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Abstract

We consider a stochastic model for the dynamics of the two-sided limit order book (LOB).
For the joint dynamics of best bid and ask prices and the standing buy and sell volume den-
sities, we derive a functional limit theorem, which states that our LOB model converges to a
continuous-time limit when the order arrival rates tend to infinity, the impact of an individual
order arrival on the book as well as the tick size tend to zero. The limits of the standing buy
and sell volume densities are described by two linear stochastic partial differential equations,
which are coupled with a two-dimensional reflected Brownian motion that is the limit of the
best bid and ask price processes.

1 Introduction

In modern financial markets almost all transaction are settled through Limit Order Books (LOBs).
An LOB is a record – maintained by an exchange or specialist – of unexecuted orders awaiting
execution. Unexecuted (standing) orders are executed against incoming market orders according
to a set of precedence rules. Orders standing at better prices have priority over orders submit-
ted at less competitive price levels (“price priority”) while orders with the same price-priority are
executed on a first-in-first-out basis (“time-priority”). From a mathematical perspective, LOBs can
thus be viewed as high-dimensional complex priority queuing systems. In this paper, we propose
a queuing-theoretic LOB model whose dynamics converges to a coupled system of reflected
Brownian motions and SPDEs after suitable scaling.

There is a substantial economic and econometric literature on LOBs [2, 9, 12, 21] that puts a lot of
emphasis on the realistic modeling of the working of the LOB. At the same time, only few authors
have analyzed LOB dynamics from a more probabilistic perspective. Kruk [17] studied a queuing
theoretic LOB model with finitely many price levels. For the special case of two price levels, in
his model the scaled number of standing buy and sell orders at the top of the book converges
weakly to a semimartingale reflected two-dimensional Brownian motion in the first quadrant. Cont,
Stoikov and Talreja [6] proposed an LOB model with finitely many submission price levels where
the LOB dynamics follows an ergodic Markov process. Cont and DeLarrard [5] established a
scaling limit for a Markovian limit order market in which the state of the book is represented by
the best bid and ask prices along with the liquidity standing at these prices (“top of the book”).
Under simplifying assumptions their price process converges to a Brownian motion with volatility.
Recently, the same authors [4] studied the reduced state space model under weaker conditions
and proved a refined diffusion limit by showing that under heavy traffic conditions the bid and ask
queue lengths are given by a two-dimensional Brownian motion in the first quadrant with reflection
to the interior at the boundaries, similar to the diffusion limit result for two price levels in [17].

When scaling limits of financial price fluctuations [1, 8, 10, 11, 14] or joint price and volume fluc-
tuations at selected price levels [4, 5, 17] are studied, then the dynamics is finite-dimensional and
its limit can naturally be described by ordinary differential equations or finite-dimensional diffusion
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processes, depending on the choice of scaling. The mathematical analysis is more challenging
when the dynamics of the full book is considered. To the best of our knowledge, Osterrieder
[20] was the first to model LOBs as measure-valued diffusions. Recently, Horst and Paulsen [13]
proved a limit theorem for LOBs with an unbounded number of submission price levels when the
tick size tends to zero and order arrival rates tend to infinity. With their choice of scaling the joint
dynamics of volumes and prices converges to a coupled system of two PDEs that describe the
limiting volume dynamics and two ODEs that describe the limiting price dynamics. In this pa-
per, we consider a different scaling regime. With our choice scaling the best bid and ask price
processes converge in distribution to a 2-dimensional reflected Brownian motion while volumes
converge in distribution to an SPDE.

We assume that limit and market order arrivals and cancellations follow a Poisson dynamics and
that incoming market orders match precisely against the standing liquidity at the best price. In par-
ticular, incoming market buy orders increase the best ask price by one tick while incoming market
sell orders decrease best bid prices by one tick. Likewise, limit orders placed into the spread
improve prices by one tick. In order to model order placements in the spread we follow an idea
in [13] and introduce a “shadow book”. More precisely, limit order placements and cancellations
occur at random distances from the best bid and ask prices. Placements and cancellations at
non-negative distances change the (visible) state of the book while placements and cancellations
at negative distances change the state of the shadow book. The shadow book becomes part of
the visible book when price changes occur. A sell order placement in the spread, for instance,
shifts in collection of the book in such a way that the volume that stood at one price level below
the best ask in the shadow book before the price change now stands at the best ask price while
the volume that previously stood at the best ask is now standing one tick into the book, i.e. at the
new best ask price plus one price tick.

As in [13] our scaling limit requires two time scales: a fast time scale for cancellations and limit
order placements outside the spread and a comparably slow time scale for market order arrivals
and limit order placements in the spread. We assume that incoming limit orders and cancella-
tions are subject to mean-zero noise. In the simplest case, an incoming limit order has a fixed
size plus noise while cancellations are good for fixed proportions plus noise. In order to keep the
analysis tractable we make three simplifying assumptions on the noise dynamics: (i) the noise
terms share a common component that stays constant between prices changes; (ii) the impact
of the common noise component on placements and cancellation is the same across all price
levels; (iii) the impact of the noise is linear. Relaxing the first assumption is possible but it might
lead to a different scaling limit, depending on the exact relaxation. Relaxing the second and third
assumption is requires different mathematical techniques. Since we are primarily interested in
establishing a benchmark framework within which to obtain an SPDE scaling limits for LOBs from
first principles, i.e. order arrival dynamics, we believe that it is appropriate to work under these
assumptions.

Our main result states that when the rates of market order arrivals scale by a factor n, the rates
of limit order arrivals and cancellations scale by a factor n2, the tick size scales by a factor 1√

n
,

the sizes (proportions) of incoming orders (volumes cancelled) scale by a factor 1
n2 and the noise

term scales by a factor 1
n , then our LOB model converges to a diffusion limit as n → ∞. The

limiting model is such that the best bid and ask price dynamics can be described in terms of
two-dimensional reflected Brownian motion, while the dynamics of the buy and sell volumes can
be described in terms of two SPDEs. The convergence concept we chose is weak convergence
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in the class of càdlàg stochastic processes with sample bath in R2 × E′ where E′ denotes the set
of the tempered distributions. To justify our rather weak notion of convergence we note that the
scaling is highly non-linear, due to the simultaneous increase in order arrivals and submission
price levels.

The proof of convergence of the price process is standard and follows from established weak
limit theorems for two-dimensional reflected Brownian motion, cf. [16]. The proof of convergence
of volumes is more challenging. First, the volume process is not a Markov process, due to the
nature of the noise. Second, the complex interaction of the various event dynamics renders the
proof of tightness complex. In particular, limit order placements and cancellations follow a (spatial)
Poisson dynamics on a Poisson time scale generated by market order arrivals. To prove tightness
we decompose the volume processes into three components describing aggregate placements,
cancellations and “noise contributions” at the various price levels, respectively.1 We establish
norm-bounds for each these processes from which we then deduce that the volume process as
a whole satisfies a standard tightness criteria. Once tightness has been established, we modify a
method of Kushner [19] to characterize the limit. To this end, we first prove joint convergence of
prices and the “noise contributions” to the volume processes. Subsequently, we identify the limits
of aggregate placements and cancellations and then use C-tightness to prove joint convergence
of all the processes to the desired limit. It turns out that the limiting volume dynamics is essen-
tially described by a family of diffusion processes (one for each price level) driven by two common
Brownian motions (resulting from noisy placements and cancellations) evolving in a random en-
vironment (generated by the best bid and ask price processes).

The remainder of this paper is organized as follows. In Section 2 we define a sequence of limit
order book in terms of our scaling parameters, state the main result and give an outline of the
proof. In Section 3 we establish convergence of the bid/ask price dynamics to a 2-dimensional
reflected Brownian motion. Section 4 is devoted to the analysis of the limiting volume dynamics.
In Section 5, we give the conclusion. Selected results on tightness of stochastic processes as
well as some technical proofs are collected in the appendix.

2 Model and main results

2.1 The discrete model

In this section we introduce a sequence of discrete order book models. The models are indexed
by n ∈ N. While our modeling framework closely follows [13] the choice of scaling and hence
the limiting dynamics will be very different. Throughout, all random variables are defined on a
common probability space (Ω,F ,P).

The set of price levels at which orders can be submitted in model n is {xn
j } j∈Z. The assumption

that there is no smallest price is made for analytical convenience; it avoids the introduction of an
additional reflection term for the bid-ask price process at zero. We put xn

j := j · ∆xn for each j ∈ Z
where ∆xn is the tick size, i.e. the minimum difference between two consecutive price levels.

1It is the linearity of the noise that allows one to analyze aggregate “noise contributions” separately.
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2.1.1 The initial state

The initial state of the book is given by a pair (Bn
0, A

n
0) with Bn

0 ≤ An
0 of best bid and ask prices

together with the buy and sell limit order volumes at different price levels. We identify volumes at
the bid (buy) and ask (sell) side of the book with the step functions:

vn
b(x) :=

∑
j∈Z

vn, j
b 1[xn

j ,x
n
j+1)(x), vn

a(x) :=
∑
j∈Z

vn, j
a 1[xn

j ,x
n
j+1)(x) (x ∈ R).

Throughout, indices b and a indicate the bid and ask side of the book, respectively. The liquid-
ity available for selling/buying j ∈ N ticks below/above the best bid/ask price is then given by,
respectively:∫ Bn

0+( j+1)∆xn

Bn
0+ j∆xn

vn
b(x)dx = ∆xn · v

n,Bn
0/∆xn+ j

b ,

∫ An
0+( j+1)∆xn

An
0+ j∆xn

vn
a(x)dx = ∆xn · v

n,An
0/∆xn+ j

a .

The restriction of the functions vn
b/a to volumes standing at non-negative distances from the best

bid/ask price will be called the visible book. The visible book collects the displayed volumes. The
collection of volumes standing at negative distances will be referred to as the shadow book. The
shadow book specifies the volumes that will be placed into the spread should such an event
occurs next. The shadow book will undergo random fluctuations similar to those of the visible
book. The role of the shadow book will become clear below; see also [13] for a detailed discussion
of the shadow book.

Definition 2.1. The initial LOB state is given by a pair
(
Bn

0, A
n
0

)
of bid and ask prices and two

volume density functions vn
b/a(0, ·) : R→ R.

There are eight events – labeled Mb/a,Lb/a,Cb/a,Pb/a – that change the state of the book. The
events Mb,Lb,Cb,Pb affect the bid side of the book:

Mb := {market sell order} Lb := {buy limit order placed in the spread}

Cb := {cancellation of buy volume} Pb := {buy limit order not placed in spread}

The events Ma,La,Ca,Pa affect the ask side of the book:

Ma := {market buy order} La := {sell limit order placed in the spread}

Ca := {cancellation of sell volume} Pa := {sell limit order not placed in the spread}.

In the sequel we describe how different events change the state of the book. To this end, we
denote by vn

b/a(t, ·) the volume density function at the bid/ask side at time t > 0 and by (Bn(t), An(t))
the prevailing best bid and ask prices.

2.1.2 Active orders and price dynamics

Market order arrivals (Events Mb/a) and placements of limit orders in the spread (Events Lb/a)
lead to price changes.2 We refer to these order types as active orders.

2A market order that does not lead to a price change can be viewed as a cancellation of standing volume at the
best bid/ask price.
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Assumption 1. Active orders arrive according to independent Poisson processes Ñn
b and Ñn

a with
intensities µn

b and µn
a at the bid and ask side of the book, respectively. The respective jump times

are denoted
(̃
τn

b/a,i

)∞
i=1

.

We assume that market orders match precisely against the standing volume at the best available
prices and that orders placed in the spread are placed at the first best price increment. In partic-
ular, active orders change prices by exactly one tick.

More precisely, a market sell order arriving at time t > 0 is good for vn
b(t−, Bn(t−)) · ∆xn shares. A

limit buy order placed in the spread at time t ∈ (0,T ) arrives at price level Bn(t−)−∆xn and is good
for vn

b(t−, Bn(t−)−∆xn) ·∆xn shares. This illustrates the role of the shadow book. For simplicity we
assume that prices increase and decrease with equal probability.

Since Ñn
b and Ñn

a are independent we may as well model price changes in terms of a single

Poisson process Ñn with suitable intensity µn and corresponding active order jump times
(̃
τn

i

)∞
i=0

along with two independent sequences of i.i.d. random variables
(
ξb,i

)∞
i=0 and

(
ξa,i

)∞
i=0 where ξa,i

takes the values +1 and −1 with equal probability for each i ∈ N. For instance, on the bid side,
ξb,i = ξa,i = +1 increases the bid price by one tick, and hence corresponds to a placement of a
limit order in the spread; ξb,i = ξa,i = −1 decreases the bid price by one tick and hence corre-
sponds to a market sell order.

In order to guarantee that the best ask price never falls below the best bid price we introduce a
reflection term. More precisely, we model the price dynamics as follows:

dBn(t) =
∆xn

2
(ξb,Ñn(t) + ξa,Ñn(t)) dÑn(t) − ∆xn1An(t−)−Bn(t−)=∆xn dÑn(t), (1a)

dAn(t) =
∆xn

2
(ξb,Ñn(t) − ξa,Ñn(t)) dÑn(t) + ∆xn1An(t−)−Bn(t−)=∆xndÑn(t). (1b)

Remark 2.2. Of course, one could also introduce a reflection at zero for the bid price process.
Such a reflection does not pose significant mathematical challenges but it leads to quite cumber-
some dynamics as several cases have to be distinguished. We therefore choose to disregard the
problem of negative prices.

2.1.3 Passive orders and volume changes

Limit order placements outside the spread and cancellations of standing volume do not change
prices. We refer to these order types as passive orders. In our model cancellations (Events Cb/a)
occur for random proportions of the standing volume at random price levels while limit order
placements outside the spread (Events Pb/a) occur for random volumes at random price levels.

Assumption 2. Passive orders arrive according to independent Poisson processes Nn
b and Nn

a
with intensities λn

b and λn
a at the buy and sell side of the book, respectively. The corresponding

jump times
(
τn

b/a,i

)∞
i=1

will be called passive order times.

The submission and cancellation price levels are chosen relative to the best prices. Allowing for
rather general placement and cancellation dynamics, we assume that the price levels are chosen
according to a sequence of i.i.d. random variables (πi)∞i=0 where each πi is of the form:

πi =
(
πCb

i , πCa
i , πPb

i , π
Pa
i , π

Nb
i , πNa

i

)
. (2)
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The entries takes values in an interval [−M,M] for some M > 0; positive values indicate changes
in the visible book while negative values indicate changes in the shadow book. Superscripts
indicate event types and ‘N’ stands for ‘noise’. The precise meaning of the entries will become
clear below.

Passive order sizes are described by a sequence of i.i.d. random variables (ωi)∞i=0 where each ωi

is of the form
ωi =

(
ωCb

i , ωCa
i , ωPb

i , ω
Pa
i , ω

Nb
i , ωNa

i

)
. (3)

The random variables ωPb/a
i take values in [0,∞); they describe the sizes of order placements.

Likewise, the random variables ωCb/a
i take values in [0, 1] and describe the proportions of can-

cellations. Placements and cancellations on both sides of the book are subject to noise. The
impact of the noise is described by the non-negative random variables ωNb/a and two sequences
of i.i.d. random variables

(̃
ξb/a,i

)∞
i=0

where ξ̃b/a,i ∈ {−1,+1} for each i ∈ N.

More precisely, let us assume that the i-th passive order event occurs at time t > 0. If

πCb
i = γ, πPb

i = δ, πNb
i = ζ

then the impact of a cancellation, order placement and noise is felt at the respective price levels

l :=
⌊

Bn(t−) + γ

∆xn

⌋
, j :=

⌊
Bn(t−) + δ

∆xn

⌋
, r :=

⌊
Bn(t−) + ζ

∆xn

⌋
,

and the change in the bid-side volume density function is given by:

vn
b(t, ·) − vn

b(t−, ·) = ωPb
i

∆vn

∆xn 1[xn
j ,x

n
j+1[(·)+

− ωCb
i

∆vn

∆xn vn
b(t−, Bn(t−) + γ)1[xn

l ,x
n
l+1[(·) + ωNb

i ξ̃b,Ñn(t−)

√
∆vn1[xn

r ,xn
r+1[(·). (4)

Here ∆vn is a scaling parameter that measures the impact of an individual order on the state of
the book. Similar considerations apply to the ask side. For our scaling limit it will be important that
the noise parameters ξ̃b/a stay constant between two price changes; this explains the random
variable ξ̃a,Ñn(t−) in (4). Note, however, that the constant fluctuation part ξ̃a/b is further modulated
by the non-negative random factor ωNa/b , which changes between consecutive passive orders.

Remark 2.3. The frequency of change of the ‘common factor’ ξ̃a/b determines the structure of the
martingale part of the limiting dynamics. In our case, the martingale part will be a an integral with
respect to a Wiener process (resulting from the scaling of ξ̃a/b). If the common factor changes
at the same rate at which passive orders arrive, we expect the martingale part to be space-time
white noise. This case is left for future research.

Remark 2.4. In real-world markets only one event (market order arrival, cancellation, placement)
happens at a time. Within our framework this corresponds to the special case where

π
Cb/a
k = π

Pb/a
k = π

Nb/a
k ,

and only one of the random variables ωCa/b , ωPa/b is different from zero. Our mathematical frame-
work is flexible enough to allow for such correlation. For instance, if only ωCb

k and ωNb
k are different

from zero and ωNb
k = 1, then the k-th event is a bid-side cancellation at the price level

γ =

Bn(t−) + πCb
k

∆xn


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and the volume cancelled is:

ωCb
k · ∆vn · vn

b(t−, Bn(t−) + γ) + ωNb
k ξ̃b,Ñn(t−) ·

√
∆vn∆xn.

We acknowledge that volumes may become negative with our choice of scaling. This could be
avoided by multiplying the noise term with the standing volume as well. However, additional tech-
nical arguments would be needed for such a multiplicative noise structure, which we postpone to
future work.

Notation 2.5. We introduce the following important short-hand notations:

� For any (deterministic or random) function u : [0,∞) × R → R we denote by u(t) : R → R
the function x 7→ u(t, x) for t ∈ [0,∞).

� In the nth model, we denote by In(y) the sub-interval of the grid containing y ∈ R. More
precisely, its indicator function is given by

1In(y)(x) =
∑
j∈Z

1[xn
j ,x

n
j+1[(y)1[xn

j ,x
n
j+1[(x).

� Unless otherwise stated, (Lp, ‖ · ‖Lp) (p ∈ [1,∞]) refers to the space Lp (R,B(R), dx).

� For σ-algebras G ⊂ F we shall write EG [·] B E [· | G].

For future use, we also introduce the filtration F n generated by the n-th model. More precisely,
we set

F n
t B σ

((
Ñn

s

)
0≤s≤t

,
(
ξn

a,k

)Ñn(t)

k=1
,
(
ξn

b,k

)Ñn(t)

k=1
,
(
Nn

a (s)
)
0≤s≤t ,

(
Nn

b (s)
)
0≤s≤t

,
(
ωCa

k , ωPa
k , ω

Na
k

)Nn
a (t)

k=1
,(

ωCb
k , ωPb

k , ω
Nb
k

)Nn
b (t)

k=1
,
(
πCa

k , πPa
k , π

Na
k

)Nn
a (t)

k=1
,
(
πCb

k , πPb
k , π

Nb
k

)Nb
a (t)

k=1
,
(̃
ξn

b,k

)Nn
a (t)

k=1
,
(̃
ξn

a,k

)Nn
b (t)

k=1

)
.

In terms of the independent Poisson processes Ñn and Nn
b/a governing the arrival of active and

passive orders, respectively, and the active order arrival times
(̃
τn

i

)∞
i=0

, the dynamics of the buy
and sell side volume density functions follows the dynamics

dvn
b(t, ·) =

[
1

In

(
Bn (̃τn

Ñn(t−)
)+πPb

Nn
b (t)

)(·)ωPb
Nn

b (t−)
∆vn

∆xn (5a)

− 1
In

(
Bn (̃τn

Ñn(t−)
)+πCb

Nn
b (t)

)(·)ωCb
b,Nn

b (t−)v
n
b(τn

b,Nn
b (t−), ·)

∆vn

∆xn

+ 1
In

(
Bn (̃τn

Ñn(t−)
)+πNb

Nn
b (t)

)(·)ωNb
Nn

b (t−)ξ̃b,Ñn(t−)

√
∆vn

]
dNn

b (t),

dvn
a(t, ·) =

[
1

In
(
An (̃τn

Ñn(t−)
)+πPa

Nn
a (t)

)(·)ωPa
Nn(t−)a

∆vn

∆xn (5b)

− 1
In

(
An (̃τn

Ñn(t−)
)+πCa

Nn
a (t)

)(·)ωCa
Nn(t−)v

n
a(τn

Nn
a (t−), ·)

∆vn

∆xn

+ 1
In

(
An (̃τn

Ñn(t−)
)+πNa

Nn
a (t)

)(·)ωNa
Nn

a (t−)ξ̃a,Ñn(t−)

√
∆vn

]
dNn

a (t).
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We see from the above equations that the random volume density functions evolve in a random
environment described by the best bid and ask price processes. The specific structure of the
dependence of the volume density functions on the bid and ask price as well as the random
submission price levels reflects the fact the submission and cancellation price levels are chosen
relative to the best bid/ask price.

2.2 The main result

We prove below that our LOB model converges to a continuous time limit if the order arrival rates
tend to infinity and the impact of an individual order arrival on the book as well as the tick size
tend to zero in a particular way. In order to make the convergence concept precise, and to state
the main result, we need to introduce some notations.

2.2.1 Preliminaries

For m ∈ (−∞,∞), we denote by (Hm, ‖ · ‖m) the space of Bessel potentials equipped with the usual
Sobolev norm and inner product. Set

E′ = ∪mH−m ⊃ · · · ⊃ H−1 ⊃ L2 ⊃ H1 ⊃ · · ·H2 ⊃ · · · ⊃ ∩mHm = E.

It is well known that H0 = L2 and that E is a complete separable metric space. Sobolev’s em-
bedding theorem indicates that each element of E is an infinitely differentiable function. In what
follows, denote the dual between E′ and E by 〈·, ·〉, which coincides with the inner product of
H0 = L2.

The convergence concept we use is weak convergence in the Skorokhod spaceD := D([0,∞);R2×

H−1 ×H−1) of all càdlàg functions on [0,∞) taking values in the space R2 ×H−1 ×H−1. The space
D is equipped with the usual Skorokhod metric (see Jacod and Shiryaev [15]).

2.2.2 The convergence result

In order to obtain our convergence result, we need the following assumptions. In particular, just
as in [13], we need active and passive orders to arrive on different time scales.

Assumption 3. � The scaling parameters λn
b/a (arrival rate of passive orders), µn (arrival rate

of active orders), ∆vn (order sizes) and ∆xn (tick size) satisfy the following conditions:

λn
b/a = n2; µn = n; ∆vn = n−2; ∆xn = n−1/2.

� The Poisson processes Nn
a , Nn

b and Ñn are independent.

� For each ‘event type’ T = Cb/a,Pb/a,Nb/a the random variables ωT
i (i ∈ N) are i.i.d. with

finite fourth moment, ωCb/a
i ∈ [0, 1], ωPb/a

i , ω
Nb/a
i ∈ [0,∞), and the random variables πT

i have
Lipschitz continuous and hence bounded densities f T on some compact interval [−M,M].
The random variables ωT

i and πT
i (i ∈ N) are independent of the Poisson processes Nn

a , Nn
b

and Ñn.
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� The random variables ξ̃b/a,i and ξb/a,i are independent and independent of all other random
variables and take the values ±1 with equal probability.

� The sequence of initial data (An
0, B

n
0, v

n
a(0, ·), vn

b(0, ·)) converges to (a0, b0, va,0(·), vb,0(·)) in
both R2 × L2 × L2 and R2 × L∞ × L∞.

We are now ready to state the main result of this paper.

Theorem 2.6. Let Assumptions 1-3 be satisfied. There are four independent Wiener processes
βa, βb, Wa and Wb such that the sequence (An, Bn, vn

a, v
n
b) of stochastic processes converges in

distribution inD([0,∞);R2×H−1×H−1) to (A, B, va, vb). Here (A, B) is a two-dimensional reflected
Brownian motion:

dAt =
1
√

2
dβa

t + dLt; A0 = a0;

dBt =
1
√

2
dβb

t − dLt; B0 = b0;

dLt =1At=Bt dLt; L0 = 0

and the volume density processes satisfies the infinite-dimensional SDE

vb(t, ·) =vb,0(·) +

∫ t

0

(
E[ωPb

1 ] f Pb(· + Bs) − E[ωCb
1 ] f Cb(· + Bs)vb(s, ·)

)
ds

+
√

2E
[
ωNb

1

] ∫ t

0
f Nb(· + Bs) dWb(s), t ≥ 0;

va(t, ·) =va,0(·) +

∫ t

0

(
E[ωPa

1 ] f Pa(· + As) − E[ωCa
1 ] f Ca(· + As)va(s, ·)

)
ds

+
√

2E
[
ωNa

1

] ∫ t

0
f Na(· + As) dWa(s), t ≥ 0.

For any T ∈ (0,∞), the existence and uniqueness of the adapted solution of the above infinite-
dimensional SDE in L2(Ω × [0,T ] × R) is obvious; see [7] for a general theory on stochastic
equations in infinite dimensions. If the model parameters are sufficiently smooth, then the density
functions are smooth as well. The proof of the following corollary is an immediate consequence
of Itô’s formula.

Corollary 2.7. If vb/a,0 and the densities f T belong to Hm with m > 3, then vb/a(t) take values in
Hm and hence by embedding, in C2(R). Furthermore, the relative volume processes

(Ua,Ub)(t, x) = (va(t, x − At), vb(t, x − Bt)),

satisfies the stochastic partial differential equation:

dUa(t, x) =

[
1
4

∆Ua(t, x) + E[ωPa
1 ] f Pa(x) − E[ωCa

1 ] f Ca(x)Ua(t, x)
]

dt − ∂xUa(t, x)dLt

− ∂xUa(t, x)dβa
t +
√

2E
[
ωNa

1

]
f Na(x)dWa(t), t ≥ 0;

Ua(0, x) =va,0(x − a0);
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dUb(t, x) =

[
1
4

∆Ub(t, x) + E[ωPb
1 ] f Pb(x) − E[ωCb

1 ] f Cb(x)Ub(t, x)
]

dt + ∂xUb(t, x)dLt

− ∂xUb(t, x)dβb
t +
√

2E
[
ωNb

1

]
f Nb(x)dWb(t), t ≥ 0;

Ub(0, x) =vb,0(x − b0).

2.3 Outline of the proof

The proof of Theorem 2.6 is carried out in the following sections. The proof of convergence of
the bid and ask price processes draws on established results on weak limits of reflected random
walks and is carried out in Section 3. The proof of convergence of the volume density processes
on the bid and ask sides of the limit order book is recalled in Section 4. For the convenience of the
reader we now give an outline of our strategy for the convergence proof for the volume densities.

2.3.1 Some auxiliary processes

We split the dynamics of the volume density functions into three processes, which we are going
to handle separately, before finally pasting them back together to obtain the result for the full
dynamics.

From equation (5a) we identify the following three processes which drive the evolution of the
bid-side volume density function:

Vn,1
b (t, x) =

Nn
b (t)∑

i=1

1
In

Bn (̃τn
Ñn(τn

b,i)
)+πPb

i

(x)ωPb
i

∆vn

∆xn , (6a)

Vn,2
b (t, x) =

Nn
b (t)∑

i=1

1
In

An (̃τn
Ñn(τn

b,i)
)+πCb

i

(x)ωCb
i

∆vn

∆xn , (6b)

Vn,3
b (t, x) =

Nn
b (t)∑

i=1

1
In

Bn (̃τn
Ñn(τn

b,i)
)+πNb

i

(x)ωNb
i ξ̃b,Ñn(τn

b,i)+1

√
∆vn, (6c)

corresponding to the volume changes due to incoming order placements (Vn,1
b ), the proportional

cancellations of standing volume (Vn,2
b ) and aggregated random fluctuations (V3,n

b ). We notice
that Vn,1

b and Vn,2
b are increasing functions in time for each n. The process Vn,3

b will contribute the
martingale part in the continuous scaling limit.3 We introduce similar processes Vn,1

a , Vn,2
a and Vn,3

a
for the ask side.

2.3.2 ‘Markovization’

The previously introduced processes are not convenient for characterizing the limit process. The
reason is that the discrete processes

(
V3,n

b/a(τn
i , ·)

)
i∈N

which capture the fluctuations are not Markov

3Note that Vn,3
b itself is not a martingale (in the filtration F n generated by the full model), as the fluctuations ξ̃ are

constant between two active order times.
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chains because part of the fluctuations change only at active order times. As a result, we cannot
directly use existing results on the scaling of Markov processes.

The necessary ‘markovization’ is achieved by registering changes to the processes V i,n
b/a and vn

b/a
only at active order times. To this end, we introduce the following processes (making use of our
short-hand notations):

v̂n
b/a(t) B vn

b/a(̃τn
k−1), V̂ i,n

b/a(t) B V i,n
b/a(̃τn

k−1), τ̃n
k−1 ≤ t < τ̃n

k , (7)

for i = 1, 2, 3. Note that we have, for instance,

V̂n,1
b (t, x) =

Ñn
t∑

k=1

Nn
b (̃τn

k )∑
i=Nn

b (̃τn
k−1)+1

ωPb
i 1

In
(
Bn (̃τk−1)+πPb

i

)(x)
∆vn

∆xn .

Obviously, together with
(
(An

τ̃n
i
, Bn

τ̃n
i
)
)

i∈N
the processes

(̂
vn

b/a(̃τn
i , ·)

)
i∈N

,
(
V̂n,1/2/3

b/a (̃τn
i , ·)

)
i∈N

are Markov

processes, and V̂n,3
b/a is, in fact, a martingale. Thus, the methods of, e.g., [19], are, in principle,

applicable to these processes. Nonetheless, we find it useful to add yet another layer of auxiliary
processes, this time by separating out active order times, i.e., by considering the process as if
active orders arrive at deterministic points in time. More precisely, we define the time-change η

together with its inverse η by

η̄n
u B τ̃n

bnuc, u ∈ [0,∞);

ηn
u B inf{t : t > 0, η̄n

t > u} −
1
n
, u ∈ [0,∞). (8)

Then new processes are defined, which correspond to the “hat” processes when evaluated on
the time-scale ηn. More precisely, we put:

A
n
u B An

0 +
∆xn

2

bnuc∑
i=1

(ξb,i + ξa,i) + ∆xn
∑

0≤t≤u

1A
n
(t−)−B

n
(t−)=∆xn , (9a)

B
n
u B Bn

0 +
∆xn

2

bnuc∑
i=1

(ξb,i − ξa,i) − ∆xn
∑

0≤t≤u

1A
n
(t−)−B

n
(t−)=∆xn , (9b)

V
n,1
a (u, x) B

Nn
a (̃τn
bnuc)∑

i=1

ωPa
i 1

In

(
A

n
(
ηn
τn
a,i

)
+πPa

i

)(x)
∆vn

∆xn , (9c)

V
n,2
a (u, x) B

Nn
a (̃τn
bnuc)∑

i=1

ωCa
i 1

In

(
A

n
(
ηn
τn
a,i

)
+πCa

i

)(x)
∆vn

∆xn , (9d)

V
n,3
a (u, x) B

Nn
a (̃τn
bnuc)∑

i=1

ωNa
i 1

In

(
A

n
(
ηn
τn
a,i

)
+πNa

i

)(x)̃ξa,Ñn(τn
a,i)+1

√
∆vn, (9e)

vn
a(u, x) B vn

a(0, x) + V
n,1
a (u, x) + V

n,3
a (u, x) (9f)

−

Nn
a (̃τn
bnuc)∑

i=1

ωC
i 1

In

(
A

n
(
ηn
τn
a,i

)
+πCa

i

)(x)vn
a(τn

a,i, x)
∆vn

∆xn ,
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and similarly for the processes on the bid side of the limit order book. Thus, we have the desired
property that, for instance,

(An, Bn, v̂n
a)(u) = (A

n
, B

n
, vn

a)(ηn
u).

Note that
(
(A

n
i/n, B

n
i/n, v

n
a(i/n, ·))

)
i∈N

is a Markov chain.

2.3.3 Structure of the proof

With these preparations we can now describe the structure of the proof. We first prove tightness
of each of the processes V

n,i
b/a (i = 1, 2, 3) and of vn

b/a in the distributional sense indicated above.
For this part, we heavily rely on Mitoma’s theorem (Theorem B.2) together with Kurtz’s criterion
(Theorem B.1). This first part is presented in Section 4.1, see Proposition 4.7.

The natural next step would be to extend the tightness result for vn
b/a to v̂n

b/a and, subsequently, to
vn

b/a. However, it turns out that this extension requires C-tightness of vn
b/a. Hence, in Section 4.2,

we instead characterize the limit vb/a of vn
b/a.

Finally, in the third step presented in Section 4.3 we extend the tightness to v̂n
b/a and prove tight-

ness of vn
b/a. In fact, we thereby also obtain the limits for these processes; as it turns out, the

processes vn
b/a, v̂n

b/a and vn
b/a must all have the same limit. In some more detail, we first show the

joint convergence (in a weak sense) of(
vn

b/a , η
n
) n→∞
−−−−→

(
vb/a , id

)
.

By a theorem of Billingsley ([3, Lemma on p. 151]), this implies that (in the appropriate weak
sense)

lim
n→∞

v̂n
b/a = lim

n→∞
vn

b/a ◦ (ηn) = vb/a.

Note that for this implication we need C-tightness of the sequence vn
b/a. Then we prove the tight-

ness of vn
b/a and further verify that v̂n

b/a − vn
b/a converges to 0 in an L2(Ω; L2(R))-sense, thereby

implying that
lim
n→∞

vn
b/a = lim

n→∞
v̂n

b/a = vb/a.

At this stage, we have only treated the convergence of each of the individual sequences of
processes (An, Bn, vn

b) and (An, Bn, vn
a) to some limiting processes. However, as all these lim-

iting processes are actually continuous, joint tightness and, finally, joint weak convergence of(
An, Bn, vn

b, v
n
a

)
therefore follows by Corollary B.3.

3 The scaling limit of the price process

In this section we prove convergence in law of the bid/ask price process to a 2-dimensional
reflected Brownian motion. We start with an auxiliary observation on the convergence of the time-
change process ηn. According to a strong approximation result, due to Kurtz [18], a standard
Poisson process (Nt) can be realized on the same probability space as a Brownian motion (Wt)
in such a way that the random variable

Y := sup
t≥0

|Nt − t −Wt|

log(max{2, t})

12



has finite moment generating function in the neighborhood of the origin and hence finite mean.
In particular, Y is almost surely finite. In view of the law of iterated logarithm for Brownian motion,
this means that

lim
n→∞

ηn
t = t

almost surely, uniformly on compact time intervals. Hence, we have the following result.

Lemma 3.1. The sequence of processes ηn converges almost surely to the identity function
uniformly on compact time intervals.

We are now ready to state the main result of this section.

Proposition 3.2. As a sequence of processes whose sample paths lie in D([0,∞);R2), both
(An, Bn) and (A

n
, B

n
) are C-tight and converge to the two-dimensional reflected Brownian motion

(A, B) satisfying

dAt =
1
√

2
dβa

t + dLt; A0 = a0;

dBt =
1
√

2
dβb

t − dLt; B0 = b0;

where a0 > b0, βa and βb are two independent Wiener processes and L is a non-decreasing
process satisfying

Lt =

∫ t

0
1{As=Bs} dLs.

Proof. It follows from a result on semimartingale reflecting Brownian motion by Kang and Williams
[16, Theorem 4.3] that (A

n
, B

n
) is C-tight and converges weakly to (A, B) which is the two-dimensional

reflected Brownian motion given above. Recalling that

(An
u, B

n
u) = (A

n
, B

n
) ◦

(
ηn

u
)
, u ≥ 0, (10)

the assertion follows from Lemmas 3.1 and B.4. �

4 The scaling limit of the volume density

In this section, we prove weak convergence in a distributional sense of the volume density func-
tion.Throughout, we use the symbol C for deterministic constants which may change from occur-
rence to occurrence.

4.1 Tightness of the auxiliary process v
n
b/a

We first prove tightness of the processes vn
b/a. The arguments are the same for the bid and ask

side of the book. To ease notation we therefore drop the index indicating bid/ask side volumes in
what follows.

13



Notation 4.1. Where appropriate (i.e., when there is only a negligible chance of confusion and
where all considerations can be trivially generalized to all relevant processes), we shall adopt the
following notations:

� We drop the superscript “n” (referring to the place in the model hierarchy) as well as the
subscript “a” or “b” and any other indices, which are not essential in the respective context.
E.g., we may write V

2
or even just V instead of V

n,2
b .

� We may denote by A or A either the ask or the bid price.

� We may denote the random location of any activity in the book by π or πi and its size by ω
or ωi, disregarding the type of activity and whether the sell or buy sides are involved.

We start with an elementary auxiliary lemma on the distribution of a Poisson process as seen
from a second, independent Poisson process. The lemma will be key to compute the distribution
of passive order arrivals between two consecutive active order times.

Lemma 4.2. Let N1 and N2 be two independent Poisson processes with intensities λ1 and λ2,
respectively. Moreover, let Ti, i = 1, . . ., denote the jump times of the Poisson process N1. For any
α = 1, 2, . . ., the random variable N2(Tα) has a negative binomial (NB) distribution with parameters
r = α and p =

λ2
λ1+λ2

, i.e., we have

P (N2(Tα) = l) =

(
l + α − 1
α − 1

) (
λ2

λ1 + λ2

)l (
λ1

λ1 + λ2

)α
, l = 0, 1, . . .

In particular, the moment-generating function reads

EetN2(Tα) =

( 1 − p
1 − pet

)α
, for t < − log p,

and

E [N2(Tα)] = α
λ2

λ1
,

E [N2(Tα) (N2(Tα) − 1)] = α(1 + α)
λ2

2

λ2
1

,

E [N2(Tα) (N2(Tα) − 1) (N2(Tα) − 2)] = α(1 + α)(2 + α)
λ3

2

λ3
1

,

E [N2(Tα) (N2(Tα) − 1) (N2(Tα) − 2) (N2(Tα) − 3)] = α(1 + α)(2 + α)(3 + α)
λ4

2

λ4
1

.

In the next lemma, we provide growth estimates for the processes V
n,1/2

. As the growth mecha-
nism for these processes (but not for V

n,3
) work in the same way, we merge the discussion into

one lemma. Denote by F
n

the filtration generated by the processes V
n,1/2/3
a/b and vn

a/b.

Lemma 4.3. There is a constant C > 0 (independent of n, s, t) such that we can bound

E
F

n
s

[∥∥∥∥V
n,1/2

(t, ·) − V
n,1/2

(s, ·)
∥∥∥∥2

L2

]
≤ C

(
(t − s)2 +

|t − s|
n

)
,
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sup
x∈R

E
F

n
s

[(
V

n,1/2
(t, x) − V

n,1/2
(s, x)

)2
]
≤ C

(
(t − s)2 +

|t − s|
n

)
,

E
F

n
s

[∥∥∥∥V
n,1/2

(t, ·) − V
n,1/2

(s, ·)
∥∥∥∥4

L4

]
≤ C

(
(t − s)4 +

|t − s|3

n
+
|t − s|2

n2 +
|t − s|

n3

)
,

sup
x∈R

E
F

n
s

[(
V

n,1/2
(t, x) − V

n,1/2
(s, x)

)4
]
≤ C

(
(t − s)4 +

|t − s|3

n
+
|t − s|2

n2 +
|t − s|

n3

)
.

Proof. Without loss of generality, we can choose s = 0. Moreover, following the notation conven-
tion adopted above, we drop the super-scripts from all the processes and random variables and
denote by “A” either bid or ask price, respectively. Let α B bntc and consider

E
[
V(t, x)2

]
= E


N (̃τα)∑

i=1

1I
(
A(ητi )+πi

)(x)ωi


2

(
∆v
∆x

)2

.

Let G denote the σ-algebra generated by all sources of randomness except (ωi)i∈N. Using the fact
that the random variables ωi are i.i.d. and independent from all the other random terms above,
we get

E
[
V(t, x)2

]
= E

[N (̃τα)∑
i, j=1

EG
[
ωiω j

]
1I

(
A(ητi )+πi

)(x)1I
(
A(ητ j )+π j

)(x)+

+

N (̃τα)∑
i=1

EG
[
ω2

i

]
1I

(
A(ητi )+πi

)(x)
] (

∆v
∆x

)2

= E
[N (̃τα)∑
i, j=1

E [ω1]2 1I
(
A(ητi )+πi

)(x)1I
(
A(ητ j )+π j

)(x)+

+

N (̃τα)∑
i=1

E
[
ω2

1

]
1I

(
A(ητi )+πi

)(x)
] (

∆v
∆x

)2

.

Again using independence of πi, πi′ and all the other random variables, we can bound

E
[
1I(y+πi)(x)

]
≤ ‖ f ‖L∞ ∆x1[y−M,y+M](x), (11a)

E
[
1I(y+πi)(x)1I(y′+πi′)(x)

]
≤ ‖ f ‖2L∞ ∆x21[max(y,y′)−M,min(y,y′)+M](x). (11b)

Conditioning on the σ-algebra generated by all sources of randomness except (πi)i∈N, these
bounds enable us to estimate:

E
[
V(t, x)2

]
≤ E

[
E [ω1]2 ‖ f ‖2L∞ ∆x2

N (̃τα)∑
i, j=1

1[max
(
A(ητi ),A(ητ j )

)
−M,min

(
A(ητi ),A(ητ j )

)
+M](x)+

+ E
[
ω2

1

]
‖ f ‖L∞ ∆x

N (̃τα)∑
i=1

1[
A(ητi )−M,A(ητi )+M

](x)
] (

∆v
∆x

)2

.

At this stage, we can easily bound V both in L2(R) and as a supremum in x. More precisely, we
have
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E
[∥∥∥V(t)

∥∥∥2
L2

]
+ sup

x∈R
E

[
V(t, x)2

]
≤ (2M + 1)

(
E[ω1]2 ‖ f ‖2L∞ ∆x2E

[
N (̃τα) (N (̃τα) − 1)

]
+

+ E
[
ω2

1

]
‖ f ‖L∞ ∆xE

[
N (̃τα)

]) (∆v
∆x

)2

.

Finally, inserting the moment formulas given in Lemma 4.2 and applying the trivial estimate α =

bntc ≤ nt together with Assumption 3, we arrive at

E
[∥∥∥V(t)

∥∥∥2
L2

]
+sup

x∈R
E

[
V(t, x)2

]
≤ Cn−7/2

{
n−1/2nt(1 + nt)

n4

n2 + nt
n2

n

}
= C

(
t2 + (n−1 + n−3/2)t

)
≤ C

(
t2 +

t
n

)
.

The estimate for the fourth moment follows analogously and is therefore skipped. �

The growth bound for V
n,3

works, in principle, similarly. Note, however, that the scaling for V
n,3

is
much smaller. Hence, we need to take advantage of the martingale-difference structure in order
to avoid the mixed terms in the proof of Lemma 4.3.

Lemma 4.4. There is a constant C (independent of n, s, t) such that

E
F

n
s

[
sup

s≤u≤t

∥∥∥∥V
n,3

(u) − V
n,3

(s)
∥∥∥∥2

L2

]
+ sup

x∈R
E
F

n
s

[
sup

s≤u≤t

∣∣∣∣Vn,3
(u) − V

n,3
(s)

∣∣∣∣2] ≤ C|t − s|, (12)

E
F

n
s

[
sup

s≤u≤t

∥∥∥∥V
n,3

(u) − V
n,3

(s)
∥∥∥∥4

L4

]
+ sup

x∈R
E
F

n
s

[
sup

s≤u≤t

∣∣∣∣Vn,3
(u) − V

n,3
(s)

∣∣∣∣4] ≤ C
(
(t − s)2 +

|t − s|
n

)
. (13)

Proof. Again, we restrict ourselves to proving the case s = 0, and we drop all indices from the
notation. Re-writing V in a form more clearly expressing its martingale structure, we consider

V(t) =

N (̃τα)∑
i=1

1
I
(
A(ηn

τn
i

)+πi

)(x)ωiξ̃Ñ(τi)

√
∆v =

α−1∑
j=0

N (̃τ j+1)∑
i=N (̃τ j)+1

1I
(
A( j/n)+πi

)(x)ωiξ̃ j
√

∆v,

where we again use the short-hand notation α = btnc. Using Doob’s inequality and the fact that
E

[̃
ξiξ̃ j

]
= δi j with ξ̃2

i = 1, we have

E
[

sup
0≤u≤t

|V(u, x)|2
]
≤ 4E

[
|V(t, x)|2

]
= 4∆vE


α−1∑

j=0

ξ̃ j

N (̃τ j+1)∑
i=N (̃τ j)+1

1I
(
A( j/n)+πi

)(x)ωi


2

= 4∆vE


α−1∑
j=0


N (̃τ j+1)∑

i=N (̃τ j)+1

1I
(
A( j/n)+πi

)(x)ωi


2 .

In the next step, we shall again estimate the contribution of the random locations π in a similar way
as in (11). To this end, let G denote the σ-algebra generated by all the sources of randomness
except (πi)∞i=1, which is then by construction independent from G. Hence, we have

E
[

sup
0≤u≤t

∥∥∥V(u)
∥∥∥2

L2

]
≤ 4∆vE

[α−1∑
j=0

{ N (̃τ j+1)∑
i,i′=N (̃τ j)+1

ωiωi′

∫
R

EG
[
1I

(
A( j/n)+πi

)(x)1I
(
A( j/n)+πi′

)(x)
]}]

dx+
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+

N (̃τ j+1)∑
i=N (̃τ j)+1

ω2
i

∫
R

EG
[
1I

(
A( j/n)+πi

)(x)
]

dx
]

≤ 4∆vE

α−1∑
j=0


N (̃τ j+1)∑

i,i′=N (̃τ j)+1

ωiωi′ ‖ f ‖2L∞ ∆x2(2M) +

N (̃τ j+1)∑
i=N (̃τ j)+1

ω2
i ‖ f ‖L∞ ∆x(2M)


 ,

and similarly,

sup
x∈R

E
[

sup
0≤u≤t

|V(u, x)|2
]
≤ 4∆vE

α−1∑
j=0


N (̃τ j+1)∑

i,i′=N (̃τ j)+1

ωiωi′ ‖ f ‖2L∞ ∆x2 +

N (̃τ j+1)∑
i=N (̃τ j)+1

ω2
i ‖ f ‖L∞ ∆x


 .

By independence of the Poisson processes N and Ñ from ωi and by the fact that the distribution
of the increments N (̃τ j+1)−N (̃τ j) of one Poisson process as seen from the other does not depend
on j, we see that

E
[

sup
0≤u≤t

∥∥∥V(u)
∥∥∥2

L2

]
+ sup

x∈R
E

[
sup

0≤u≤t
|V(u, x)|2

]
≤ C ∆vE

[
α
{
E[ω1]2

∥∥∥ f π
∥∥∥2

L∞ (∆x)2N (̃τ1) (N (̃τ1) − 1) + E
[
ω2

1

] ∥∥∥ f π
∥∥∥

L∞ ∆xN (̃τ1)
}]
.

Again appealing to Lemma 4.2 (with α = 1) together with Assumption 3, we obtain

E
[

sup
0≤u≤t

∥∥∥V(u)
∥∥∥2

L2

]
+ sup

x∈R
E

[
sup

0≤u≤t
|V(u, x)|2

]
≤ C

1
n2 nt

{
1
n

2
n4

n2 +
1
√

n
n2

n

}
= Ct{2 + 1/

√
n} ≤ Ct.

As in the proof of Lemma 4.3, the estimate for the fourth moment follows by the similar arguments.
�

At this stage we can patch together the growth bounds of Lemmas 4.3 and 4.4 to obtain a similar
growth bound for the process vn. The proof is based on an event-by-event decomposition of the
limit order book dynamics. More precisely, in terms of the increments

hn,1
a,i (x) B ωPa

i 1
In

(
A

n
(
ηn
τn
a,i

)
+πPa

i

)(x)
∆vn

∆xn ,

hn,2
a,i (x) B ωCa

i 1
In

(
A

n
(
ηn
τn
a,i

)
+πCa

i

)(x)
∆vn

∆xn ,

hn,3
a,i (x) B 1

In

(
A

n
(
ηn
τn
a,i

)
+πNa

i

)(x)ωNa
i ξ̃a,Ñn(τn

a,i)+1

√
∆vn

of the processes V
n, j
a ( j = 1, 2, 3) – and similarly for the buy-side – one has the following decom-

position of the LOB dynamics:

vn(t, x) =

Nn (̃τn
bntc)∏

i=1

(
1 − hn,2

i (x)
)

vn(0, x)+
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+

Nn
a/b (̃τn

bntc)∏
i=1

(
1 − hn,2

i (x)
) 

Nn (̃τn
bntc)∑

i=1

1∏i
m=1

(
1 − hn,2

m (x)
) (

hn,1
i (x) + hn,3

i (x)
) (14)

Clearly, hn,1
i is the effect of the placement at the i’th passive order event, hn,3

i the fluctuation effect,
whereas hn,2

i is the proportion of standing volume canceled.

Lemma 4.5. There is a sequence of non-negative adapted process Cn
t and a deterministic con-

stant C such that for p ∈ {2, 4}

E
F

n
s

[
sup
s≤r≤t

∥∥∥vn(r) − vn(s)
∥∥∥p

Lp

]
+ sup

x∈R
E
F

n
s

[
sup
s≤r≤t

∣∣∣vn(r, x) − vn(s, x)
∣∣∣p] ≤ Cn

s
(
(t − s)p + (t − s)

)
with

sup
n

E
[

sup
0≤s≤t

Cn
s

]
≤ C(tp + t). (15)

Proof. We may again drop the dependence on n from the notation and w.l.o.g. assume s = 0.
Note that 0 ≤ 1 − h2

i (x) ≤ 1 and∣∣∣∣∣∣∣∣
N (̃τbntc)∏

i=1

(1 − h2
i (x)) − 1

∣∣∣∣∣∣∣∣ ≤
N (̃τbntc)∑

i=1

h2
i (x) = V

2
(t, x).

Hence, (14) together with Lemma 4.3 and 4.4 implies that for p ∈ {2, 4},

|v(t, x) − v(0, x)|p =

∣∣∣∣∣∣∣∣
N (̃τbntc)∏

i=1

(
1 − h2

i

)
− 1

 v(0, x) +

N (̃τbntc)∏
i=1

(
1 − h2

i

) N (̃τbntc)∑
i=1

1∏i
m=1

(
1 − h2

i

) (
h1

i + h3
i

)
∣∣∣∣∣∣∣∣
p

≤ C
{
|v(0, x)|p sup

x∈R

(
V

2
(t, x)

)p
+

∣∣∣∣V1
(t, x)

∣∣∣∣p + sup
0≤s≤t

∣∣∣∣V3
(s, x)

∣∣∣∣p} .
It then follows that for p ∈ {2, 4},

sup
x∈R

E
[

sup
0≤u≤t

|v(u, x) − v(0, x)|p
]

+ E
[

sup
0≤u≤t

‖v(u) − v(0)‖pLp

]
≤ C

(
sup
x∈R
|v(0, x)|p + E

[
‖v(0)‖pLp

]
+ 1

)
(tp + t).

For a general s ∈ [0, t], this only proves the estimate for a F
n
s-measurable random variable Cn

s
which depends in an affine way on ‖v(s)‖L2 . Note, however, that the above estimate also implies
that for p ∈ {2, 4}

sup
n∈N

(
E

[
sup

0≤s≤t

∥∥∥vn
a/b(s)

∥∥∥p
Lp

]
+ sup

x∈R
E

[
sup

0≤s≤t

∣∣∣vn
a/b(s, x)

∣∣∣p]) < C(tp + t),

so that we can, indeed, find a deterministic constant C which is independent of s, t and n and
bounds E

[
sup0≤s≤t Cn

s

]
≤ C(tp + t). �

Remark 4.6. In a similar way to the above proof, we obtain for p ∈ {2, 4} and k = 0, 1, 2, · · · ,

E

 sup
i∈[Nn

a (̃τn
k ),Nn

a (̃τn
k+1)]∩N

‖vn
a(τa,i) − vn

a(ηn
k)‖pLp

+sup
x∈R

E

 sup
i∈[Nn

a (̃τn
k ),Nn

a (̃τn
k+1)]∩N

∣∣∣vn
a(τa,i, x) − vn

a(̃τn
k , x)

∣∣∣p ≤ C
t + tp

n
,

where the constant C is independent of n, k and t.
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We are now ready to state and prove the main result of this section.

Proposition 4.7. The processes vn
b/a, V

n,1
b/a, V

n,2
b/a and V

n,3
b/a are tight as processes with paths in

D
(
[0,∞); H−1

)
.

Proof. For Xn ∈ {vn
b/a,V

n,1
b/a,V

n,2
b/a,V

n,3
b/a}, according to the definition it is obvious that the tightness of

Xn is equivalent to that of ((1+ t)−1Xn(t))t∈[0,∞) which we denote again by Xn. The reason we scale
the processes this way is estimate (15) which prevents us from applying Theorem B.1 directly to
the original processes.

By Mitoma’s theorem (see Theorem B.2), we need to prove tightness of the processes 〈Xn , φ〉

for any test function φ ∈ E ⊂ L2(R, dx), for which we, in turn, will appeal to Kurtz’s criterion (see
Theorem B.1). Hence, we need to estimate

EF n
s

[〈
Xn(t) − Xn(s) , φ

〉2
]
.

As each of the processes vn,V
n,1
,V

n,2
,V

n,3
takes values in L2, the bracket 〈Xn , φ〉 is equal to the

L2 inner product 〈Xn , φ〉L2 , and so we can estimate

E
F

n
s

[〈
Xn(t) − Xn(s) , φ

〉2
]
≤ EF n

s

[∥∥∥Xn(t) − Xn(s)
∥∥∥2

L2

]
‖φ‖2L2 ≤ sup

τ∈[0,∞)
(1+τ)−2Cn

τ

[
(t − s)2 + (t − s)

]
‖φ‖2L2 .

The second condition of Theorem B.1 follows with γn(δ) = supτ∈[0,∞)(1 + τ)−2Cn
τ(δ2 + δ) by Lem-

mas 4.3, 4.4 and 4.5.

For the first condition, i.e., tightness of the sequence of random variables 〈Xn(t) , φ〉 for each (ra-
tional) t, we note that this trivially follows from uniform boundedness of the sequence of random
variables 〈Xn(t) , φ〉 in L2(Ω,F , P). Moreover, for any T ∈ (0,∞), we have by Lemmas 4.3, 4.4
and 4.5,

sup
n

E sup
t∈[0,T ]

‖Xn(t)‖2L2 ≤ C(T + T 2),

with the constant C being independent of n and T . It follows that for N ∈ (0,∞),

P
 sup

t∈[0,T ]
‖Xn(t)‖2L2 > N

 ≤ C(T + T 2)
N

→ 0, as N → ∞.

By Theorems B.1 and B.2, Xn and hence vn
b/a, V

n,1
b/a, V

n,2
b/a and V

n,3
b/a are tight as sequences of

processes with paths in D
(
[0,∞); H−1

)
. �

Remark 4.8. This proof almost gives us tightness in D
(
[0,∞); L2(R)

)
for L2(R) equipped with

the weak topology. Note, however, that L2(R) is not a metric space when equipped with the weak
topology. Hence we cannot use Kurtz’s criterion as it does not apply to non-metric state spaces.

4.2 Characterization of the limit of v
n
b/a

In this section, we characterize the limit of the sequence vn
b/a. We give the arguments for the ask

side and write P, C and N for Pa, Ca and Na. The arguments for the bid side are identical. We
start with establishing joint convergence in distribution of bid/ask prices along with the aggregate
fluctuations of standing volumes on the ask side of the book.
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Proposition 4.9. There is a Wiener process {Wa(t); t ∈ [0,∞)} such that (A
n
, B

n
,V

n,3
a )⇒ (A, B,V3

a ),
with (A, B) the two-dimensional reflected Brownian motion given in Theorem 2.6 and

V3
a (t) =

√
2E

[
ωNa

1

] ∫ t

0
f Na(x + As) dWa(s), t ∈ [0,∞).

Proof. Combining Proposition 4.7, Corollary B.3 and Proposition 3.2, we conclude that (A
n
, B

n
,V

n,3
a )

is tight as a sequence of processes with paths lying in D([0,∞);R2 × H−1) and that (A
n
, B

n
) con-

verges in distribution to the two-dimensional reflected Brownian motion (A, B). By Skorohod’s
lemma, we may assume that all random variables and processes are defined on a common prob-
ability space, and – restricting to a subsequence if necessary – that the sequence (A

n
, B

n
,V

n,3
a )

converges with probability 1 to (A, B,V
3
a) as a sequence of processes whose sample paths belong

to D(0,∞;R2 × H−1).

Since the sequence of price processes is C-tight and converges to the 2-dimensional reflected
Brownian motion, it is sufficient to characterize the weak accumulation point V

3
a. To this end, we

define for any φ ∈ E

Y
n
t = 〈φ, V

n,3
a (t)〉, t ∈ [0,∞),

and denote by Gn the filtration generated by the processes (A
n
t , B

n
t ,V

n,3
t ). Note that the sequence

(A
n
, B

n
,Y

n
) converges with probability 1 to (A, B, 〈φ, V

3
a〉) as a sequence of processes whose

sample paths belong to D(0,∞;R3). Let

an
0(·) B

(∑
j

∫ xn
j+1

xn
j

f (x + ·) dx
∫ xn

j+1

xn
j

φ(x) dx
)2

(∆xn)−2E
[
ωN

1

]2
,

an
1(·) B

∑
j

∫ xn
j+1

xn
j

f (x + ·) dx
∣∣∣∣ ∫ xn

j+1

xn
j

φ(x) dx
∣∣∣∣2(∆xn)−2E

[
(ωN

1 )2
]

σn(·) B
{

(2an
0 +

1
n

an
1)(·)

}1/2

,

with f = f Na . Since the number of passive order arrivals
(
Nn
τ̃n

a,k
− Nn

τ̃n
a,k−1

)
on [ k−1

n , k
n ) follows a

negative binomial distribution NB
(
1, λn

λn+µn

)
(see Lemma 4.2), we have:

EGn
k−1

n

[
|Y

n
k/n − Y

n
(k−1)/n|

2
]

= ∆vn
{ (

Nn
τ̃n

a,k
− Nn

τ̃n
a,k−1

) (
Nn
τ̃n

a,k
− Nn

τ̃n
a,k−1
− 1

) (∑
j

∫ xn
j+1

xn
j

f (x + A
n
k−1

n
) dx

∫ xn
j+1

xn
j

φ(x) dx
)2

E
[
ωN

1

]2

+

(
Nn
τ̃n

a,k
− Nn

τ̃n
a,k−1

)∑
j

∫ xn
j+1

xn
j

f (x + A
n
k−1

n
) dx

∣∣∣∣ ∫ xn
j+1

xn
j

φ(x) dx
∣∣∣∣2E

[(
ωN

1

)2
] }

= ∆vn(∆xn)2
{ (

Nn
τ̃n

a,k
− Nn

τ̃n
a,k−1

) (
Nn
τ̃n

a,k
− Nn

τ̃n
a,k−1
− 1

)
an

0(A
n
k−1

n
) +

(
Nn
τ̃n

a,k
− Nn

τ̃n
a,k−1

)
an

1(A
n
k−1

n
)
}

=
1
n3

(
2n2an

0 + nan
1

)
(A

n
k−1

n
)
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=
1
n

(
σn(A

n
k−1

n
)
)2
.

Set

σ(·) =
√

2
∫
R

f πa (x + ·)φ(x) dxE
[
ωN

1

]
, t ∈ [0,∞).

In order to conclude, we apply a result on the convergence of interpolated Markov chains to a
diffusion due to Kushner [19]. For this we need to verify the following conditions for any t > 0:

E

 bntc∑
k=1

|σn(A
n
k−1

n
) − σ(A

n
k−1

n
)|2

 1
n
→ 0, (C1)

E
bntc+1∑

k=1

|Y
n
k/n − Y

n
(k−1)/n|

4 → 0. (C2)

Indeed, under (C1) and (C2), an easy extension of [19, Theorem 1, Page 44–48] gives con-
vergence (with probability 1) of (A

n
, B

n
,Y

n
) (or a proper subsequence thereof) to (A, B,Y) as a

sequence of processes whose paths belong to D(0,∞;R3) with

dY t = σ(At)dWt, t ∈ [0,∞); Y0 = Y0. (16)

Condition (C1) can be verified easily. Hence, we concentrate on the condition (C2) (specialized
from assumption (A4) of [19, Page 42]):

EGn
k−1

n

[
|Y

n
k/n − Y

n
(k−1)/n|

4
]
≤ C(∆vn)2(∆xn)4E

[∣∣∣∣∣Nn
τ̃n

a,k
− Nn

τ̃n
a,k−1

∣∣∣∣∣4]
≤ C

1
n6

[
n4 + n

]
≤ C

1
n2 ,

where C is a positive constant which is independent n and may vary from line to line. Thus, for
any t ∈ (0,∞),

E
bntc+1∑

k=1

|Y
n
k/n − Y

n
(k−1)/n|

4 ≤ C(nt + 1)
1
n2 → 0 as n→ ∞.

Hence, Y
n

converges with probability 1 to Y of (16) being valued in D(0,∞;R). Since E is dense
in H1 and the limit does not depend on the selected subsequence, this proves our assertion. �

Remark 4.10. In the above proof, the triples
(
A

n
k
n
, B

n
k
n
,Y

n
k
n

)
can be seen as a sequence of interpo-

lated Markov chains but fall beyond the framework of Kushner [19] as the limit of (A
n
t , B

n
t ) turns

out to be the two-dimensional reflected Brownian motion. However, after verifying the tightness of
(A

n
t , B

n
t ,Y

n
t ) and characterizing the limit of (A

n
t , B

n
t ), we use directly the method of [19, Theorem 1,

Page 44–48] to identify the limit of Y
n
t and the proof is so similar that we just verify the sufficient

conditions listed therein.
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The previous proposition characterizes the diffusion part of the limiting ask-side volume density
process. Next we are going to study the limiting structures of aggregate order placements and
cancellations, disregarding the random fluctuations. As we expect order placements and cancel-
lations to contribute the drift part of the limiting model, we find it helpful to re-write their dynamics
in the form of an integral in time. That is, if we write

V
n,2
a (t, x) =

∫ bntc
n

0
gn(s, x)ds,

V
n,1
a (t, x) =

∫ bntc
n

0
g̃n(s, x)ds,

it is clear that we can identify the limiting drift term by studying the limits of gn and g̃n. Comparing
with (9), we have

gn(t, x) B
∞∑

k=1

Nn
a (̃τn

k )∑
i=Nn

a (̃τn
k−1)+1

1
In

(
πC

i +A
n
k−1

n

)(x)ωC
i 1[ k

n ,
k+1

n )(t)
∆vn

∆xn n,

g̃n(t, x) B
∞∑

k=1

Nn
a (̃τn

k )∑
i=Nn

a (̃τn
k−1)+1

1(
πP

i +A
n
k−1

n

)(x)ωP
i 1[ k

n ,
k+1

n )(t)
∆vn

∆xn n.

With regards to aggregate cancellations, gn only captures the proportionality of cancellations in
terms of present volume. Therefore, we need to introduce one more term gn describing the actual
cancellations, i.e.,

vn
a(t, x) − va(0, x) − V

n,1
a (t, x) − V

n,3
a (t, x) =

∫ bntc
n

0
gn(s, x)ds.

Clearly, gn is given by

gn(t, x) B
∞∑

k=1

Nn
a (̃τn

k )∑
i=Nn

a (̃τn
k−1)+1

1
In

(
πC

i +A
n
k−1

n

)(x)ωC
i vn

a(τn
a,i−1, x)1[ k

n ,
k+1

n )(t)
∆vn

∆xn n.

We will analyze the impact of order cancellations in the limit in two steps: first we show that we
can replace gn by the (much simpler) expression gnvn

a in the limit (see Lemma 4.12), and then we
characterize the limit of the latter term in the appropriate sense (see Lemma 4.13, where we also
characterize the limiting object of the order placements).

Remark 4.11. From Lemma 4.3, it follows that for p ∈ {2, 4},

E
[∥∥∥gn(t)

∥∥∥p
Lp

]
+ sup

x∈R
EF n

s E
[∣∣∣gn(t, x)

∣∣∣p] ≤ C,

which implies that

sup
x∈R

E
∫ t

0

∣∣∣gn(s, x)
∣∣∣p ds + E

∫
R

∫ t

0

∣∣∣gn(s, x)
∣∣∣p dsdx ≤ Ct,

with the constants C being independent of n and t.
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Lemma 4.12. For any t > 0, we have

lim
n→∞

E

∫
R

∫ bntc
n

0

∣∣∣∣gn(s, x) − gn(s, x)vn
a(s, x)

∣∣∣∣2 dsdx

 = 0. (17)

Proof. Using Fubini’s theorem and Remark 4.6, we have

E
∫
R

∫ bntc
n

0

∣∣∣∣gn(s, x) − gn(s, x)vn
a(s, x)

∣∣∣∣2 dsdx

=

∫ bntc
n

0
E

∫
R

∣∣∣∣∣∑
k∈N

Nn
a (̃τn

k )∑
i=Nn

a (̃τn
k−1)+1

1
In

(
πC

i +A k
n

)(x)ωC
i

(
vn

a(τn
a,i−1, x) − vn

a(s, x)
)
1[ k

n ,
k+1

n )(s)
∆vn

∆xnn−1

∣∣∣∣∣2 dxds

≤

∫ bntc
n

0

∑
k∈N∪{0}

1[ k
n ,

k+1
n )(s)

(
E

∫
R
|gn(s, x)|4dx

)1/2(
E sup

i∈[Nn
a (̃τn

k−1),Nn
a (̃τn

k )]∩N
‖vn

a(τa,i) − vn
a(̃τn

k−1)‖4L4

)1/2
ds

≤ C
1
√

n

∫ bntc
n

0

(
E

∫
R
|gn(s, x)|4dx

)1/2
ds

≤ C
1
√

n

(
E

∫ bntc
n

0

∫
R
|gn(s, x)|4dx

)1/2

,

which by Remark 4.11 converges to zero as n tends to infinity. �

We can now analyze the limiting objects obtained from order placements and cancellations. The
proof of Lemma 4.13 is technical and rather long and hence postponed to Appendix A.

Lemma 4.13. For any t =
bntc

n with n ∈ N,

lim
n→∞

sup
x∈R

E

∣∣∣∣∣∣
∫ t

0

(
gn(s, x) − E[ωC

1 ] f C(As + x)
) (

1 − α + αvn
a(s, x)

)
ds

∣∣∣∣∣∣2
 = 0, ∀α ∈ {0, 1}, (18)

lim
n→∞

sup
x∈R

E

∣∣∣∣∣∣
∫ t

0

(̃
gn(s, x) − E[ωP

1 ] f P(As + x)
)

ds

∣∣∣∣∣∣2
 = 0. (19)

Combining the characterization of the limit of the fluctuation part of vn
a/b obtained in Proposi-

tion 4.9 with the characterization of the limits of order cancellations and placements obtained in
Lemma 4.13 together with Lemma 4.12, we are in the position to characterize the limit of vn itself.

Theorem 4.14. There is a Wiener process {Wa(t); t ∈ [0,∞)} such that (A
n
, B

n
,V

n,3
a , vn

a)⇒ (A, B,V3
a , va),

with (A, B) the two-dimensional reflected Brownian motion, V3
a the limit obtained in Proposition 4.9

and

va(t, x) = va(0, x) +

∫ t

0

(
E[ωP

1 ] f P(x + As) − E[ωC
1 ] f C(x + As)va(s, x)

)
ds+

+
√

2
∫ t

0
E

[
ωN

1

]
f N(x + As) dWa(s), t ≥ 0.
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Proof. The sequence of bid/ask prices is C-tight as a process taking values in R2 and converges
to a 2-dimensional reflected Brownian motion. The processes V

n,3
a and V

n,3
a are tight taking values

in H−1, due to Proposition 4.7. Furthermore, V
n,3
a is C-tight, due to Proposition 4.9. Hence, the

sequence (A
n
, B

n
,V

n,3
a , vn

a) is tight with paths inD(0,∞;R2×H−1×H−1). Thus, to characterize the

limit of (A
n
, B

n
,V

n,3
a , vn

a), it is sufficient to identify the limit of vn
a.

In view of Skorohod’s theorem we may assume that all processes are defined on a common prob-
ability space and that the sequence (A

n
, B

n
,V

n,3
a , vn

a) converges to (A, B,V3
a , va) w.p.1 (for some

process va to be determined) along a subsequence as a sequence of processes whose sample
paths lie in D(0,∞;R2 × H−1 × H−1). In particular, this implies that (A

n
, B

n
,V

n,3
a , vn

a) converges to
(A, B,V3

a , va) in R2 × H−1 × H−1 for almost every (ω, t) along this subsequence.

To prove our convergence result, we analyze each term of the following additive decomposition
separately:

vn
a(t, x) − vn

a(0, x) = V
n,1
a (t, x) + Ṽn,2

a (t, x) + V
n,3

(t, x), (t, x) ∈ [0,∞) × R, (20)

where

Ṽn,2
a (t, x) :=

∫ [nt]
n

0
gn(s, x)ds.

Moreover, we restrict our processes to an interval [0,T ] with arbitrary fixed T > 0. Let us next
show that va is actually a weak limit of the sequence vn

a in the Hilbert space L2 (Ω × [0,T ] × R),
where (Ω,F , P) denotes the probability space obtained by Skorohod’s theorem. The reason we
work with L2 here is that below we want to test against L2 functions, not just Schwartz functions,
as the latter might not contain the density f C.

Let us now recall that the sequence of processes {vn
a} is uniformly bounded in L2(Ω × [0,T ] × R)

by Lemma 4.5, and thus admits a weakly converging subsequence, say with a limit ṽa. By the
Banach-Saks theorem, ṽa is a strong limit in Cesaro sense of a subsequence (of the chosen
subsequence) of vn

a in L2(Ω × [0,T ] × R) ⊂ L2
(
Ω × [0,T ]; H−1

)
. Hence, its limit ṽa must coincide

with va, as a weak limit in L2 (Ω × [0,T ] × R).

Due to Lemma 4.13, the process V
n,1
a (t) converges (along the selected subsequence) P ⊗ dx-a.e.

to the process V
1

defined by

V
1
(t) := E[ωP

a ]
∫ t

0
f P
a (· + As)ds.

In view of (20), we may assume that Ṽn,2
a converges to some process K taking values in H−1 for

almost all (ω, t). In view of the boundedness estimates of Lemma 4.5, combining Lemmas 4.12
and 4.13, we are allowed to take K as the weak limit of Ṽn,2

a as well as of∫ ·

o
E[ωC

1 ] f C(As + ·)vn
a(s, ·) ds

in the Hilbert space L2(Ω × [0,T ] × R,FT ⊗ B([0,T ] × R)).

In order to identify the process K we test against test functions ψ ∈ L∞(Ω×[0,T ],F⊗B([0,T ])) and
φ ∈ L2(R). Weak convergence of vn

a and Ṽn,2 in the Hilbert space L2(Ω×[0,T ]×R,F ⊗B([0,T ]×R))
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yields that

E
∫ T

0

∫
R
ψ(t)K(t, x)φ(x) dx dt = lim

n→∞
E

∫ T

0
ψ(t)〈Ṽn,2

a (t), φ〉 dt

= lim
n→∞

E
∫ T

0
ψ(t)

∫ [nt]
n

0

∫
R

gn(s, x)φ(x) dxds dt

(by Lemma 4.12)

= lim
n→∞

E
∫ T

0
ψ(t)

∫ [nt]
n

0

∫
R

gn(s, x)vn
a(s, x)φ(x) dxds dt

(by Lemma 4.13)

=E[ωC
a,1] lim

n→∞
E

∫ T

0
ψ(t)

∫ [nt]
n

0

∫
R

f C(x + As)vn
a(s, x)φ(x) dxds dt

=E[ωC
a,1] lim

n→∞
E

∫ T

0

∫
R

f C(x + As)vn
a(s, x)φ(x) dxE

F s

[ ∫ T

s
ψ(t) dt

]
ds

(by the weak covergence in Hilbert space)

=E[ωC
a,1]E

∫ T

0

∫
R

f C(x + As)va(s, x)φ(x) dxE
F s

[ ∫ T

s
ψ(t) dt

]
ds

=E[ωC
a,1]E

∫ T

0
ψ(t)

∫ t

0

∫
R

f C(x + As)va(s, x)φ(x) dxds dt,

where F t denotes the filtration generated by all the processes A, B, vn
a and va. Since φ ∈ L2 and

ψ ∈ L∞(Ω × [0,T ],F ⊗ B([0,T ])) are arbitrary, we get

K(t, x) = E[ωC
1 ]

∫ t

0
f C(x + As)va(s, x) ds

for almost every (t, ω, x) ∈ [0,T ] ×Ω × R. Hence, the limit va satisfies

va(t, x) = va(0, x) +

∫ t

0

(
E[ωP

1 ] f P
a (x + As) − E[ωC

1 ] f C(x + As)va(s, x)
)

ds+

+

∫ t

0
f N(x + As) dWa(s), t ≥ 0. �

4.3 The limit of the volume density

With tightness of the sequence of auxiliary processes vn
a/b established in Proposition 4.7, we can

now turn to the actual volume densities vn
a/b. Recall that

v̂n
a/b(u) = vn

a/b(ηn
u),

where v̂n
a/b is a piece-wise constant right-continuous process obtained by registering all order

cancellations and placements at the next price-change, see (7), and ηn
u was defined in (8). Then

Lemmas 3.1, B.4 and Theorem 4.14 implies that the limit of (An, Bn, v̂n
a) coincides with that of

(A
n
, B

n
, vn

a), namely (A, B, va) of Theorem 4.14.

Let δvn
a/b B vn

a/b − v̂n
a/b and define analogously δVn,i

a/b B Vn,i
a/b − V̂n,i

a/b, i = 1, 2, 3. Below, we shall
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prove that δvn
a/b converges weakly to 0 as n → ∞. Obviously, this implies (see Theorem 4.18

below) that if vn
a converges then the limit must coincide with that of v̂n

a as well as of vn
a, namely va.

The first step for proving δvn
a/b → 0 is to establish bounds for second moments of the increments,

in a similar way to Lemmas 4.4 and 4.5. In fact, analogous to Proposition 4.7 these estimates
indicate the tightness of vn

a and thus the tightness of (An, Bn, vn
a). The rather technical proof is

deferred to Appendix A.

Lemma 4.15. There holds

EF n
s

 3∑
i=1

∥∥∥Vn,i
a/b(t) − Vn,i

a/b(s)
∥∥∥2

L2

 ≤C
[
(t − s) + (t − s)2

]
, 0 ≤ s ≤ t < ∞,

EF n
s

[∥∥∥vn
a/b(t) − vn

a/b(s)
∥∥∥2

L2

]
≤Cn

s

[
(t − s) + (t − s)2

]
, 0 ≤ s ≤ t < ∞,

with supn E
[
sups∈[0,t] Cn

s

]
≤ C(t2 + t), t ∈ [0,∞), where the constants C are independent of n, s

and t.

Furthermore, we will show that δvn
a/b(t) converges point-wise to 0, for which we need some ele-

mentary results on Poisson processes.

Lemma 4.16. Let N1 and N2 be two independent Poisson processes with intensities λ1 and λ2,
respectively. Moreover, let Ti, i = 1, . . ., denote the jump times of the Poisson process N1. Then
we have

E
[
N2(t) − N2(TN1(t))

]
=
λ2

λ1

(
1 − e−λ1t

)
,

E
[(

N2(t) − N2(TN1(t))
) (

N2(t) − N2(TN1(t)) − 1
)]

= 4
λ2

2

λ2
1

(
1 − (1 + tλ1)e−λ1t

)
.

Proof. Notice that conditional on N1(t) = l, the relative difference (t − Tl)/t has a beta distribution
with parameters 1 and l, as this is the distribution of the differences in the order statistics of l
random variables distributed uniformly on [0, 1]. Hence, elementary calculations give

E [N2(t) − N2(Tl) |N1(t) = l] =

∞∑
k=0

k
∫ 1

0
e−λ2tx (λ2tx)k

k!
1 − x)l−1

B(1, l)
dx =

λ2t
1 + l

and

E [(N2(t) − N2(Tl)) (N2(t) − N2(Tl) − 1) |N1(t) = l] =

∞∑
k=0

k(k−1)
∫ 1

0
e−λ2tx (λ2tx)k

k!
1 − x)l−1

B(1, l)
dx =

2λ2
2t2

2 + 3l + l2
.

Multiplying these terms with P(N1(t) = l) = e−λ1t (λ1t)l

l! and summing over l gives the formulas from
above. �

Lemma 4.17. Let u = u(t) = u(t, x) denote any of the processes δvn
a/b, δVn,i

a/b, i = 1, 2, 3. More-
over, assume that the sequence vn

a/b(0) is uniformly bounded in L2. Then there is a constant C
independent of n or t such that

E
[
‖u(t)‖2L2

]
≤ C(1 + t + t2)/n, ∀ t ∈ [0,∞).
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Proof. Let us first consider u = δVn,i
a/b for some i = 1, 2, 3 and a or b. Note that for some random

variables ωi and πi we have for some scaling constant ε (either equal to ∆v/∆x or equal to
√

∆v)

u(t, x)2 =


N(t)∑

i=N
(̃
τÑ(t)

) 1
I
(
An (̃τn

Ñ(t)
)+πi

)(x)ωi


2

ε2,

as ξ̃a/b,i is constant in i and ξ̃2
a/b,i = 1. Letting G denote the σ-algebra generated by all sources of

randomness except (ωi)i∈N, we have

E
[
u(t, x)2

]
= E




N(t)∑
i,i′=N

(̃
τÑ(t)

)EG [ωiωi′] 1
I
(
An (̃τn

Ñ(t)
)+πi

)(x)1
I
(
An (̃τn

Ñ(t)
)+πi′

)(x) +

N(t)∑
i=N

(̃
τÑ(t)

)EG
[
ω2

i

]
1

I
(
An (̃τn

Ñ(t)
)+πi

)(x)


 ε2

= E




N(t)∑
i,i′=N

(̃
τÑ(t)

) 1
I
(
An (̃τn

Ñ(t)
)+πi

)(x)1
I
(
An (̃τn

Ñ(t)
)+πi′

)(x)E[ω1]2 +

N(t)∑
i=N

(̃
τÑ(t)

) 1
I
(
An (̃τn

Ñ(t)
)+πi

)(x)E
[
ω2

1

]
 ε2.

Furthermore, conditioning on the σ-algebra generated by all sources of randomness except for
(πi)i∈N, we can bound in a similar way to (11)

E
[
u(t, x)2

]
≤ E

[
E [ω1]2 ‖ f ‖2∞ ∆x2

(
N(t) − N

(̃
τÑ(t)

)) (
N(t) − N

(̃
τÑ(t)

)
− 1

)
1[

A(̃τÑ(t))−M,A(̃τÑ(t))+M
](x)+

+ E
[
ω2

1

]
‖ f ‖2∞ ∆x

(
N(t) − N

(̃
τÑ(t)

))
1[

A(̃τÑ(t))−M,A(̃τÑ(t))+M
](x)

]
ε2.

Hence, plugging in Lemma 4.16, we obtain

E
[
‖u(t)‖2L2

]
≤ C

(
∆x2E

[(
N(t) − N

(̃
τÑ(t)

)) (
N(t) − N

(̃
τÑ(t)

)
− 1

)]
+ ∆xE

[(
N(t) − N

(̃
τÑ(t)

))])
ε2

= C
(
∆x24

λ2

µ2

[
1 − (1 + tµ)e−µt

]
+ ∆x

λ

µ

[
1 − e−µt

])
ε2

≤ C
(
1
n

n4

n2 +
1
√

n
n2

n

)
ε2

= C
(
n +
√

n
)
ε2.

Now we recall that ε2 = ∆v2

∆x2 = n−3 in case i = 1, 2 and ε2 = ∆v = n−2 in case i = 3.

The proof for the estimate of δvn
a/b works in precisely the same way as the proof of Lemma 4.5,

taking into account the appropriate estimates for δVn,i
a/b derived above. �

Combining these lemmas with the results in Theorem 4.14 we can now prove the last part of the
main Theorem 2.6, namely the convergence of the volume densities.

Theorem 4.18. There are two independent Wiener processes {Wa(t); t ∈ [0,T ]} and {Wb(t); t ∈
[0,T ]} such that (An, Bn, vn

a, v
n
b)⇒ (A, B, va, vb), with (A, B) the two-dimensional reflected Brownian

motion and the volume processes va and vb satisfying the infinite-dimensional SDE

vb(t, ·) =vb,0(·) +

∫ t

0

(
E[ωPb

1 ] f Pb(· + Bs) − E[ωCb
1 ] f Cb(· + Bs)vb(s, ·)

)
ds
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+
√

2E[ωNb
1 ]

∫ t

0
f Nb(· + Bs) dWb(s), t ≥ 0;

va(t, ·) =va,0(·) +

∫ t

0

(
E[ωPa

1 ] f Pa(· + As) − E[ωCa
1 ] f Ca(· + As)va(s, ·)

)
ds

+
√

2E[ωNa
1 ]

∫ t

0
f Na(· + As) dWa(s), t ≥ 0.

Proof. Recall that
(An, Bn, v̂n

a)(u) = (A
n
, B

n
, vn

a)(ηn
u).

Combining Lemmas 3.1, B.4 and Theorem 4.14, we conclude that (An, Bn, v̂n
a) ⇒ (A, B, va). On

the other hand, in a similar way to Proposition 4.7 we derive from Lemma 4.15 the tightness of
(An, Bn, vn

a). Additionally, Lemma 4.17 indicates that the limit of (An, Bn, vn
a) coincides with that of

(An, Bn, v̂n
a), namely (A, B, va). This implies the C-tightness of (An, Bn, vn

a) and thus the tightness
of (An, Bn, vn

a, v
n
b) by Corollary B.3. Furthermore, in a similar way to the ask side we verify that

(An, Bn, vn
a, v

n
b)⇒ (A, B, va, vb). �

5 Conclusion

This paper establishes a functional limit theorem for limit order books. The limiting dynamics are
derived from individual order arrival, placement and cancellation dynamics. With our choice of
scaling, the limiting dynamics converges in distribution to a coupled system of reflected Brownian
motions and linear SPDEs. We essentially assumed that all random variables were independent.
It should be too difficult, though, to establish a similar limiting result for a model where the in-
tensities of active and passive orders arrivals depend on the prevailing prices (or the spread)
and hence to obtain a mean-reverting dynamics for the spread. Allowing for a non-linear impact
of the noise terms is more challenging. For instance, it would certainly be desirable to allow for
multiplicative noise to avoid negative volumes. This case, as well as a limiting result where the
martingale part is driven by a random measures (rather then Brownian motions) is left for future
research.

A Technical proofs

Proof of Lemma 4.13. We prove (18); the second assertion follows similarly. Without any loss of
generality, we assume E[ωC

1 ] = 1. For each s ∈ ( 1
n , t) with n ∈ N, we choose kn

s ∈ Z such that

s ∈ [ kn
s +1
n ,

kn
s +2
n ). For s ∈ (0, 1

n ), put kn
s = 0. For notational simplicity, we set ṽn

a(s, x) = 1−α+αvn
a(s, x),

with α ∈ {1, 0}. Then

sup
x∈R

E

∣∣∣∣∣∣
∫ t

0

(
gn(s, x) − E[ωC

1 ] f C(As + x)
)

ṽn
a(s, x) ds

∣∣∣∣∣∣2
≤ 2 sup

x∈R
E

∣∣∣∣∣∣
∫ t

0

(
f C(x + A

n
kn
s
n

) − f C(x + As)
)

ṽn
a(s, x) ds

∣∣∣∣∣∣2 + 2 sup
x∈R

E

∣∣∣∣∣∣
∫ t

0

(
gn(s, x) − f C(x + A

n
kn
s
n

)
)

ṽn
a(s, x)ds

∣∣∣∣∣∣2
:= 2(Γ1 + Γ2).
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Since f C is Lipschitz continuous and vanishes outside a compact interval there exists a constant
C < ∞ such that

Γ1 = sup
x∈R
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n
kn
s
n
|2 ∧ 1 ds.

Hence, by Lemma 4.5, Γ1 → 0 as n→ ∞ by dominated convergence, due to the a.s. continuity of
the reflected Brownian motion A. Using independence of cancellation price levels and volumes, a
direct computation yields:
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To estimate γ0 we use again independence of involved random variables, the fact that
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along with Lemmas 4.2 and 4.5 and the properties of the scaling constants to conclude that:
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To estimate γ1 we first deduce from Lipschitz continuity of f C for x ∈ [xn
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Thus, using again Lemmas 4.2 and 4.5, the properties of the scaling constants and the fact that
f C vanishes outside a compact interval we find a constant C < ∞ such that:
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In view of Lemma 4.2, boundedness of f C and independence of involved random variables, we
have
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Proof of Lemma 4.15. Without any loss of generality, we take s = 0 and prove the assertions for
the ask side. To this end, let G denote the σ-algebra generated by all the sources of randomness
except (πi)∞i=1 and (ωi)∞i=1, which is then by construction, independent from G.
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and similarly, we have E
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with the constant C independent of n and t.

The estimate of vn
a/b follows in precisely the same way as the proof of Lemma 4.5, taking into

account the appropriate estimates for Vn,i
a/b derived above. �

B Classical tightness results

For the convenience of the reader, we recall some classical results on tightness which the deriva-
tions of Section 4 are based on. We first note that though the following theorems and lemmas
may be originally established on finite time intervals, we state them on the half line [0,∞) since
there is no essential difficulty to make such extensions in the spirit of Jacod and Shiryaev [15].

The first result is a sufficient condition for tightness in the Skorokhod spaceD([0,∞); E) for a com-
plete separable metric state space (E, ρ) due to Aldous and Kurtz. We take it from [22, Th. 6.8].

Theorem B.1. Let Xn be a sequence of processes taking values in D([0,∞); E) such that the
family (Xn(t))n∈N of random variables is tight (in E) for any rational t. Moreover, assume that there
is a number p > 0 and processes (γn(δ))δ∈[0,∞), n ∈ N, such that

E
[
ρ (Xn(t + δ), Xn(t))p

∣∣∣ F n
t

]
≤ E

[
γn(δ) | F n

t
]
,

lim
δ→0

lim sup
n→∞

E
[
γn(δ)

]
= 0,

where the filtration F n is generated by Xn. Then (Xn)n∈N is tight in D ([0,∞); E).

Proof. See [22, Th. 6.8]. Note that Walsh assumes one joint filtration Ft, whereas we allow for
filtrations depending on n. This difference is, however, inconsequential, e.g., by choosing Xn to be
defined on a common probability space in an independent way and then choosing Ft to be the
filtration generated by all the filtrations F n

t . �

The main theoretical tool in this paper is Mitoma’s theorem, on basis of [22, Th. 6.13, Lem. 6.14,
Note on p. 365], which relates tightness of distribution-valued processes to real-valued processes
obtained by applying test-functions. We specialize the general formulation given in [22] so that
the theorem can be directly applied to our setting.
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Theorem B.2 (Mitoma’s theorem). For any positive integer d, let Xn := (Xn
1 , · · · , X

n
d) be a se-

quence of processes with sample paths lying in D
(
[0,∞); (E′)d

)
. The sequence Xn is tight as

processes with paths inD
(
[0,∞); (E′)d

)
, if and only if for any φ1, · · · , φd ∈ E we have tightness of
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〉
. In particular, if for any ε,N ∈ (0,∞)

there exists Ñ ∈ (0,∞) such that supn P(supt∈[0,N]
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i=1 ‖X
n
i (t)‖L2 > Ñ) < ε, then Xn is tight as a

sequence of processes with paths in D
(
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(
H−1

)d
)
.

Here we choose H−1 for convenience. Indeed, in view of the arguments in [22, Page 335, Example
1a], we can replace the space H−1 by H−m for any m > 1/2. On the other hand, an immediate
application of Theorem B.2 is the following corollary, which states that joint tightness of a pair of
sequences of stochastic processes follows from individual tightness assuming that at least one of
the involved sequences is C-tight, i.e., all its accumulation points are continuous processes.

Corollary B.3. Let Yn and Zn be sequences of stochastic processes taking values in (E′)d and
(E′)l respectively, with d, l ∈ N. If Yn is C-tight with paths in D

(
[0,∞); (E′)d

)
and Zn is tight with

paths inD
(
[0,∞); (E′)l

)
, then the pair of processes (Yn,Zn) is tight with paths inD

(
[0,∞); (E′)d+l

)
.

Proof. We fist note that for the finite-dimensional case where (E′)d and (E′)l are replaced by
Euclidean spaces, Corollary B.3 coincides with [15, Cor. VI.3.33]. Obviously the C-tightness of
Yn with paths in D

(
[0,∞); (E′)d

)
implies that of

∑d
i=1〈Y

n
i , φi〉 with paths in D ([0,∞);R) for any

φ1, · · · , φd ∈ E. As Theorem B.2 allows us to prove the tightness of distribution-valued processes
by verifying that of the real-valued processes obtained by applying test-functions, there follows
the tightness of pair of processes (Yn,Zn) with paths in D

(
[0,∞); (E′)d+l

)
. �

We remark that the method of proof for the finite-dimensional case (see [15, Page 353, Cor. VI.3.33])
can not directly be applied to Corollary B.3, as the compactness of the unit ball is key to their proof
of the finite-dimensional case. On the other hand, if we replace (E′)d for Yn by Rm × (E′)d with
m ∈ N, then Corollary B.3 still holds, since the finite-dimensional space is isomorphic as well as
homeomorphic to some subspace of E′.

Finally, we use a lemma of Billingsley about weak limits under time-changes.

Lemma B.4. Let Xn be a sequence of processes taking values in D([0,∞); E) for some sep-
arable metric space E and let Φn be a sequence of non-decreasing processes with paths in
D([0,∞); [0,∞)). Assume that (Xn,Φn) converge weakly to a pair of processes (X,Φ) ∈ D ([0,∞); E × [0,∞))
such that X ∈ C ([0,∞); E) with probability 1. Then

Xn ◦ Φn ⇒ X ◦ Φ.

Proof. The proof in Billingsley [3, p. 151] (for the special case E = R) can be immediately adapted
to this more general setting. �
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