extensions

In this subsection we consider a special class of ROG cones which are essentially determined
by ROG cones of smaller degree.

Let K = L N 87 be a spectrahedral cone, and suppose that there exists a linear subspace
E C R" of dimension % such that all matrices of the form zy? + yz! forz € R?, y € E are
contained in L. Denote the linear subspace spanned by these matrices by Lg. Let H C R"
be an (n — k)-dimensional linear subspace which is complementary to £. Then we have the
decompositions 8" = L,(H) & Lg, L= (LN L,(H)) ® Lg.

The next result shows that the face Ky = L,,(H)NK = (LNL,(H))NSY of K is essentially
independent of the choice of the subspace H.

Lemma 19. Assume above notations. Let & C R™ be a k-dimensional subspace. Let H, H' C
R™ be (n — k)-dimensional subspaces which are complementary to E. Then the intersections
LNL,(H),LNL,(H") C S" are isomorphic.

Proof. Let II be the canonical projection on the quotient space R"/E. Then the restrictions
I1|y, 1| - are isomorphisms between H, H' and R/ E. There exists a unique automorphism
f of R" such that f|z = (Il|z/) "' o Il|y and f|g = Idg. In other words, f is the unique
automorphism that projects H onto H’ along F and leaves E point-wise invariant.
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The automorphism f induces an automorphism f of S" by X — AXAT, where A is the
coefficient matrix of f. Let us show that f defines the sought isomorphism between £,,(H) N L
and L,(H')N L.

Since f[H] = H', we have f[L,(H)] = L,(H'). Let now € R" be arbitrary, and denote
by d € F the difference f(z) — z. Then we have f(zz”) = (z + d)(z + d)T = zaT +
zd” + dz” + dd”. it follows that f(zzT) — 22T € L. By linearity we get f(X) — X € Ly
for every matrix X € S™. By virtue of the inclusion Lz C L, for every X € L we then have
f(X) € L. 1tfollows that f[L] = L.

Therefore f[L,(H) N L] = £, (H") N L, which proves our claim. O

It follows that the faces Ky = L£,(H) N K, Ky = L,(H") N K defined above and their
representations as linear sections of S are isomorphic. Moreover, since L = (£,,(H) N L) ®
L g, the knowledge of the cone Ky C L,,(H ) is sufficient to recover the cone K C St

Definition 9. Let k, n be positive integers, k < n, and let K' = L' N Sﬁ_k, K =LNSY be
spectrahedral cones. We call K a full extension of K' if there exists a direct sum decomposition
R™ = H & E into subspaces of dimensions n — k, k, respectively, and a corresponding direct
sum decomposition of S™ into subspaces L = span{zy’ +yxT |z € R", y € E}, L, (H),
with the following properties. The inclusion Ly C L holds, and the subspaces L' C S"7*,
L,(H)NL C 8™ are isomorphic.

A spectrahedral cone K C S is hence a full extension of some other spectrahedral cone
if and only if there exists a linear subspace L. C S™ and a nonzero vector y € R™ such that
K = LNSY and 2y’ +yz’ € Liorallz € R™. Itis also easy to see that dim K = dim K’ +
(maxxex rk X)k+ kEHD ‘and K C 8" is non-degenerate if and only if K C Sﬁ’k is non-

2
degenerate.

Lemma 20. Let K = L N SY be a full extension of K’ = L' N Sﬁ‘k. Then K is ROG if and
only if K’ is ROG.

Proof. Assume the notations of Definition 9.

If K is ROG, then the face Ky = L,(H) N K = (L,,(H) N L) NS} of K is also ROG by
Lemma 6. The isomorphism between L' and £,,(H) N L induces an isomorphism between K’
and K, and hence K’ is also ROG. This proves one direction of the equivalence.

Adopt a basis of R"™ such that H is spanned by the first n — k basis vectors, and E by the last

k basis vectors. Let X = (XlTl X12) € K be an arbitrary matrix, with the partition adapted
Xy X

X1 0

0 0

by virtue of X > 0. Moreover, X —Y € Ly C L,andhenceY = X — (X —Y) € L. It

follows that Y € K.

to the decomposition R = H & E. Define the matrix Y = ( .Thenwe have Y > 0

Assume now that K’ is ROG. Since L' and L,,(H) N L are isomorphic, the face Ky is also
ROG. Therefore Y is representable as a sum of rank 1 matrices in K g. In other words, there

T
v;v; 0
exist vectors vy, . .., vy € R such that X;; = Zf\il vivl and V; = ( 201 0) € L for
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all i. Let V be the (n — k) x N matrix formed of the column vectors v;. The condition X > 0
implies that the columns of X, are in the image of X;1; = VV7. Therefore there exists a
k x N matrix W such that X;o = VW7, Let the columns of W be w1, ..., wy € R*. We
then have the representation

() () 6 ) =2 ) () 6 )

T
; v, .
Denote the rank 1 matrix (UZ) ( ’) byU;,i=1,...,N.Wehave U; — V; € Ly C L,
i i
and hence U; € L for all i. The k x k matrix Xoo — W W7 is the Schur corlnplement of X11in X
and is hence positive semi-definite. It can then we written as a sum Zjvzl zjzf with z; € RF.

0 0 . /
The rank 1 matrices Z; = (O z]zJT) are also in L, and hence X = Zfil U; + Zjvzl Z;
is a sum of rank 1 matrices in K. This shows that K is also ROG and proves the other direction
of the equivalence. O

Note that the full extension of a ROG cone is simple.

3.3 Intertwinings

In this subsection we present a way to construct new ROG cones from pairs of given ROG
cones of smaller degree.

Definition 10. Let K = L N S be a spectrahedral cone. We call a face ' of K full if it is also
a face of S} The number k = maxxcr rk X is called the rank of the face.

Aface F of a ROG cone is full if and only if dim F* = 96X48F+L hgeed, Fis alinear section

of the minimal face S' of S*! which contains F. Hence [’ = S'if and only if dim /' = dim S.
Butdim S = w by Corollary 1.

We shall need the following auxiliary result.

A B 0
Lemma 21. Let M = | BT C D | be a block-partitioned positive semi-definite ma-
0 DT FE

A B
trix. Then there exists a decomposition C = C + C45 such that the matrices ( BT O )
1

Cy D
( D?p E> are positive semi-definite.

C—-BTA'B D
DT E

semi-definite. Here AT is the pseudo-inverse of A, which is also positive semi-definite. Setting
C, = BTA'B, Cy, = C — BT AT B yields the desired decomposition. O

Proof. The Schur complement of A in M is given by ( ) and is positive
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Lemma 22. Let I}, I, be faces of the positive semi-definite matrix cone S and L1, L, their
linear hulls. Let L C 8™ be a linear subspace such that LN\ Ly C L = (LN Ly)+ (LN Ly).
Then the spectrahedral cone K = L N S equals the sum of its faces K1 = L; N K,
KQ - L2 N K

Proof. Clearly K; + K5 C K, because K is a convex cone.

There exist linear subspaces Hy, Hy C R™ such that L; = £,,(H;),i =1,2.Set H = H; N
Hy.Then LiN Ly = L,,(H). Introduce a direct sum decomposition R” = H{ & H & H)® Hy
suchthat Hy = H| & H, H, = H & H/,. Adopt a coordinate system in R” which is adapted to

this decomposition and partition the matrices in S™ accordingly. Then every matrix in L1 + Lo,
X X 0 0

XL Xy X
and hence also in L, has the form X = 12 2 0% 0 . Moreover, every matrix
0 0 0 O

whose only nonzero block is Xo5 is in L; N Ly and hence in L.

Let now X € K be an arbitrary matrix, partitioned as above. By Lemma 21 there exists a
decomposition X9o = X951 + Xo2 2 such that the matrices

Xn Xz 00 0 0 0 0
X, — X1T2 X2271 0 0 X, — 0 X22,2 X23 0
! 0o 0 00] 72 0 XJ Xs3 0
0 0 00 0 0 0 O
are positive semi-definite. On the other hand, since X € L = (LN L) + (L N Ly), there

exists a decomposition X = X3 + X, such that

X X2 00 0 O 0 0
XT Xy 00 0 Xpms Xoz 0
Xy= | 12 7223 eLNL, Xi= 224 OB e LN L.
3 0 0 00 o270 X5 Xss 0 2
0O 0 00 0O 0 0 0

Wehave D; = X; — X5 € LiNlLy C L, Dy = X9 — X4 € L1 NLy C L. Hence
Xl = D1 +X3 € L1 N L, X2 = D2 +X4 € L2 N L. It follows that X1 € Kl, X2 € KQ.
Therefore X = X; + Xy € K1 4+ Ky. Thus K C K7 + K>, which completes the proof. [

Lemma 23. Assume the conditions of Lemma 22. Then K is a ROG cone if and only if K1, K5
are ROG cones.

Proof. If K is ROG, then K1, K, are ROG by Lemma 6.

Assume that K, K, are ROG, and let X € K be arbitrary. Since K = K; + K», there exist
X, € Ky, Xy € Ky suchthat X = X; + Xs. Since K7, Ky are ROG, both X; and X,
can be represented as a sum of rank 1 matrices in K and K5, respectively. Hence X can be
represented as a sum of rank 1 matrices in K1 U Ky C K. Thus K is ROG. O

Lemma 22 hence presents a way to construct new ROG cones from pairs of lower-dimensional

ROG cones. Note that in this lemma both faces K, K5 of K contain the intersection F' =
Fy N F, of faces of S*. The face F'is hence a full face of both K and K.
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Let us now start from two ROG cones K, K5, each of which has a full face of the same
rank k. Denote these faces by ®;, ®,. Both faces are isomorphic to S_’ﬁ and hence they are
also mutually isomorphic. Let f : span ®; — span ®; be an arbitrary isomorphism between
Dy, dy. Set n = deg K1 + deg Ky — k and choose linear subspaces Hq, H, C R" such
that dim H; = deg Ky, dim Hy = deg Ky, dim H = k, where H = H; N H,. Then
Fu(Hy) N F,(Hs) = F,,(H) is aface of ST of degree k, and £,,(H1) N L, (H2) = L,,(H).

We may then embed K, K as linear sections of the faces F,,(H), F,,(Hz) in a way such that
both full faces @1, @, are represented by F,,(H ), and that X; € ®1, X5 € P, are represented
by the same matrix in F,,(H ) if and only if f(X;) = Xs. Then we have span K; C L, (H,),
i =1,2,and span K; Nspan Ky = L,,(H,) N L, (H>). Set L = span K + span K5. Then
the conditions of Lemma 22 are fulfilled and by Lemma 23 the sum K = K| + Ko, = LN S}
is also a ROG cone. The next result shows that the isomorphism class of the cone K depends
only on f.

Lemma 24. Assume above notations. Then the cone K is isomorphic to a linear projection of
the direct sum K| @ K. The kernel of this projection is given by pairs (X1, X2) € span K| @
span K such that X; € span ®1, X5 € span ®,, and f(X;) + Xs = 0.

Proof. The first claim follows from Lemma 22, by defining the projection by IT : (X3, X5) —
X + X5. Now span K7 N span Ky = L,,(H ), and hence for every (X3, X5) € span K| &
span K5 such that X; + X5 = 0 we must have X; € span ®;, Xy € span ®,. Further,
X + X5 = 0ifand only if X; and — X, are represented by the same element of £,,(H ). This
is the case if and only if f(X;) = —Xo. O

Definition 11. Let K, Ky be ROG cones, let &, C K, o C K, be full faces of rank k, and
let f : span ®; — span ®, be an isomorphism between &1, ®,. Define the linear subspace
A = {(X1,X5)| X1 € span®y, Xy € span Py, f(X;) + Xy = 0} of the direct sum
span K & span K. Then the projection KK of the direct sum Iy & K on the quotient space
(span K @ span K5) /A is called an intertwining of K1, K.

Since the intertwining of two ROG cones K, K> depends on the choice of the full faces ®; C
Ky, &5 C K as well as on the isomorphism f between these faces, there can be many non-
isomorphic such intertwinings for given cones /1, K. We shall give two examples in the next
section.

Note that a 1-dimensional face of a ROG cone is generated by a rank 1 matrix and hence is
always full. We obtain the following result.

Corollary 8. Let i, Ky be ROG cones and X, € K, Xy € Ky rank 1 matrices. Define the 1-
dimensional subspace A C span K @ span K, as the linear span of the element (X1, —X5).
Then the image of the sum K| & K5 under the natural projection 11 : span K, & span Ky —
(span K @ span K,)/A is a ROG cone.

Proof. There exists a unique linear map f : span X; — span X, such that f(X;) = Xo,

and this map defines an isomorphism between the 1-dimensional faces defined by X, X5. The
corollary now follows from Lemmas 23 and 24. O

21



Note that a direct sum of ROG cones can also be seen as an intertwining, defined by virtue of
the 0-dimensional full face of the factor cones.

4 Examples of ROG cones

In this section we consider two nontrivial examples of ROG cones. We show that the class of
ROG cones defined by chordal graphs can be constructed from the full matrix cones S_ﬁ by
applying the constructive procedures presented in the previous section. We also provide an
example of a continuous family of mutually non-isomorphic ROG cones.

4.1 Cones defined by chordal graphs

In this subsection we consider spectrahedral cones K = LgﬂSﬁ defined by linear subspaces
of the form Lg = {X € §"|X;; =0V (i,5) € E(G)}, where E(G) is the edge set of a
graph G on the vertices 1, . . . , n. Note that the identity matrix is an element of K. Hence K
has a nonempty intersection with the interior of S7', and the linear span of K equals L.

Lemma 25. [1, Theorem 2.3], [12, Theorem 2.4] Assume above notations. Then the cone K
is ROG if and only if the graph G' is chordal.

Chordal graphs are characterized by the condition that they admit a perfect elimination ordering
of the vertices 1,...,n. This is an ordering such that for every k = 1,...,n, the subset
Ny, = {l < k|(l,k) € E(G)} U {k} of vertices forms a clique, i.e., the subgraph of G
defined by NV}, is complete.

Lemma 26. Let GG be a chordal graph with vertex set{1, ... ,n}, andlet K s be the correspond-
ing ROG cone. Then K can be constructed out of full matrix cones by iterated intertwinings or
taking direct sums.

Proof. Assume that the vertices are arranged in a perfect elimination ordering. For a subset
I C {1,...,n} of indices, define the linear subspace H; = {x € R" |z; =0V i & I}. For
k=1,...,n,set K = KcNF,(Hp,. 1))

Note that /; is isomorphic to the full matrix cone S} . We shall now show forall k = 2,...,n
that the cone K is either an intertwining of K,_; with a full matrix cone, or a direct sum
Ki1®S:.

Since G is chordal, the set N, = {l < k|(l,k) € E(G)} U {k} and its subset N, =
{l < k|(l,k) € E(G)} define cliques of . Therefore the faces F,,(Hy, ), Fn(Hy; ) of St
are contained in /" and are full faces of this cone. In particular, Fn(HN,;) is a full face of both
F.(Hy,) and Kj_;. On the other hand, K}, = Kj_1 + F,,(Hy, ) by definition of ;. Hence
K}, is an intertwining of K1 with the full matrix cone F,,(Hy, ) in case that Nj, # (), and a
direct sum Kj,_1 @ F,,(Hyyy) in case that N, = ().

The proof is completed by the observation that K = K. O
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Lemma 27. Let G be a chordal graph with vertex set {1,...,n}, and let K be the corre-
sponding ROG cone. Then deg K = n, and K is simple if and only if G is connected.

Proof. By construction K C S contains the identity matrix, and hence deg K = n by
Corollary 1.

Suppose that K is not simple. Then there exists a nontrivial direct sum decomposition R" =
H @& H' such that for every rank 1 matrix za? € K, either x € H or x € H'. In particular,
if ¥ = e; is a canonical basis vector, then eiel-T € K by construction of K and hence
e, € HUH' foralli = 1,...,n. Define the index sets I = {i|e; € H} and I' =
{ile; € H}. Then INI' = Qand TU I = {1,...,n}, because R* = H & H'is a
direct sum decomposition. It follows that H = span{e; |i € I} and H' = span{e; |i € I'}.
Let now z € R™ be a nonzero vector such that X = za” € K. Then for every index pair
(¢,7) € I x I' we have z;z; = 0 and hence X;; = 0. From the fact that K is a ROG cone
it follows that X;; = 0 for all X € span K¢ = L in general for (z,7) € I x I'. But then
(i,7) € E(G), and there is no edge in G which connects the vertex subsets I, I’. Hence G is
not connected.

Suppose, on the other hand, that GG is not connected. Let I, I’ be disjoint nonempty vertex
setssuch that / U I’ = {1,...,n} and there is no edge in G which connects  to I’. Then by
definition for every X € L we have X;; = x;2; = 0 for every index pair (4, j) € IxI’. Define
subspaces H = span{e; |i € I}, H = span{e; |i € I'} of R". Then R" = H @& H' is by
construction a nontrivial direct sum decomposition. It then follows that L C £,,(H)+ L, (H'),
and the cone K is not simple. O

4.2 A continuous family of non-isomorphic cones

In this subsection we construct a family of mutually non-isomorphic ROG cones in S° which
depends on a real parameter. Fix mutually distinct angles ¢1,...,p4s € [0,7). For ¢ €
[0,7), let I(p) C R? be the line through the origin with incidence angle . Then the lines
[(¢1), .., 1(¢p4) define a quadruple of points in real projective space RP'.

Consider the 11-dimensional subspace L C S5 of matrices of the form

$1,$2,$3,P4
o (67) (3 COS Y1 (4 COS Yo (5 COS Y3 (g COS Py
Q9 Qe a3sinp)  Qqsinps  Q5SiNE3 Qg Sin Py
(3 COS Y1 Q3sin g Qg 0 0 0
(4 COS P vy SIN Yo 0 Qg 0 0 - 001 €R.
Q5 COS Y3 (581N 3 0 0 10 0
Qg COS P4 Qug SIN Yy 0 0 0 Qg
3)
Let Hy,...,Hy C RS be the two-dimensional subspaces spanned by the columns of the
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matrices

10 cospp O cospy 0 cosps 0 cosps 0

0 1 sing; 0 sinps 0 sinps 0 singy, 0

0 0 0 1 0 0 0 0 0 0 )

0 0]’ 0 0f’ 0 11 0 0"’ 0 0l’

00 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1
respectively. Then Lo, o, o5 0y = Z?:o Ls(H;).
Let us define subspaces L; = >7_ L4(H;) C S° and spectrahedral cones K; = L; N SS,

J=0,...,4.Then Ly, v, o500 = La, and Ky = Fs(Hp) is a ROG cone.

Lemma 28. The cone K, j = 1,...,4, is a ROG cone given by the sum > 7_, Fs(H;).

Proof. We prove the lemma by induction over j. Assume that K;_; = {;& Fs(H;) is a ROG
cone. We shall show that K is an intertwining of K;_; with the face Fs(H;) of S¢, which

would imply K; = >>7_ Fs(H;) by Lemma 22 and that K; is ROG by Lemma 23.
To this end we have to show that the conditions of Lemma 22 apply to the faces F( f;é H;)
and F(H;) of S¢ and to the subspace L; C SY, i.e., that

Jj—1

j—1
LoD Hi)NLe(H;) C Ly= (LN Le(Y__ Hi))+ (Ly N Lo(Hy)).
Indeed, the intersection A; = (37, H;) N H; is 1-dimensional and is contained in H.
Namely, A is the linear span of the first column of the matrix generating /; in (4). We obtain
Le(3270 Hy) N Le(Hj) = L6(A;) C Ls(Hy) C Lj, which proves the required inclusion.

Further, we have (L] N ‘66(23;& HZ)) = Lj,l, (LJ N ‘CG(H])) = £6<Hj) But L] =
L1+ £6(Hj) by definition, which proves the required equality. This completes the proof. O

_ 6 ;
Lemma29. Thecone Ky, v,.0.00 = Lt po,05,00 NS isa ROG cone. Two cones K, ., o 045

K ol oo, Of this form are isomorphic if and only if the corresponding quadruples of lines
L(p1),. ., 1(ps) CR%andl(g)),..., 1)) C R? define projectively equivalent quadruples

of points in RP*.

Proof. The first part of the lemma follows from Lemma 28 for j = 4.

Let us prove the second part. Consider cones Ky, v, o5 045 I 0 01, fOr quadruples

(1, 04), (¢, ..., ¢)) of mutually distinct angles. Let Hy, ..., Hy and Hj, ..., H), re-
spectively, be the corresponding 2-dimensional subspaces of R® as defined by the column
spaces of the matrices (4). Note that H, = H/. By Lemma 28 the set {x € R®|zaT €
Ky, 4s.05.04 } 18 given by the union Uj:o Hj, and the set {x € R®|za” € Ky o o o } by
the union Uj:o H;. Therefore, by virtue of Corollary 6, the cones Ko, v, 5,04 @Nd Kot ot ot o

are isomorphic if and only if there exists an invertible linear map f : R® — R® which takes
4 4
szo Hjto Uj:ﬂ HJ/
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Suppose that such a map f exists. The intersections [(y;) = Ho N H;, [(;) = H)NH], i =
1,2, 3,4, are 1-dimensional, while the intersections H; N Hj, H{ N H},i # j,4,j = 1,...,4,
are 0-dimensional. Hence we must have f[Ho| = Hgand f[H;| = H] ;i =1,...,4, where
o € Syisapermutation of the index set {1, ..., 4}. Moreover, f|n,[li] = I, i =1,..., 4.1t
follows that [(¢1), ..., l(vs) C Hoand l(¢)),...,1(¢}) C Hy define projectively equivalent
quadruples of points in the projectivization of H,.

Suppose now that the lines I(¢1),...,l(ps) C Hoand l(¢}),...,l(¢}) C Hy define pro-
jectively equivalent quadruples of points in the projectivization of Hy. Then there exists an
invertible linear map & : Ho — H, and a permutation 0 € Sy such that h[l;] = [,
i = 1,...,4 Letnow x; € H; \ l;, x; € H/\l,i = 1,...,4, be arbitrary points.
We then have H; = span(l; U {x;}), H = span(l; U {z}}), i = 1,...,4. Moreover,
span(Hy U {zy, 9, 23, 74}) = span(Hy U {x, 24, ¥4, 2} }) = R. We then can extend the

map h to alinear map f : R — RO such that f(z;) = ), @ =1,...,4. This map is invert-
ible by construction and f[H;] = H/ .7 =1,...,4. It follows that f[Uj:O H;| = U?:o H;,
which completes the proof. O

It is well-known that there exist infinitely many projectively non-equivalent quadruples of points
in RP. The equivalence classes are parameterized by the orbits of the cross-ratio

(cot 1 — cot p3)(cot 2 — cot ¢4)
(cot 2 — cot p3)(cot 1 — cot¢y)

)\(901, P2, P3, %04) = (11, la; 13714) =

with respect to the action of the symmetric group S4 on the arguments 1, . . ., (4. Thus there
exists a continuum of mutually non-isomorphic ROG cones defined by subspaces L C S° of

type (3).

The cone Ky, o, 4.0, iS Obtained from the face Fg(Hy) = S3 by consecutive intertwining with
the faces Fg(H;) = S%,i = 1,...,4. Itis hence an intertwining of 5 positive semi-definite
matrix cones Si. More complicated ROG cones can be obtained by starting with a matrix cone
&' and consecutively intertwining it with matrix cones Sﬁl, e ,Sﬁ’" along full faces of ranks
dy,...,dny, where d; < min(n,k;), 7 = 1,...,m. In this way, families of mutually non-
isomorphic ROG cones can be obtained which are parameterized by an arbitrary number of
real parameters.

5 Dimension and degree of ROG cones

In this section we consider the relation between the dimension and the degree of a ROG cone
K. Evidently we have the inequality chain deg K < dim K < w, with equality
on the left if and only if K is isomorphic to the nonnegative orthant, and equality on the right
if and only if /' is isomorphic to the full cone of positive semi-definite matrices. We shall say
that a ROG cone K has codimension k if dim K = w — k. In this case k can be

interpreted as the number of linearly independent linear constraints on the matrices X € K.

Lemma 30. Let K be a ROG cone of degree n and dimension @ — k. Then K has a
representation K = {X € S} |(X,Q;) = 0Vi = 1,...,k}, where Q1,...,Qy are
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linearly independent quadratic forms on R™ such that every nonzero form in the linear span
span{Q1, ..., Qx} is indefinite.

Proof. Consider a representation of K as a linear section of S''. We have dim 8" — dim K =
k, and the orthogonal complement of span K in the space of quadratic forms on R" has di-
mension k. Let {Q1,...,Qk} be a basis of this complement. Then by construction we have
K=span KNS} ={X eS8 |(X,Q;) =0Vi=1,... k}.

Since deg K = n, by Corollary 1 there exists a positive definite matrix X € K. Now suppose

for the sake of contradiction that there exists a nonzero linear combination () of (1, ..., Q%
which is semi-definite. By possibly replacing () by —(), we may assume that () is positive
semi-definite. Then (), X') > 0, leading to a contradiction. O

In the next subsections we consider ROG cones of codimensions 1 and 2, and give a lower
bound on the dimension of simple cones K of fixed degree.

5.1 ROG cones of codimension 1

@ —d. Then the spectrahedral

cone K = L N S? has no extreme elements of rank k > —% + /1 +2(d + 1).

Lemma 31. Let L C S" be a linear subspace of dimension

Proof. Let X lie on an extreme ray of K, and let k = rk X . Then the minimal face of S*' which
contains X has dimension @ Denote this face by F'. The minimal face of /X which contains
X is given by the intersection F' N L and has dimension 1. But since L has codimension d, we

have 1 = dim(F N L) > dim F — d = *&H) 4 This yields k(k + 1) < 2(d + 1), which

implies k < —3 + /1 +2(d +1). O

Corollary 9. Let . C S™ be a linear subspace of dimension nntl) _ 1. Then the cone

2
K = LNS” is ROG.

Proof. By Lemma 31 the cone K has no extreme elements of rank k > 2 > #ﬁ Thus K
is ROG. O

Corollary 10. Every ROG cone of degree n and codimension 1 has a representation of the
form K = {X € S} |(X,Q) = 0} for some indefinite quadratic form ), and every cone of
this form is ROG of degree n and codimension 1. Two such cones K, K', defined by indefinite
quadratic forms (), (', respectively, are isomorphic if and only if either @), Q" or (), —Q' have
the same signature.

Proof. The first claim follows from Lemma 30.

Let now () be an indefinite quadratic form. Then the cone K = {X € SV [(X,Q) = 0} is
ROG by Corollary 9. Since () is indefinite, there exists a positive definite matrix X such that
(X,Q) = 0. Hence K intersects the interior of S%, and therefore dim K = dim S™ — 1.
Moreover, by Corollary 1 K is of degree n.
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Let now the cones K, K’ be defined by indefinite quadratic forms (0, (), respectively. By Theo-
rem 2 the cones K, K’ are isomorphic if and only if their linear hulls L = {X € S"| (X, Q) =
0}, L' = {X € §"|(X,Q) = 0} are isomorphic. This holds if and only if the orthogonal
complements of L, L', namely the 1-dimensional subspaces generated by () and (Q’, are iso-
morphic. The last claim now easily follows. O

It is not hard to establish that there are [%2] isomorphism classes of ROG cones of degree n
and codimension 1. For n > 3 all of them are simple.

5.2 ROG cones of codimension 2

In this subsection we classify the ROG cones of degree 1 and dimension w — 2.

By Lemma 31, a spectrahedral cone K C S of dimension @ —d, where d < 4, can only

have extreme elements of rank £ < 2. Therefore such a cone is ROG if and only if there exist
no extreme elements of rank 2.

Let L C S™ be a subspace of codimension d, 2 < d < 4. We can represent L as the set
{X eS| (X,Q;)=0,i=1,...,d},where Q1, ..., Q, are linearly independent quadratic
forms on R™. The next result establishes in which cases the spectrahedral cone X' = L N 8%
has an extreme element of rank 2.

Lemma 32. Assume above notations and conditions. The cone K is ROG if and only if for all
pairs of vectors x,y € R"™ the d X 3 matrix

2TQrx 227Qry yTQuy
M(x,y) = : : :
2TQux 227 Qay y"Qay

either has rank < 2 or its kernel does not contain a vector (a,b,c)” such that the matrix
a b

( ) is definite.
b ¢

Proof. A vector (a,b,c)” is contained in the kernel of M (z,y) if and only if

T T
<<Z lc)) : (ingz 5T8:5>> = {axx” +b(zy" +yal)+eyy’, Qi) =0Vi=1,...,d,
(5)
or equivalently, if azx” +b(xy” +yzT)+cyy” € L. Therefore, if x, y are linearly independent,
then the dimension of the intersection span{zz®, zy” +ya™, yy? YNL = L, (span{z,y})NL
equals the dimension of ker M (z, y).

Suppose that there exist z,y € R™ and a,b,c € R such that tk M (x,y) > 2, (a,b,c)”

is in the kernel of M (z,y), and (Z ZC)) > 0. Since tk M (x,y) > 2, the vectors z,y are

linearly independent. Set H = span{xz,y}. Then F,,(H) is a face of S} of rank 2, and F' =
F.(H)N Lis aface of K. Define the matrix X = axa® + b(zy” +ya®) + cyy” € L,(H).
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b ¢
of rank 2 and is contained in the relative interior of F,,(H ). Further, by (5) we have X € L,
and hence X € F. Since rk M (z,y) > 2, the kernel of M (z, y) has dimension 1. Therefore
dim(L,,(H) N L) = 1, and every matrix in this intersection is proportional to X. It follows that
the face F’ of K is 1-dimensional and the rank 2 matrix X generates an extreme ray of K. Thus
K is not ROG.

b
We have the representation X = (2 y) (a ) (z y)T. Hence X is positive semi-definite

Suppose now that K is not ROG. By Lemma 31 there exists a matrix X € K of rank 2 which
generates an extreme ray of K. Let H C R" be the image of X, and let {, y} be a basis of H.
a
b
The inclusion X € L then implies (5) and hence (a, b, c)T € ker M (z,y). The matrix X is
contained in the relative interior of ,,(H ), the minimal face of S} which contains X. Hence
the dimension of the intersection F,,(H) N L, which contains X, equals the dimension of
L,(H) N L.But F,,(H) N L is the minimal face of K which contains X, and has dimension
1 by the extremality of X'. By the above, the kernel of M (x,y) then also has dimension 1. It
follows that rk M (z,y) = 2.

b
Then there exist a, b, ¢ € R such that X = axz” + b(xy? + yzT) + cyy’ and ( C) = 0.

This completes the proof. O

Corollary 11. Let L = {X € S"| (X, Q1) = (X,Q2) = 0} be a linear subspace, where
(1, Q2 are linearly independent quadratic forms. Then the cone K = L N S is ROG if and
only if the bi-quartic polynomial given by

plz,y) = Y'Quy-2" Qox — 2" Qix - y" Qoy)’ (6)
—4($TQ13J : ?JTQ2ZJ - 55TQ2ZJ : ?JTQly)(JUTQl?U : xTsz - 9UTQ1?J : fUTQzl")

is nonnegative for all x,y € R"™.

Proof. By Lemma 32 the cone K is not ROG if and only if there exist , y € R" such that the

2 X 3 matrix . . .
v 227 Qry Yy Qry
M =
(@9) <1’TQ233 207Qay Yy Qay

has full rank and its kernel contains a vector (a, b, ¢)? such that ac — b?> > 0. Now note that
M (x,y) has full rank if and only if the cross product

'O 27 Qo 227 Quy -y Qay — T Qay - y" Quy)

207 Qry | x | 207 Quy | = | ¥ Quy- 2" Qor — 2" Qua -y Quy

y" Qy y" Qay 22" Qux - 2" Qay — 2" Qry - 2" Qo)
is nonzero, and in this case the kernel of M (x, y) is generated by this cross product. The claim
of the corollary now easily follows. O

We now prove an auxiliary result on real symmetric matrix pencils. Recall that y is called an
eigenvector of the pencil ()1 + AQ) if the linear forms )1y, ()2y are linearly dependent.
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Lemma 33. Let ()1, ()2 be quadratic forms on R™ such that the pencil ()1 + A()2 possesses n
linearly independent real eigenvectors. Then there exists a direct sum decomposition R" =
Hy® H, & --- ® H,,, non-degenerate quadratic forms ®;, on H,, k = 1,...,m, and
mutually distinct angles 1, ..., ¢, € [0,7) with the following properties. For every vec-
torx = Y, % where v, € Hy, we have Q1(z) = Y ., cosp®p(zy), Q2(z) =
> e, sin Py () ). Moreover, the set of real eigenvectors of the pencil Q1 + AQ)s is given by
the union | J;"_, (Ho + Hy,).

Proof. We define the subspace H as the intersection ker ()1 N ker (5. For every real eigen-
vector y ¢ Hy of the pencil Q1 + AQs, the linear span of the set {Q1y, Q2y} of linear
forms has then dimension 1. Hence there exists a unique angle ¢(y) € [0,7) such that

sin p(y)Q1y — cos p(y)Qa2y = 0.

By assumption we find linearly independent real eigenvectors 1, . .., Yp—dim H, Of the pencil
()1 + AQ2 such that span(Hy U {y1, ..., Yn—aimu,}) = R™. Regroup these vectors into
subsets {yu, e ,yldl}, ey {ymla R ’ymdm} such that Sp(ykl) = @k, k = 1, .., M,
[l =1,...,dy, where ¢1,...,0, € [0,7) are mutually distinct angles, and dj, is the num-
ber of eigenvectors corresponding to angle . Define the subspace H), as the linear span of
Ykls - - - Ykd,» k£ = 1,...,m. Then by construction we have that Hy ® H; © --- & H,, is a
direct sum decomposition of R". Moreover, every vector y € H}, is an eigenvector and we have
sin R Q1y —cos oy = Oforally € Hy, k= 1,...,m. It follows that there exist quadratic
forms @, on Hy, k = 1,...,m, such that Q1| g, = cos Pk, Qa|m, = sin @ Py.

Let now k, k' € {1,...,m} be distinct indices and y € Hy, y' € H}, be arbitrary vectors. By
construction we have sin Q1Y — cos prQay = sin Y Q1Y — cos v Qsy’ = 0. Therefore
sin opy” Q1Y — cos pry’ Qo' = sin oy’ Qry’ — cos Py’ Qay’ = 0. But @y, pp are
distinct, and thus this linear system on 57 Q;4/' has only the trivial solution Y7 Q7' = 47 Qo' =
0. The decomposition formulas Q1 () = > -, cos epPr(xy), Qa2(x) = D 7 | sin @Dy ()
now readily follow.

Let 1 < k£ < m. Suppose there exists a vector y € Hj. such that $,y = 0. Then we have
@1y = Qoy = 0,andy € Hy. Thus y = 0, and the form &, must be non-degenerate.

Let now z = Z?:o x}, be a real eigenvector of the pencil Q1 + A(Q)2, where x;, € Hj,. Then
we have sin pQ1z — cos @z = 0 for some angle ¢ € [0, 7). Let 2, € Hi, k =0,...,m
be arbitrary vectors, and set z = Y ., z. Then we have 27 Q12 = Y " | cos pp Py (z, 21),
2T Qo2 = >\ sin g Pr (g, 21,). It follows that

m

0 = sinpax’Qz — cospr’ Qrz = Z(singpcos Pk (g, 21) — cos @ sin P (T, 21))
k=1

_ Z sin(¢ — i) Pr(zk, 2k).

k=1

Here @y (zk, 2k) = (Pr(xy + 2x) — Pr(ar — 21)) is as usual the bilinear form defined
by the quadratic form ®;. Since this holds identically for all z;, € Hj and the forms &, are
non-degenerate, we must have either ¢ = ¢ or x, = 0 for each k = 1, ..., m. Therefore
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x € Hy + Hy, for some k. On the other hand, every vector © € H, + H), is an eigenvector of
the pencil ()1 + A\(Q», since it satisfies sin Q12 — cos prQx = 0. O

Let K be a ROG cone of degree 2. Then the dimension of K is either 2 or 3, and K cannot be
of codimension 2. We shall henceforth consider ROG cones of degree n > 3.

Lemma 34. Let K = {X € SV | (X, Q1) = (X, Q2) = 0} be a ROG cone of degree n > 3,
where ()1, Q2 are linearly independent quadratic forms. Then there exists z € R"™ such that
2TQ12 = 27 Qqz = 0 and the linear forms 1z, Q2 are linearly independent.

Proof. By Corollary 1 the cone K has a nonempty intersection with the interior of Sﬁ. Hence
the linear span of K is given by L = span K = {X € 8" | (X, Q1) = (X, Q2) = 0}.

For the sake of contradiction, assume that for every z € R" such that 27 Q12 = 27Qy2z = 0
the linear forms Q; 2, Q22 are linearly dependent. Let Z = zz” be an arbitrary rank 1 matrix
in K. Then 27Q,2z = 27Q,2z = 0, and by our assumption z is an eigenvector of the pencil

Q1 + AQs.

Since the degree of K is n, by Corollary 4 there exist n linearly independent vectors 24, . . ., 2, €
R™ such that the rank 1 matrices 23z} arein K for k = 1,...,n. This implies that the pencil

Q1 + \Q- has n linearly independent real eigenvectors. Therefore the conditions of Lemma 33

are satisfied. Let R" = Hy® H, @ - - - @ H,, be the direct sum decomposition from this lemma.

If m < 1, then the forms ()1, (> are linearly dependent, which contradicts our assumptions.

Hence m > 2.

Let 71 € Hy, xo € H, be nonzero vectors. Consider the matrix X = x122 + z2T. We have
(Qi, X) = 221 Q;xy = Ofori = 1,2, and hence X € L. On the other hand, L is spanned by
all rank 1 matrices in K because K is ROG. However, if z € R™ is such that zz7 € K, then
by Lemma 33 we have z € |J,—,(Ho + Hy). It follows that L C >"}" | £, (H, + Hy). But
X ¢ > L,(Hy+ Hy), leading to a contradiction. O

Lemma 35. Let K = {X € S} [(X,Q:1) = (X,Q2) = 0} be a ROG cone of degree
n > 3, where (Q1, )y are linearly independent quadratic forms. Let z € R™ be such that
2TQrz = 27Qy2 = 0. Suppose that the linear forms ¢1 = Q12, ¢o = 2z are linearly
independent. Then there exists a linear form u which is linearly independent form q., q> and
suchthat Q1 =u X ¢+ ¢ Qu, Qs =u® qa + q2 X u.

Proof. By virtue of the condition 27 Q2 = 27 Q22 = 0 the polynomial p(z,y) defined by (6)
vanishes for x = z and all y € R"™. By Corollary 11 this polynomial is nonnegative. Therefore

p(z.y) = O forally € R™. By virtue of 27Q2 = 27Qs2 = 0, at x = z this gradient is
ox ez
given by
Ip(z,y)

=38y v Qy—aay vV Q) (@Gy ¢ —ay-g)=0.

=z

Since q1, ¢- are linearly independent, the linear form ¢y - 1 — 1y - g2 is nonzero if ¢l'y # 0
or ¢ty # 0. Therefore ¢1y - vy Qay = ¢ty - y* Q1y for all such y, i.e., for a dense subset of
R™. It follows that ¢ y - y* Qay = ¢y - y* Q1y identically for all y € R™.
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In particular, for every y € R" such that g7y = 0, ¢y # 0 we have y7Q,y = 0. This subset
of vectors y is dense in the kernel of ¢;, and hence () is zero on this kernel. It follows that there
exists a linear form u; such that ()1 = ¢; ®u;+u;1®q;. In a similar manner, there exists a linear
form sy such that Q = g2 @ Uy + Uy @ . Itfollows that ¢l y - gy - uly = ¢y - Ty - ul'y
identically for all y € R". For all y € R" such that ¢{ y # 0 and ¢y # 0 it follows that
u2Ty = ulTy Since the set of such vectors ¥ is dense in R", we get that u, us are equal to the
same linear form w.

Note that ¢7 2z = ¢2 z = 0 by assumption. We obtain ¢; = Q12 = ¢l z-u+ulz-q; = ul z-q,
and hence u’ 2z = 1. Therefore u must be linearly independent of q1, Q. O

Theorem 3. Let K = {X € ST | (X, Q1) = (X, Q2) = 0} be a ROG cone of degreen. > 3,
where ()1, ()2 are linearly independent quadratic forms. Then K is isomorphic to the direct sum
Si ® 82 ifn = 3 and to a full extension of this sum ifn > 3.

Proof. By Lemma 34 Lemma 35 is applicable. By choosing an appropriate basis of R", we can
assume that the linear forms u, q1, g2 from Lemma 35 are the first elements of the dual basis.
Then the cone K is given by the set {X € 87| X1, = X153 = 0}. The claim of the theorem
now easily follows. O

5.3 Lower bound on the dimension of simple ROG cones

In this section we show that for simple ROG cones K the dimension is bounded from below by
2 - deg K — 1. We shall need the following auxiliary result.

Lemma 36. Letzy,...,x,, € R" be linearly independent vectors, and let S C S™ be the m-
dimensional subspace spanned by the rank 1 matrices 931:17{, R xmxfl Let further H C R™
be a linear subspace. Then the dimension of the intersection SN L,,(H) is given by the number
of indices i such that x; € H. In particular, diim(S N L, (H)) < dim H.

Proof. Define the index set I = {i|z; € H}.Let A = > " ayz;x] be an arbitrary element
of S, where «; are scalar coefficients. Suppose there exists an index j & I such that o; # 0.
Lety € R" be a vector such that y” z; = 1, and y"x; = O forall i # j. Such a vector y exists
by the linear independence of 1, . . . , z,,. We thenget Ay = > | oy (y" x)a; = oy # H.
Hence A ¢ L,,(H).

It follows that every matrix in the intersection S N £,,(H) is of the form A = >~ _; cyw;z] for
some scalars a;. On the other hand, for every such matrix A and every vector y € R™ we have
Ay =,y x))z; € H,and A € L,(H). Therefore the intersection S N £,,(H) equals
the linear span of the set {z;z |i € I'}. The claims of the lemma now easily follow. O

Theorem 4. Let K be a simple ROG cone of degree n. Thendim K > 2n — 1.
Proof. Represent K as a linear section of Sﬁ. Recall that by Lemma 6 every face of K is a

ROG cone, and that K itself is the face of K of largest degree n. Denote by F' the set of faces
F of K such that dim ' > 2deg F' — 1. The set F is not empty, because every extreme ray
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of K is an element of F'. Set £ = maxpcr deg F'. Assume for the sake of contradiction that
K ¢ F,and hence k < n. Let F}, € F be a face of K which achieves the maximal degree k.
Denote the linear span of K by L, and the linear span of F}, by L;. By construction we have
dim L; > 2k — 1.

By Corollary 1 the maximal rank of matrices in F}, equals k. Let Y € F}, be a matrix of maximal
rank k, and let the k-dimensional subspace H C R" be its image. Then we have L, =
LNL,(H)and F, = LN F,(H). By Corollary 4 there exists a basis {r1, . .., r,} of H such
that 7] € Kforalli = 1,...,k,andY = Zle rsrl. By virtue of deg K = n and the
last part of Corollary 4 we may complete this basis of H to a basis {ry,...,r,} of R such
that ririT € Kforallz = 1,...,n. Adopt the coordinate system defined by this basis. Then
all diagonal matrices are in L, and the subspace L; consists of the matrices in L all whose
non-zero elements are located in the upper left £ x k block.

Since K is simple, there exists a rank 1 matrix 227 € K such that the vector z = (zy, ..., 2,)"
is neither in H nor in span{ry1, ..., 7, }. In other words, the subvector 2z = (z1, ..., 2x)"
is not zero, and not all of the elements 21, .. ., 2, are zero. Without loss of generality, let the
nonzero elements in the second group be 2.1, - . . , Zk+m- By scaling the vector z, we may also
assume that 27z = 1.

Denote by F}.,, the face of K which consists of all matrices in K whose non-zero elements
are located in the upper left (k + m) x (k + m) block. Denote the linear span of Fj.,, by
Ly, Since all diagonal matrices are in L, the maximal rank of the matrices in Fj,,,, equals
k + m. By Corollary 1 we get deg Fj.,, = k + m > k. By our definition of k£ we then have
Fiim ¢ F,and hence dim Ly, < 2(k +m) — 1. Let S be the (dim Ly, + m)-dimensional
subspace of Ly, spanned by Ly, and the rank 1 matrices 7175, 1, - - - » Pktm % ym-

We have 227 € Fj,,. Consider the matrix X = diag(Ixm,0,...,0)—227 € Ly, where
Iy is the (k+m) X (k-+m) identity matrix. By 27 2 = 1 the matrix X is positive semi-definite
of rank k + m — 1, with 2z as kernel vector. It follows that X € F}_,,, and by Corollary 4 there

exist K + m — 1 linearly independent vectors 1, . .., Txim—_1 € R™ such that xl:z:ZT € Frim
foralli =1,...,k+m—1,and X = S5 227 Since 27 Xz = S (2T2,)? = 0,
it follows that z72; = Oforalli = 1,...,k +m — 1.

Consider the (k + m — 1)-dimensional subspace S C Ly, spanned by the rank 1 matrices
xxl, i = 1,...,k + m — 1. Let us bound the dimension of the intersection S N S’. Let
A € 5N S be arbitrary. Since A € S, the matrix A has a block-diagonal structure A =
diag(Ag, @xs1y - - -5 Qgtm, 0, ..., 0), with A ablock of size k x k. On the other hand, A € S’
implies Az = 0. It follows that aj 12511 = - -+ = QpamZkem = 0and agr1 =+ = Ay =
0, because the corresponding elements of z are non-zero. The image of A is hence contained
in the intersection of the subspace H with the orthogonal complement of z. By virtue of zy; # 0

this intersection has dimension k£ — 1. By Lemma 36 we then get that dim(S N S’) < k — 1.

Thus dim(S+95’) = dim S+dim S'—dim(SNS’) > (dim Ly+m)+(k+m—1)—(k—1) >
2k — 1 + 2m, leading to a contradiction with the bound dim Ly, < 2(k + m) — 1. This
completes the proof. O
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6 Isolated extreme rays

The extreme rays of a ROG cone are generated by its rank 1 matrices. In this section we study
the situation when an extreme ray of a ROG cone K is isolated. We shall show that in this case
K is a direct sum of Si with a lower-dimensional ROG cone, and the isolated extreme ray is
the face of K corresponding to the factor Si. We will need the following concept.

Definition 12. The vectors x1, ..., x;1 € R™ are called minimally linearly dependent if they
are linearly dependent, but every k of them are linearly independent.

Lemma 37. A set of vectors x1,...,xrr1 € R™ is minimally linearly dependent if and only
if their span has dimension k and there exist nonzero real numbers cy, ..., ci.1 such that

k+1
> iy Gt = 0.

Proof. Denote by L the linear span of {x1,..., 2,1}, and let X be the n x (k + 1) matrix
formed of the column vectors x;.

Let z1,...,2x 1 € R™ be minimally linearly dependent. Then the dimension of L equals
k, because there exist k linearly independent vectors in L. The matrix X then has rank k
and its kernel has dimension 1. Let (cy,...,cpy1)T € RFFL be a generator of ker X. Then
Zf:ll c;x; = 0 and not all ¢; are zero. Let I C {1,...,k + 1} be the set of indices i such
that ¢; # 0. Then the vectors in the set {c; | ¢ € I} are linearly dependent. By assumption, no
k vectors are linearly dependent, and therefore I has not less than k + 1 elements. It follows
that ¢; # 0 for all 4.

Letnow ¢y, . . ., cx1 be nonzero real numbers such that Zfill c;x; = 0,and suppose dim L =
k. Then x1,...,xy1 are linearly dependent. Moreover, tk X = k, and hence the vector
(cl, - ,ck+1)T generates the kernel of X. In particular, there is no nonzero kernel vector
with a zero element. It follows that every subset of k vectors is linearly independent. Thus
Z1,...,TE+1 are minimally linearly dependent. O

Lemma 38. Let S C R" be a subset and x € S a nonzero vector. Then either

1) there exists a subspace H C R"™ of dimension n. — 1 which does not contain x, such that for
everyy € S eithery € H ory is a multiple of x,

or 2) there exists a minimally linearly dependent subset ' C S of size at least 3 such that
xel.

Proof. Let L C R"™ be the linear span of S, and let k be its dimension. Let us complete 1 = x
to abasis {z1,...,x;} C Sof L. Then every vector y € .S can be in a unique way represented
asasumy = Zle c;z;. We have two possibilities.

1) For every vector y = Zle c;x; € S, eitherc; = 0,0rcyg = -+ = ¢;, = 0. Then we can
take H as any hyperplane which contains the span of {z», ..., x;} but not 21, and are in the
situation 1) of the lemma.

2) There exists y = Zle cir; € S such that ¢; # 0 and at least one of the coeffi-
cients co, . .., ¢ is not zero. Let without loss of generality the nonzero coefficients among the

33



Ca, ..., Cy be the coefficients cs, . . ., ¢;, | > 2. Then we obtain y — Ef;:l c;x; = 0, and the set
{1,...,2,y} C Sis minimally linearly dependent by Lemma 37. Thus we are in the situation
2) of the lemma. O

Lemma 39. Let K be a ROG cone and let Ry, ..., R..1 € K be extreme rays of K. Let
the rank 1 matrices X; = xzxZT be generators of these extreme rays, respectively, in some
representation of K as a linear section of a positive semi-definite matrix cone Sﬁ. Whether the
set{z1,...,x41} C R™ is minimally linearly dependent then depends only on the extreme
rays Ry, ..., Rry1 of K, but not on the representation of K, its size, or the generators X;.

Proof. Let cy,...,cr+1 be non-zero real numbers. Then a subset {xl, e ,xkﬂ} C R"is
minimally linearly dependent if and only if the subset {¢1 21, . . ., Ck 112k 1 } is minimally linearly
dependent. This follows directly from Definition 12. Hence the property does not depend on
the generators X; of the extreme rays for a given representation of /. Let now X; = :nzxZT
Y, = yZyZT be generators of the rays R; in different representations of sizes n, m, respectively.
Let n < m without loss of generality. By Theorem 2 there exists an injective linear map f :
R™ — R™ such that f(z;) = o;y;, where 0; € {—1,+1},foralli = 1,...,k + 1. By the
injectivity of f, we have for every index subset I C {1,...,k + 1} that the set {x;};cs is

linearly dependent if and only if the set {o;¥; }ic; is linearly dependent. Hence {x1, ..., 541}
is minimally linearly dependent if and only if the set {y,...,yk+1} is. This completes the
proof. O

Lemma 39 allows to make the following definition.

Definition 13. Let K be a ROG cone. We call a subset{ Ry, ..., Ry, } of extreme rays of K,
generated by rank 1 matrices X; = xlsclT respectively, an MLD set, if the set {x1, ..., i1}
is minimally linearly dependent.

Lemma 40. Let K be a ROG cone of degree n. > 2, possessing an MLD set{ Ry, ..., R,.1}
of extreme rays. Then the following holds:

i) the cone K is simple;

ii) the extreme rays Ry, . .., R+, of K are not isolated.

Proof. Represent K as a linear section of S, and let the rank 1 matrices X; = xleT be
generators of the extreme rays R;, i = 1,...,n + 1. Then the set {x1,..., 2,41} C R"is
minimally linearly dependent. Denote the linear span of & by L.

Suppose for the sake of contradiction that /K is not simple. Then there exists a nontrivial direct
sum decomposition R" = H; & Hs suchthat K C L,,(Hy) + L,,(Hs) and hence x; € H U
Hyforalli =1,...,n+ 1. Let ny, ny be the dimensions of H;, Hs, respectively, and n, n),
the number of indices i such that x; € H; or x; € Hs, respectively. Then n, n}, > 0, because
the vectors x1, ..., z,1 span the whole space R" and the decomposition R" = H; & H,
is nontrivial. On the other hand, we have n; + ny, = n and n} + nj = n + 1. Hence either
ny > ny, or ny, > mngy, and there exists a strict subset of the set {z1, ..., 2,41} which is
linearly dependent, leading to a contradiction. This proves i).
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We shall now prove ii). For n = 2 we have K = S?r, and the assertion is evident. Suppose
n > 3.

By the definition of minimal linear dependence the vectors x4, ..., x, form a basis of R".
Choose a coordinate system in which this is the canonical basis. By Lemma 37 there exist
nonzero scalars cy, . . ., 41 such that Z:”rll c;z; = 0. We may normalize these scalars by a

common factor to achieve ¢, = —1. Then we have z,, 11 = (c1,...,c,) 7.

The subspace L C 8™ contains the (n + 1)-dimensional linear span L of the rank 1 ma-
trices x;xi, 1 = 1 ,n+ 1. Letdy,...,d, > 0 be positive scalars, and set d,,;1 =
- (>, di Z) . Then the matrix M = Z”+1 d;z;xT is an element of L. Moreover, for
every vector r = (rq,...,7,)T we have

n+1 2
T _ T D i1 CiTi)
r"Mr = ;dz(r Z’l Zd?" —W
Ci )i 1017“1 :
= Z \/d_rZ J > 0.
i=1 \/_Z] 1 J

It follows that M > 0 and hence M € K.
Ci Z;L 16575

Moreover, we have v Mr = 0 if and only if \/d;7; = 2 foralle =1,...,n.An
\/72] ld]

equivalent condition is that r = «s for some scalar «, where s = (31, ...,8,) 7 is a vector

given by s; = d;lcl- foralli =1,...,n.Hence M is of rank n — 1, in particular, it is not rank

1.

Let H be the (n — 1)-dimensional subspace of vectors v € R™ such that v*'s = 0. Then the
minimal face of S7 which contains M is given by F,,(H). It consists of all matrices X € S%
such that X's = 0. The linear span L,,(H ) of this face is given by all X € 8” such that X's =
0. We shall now compute the intersection £,,(H) N L. Let X = S oyl € £,(H)N L.
Then we have

n+1

Xs = E a;( xlTs E Qi SiT; + Qi - E CjS;j - E CiT;
n
Z -1 Z -12

= aidi + (77 NN] dj Cj Cil; = 0.

i=1 j=1
It follows that o;d,, 11 = a,1d; foralle = 1, ..., n. An equivalent condition is that the vectors
a=(ai,...,anp1)" andd = (dy, ..., dy41)" are proportional, and hence X is proportional

to M. It follows that £,,(H) N L is the 1-dimensional subspace generated by M.

By Lemma 8 there exist n — 1 Iinearly independent vectors y1,...,Yn—1 € R"™ such that
yzyZ € Kforalliand M = ZZ L iyl Note that y;y] € L, (H) for all 4, and hence
vyl € L,(H)N L.

Assume for the sake of contradiction that the extreme ray R generated by the rank 1 matrix
xlxlT is an isolated extreme ray of K. Then there exists 5 > 0 such that for every vector
z € R™, not proportional to ; and such that zz* € K, we have Y ,(z"z;)? > 3(z"x1)%
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Since the intersection £, (H) N L does not contain a rank 1 matrix, 2127 € L, and y;y7 €
L,(H), we have that y; is not proportional to x; for every i = 1,...,n — 1. It follows that
> oyl )? > Byl x1)? foralli = 1,...,n — 1. Therefore

n n n—1 n n—1
Z (dj + dn+1C?) = Z %TM%' = Z Z(%TZ/Z)Q > 52(9?951)2 = 595{]\/[1’1
=2 7j=2 =1 j=2 =1
= f (dl + dnJrlC%) : (7)

Fix now ds, ..., d, and let d; — +oo. Then dyy1 — — (31, d;lcf)_l, and the leftmost
term in (7) tends to a finite value. On the other hand, the rightmost term in (7) tends to +o0,
leading to a contradiction.

For the other extreme rays of K the reasoning is similar after an appropriate permutation of the
MLD set {Ry,. .., Ry+1}- O

Corollary 12. Letk > 2 and let K be a ROG cone possessing an MLD set { Ry, ..., Ry11}
of extreme rays. Then the following holds:

i) the dimension and degree of K satisfy dim K > 2k — 1, deg K > k;

i) the extreme rays Ry, . .., R, of K are not isolated.

Proof. Represent K as a linear section of S for some n, and let the rank 1 matrices X; =
z;x7 be generators of the extreme rays R;,i = 1,...,k+ 1. Thenthe set {z1,..., 241} C
R™ is minimally linearly dependent. By Lemma 37 the linear span H of the vectors x1, . .., Xj11
is a subspace of dimension k. Then Ky = L£,,(H) N K is a face of K and hence a ROG cone
by Lemma 6. Moreover, K i contains the rank 1 matrices :z:lxlT, cee xkﬂx{H and is of degree
k. In particular, the set { Ry, ..., Ry} is also an MLD set of extreme rays for K.

Applying Lemma 40 to the cone Kj7, we see that K is simple and the extreme rays Ry, . .., Ry
of Ky are not isolated forallt = 1,...,k + 1. By Theorem 4 we have dim Ky > 2k — 1.
But dim A > dim Ky, deg K > deg Ky, and every extreme ray of Ky is also an extreme
ray of K. The claim of the corollary now easily follows. O

Corollary 13. Let K be a ROG cone of degree n, and let R be an isolated extreme ray of K.
Then K can be represented as a direct sum K' & St, where K' is a ROG cone of degree
n — 1, such that the extreme ray R is given by the set {0} & S

Proof. Represent K as a linear section of the cone S7, and let z € R" be such that X = za”
generates the isolated extreme ray R of K.

Define the set S = {y € R"|yy’ € K} and note that z € S. By virtue of Corollary 12
the vector & cannot be contained in a minimally linearly dependent subset of .S of cardinality at
least 3. By Lemma 38 there exists a subspace H C R" of dimension n — 1 such that x ¢ H
and S C H Uspan{z}.

Hence span K = span{yy’ |y € S} C L,(H) + span R, and by Lemma 16 we have
K = K' 4+ R,where K’ = K N L,(H) is the face of K generated by H, and the sum is
isomorphic to the direct sum of the summands. By Lemma 14 the cone K’ has degree n — 1.
This completes the proof. O
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Theorem 5. Let K be a ROG cone of degree n. Then the number of its isolated extreme rays

does not exceed n. Let Ry, . .., Ry be the isolated extreme rays of K. Then K is isomorphic
to a direct sum K' ® RE | where K' is a ROG cone of degree n — k without isolated extreme
rays, and the extreme rays R, . .., Ry, correspond to the extreme rays of the summand R’f;.

Proof. We prove the theorem by induction over n. If n = 1, then K = R, and the assertion
is evident. Suppose now that n > 2 and the assertion is proven for cones of degrees not
exceedingn — 1.

If K has no isolated extreme ray, then the assertion of the theorem holds with K’ = K.

Assume now that 2 is an isolated extreme ray of K. By Corollary 13 K can be represented as
a direct sum I; & R, where K is a ROG cone of degree n — 1. By the assumption of the
induction, the number of isolated extreme rays of K is finite and does not exceed n — 1, let
these be pa, ..., pr, 1 < k' < n. Moreover, K is isomorphic to a direct sum K’ & ]R’i_l,
where K’ is a ROG cone of degree n — k' without isolated extreme rays. It follows that K =2
K' & RY.

Now every extreme ray of the direct sum K’ & R’i is either an extreme ray of the factor K’ or
an extreme ray of the factor R¥ and it is isolated in the direct sum if and only if it is isolated in
the factor. The extreme rays of K’ are not isolated in K, and hence they are not isolated in K.
The factor Rﬁ/ has k' extreme rays, and all of them are isolated. These k’ rays hence exhaust
the isolated extreme rays of K’ @ R’i. It follows that & = k and the assertion of the theorem
readily follows. O

The discrete and the continuous part of the set of extreme rays of K thus generate separate
factors of the cone K. The factor generated by the discrete part is isomorphic to the nonnegative
orthant, with the discrete extreme rays of K being its generators.

Corollary 14. Let K be a simple ROG cone of degree deg K > 2. Then K has no isolated
extreme rays.

Proof. The corollary is an immediate consequence of Theorem 5. O

Lemma 41. Let K C S}i be a ROG cone, and let x € R™ be such that the rank 1 matrix xx”
generates an extreme ray of K which is not isolated. Then there exists a vectory € R", linearly
independent of x, such that y’ + yz’ € span K.

Proof. Assume the conditions of the lemma. Then there exists a sequence vy, vs, . . . of nonzero

vectors in R™ such that z7v, = 0, (z + vi)(z + vi,)T € K forall k, and limy o, v, = 0.
(z4vk) (e to) T —za”
[[vr |l

v

T
III:JZIIC\ € span K. Since

Set y, = —=~-. Then we have
H{}k”
limy,_o0 % = (0 and span K is closed, we have zy” + yz” € span K for every accumula-

tion point of the sequence y1, ¥», . . . . But such accumulation points exist due to the compact-
ness of the unit sphere, and every such accumulation point is orthogonal to x. This completes
the proof. O

= zyl + yra” +
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Corollary 15. Let K C S be a simple ROG cone of degree deg ' > 2. Then for every
nonzero vector v € R" such that vz’ € K there exists a vectory € R", linearly independent
of x, such that xy” + yx? € span K.

Proof. The corollary is an immediate consequence of Lemma 41 and Corollary 14. O

Lemma 42. Let K be a simple ROG cone of degree deg K > 2. If K has aface I' C K such
that dim K — dim F' = 2, then K is isomorphic to an intertwining of F' and Ser-

Proof. Assume the conditions of the lemma, and set n = deg K, k = deg F'. Represent K as
a linear section of the cone Sﬁ, andlet X € F be a matrix of maximal rank k. Denote the image
of X by H. Then F' = L, (H) N K. By the last part of Corollary 4 there exist linearly inde-
pendent vectors 71, ..., 7, € R such that R" = span(H U {ryq1,...,7}) and r;r] €
K,j=k+1,...,n. Weobtain dim K > dim F' + dimspan{rg1r}_ 1,...,rmrl} =
(dim K — 2) + (n — k). It follows that & > n — 2. If Kk = n — 2, then span K =
span F' + span{r,_1r?_, r,rL'} and K is isomorphic to the direct sum F' & R%, contra-
dicting the simplicity of /&'

Hence k = n — 1. Set x = r,, for simplicity of notation. By Corollary 15 there exists a nonzero
vector y € H such that zy” + ya? € span K.

Since the codimension of F'in K is two, we have span K = span F'®span zx? @span(xy? +
yxT). Since K is simple, there exists a vector z € R™ such that z ¢ H Uspan{z} and 22T €
K. Let z = zy + Bz be the decomposition of z corresponding to the direct sum decomposition
R" = H @ span{z}. Then z; # 0, 3 # 0, 227 = zp 25 + BzpaT + x2L) + f222T. On
the other hand, we have the decomposition 227 = Zp + ajzz” + as(zy’ + yx™), where
Zp € span F.

Let [ be a linear form which is zero on H, but [(x) = 1. Contracting both decompositions of
the rank 1 matrix 2z with [, we obtain Bzy + $%r = a1z + asy, and hence o = (2,
Bzy = agy, as # 0, Zp = 22l = (87 an)?yy” € span F.

Hence yy’ € F C K. Thus L, (span{z,y}) C span K and
Fu(span{z, y}) = Ln(span{z, y}) N K

is a face of K which is isomorphic to Si. By construction K is an intertwining of the faces [
and F, (span{z, y}), with the intersection F'NF,,(span{x, y}) generated by yy” . This yields
the assertion of the lemma. O

7 Classification for small degrees

In this section we classify all simple ROG cones K of degree n = deg iK' < 4 up to isomor-
phism. Denote by Tri’} the cone of all tridiagonal matrices in S7}.
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7.1 Cones of degree n < 3

For n = 1 the only ROG cone is S..
For n = 2 we have the ROG cones S; @ S' and 2, of which only the latter is simple.

For n = 3 the only ROG cone of dimension 6 is S2, which is simple. By Theorem 4 any other
simple ROG cone must have dimension 5, i.e., is given by K = {X € &% [ (X, Q) = 0} for
some indefinite quadratic form (). The isomorphism class of /& depends only on the signature
of (), and the forms £() define the same cone K. Moreover, every cone K of this form is ROG
by Corollary 9. The possible isomorphism classes are hence given by the signatures (+ + —)
and (+ — 0) of Q. It is easily seen that the corresponding ROG cones are isomorphic to Hani
and the full extension of S}r @ S!, respectively. The latter cone is isomorphic to Trii.

7.2 Auxiliary results

For the classification of all simple ROG cones of degree n = 4 we shall need a couple of
auxiliary results.

Lemma43. Letey, . .., e4 be the canonical basis vectors of R*. Let P C R* be a 2-dimensional
subspace which is transversal to all coordinate planes spanned by pairs of basis vectors. Define
the set of vectors

R = {ae|aeR i=1,2,3,4} U
{z= (21,20, 23, 20)  €ERY 2z A0Vi=1,...,4; (275,255 25, 27 )T € P}

Let . C S* be the linear span of the set {22 | z € R}. Thendim L = 7, and the spectrahe-
dralcone K = L N Sj‘; is isomorphic to the cone Hani of positive semi-definite 4 X 4 Hankel
matrices.

Proof. Let (11 cospy, ..., r4cosps)t, (risinegs, ..., rysingy)? € R* be two linearly inde-
pendent vectors spanning P. By the transversality property of P all 2 x 2 minors of the 4 x 2
matrix composed of these vectors are nonzero. Hence the angles ¢4, . . ., ¢4 are mutually dis-
tinct modulo 7, and the scalars 74, ..., 74 are nonzero. We may also assume without loss of
generality that none of the angles ¢; is a multiple of 7, otherwise we choose slightly different
basis vectors in P.

For all £ € [0, 7) we then have that the vector (71 sin(p1 + &), ..., rasin(ps + €))7 is an
element of P. More precisely, we get

R = {aeg|laeR, i=1,2,3,4} U

1 1 T
- {a (Tlsjn(%%—f)’“"7‘48111(904—1—5)) v €R, £#¢; mod F}.

2t
1+¢2°

1 1
r1(2cosp1—ssingp1)? """ r4(2cospa—ssinps)

1 _ 1+t
ri sin(p;+§) rit(2cos p;—ssing;) "
T

) forall s € R except

1-¢2
1442

Now set cos & = siné = and s = t — 1. Then

Define the vector p(s) = (
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the values s = 2cot ;, 7 =1, ..., 4. We then get
R = {aeg|aeR,i=1,2,34}U{au(s)|a € R, s € R, s# 2cotp;} U

1 1\
U a( _ e, —— > la e R
181 Y1 T4 S111 V4

Multiplying the vector 1i(s) by the common denominator of its elements, we obtain the vector

4
o) = uls)- [[2cosis— ssing)
=1
= diag(rl_l’ T2_17 T3_17 7"4_1) M- dlag<87 —4,2, _1> ’ 77(3)7 (8)

where 1(s) = (1, s, s%, s*)T and the matrix M is given by

COS 1 COS @3 COs w4 sinq sin g sin pq + sin(p1 + @3 + pa)  cos @ cos 3 cos 4 — cos(p1 + ¥3 + wa)  sin g sin ez sin @y
COS 1 COS 2 COS w4 sinq sin g sin g + sin(p1 + @2 + pa)  cos @ cos o cos g — cos(p1 + w2 + wa) sinpgsinpasings |*
COS 1 COS 2 COS w3 sinq sin g sin 3 + sin(p1 + @2 + Y3)  cos @1 cos @ cos g3 — cos(p1 + w2 + ¢3)  sin g sin o sin @3

(cos @2 COS 3 COS w4 sin g sin @3 sin g + sin(pa + @3 + Ya)  cos pa cos @3 cos g — cos(p2 + ¢3 + @4)  sin g2 sin @3 sin Lp4)
Here for the calculus of M we used the formulas

sin p; cos @ cos i, + sin @; cos ; cos @y, + sin g cos p; cosp; = sinp; sing; sin g + sin(@; + @5 + Vk),

sin g2 sin @3 cos @4 + sin @2 sin 4 cos Y3 + sin g sinpgcospa = cos p; cos @, cos Y — cos(Y; + Yj + Yk ).
Note that the vector v/(s) can also be defined by the right-hand side of (8) for s = 2 cot ¢;,
and for this value of s it is proportional to ¢;. Defining 77(0c0) = e4 and

. -1 -1 -1 ,.—1 .
v(oco) = diag(ry ", 7y ,73 ,7, ) - M - diag(8,—4,2,—1) - n(00),
we finally get
R={av(s)|a € R, s € RU{oo}}.

A symbolic computation with a computer algebra system yields

det M = sin(p1—s) sin(¢1—¢3) sin(p1—p4) sin(ps—p3) sin(ps—p4) sin(ps—@4) # 0.

Hence the matrix product diag(r; ', 75, 751, ry ') - M -diag(8, —4, 2, —1) is non-degenerate,
and the subspace L = span{zz’ |z = v(s), s € RU {oo}} is isomorphic to the subspace
L' = span{zzT |z = n(s), s € RU {oo}}.

The subspace L', however, is the subspace of Hankel matrices in S*. The claim of the lemma
now easily follows. O

Lemmad4. Let K C Sf‘; be a simple ROG cone of dimension 7 and degree 4. Suppose that the
subspace of block-diagonal matrices consisting of two blocks of size 2 x 2 each is contained in
span K. Then K is isomorphic to the cone Trii of positive semi-definite tridiagonal matrices.

Proof. The subspace of block-diagonal matrices as defined in the formulation of the lemma
is 6-dimensional. Hence there exist scalars a3, a14, ao3, a4, not all equal zero, such that the
linear span of K is given by all matrices of the form

. 651 (%) Q713 Q714
Qg a3 Q7l23 Q7024
A= E OéiAi: N O(l,...,OK7GR,
P Q7G13  Qrgz Oy Qa5
Q714 Q7024 (67 Qg
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where the matrices A, ..., A; are defined by the above identity. Since K is ROG, there exists
arank 1 matrix Z = zz! = 23:1 (;A; with (7 # 0. Its upper right 2 x 2 block is also rank 1.
Hence aj3a24 = a14a23 and there exist angles 1, @2 and a positive scalar r such that a3 =
T COS (p1 COS (P2, G14 = T COS Y1 SIN (g, o3 = T SIN (Y1 COS (P2, A4 = T SiN Y1 SiN Po. Define
a basis of R? by the vectors 71 = (—sin p;, cos p1,0,0)7, o = (cosy,sing;,0,0)7,
x3 = (0,0, co8 @o,sin o), 24 = (0,0, — sin o, cos )T In the coordinates given by this
basis K equals the cone Trii, which proves our claim. O

Lemma 45. Let K C S be a ROG cone, letey, . . ., e, be the canonical basis vectors of R",
andlety = (0,%s,...,y,)" € R" be a vector such that ys, . .., y, # 0. Iferel ... eqel,
ery? + yel € span K, then K is simple and dim K > 2n — 1.

Proof. Suppose for the sake of contradiction that / is not simple. Then there exists a nontrivial
direct sum decomposition R” = H; @ H, such that for every rank 1 matrix zz” € K we
have either x € Hy orx € Hy. Hencee;, € Hy U Hyfort = 1,...,n. It follows that H,, Hy
are spanned by complementary subsets of the canonical basis of R"™. Hence there exists a
permutation of the basis vectors such that in the corresponding coordinate system every matrix
in K, and hence also in span K, becomes block-diagonal with a nontrivial block structure. But
this is in contradiction with the assumption ey + yel € span K. Hence K must be simple.

Since the identity matrix is an element of K, we have deg K = n. The bound on the dimension
now follows from Theorem 4. O

Corollary 16. Let K C Sj‘; be a simple ROG cone of dimension 7 and degree 4. Suppose
there exist linearly independent vectors zi, z2, 23 € R* and nonzero scalars o, 3 such that
2128, 2028, 2321, a(2128 + 2921 ) + B(212] + 232]) € span K. Then K is isomorphic to
either Trii, or the full extension of St & St ® S, or an intertwining of Hani and S2.

Proof. Denote by H C IR* the hyperplane spanned by 21, 23, z3. The face F' = L,(H) N K
of K is a ROG cone by Lemma 6. Applying Lemma 45 to ', we obtain dim F' > 5.

However, dim F' # 6, because a ROG cone K with a face F’ of codimension 1 in K is isomor-
phicto F' & S}r and hence not simple. Therefore F' has codimension 2 in /. By Lemma 42 the
cone K is isomorphic to an intertwining of F' with S7.

In the previous subsection we established that a simple ROG cone of dimension 5 and degree
3 is isomorphic to either Hani or Trii. If F'= Hanf’r, then K is isomorphic to an intertwining
of Hani and Si. If 7= Trii, then there exist two possibilities for K, because Trii has two
non-isomorphic types of extreme rays. It is not hard to see that an intertwining of Trii with Si
along these two types of extreme rays leads to cones which are isomorphic to Trii or the full
extension of S} & S} @ S, respectively. O

Lemma 46. Let K C Si be a simple ROG cone of dimension 7 and degree 4. Suppose that
K has a face which is isomorphic to Si. Then K fulfills the conditions of Corollary 16.

Proof. By assumption there exist linearly independent vectors =1, 2 € R* such that xlx{,
w2l x12L + z92T € span K. By Corollary 4 we may complete 1, 2o with vectors x3, 74 to

a basis of R* such that x321 , 7427 € K. Pass to the coordinate system defined by this basis.
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By Corollary 15 there exists a nonzero vector y = (y1,%2, 0, y4)T such that z3y” + yzl €
span K.

If y, = yo = 0, then z32] + x4x3T € span K and K fulfills the conditions of Lemma 44.
Hence K is isomorphic to Trii. The claim of the lemma then immediately follows in this case.

Suppose now that 1, y» are not simultaneously zero.

Let us first consider the case y4 = 0. Let F' = Ly(span{xy, z2,z3}) N K be the face of K
which consists of matrices X € K whose last column vanishes. Then z127 | zox | z121 +
woxt w3xl w3y’ +yxl € span F, and dim F' > 5. Since dim F' = 6 is not possible by the
simplicity of K, we then must have span F' = span{xlzf, ng:g, a:]_:vg%—xgx{, x3x§7 r3yl +
yxl}. It follows that F' is isomorphic to Trii. From Lemma 42 it follows that K is isomorphic

to an intertwining of Trii and Sfr, which proves the claim of the lemma in this case.

Suppose now that y4 # 0. Define the nonzero vector z3 = (y1,%2,0,0)7. Then 2321 € K
and y = axy + [Bz3 with a = y4 and 3 = 1. The linearly independent vectors z; = 3,
z9 = x4, 23, and scalars «, (3 then satisfy the conditions of Corollary 16. O

We are now in a position to classify the simple ROG cones of degree 4.

7.3 Cones of degree 4

Let K be a ROG cone of degree deg K = 4.
If dim K = 10, then K = S?.

If dim K = 9, then K is of the form {X € S? | (X, Q) = 0} for some indefinite quadratic
form (). As in the case n = 3, the isomorphism class of K is defined by the signature of (),
where +() yields the same cone K. The possible isomorphism classes of K are then defined
by the signatures (4+ — 00), (++ —0), (++ ——), and (+ + +—) of Q. In the first two cases
K is a full extension of Si &) S}r and Hani, respectively. In the third case K is isomorphic to
the cone of positive semi-definite 4 X 4 matrices consisting of four 2 x 2 symmetric blocks. It
can be interpreted as the moment cone of the homogeneous biquadratic forms on R? x R2. It
is not hard to see that all four isomorphism classes consist of simple cones.

Letdim K = 8.If K is simple, then by Theorem 3 it is isomorphic to a full extension of S} &S7 .

By Theorem 4 any other simple ROG cone must have dimension 7.

Theorem 6. Let K be a simple ROG cone of degree deg K = 4 and dimension dim K = 7.
Then K is isomorphic to either Trii, or the full extension of St ® St @ S, or an intertwining
of Han® and §2, or Han'} .

Proof. Let K C Sj‘r be a simple ROG cone of degree 4 and dimension 7. By Corollary 4 there
exist linearly independent vectors x1, T2, x3, T4 such that xla:;f € K,1=1,...,4. Passtothe
coordinate system defined by the basis {x1, z2, 3, x4 }. Then all diagonal matrices are in the
linear span of K. Moreover, by Corollary 15 there exist nonzero vectors y; = (yﬂ, Yi2, Yis, yi4)T
such that 27y, = y;; = 0 and 2y + yol € span K, i = 1,2,3, 4. Therefore span K
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contains all matrices of the form

Qq QslY12 + QY1 QY13 + Q7yYst  QsY14 + QgYar
Q5Y12 + QY21 Q2 QelYo3 + Q732 QeYos + QgYs2 a as € R
QslY13 + Q7Y31 QY23 + QrYs2 Qs QY34 + QigY43 Y '
QY14 + QgYa1  QelYos + QgYsn  Qi7Y34 + QigYa3 oy
9
Since the dimension of span K is 7, the matrices at the coefficients oy, . . . , g must be linearly

dependent. This is equivalent to the condition that the matrix

viz Y1 0 0
yiz 0y O
yiau 0 0 yn
Y = 10
0 w3 w32 0 (19)
0 wau 0 g
0 0 Ysa Va3

is rank-deficient, 1k Y < 3. Here the rows of Y correspond to the elements (1, 2), (1, 3), (1, 4),
(2,3), (2,4), (3,4) of (9), respectively, and the columns to the expressions at the coefficients
as, . . ., g, respectively. By construction every column of Y is nonzero.

If there exists a column of ¥~ with exactly one nonzero element, let it be ¥;;, then z;z], x;x7,

xle + :ij;fp € span K and K has a face which is isomorphic to Si. By Lemma 46 the cone
K is then isomorphic to either Trii, or the full extension of Si &, Si @ S, oran intertwining
of Hani and Si.

If there exists a column of Y with exactly two nonzero elements, let them be Yij, Yik» then the
linearly independent vectors 21 = x;, 29 = x;, 23 = X} and scalars o = y;;, B = yi, satisfy
the conditions of Corollary 16, and K is again isomorphic to one of the aforementioned cones.

Let us now assume that all elements y;; for ¢ # j are nonzero. Then rkY = 3, and the
subspace spanned by the set {z;x7, x;yl + y;27 | i = 1,2, 3,4} has dimension 7. Since this
subspace is contained in span K, it must actually equal span K. There exists a nonzero vector
B = (61,02, 33, 34)" such that Y3 = 0. It is easy to see that no three columns of ¥ can
be linearly dependent, and hence all elements [3; are nonzero. By possibly multiplying y; by the
nonzero constant /3;, we may assume without loss of generality that 5 = (1,1, 1, 1)T. Then

Yij = —yjiforalli,j = 1,,4,Z7£j

It is not hard to check that span K can then alternatively be written as the set

{X € §*1(X,Q;) = 0, i = 1,2,3}, where the linearly independent quadratic forms
@1, Q2, Q3 are given by

0 Y13Y23 —Yi2Yez 0O 0 Y1a¥as 0 —Y12Y24
Y13Y23 0 yi2y13 0 Y14Y24 0 0 wioyus
—Y12Y23 Y12Y13 0 0]’ 0 0 0 0 ’
0 0 0 0 —Y12Y24 Y12y14 O 0
0 0 y14Yss —Y13Y3a
0 0 0 0
Yyuayza 0 0 Y13Y14

—vy13y34 0 Y13y1a 0
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respectively.

The rank 1 matrices in K are then given by 2z suchthat z # O and 27 Q;z = Ofori = 1,2, 3.
Let us determine the set of vectors z = (21, 29, 23, z4)T which satisfy this quadratic system of
equations. It is not hard to see that if a solution z is not equal to a canonical basis vector, then
all elements of z are nonzero. For such z the quadratic system can be written as

“1_-1 11 —1_-1

Yz 21 — Y1322 tUpz2s = 0,

—1_—1 11 —1_-1

Ypa 21 — Y14z tUz = 0, (11)
1.1 11 —1_-1

Yss 21 —Ya 2z tyizz = 0.

This is a linear system in the unknowns z;l. If the coefficient matrix of this system is full rank,
then the solution (2, !, ..., z; ') is proportional to (0, ¥, Y15, Y14 ) and does not correspond
to a real vector z. In this case the only rank 1 matrices in the subspace span K are the matrices
zixl,i=1,...,4,and K is not ROG.

Thus the coefficient matrix of system (11) is rank deficient. This implies that all 3 x 3 minors of
this matrix vanish, which leads to the condition yl_41y2_31 - yl_gly;j + yfgly§41 = 0. The general
solution of system (11) is then given by

Zt Yis + Yis + Ui 0

z3 Yis Yoz + Yia Yai Yio R
2| = 13 725 4724y 20, .72 € R.

23_1 4! y14_1?143‘§1_ y12_11y2{l 2 y1_31 Y1572

24 Y12 Y24 — Y13 Y34 Y14

It can be checked by direct calculation that none of the 2 x 2 minors of the 4 X 2 matrix com-
posed of the two vectors at 1, 2, respectively, vanishes. Hence the 2-dimensional subspace
of solutions of system (11) is transversal to all coordinate planes spanned by pairs of canonical
basis vectors. By Lemma 43 the cone K is then isomorphic to Hani. O

8 Conclusions and open questions

In this contribution we have defined and considered a special class of spectrahedral cones, the
rank 1 generated cones. These cones are characterized by Property 1. They have applications
in optimization, namely for the approximation of difficult optimization problems by semi-definite
programs, in the common case where the semi-definite program is obtained by dropping a rank
1 constraint on the matrix-valued decision variable. They are closely linked to the property of
such a semi-definite relaxation being exact.

We provided many examples of ROG cones and several structural results. One of the main
results has been that the geometry of a ROG cone as a convex conic subset of a real vector
space uniquely determines its representation as a linear section of the positive semi-definite
matrix cone, if this representation is required to satisfy Property 1, up to isomorphism (Theorem
2). In particular, every point of the cone has the same rank in every such representation. The
rank also equals its Carathéodory number (Lemma 8). The Carathéodory number of the cone
itself equals its degree as an algebraic interior (Corollary 3).
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There exist surprisingly many ROG cones. This is due to the fact that there are several non-trivial
ways to construct ROG cones of higher degree out of ROG cones of lower degree, which we
have called full extensions (Subsection 3.2) and intertwinings (Subsection 3.3). Besides, there
is the obvious way of taking direct sums (Subsection 3.1). lterating these procedures, one may
obtain families of mutually non-isomorphic ROG cones with arbitrarily many real parameters.
One may call ROG cones that are neither direct sums nor intertwinings nor full extensions of
other ROG cones elementary. Examples of elementary ROG cones are the cones of positive
semi-definite Hankel matrices and the cones K = {X € S} | (X, Q) = 0} of codimension 1
(Subsection 5.1), where () is an indefinite non-degenerate quadratic form. Besides these infinite
series of elementary ROG cones, there exists the exceptional moment cone of the ternary
quartics of dimension 15 and degree 6. It is unknown whether there exist other elementary
cones.

We classified the isomorphism classes of simple ROG cones, i.e., those not representable as
non-trivial direct sums, up to degree 4. There are 1,1,3,10 equivalence classes of such cones
for degrees 1,2,3,4, respectively.

The set of extreme rays of a ROG cone defines a real projective variety (Corollary 6). The
varieties defined by direct sums or intertwinings are finite unions of other projective varieties.
The classification of the irreducible varieties defined by ROG cones is an open question. It would
follow from a classification of the elementary ROG cones.

In this contribution we dealt with real symmetric matrices. The concept of ROG cones can
equally well be defined for complex hermitian or quaternionic hermitian matrices.
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