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Abstract

Algebraic flux correction schemes are nonlinear discretizations of convection dom-
inated problems. In this work, a scheme from this class is studied for a steady-state
convection–diffusion equation in one dimension. It is proved that this scheme satisfies the
discrete maximum principle. Also, as it is a nonlinear scheme, the solvability of the linear
subproblems arising in a Picard iteration is studied, where positive and negative results are
proved. Furthermore, the non-existence of solutions for the nonlinear scheme is proved by
means of counterexamples. Therefore, a modification of the method, which ensures the
existence of a solution, is proposed. A weak version of the discrete maximum principle is
proved for this modified method.

1. Introduction

Scalar convection–diffusion equations model the convective and diffusive transport of a scalar
quantity, like temperature or concentration. Solutions of convection-dominated convection–
diffusion equations typically possess layers, which cannot be resolved unless the given mesh
is sufficiently fine in layer regions. Standard discretizations, like central finite differences or the
Galerkin finite element method, cannot cope with this situation and the computed solutions are
globally polluted with spurious oscillations. It is well known that so-called stabilized discretiza-
tions have to be applied. There are many proposals of such discretizations, see the monograph
[22] for an extensive review.
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In the past few years, comprehensive numerical studies revealed, however, that none of
the proposed stabilized discretizations satisfies the following three requirements: accuracy,
efficiency, and numerical solution without spurious oscillations (discrete maximum principle).
This statement holds true for the steady-state equation [2, 3, 8, 9, 13] as well as for the
time-dependent equation [6, 11, 12]. Indeed, most of the methods fail to satisfy a discrete
maximum principle. However, this property is particularly important in applications, where
numerical results, e.g., with negative concentrations, will be considered to be worthless. Even
if such quantities are not of primary interest, spurious oscillations have been shown to lead
to blow-ups in the simulation of coupled problems [10]. Altogether, the validity a discrete
maximum principle is, in our opinion, of utmost importance for simulations of applications.

There are few discretizations that satisfy a discrete maximum principle, like the upwind
finite difference scheme [22], a finite volume scheme on Delaunay meshes [7], and algebraic
flux correction schemes. The first two methods are generally rather inaccurate, while the
algebraic flux correction schemes are usually nonlinear discretizations and their application
might be time consuming. However, applications often lead to nonlinear models, and then
a nonlinear discretization of a linear equation in such a model seems not to be a severe
disadvantage. Altogether, from the point of view of applications, algebraic flux correction
schemes are very attractive.

The basic philosophy of flux correction schemes was formulated already in the 1970s in
[4, 23]. Later, the idea was applied in the finite element context, e.g., in [21] and [1]. In the
last decade, the methods have been further developed and refined, in particular in [20, 14–
19]. Until not long ago, two limiting techniques within algebraic flux correction schemes were
pursued, so-called flux-corrected transport (FCT) schemes for the time-dependent equation
and total variation diminishing (TVD) schemes for the steady-state equation. Finally, a
scheme was presented in [18] that can handle both situations. For the time-dependent
problem, a linear variant of a FCT scheme was proposed in [17].

Despite the attractiveness of algebraic flux correction schemes, there seems to be no
rigorous numerical analysis for this class of methods. The main reason lies probably in
their construction, which does not allow to apply the usual tools of the analysis of finite
element discretizations. Unlike almost all other stabilized methods, which modify the bilinear
form of the discrete problem in some way, algebraic flux correction schemes work on the
algebraic level. They manipulate the matrix and the right-hand side of the algebraic system
of equations. A few basic properties of these schemes can be deduced immediately from
their construction, like mass conservation or the discrete maximum principle for transport
equations [19].

In this work we study some properties of a nonlinear discrete problem that generalizes
the algebraic flux correction method of TVD-type from [15] applied to the 1D steady-state
convection–diffusion equation. We present both theoretical and computational results; the
latter ones are obtained by solving the nonlinear discrete problem using a fixed point itera-
tion. While the linear subproblems in the fixed point iteration are proved to be well-posed,
the nonlinear problem is shown to be not solvable in general. However, we prove the solv-
ability for a modified nonlinear discrete problem. To the authors’ best knowledge, the results
concerning the solvability of the linear subproblems and the nonlinear problem are the first
results of this kind for algebraic flux correction schemes. In addition, the present work rep-
resents a basis for analyzing algebraic flux correction schemes applied to multi-dimensional
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problems.
The paper is organized in the following way. First, the algebraic flux correction method

will be introduced in Section 2. In Section 3, the 1D model problem will be formulated
and its finite element discretization will be presented. The application of the algebraic flux
correction method to this problem is the topic of Section 4. It will be shown there that the
discrete operator of this scheme can be written as a nonlinear finite difference operator with
an artificial diffusion vector whose components are bounded by a data-dependent constant ε̃.
In Section 5, the discrete maximum principle for this operator will be proved for appropriately
chosen values of ε̃. Different choices of ε̃, for which the discrete maximum principle is
satisfied, will be studied numerically in Section 6. The unique solvability of the linear
subproblems arising in the fixed point iteration is studied in Section 7 under more general
conditions on the artificial diffusion vector than from the actual method [15]. Some positive
but also a negative result are proved. Section 8 starts with a number of counterexamples
concerning the solvability of the nonlinear discrete problem. Then, the existence of a solution
of the nonlinear problem is proved for a modification of the method. A concrete realization
of this modification is proposed in Section 9, where a weak form of the discrete maximum
principle is proved and numerical results are presented. Finally, a summary and an outlook
are given in Section 10.

2. An algebraic flux correction scheme

Consider a linear boundary value problem whose solution is (mainly) determined by
convection and for which the maximum principle holds. Let us discretize this problem by
the finite element method. Then, the discrete solution can be represented by a vector U ∈ RN

of its coefficients with respect to a basis of the respective finite element space. Let us assume
that the last N −M components of U (0 < M < N) correspond to nodes where Dirichlet
boundary conditions are prescribed whereas the first M components of U are computed
using the finite element discretization of the underlying partial differential equation. Then
U ≡ (u1, . . . , uN) satisfies a system of linear equations of the form

N∑
j=1

aij uj = gi , i = 1, . . . ,M , (1)

ui = ubi , i = M + 1, . . . , N . (2)

We assume that

aii > 0 ,
N∑
j=1

aij = 0 , i = 1, . . . ,M , (3)

which is often the case when incompressible convection fields are considered.
Since the original problem satisfies the maximum principle, it is natural to require that

this property is inherited by the discrete problem. Unfortunately, the discrete maximum prin-
ciple does not hold for many finite element discretizations of convection dominated problems,
in particular, for the Galerkin discretization and most stabilized methods, see, e.g., [22]. The
aim of algebraic flux correction approaches is to cure this deficiency by manipulating the
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algebraic system in such a way that the solution satisfies the discrete maximum principle
and layers are not excessively smeared.

The starting point of the algebraic flux correction algorithm is the finite element matrix
A = (aij)

N
i,j=1 corresponding to the above finite element discretization in the case where ho-

mogeneous natural boundary conditions are used instead of the Dirichlet ones. We introduce
the symmetric artificial diffusion matrix D = (dij)

N
i,j=1 possessing the entries

dij = −max{aij, 0, aji} ∀ i 6= j , dii = −
∑
j 6=i

dij .

Then, the matrix Ã := A + D has nonpositive off-diagonal entries and each of its row sums
vanishes. A vector U ∈ RN being a solution of a linear system with the matrix Ã satisfies
the discrete maximum principle in the sense that for any i ∈ {1, . . . ,M} the following holds

(ÃU)i ≤ 0 ⇒ ui ≤ max
j 6=i, ãij 6=0

uj .

This property immediately follows from the fact that, using (3), one gets

ãii ui ≤ −
∑
j 6=i

ãij uj = ãii c−
∑
j 6=i

ãij (uj − c) ≤ ãii c ∀ c ≥ max
j 6=i, ãij 6=0

uj .

Going back to the solution of the system (1), this system is equivalent to

(ÃU)i = gi + (DU)i , i = 1, . . . ,M . (4)

Since the row sums of the matrix D vanish, it follows that

(DU)i =
∑
j 6=i

fij , i = 1, . . . , N ,

where fij = dij (uj − ui). Clearly, fij = −fji for all i, j = 1, . . . , N . Now the idea of the
algebraic flux correction schemes is to limit those anti-diffusive fluxes fij that would otherwise
cause spurious oscillations. To this end, system (1) (or, equivalently (4)) is replaced by

(ÃU)i = gi +
∑
j 6=i

αij fij , i = 1, . . . ,M , (5)

with solution-dependent correction factors αij ∈ [0, 1]. For αij = 1, the original system (1) is
recovered. Hence, intuitively, the coefficients αij should be as close to 1 as possible to limit
the modifications of the original problem.

The coefficients αij can be chosen in various ways but their definition is always based
on the above fluxes fij, see [14–18] for examples. In this work we consider coefficients αij

proposed in [15]. This is, for each pair of indices i, j ∈ {1, . . . , N} such that aji ≤ aij, one
performs the updates

P+
i := P+

i + max{0, fij} , P−i := P−i −max{0, fji} ,
Q+

i := Q+
i + max{0, fji} , Q−i := Q−i −max{0, fij} ,

Q+
j := Q+

j + max{0, fij} , Q−j := Q−j −max{0, fji} .
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Then one sets

R+
i = min

{
1,
Q+

i

P+
i

}
, R−i = min

{
1,
Q−i
P−i

}
, i = 1, . . . , N ,

and, finally,

αij =

{
R+

i if fij > 0 ,
R−i if fij < 0 ,

i, j = 1, . . . , N .

3. Finite element discretization of a 1D convection–diffusion equation

To better understand the algebraic flux correction method described in the previous
section, we shall apply it to a finite element discretization of a scalar one-dimensional
convection–diffusion equation. In this section we formulate the 1D problem, introduce its
discretization, and for completeness, we review its main characteristics.

We consider the boundary value problem

−ε u′′ + b u′ = g in (0, 1) , u(0) = uL , u(1) = uR , (6)

where, for simplicity, ε and b are assumed to be positive constants. Moreover, g is supposed
to belong to L2(0, 1) and uL, uR are any real numbers. If g is constant, then the solution of
(6) is given by the formula

u(x) = uL +
g

b
x+ γ

e−(1−x) b/ε − e−b/ε

1− e−b/ε
(7)

with γ := uR−uL−g/b. Thus, for γ 6= 0 and ε� b, the solution of (6) possesses a boundary
layer at the right-hand boundary point.

Let us divide the interval [0, 1] into n+1 subintervals [xi, xi+1], i = 0, . . . , n, with xi = i h
and h = 1/(n+ 1). We define the finite element space

Wh = {vh ∈ C([0, 1]) ; vh|[xi,xi+1]
∈ P1([xi, xi+1]), i = 0, . . . , n}

consisting of continuous piecewise linear functions and set

Vh = {vh ∈ Wh ; vh(0) = vh(1) = 0} .

Then the Galerkin finite element discretization of (6) reads: Find uh ∈ Wh such that uh(0) =
uL, uh(1) = uR and

ε (u′h, v
′
h) + (b u′h, vh) = (g, vh) ∀ vh ∈ Vh , (8)

where (·, ·) denotes the inner product in L2(0, 1).
Let us denote by ϕ1, . . . , ϕn ∈ Vh the usual basis functions of Vh, i.e., ϕi(xj) = δij for

i, j = 1, . . . , n. We define

gi =
1

h
(g, ϕi) , i = 1, . . . , n .
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Setting ui = uh(xi), i = 0, . . . , n+ 1, then (8) is equivalent to the system

−ε ui−1 − 2ui + ui+1

h2
+ b

ui+1 − ui−1
2h

= gi , i = 1, . . . , n . (9)

This system can be also obtained by discretizing (6) using the central finite difference method.
Then, however, gi = g(xi).

Let us introduce the Péclet number

Pe =
b h

2 ε

and let g be constant. If Pe = 1, then (9) reduces to

b
ui − ui−1

h
= g , i = 1, . . . , n ,

and hence ui = uL + (g/b)xi, i = 0, . . . , n. Thus, in this case,

uh(x) = uL +
g

b
x , x ∈ [0, 1− h] .

If Pe 6= 1, then

ui =
g

b
xi + A+B

(
1 + Pe

1− Pe

)i

, i = 0, . . . , n+ 1 , (10)

where A and B are determined by the conditions u0 = uL and un+1 = uR. We observe
that, for Pe < 1, the discrete solution is the sum of two monotone grid functions but, for
Pe > 1, the discrete solution ui generally possesses spurious oscillations. This shows that
the Galerkin discretization is not appropriate for solving (6) numerically if Pe > 1.

4. The algebraic flux correction scheme applied to the 1D problem

To suppress the spurious oscillations in the solutions of the Galerkin finite element dis-
cretization of (6) given by (8), we shall apply the algebraic flux correction scheme described
in Section 2. We shall assume that Pe > 1, which is the case interesting in practice.

The Galerkin discretization of (6) introduced in the previous section corresponds to the
system from Section 2 with N = n + 2 but with a different numbering of the nodes. The
matrices A and D are three-diagonal (n+ 2)× (n+ 2) matrices with entries (cf. (9))

a0,0 =
ε

h2
− b

2h
, a0,1 = − ε

h2
+

b

2h
,

ai,i−1 = − ε

h2
− b

2h
, ai,i =

2 ε

h2
, ai,i+1 = − ε

h2
+

b

2h
, i = 1, . . . , n ,

an+1,n = − ε

h2
− b

2h
, an+1,n+1 =

ε

h2
+

b

2h
,

di,i+1 =
ε

h2
− b

2h
, i = 0, . . . , n . (11)

The vector U in (5) is given by U = (u0, u1, . . . , un+1)
T . Note that the assumption (3) is

satisfied.
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Now let us compute the values αij in (5). The values αij are needed only for i = 1, . . . , n
and |i − j| = 1, and they are not important if fij = 0. Since ai+1,i < ai,i+1 for i = 0, . . . , n,
one has

P+
i = max{0, fi,i+1} , P−i = −max{0, fi+1,i} ,
Q+

i = max{0, fi−1,i}+ max{0, fi+1,i} , Q−i = −max{0, fi,i−1} −max{0, fi,i+1}

for i = 1, . . . , n. Thus, for i = 1, . . . , n, one obtains

αi,i−1 =


min

{
1,

max{0, fi+1,i}
max{0, fi,i+1}

}
if fi,i−1 > 0 ,

min

{
1,

max{0, fi,i+1}
max{0, fi+1,i}

}
if fi,i−1 < 0 ,

αi,i+1 =


min

{
1,

max{0, fi−1,i}
fi,i+1

}
if fi,i+1 > 0 ,

min

{
1,

max{0, fi,i−1}
fi+1,i

}
if fi,i+1 < 0 .

It is not completely clear, how to interpret the definition of αi,i−1 when the denominator
vanishes. In this case we always set αi,i−1 = 1. This leads to

αi,i−1 = αi,i+1 = 0 if fi,i−1 fi,i+1 > 0 ,

αi,i−1 = 1 , αi,i+1 = min

{
1,
fi−1,i
fi,i+1

}
if fi,i−1 fi,i+1 ≤ 0 .

Setting

βi =

 1 if fi,i+1 6= 0 and
fi−1,i
fi,i+1

< 1 ,

0 otherwise ,
i = 1, . . . , n ,

system (5) is equivalent to

u0 = uL ,

(AU)i + βi (fi,i−1 + fi,i+1) = gi , i = 1, . . . , n ,

un+1 = uR .

The definition of the coefficients βi can be written also in the form

βi =

 1 if ui 6= ui+1 and
ui − ui−1
ui+1 − ui

< 1 ,

0 otherwise ,
i = 1, . . . , n . (12)

Finally, applying that

fi,i−1 + fi,i+1 =

(
ε

h2
− b

2h

)
(ui−1 − 2ui + ui+1) , i = 1, . . . , n ,
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and setting

ε̃ =
b h

2
− ε = ε (Pe− 1) , (13)

one arrives at the following final version of the algebraic flux correction scheme:
Find u0, . . . , un+1 such that:

u0 = uL , un+1 = uR , (14)

and

−(ε+ βi ε̃)
ui−1 − 2ui + ui+1

h2
+ b

ui+1 − ui−1
2h

= gi , i = 1, . . . , n . (15)

Since also other definitions of βi than (12) may be convenient (see the end of this section),
we shall analyze the flux correction scheme (14), (15) for a class of functions βi satisfying

βi ∈ {0, 1} , βi = 1 if (ui − ui−1)(ui+1 − ui) < 0 , i = 1, . . . , n . (16)

Note that functions βi defined by (12) satisfy (16).

Remark 1. Some comments on this method are in order:

1. Condition (16) assures that artificial diffusion is added to the equation at the node xi
whenever the discrete solution has a local extremum at xi.

2. If βi = 1, then the corresponding equation in (15) reduces to

b
ui − ui−1

h
= gi . (17)

Thus, in this case the method transforms (locally) the original Galerkin method into
an upwinded discretization of the hyperbolic equation b u′ = g.

3. There are alternative ways to define the matrix D. For example, if it is defined with
respect to the convection matrix only, i.e., setting ε = 0 in (11), one obtains (15) with

ε̃ =
b h

2
. (18)

If βi = 1, then the scheme (15) becomes

−ε ui−1 − 2ui + ui+1

h2
+ b

ui − ui−1
h

= gi , (19)

which is the usual upwind discretization of (6) at the node xi. This approach was used,
e.g., in [18]. The definition of D using the whole matrix A, as it was considered in this
section, makes the implementation of the method simpler (and more economical) and
was used, e.g., in [12, 2]. Furthermore, another possible alternative to define the matrix
D is to use the sum of the convection matrix and the diffusion matrix multiplied by a
constant from the interval (0, 1). This approach leads to (15) with ε̃ ∈ (b h/2−ε, b h/2),
i.e., a method that can be viewed as intermediate with respect to the two upwinding
strategies expressed by (17) and (19).
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Let us now present two choices of βi different from (12). For simplicity, we shall assume
that ui = u(xi), i = 0, . . . , n+ 1. If u is increasing and strictly convex in [0, 1] or decreasing
and strictly concave in [0, 1], then the definition (12) gives βi = 1, i = 1, . . . , n. Thus, the
artificial diffusion may be added in regions where it is not needed at all, i.e., where no layer
occurs. A partial remedy is to set βi = 1 only at nodes where the increase or decrease of u
sufficiently accelerates. For example, one can set

βi =

 1 if ui 6= ui+1 and
ui − ui−1
ui+1 − ui

< L ,

0 otherwise ,
i = 1, . . . , n , (20)

with a constant L ∈ (0, 1), e.g., L = 0.5.
Unfortunately, the relation (20) does not prevent the method from adding artificial dif-

fusion in regions where the solution is nearly constant with respect to its global behavior.
For example, for u(x) = 1 + x5 and any n > 5, the definition (20) with L = 0.5 leads to
β1 = · · · = β5 = 1 and βi = 0 for i > 5, i.e., artificial diffusion is added on the interval [0, x5].
However, u(x) ∈ [1, 1.001] and u′(x) ∈ [0, 0.02] for x ∈ [0, 0.25], whereas u(x) ∈ [1, 2] and
u′(x) ∈ [0, 5] for x ∈ [0, 1] so that u can be regarded as nearly constant in [0, 0.25]. Hence
artificial diffusion is not needed at nodes near to 0. This suggests to replace (20) by

βi =


1 if (ui − ui−1)(ui+1 − ui) < 0 ,

or
|ui+1 − ui|

h
> D and

ui − ui−1
ui+1 − ui

< L ,

0 otherwise ,

i = 1, . . . , n , (21)

with some suitable threshold D, e.g.,

D = κ
∆u

∆x
, κ = 0.5 , (22)

where ∆x is a characteristic length scale and ∆u a corresponding characteristic variation
of u. For the above example of u, one gets D = 0.5 and βi = 0, i = 1, . . . , n, if h ≤ 0.1.
Note that if (20) leads to βi = 0 so does (21) and if the values of βi provided by (20) and
(21) differ, then |ui − ui−1|/h < DL.

As another example, let us consider the function u(x) = e−(1−x) b/ε, x ∈ [0, 1] (cf. (7)),
which possesses a boundary layer at the point 1 for large values of b/ε. For any i ∈ {1, . . . , n},
one obtains

ui − ui−1
ui+1 − ui

= e−2Pe ,
ui+1 − ui

h
= u(xi)

e2Pe − 1

h

so that (12) gives β1 = · · · = βn = 1. The definition (20) gives either the same result or
β1 = · · · = βn = 0 if L ≤ e−2Pe. However, using (21) with L = 0.5 and D = 0.5, one always
has βn = 1 and possibly βi = 1 at some further nodes near to 1, depending on ε, b and h. At
the remaining nodes, βi = 0. In particular, for n ≥ 4, one obtains βi = 0 for i ≤ (n + 1)/2.
Thus, artificial diffusion is added only near the layer region, as desired.
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5. Discrete maximum principle

From the last point in Remark 1, one can see that it makes sense to consider (15) with
any

ε̃ ∈
[
b h

2
− ε, b h

2

]
. (23)

In this section we prove that then the method satisfies the discrete maximum principle and
we formulate various consequences of this fact.

Theorem 1. Consider any ε̃ ≥ b h/2 − ε. Then any solution of the nonlinear problem
(14)–(16) satisfies the discrete maximum principle, i.e., for any i ∈ {1, . . . , n}, one has

gi ≤ 0 ⇒ ui ≤ max{ui−1, ui+1} , (24)

gi ≥ 0 ⇒ ui ≥ min{ui−1, ui+1} . (25)

Moreover, for any k, l ∈ {0, 1, . . . , n+ 1} with k + 1 < l, one has

gi ≤ 0 , i = k + 1, . . . , l − 1 ⇒ ui ≤ max{uk, ul} , i = k, . . . , l , (26)

gi ≥ 0 , i = k + 1, . . . , l − 1 ⇒ ui ≥ min{uk, ul} , i = k, . . . , l . (27)

Proof. Let the values u0, u1, . . . , un+1 satisfy (14)–(16). Consider any i ∈ {1, . . . , n} and let
gi ≤ 0. If ui > max{ui−1, ui+1}, then βi = 1 and hence

0 ≥ gi h
2 = −

(
ε+ ε̃+

b h

2

)
ui−1 + 2 (ε+ ε̃)ui −

(
ε+ ε̃− b h

2

)
ui+1

> −
(
ε+ ε̃+

b h

2

)
ui + 2 (ε+ ε̃)ui −

(
ε+ ε̃− b h

2

)
ui = 0 ,

which is a contradiction. Therefore, ui ≤ max{ui−1, ui+1}.
Now consider any k, l ∈ {0, 1, . . . , n+1} with k+1 < l and let gi ≤ 0 for i = k+1, . . . , l−1.

Let j ∈ {k, . . . , l} be such that uj ≥ ui for i = k, . . . , l. If j ∈ {k, l}, then the right-hand
side of the implication (26) holds. Thus, let k < j < l. If uj > uj+1 then uj−1 = uj in view
of (24). If uj = uj+1, then if follows from (15) that

0 ≥ gj =

(
ε+ βj ε̃

h2
+

b

2h

)
(uj − uj−1) ≥ 0

and hence again uj−1 = uj. Repeating the above argument, one deduces that uj = uj−1 =
· · · = uk so that the right-hand side of (26) is satisfied.

The implications (25) and (27) follow analogously. �

Corollary 1. Consider any ε̃ ≥ b h/2 − ε. Let u0, . . . , un+1 be a solution of the nonlinear
problem (14)–(16) with gi ≥ 0, i = 1, . . . , n. Let j ∈ {0, . . . , n + 1} satisfy uj ≥ ui,
i = 0, . . . , n + 1. Then the solution increases monotonically until uj and, after that, it
decreases monotonically, i.e.,

u0 ≤ u1 ≤ · · · ≤ uj , uj ≥ uj+1 ≥ · · · ≥ un+1 . (28)

If gi = 0, i = 1, . . . , n, then the solution is monotone, i.e.,

u0 ≤ u1 ≤ · · · ≤ un+1 or u0 ≥ u1 ≥ · · · ≥ un+1 . (29)
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Proof. If 0 < i < j, then ui ≥ min{uj, ui−1} = ui−1. If j < i < n + 1, then ui ≥
min{uj, ui+1} = ui+1. Therefore, (28) holds. If gi = 0, i = 1, . . . , n, then uj = max{u0, un+1}
according to (26) so that (29) follows from (28). �

Corollary 2. Consider any ε̃ > b h/2 − ε. Let u0, . . . , un+1 be a solution of the nonlinear
problem (14)–(16) with gi ≥ 0, i = 1, . . . , n. Let j ∈ {0, . . . , n + 1} satisfy uj ≥ ui,
i = 0, . . . , n + 1. If j < n, i ∈ {j + 1, . . . , n}, and gi > 0, then ui > ui+1 and βi = 1. If
gi = 0 for some i ∈ {1, . . . , n}, then either ui−1 = ui = ui+1 or

ui − ui−1
ui+1 − ui

< 1 .

Finally, if uL > uR, one obtains

gi = 0 , i = 1, . . . , n ⇒ u0 > u1 > · · · > un+1 , β1 = β2 = · · · = βn = 1 .

Proof. According to (15), one has(
ε+ βi ε̃+

b h

2

)
(ui − ui−1) +

(
ε+ βi ε̃−

b h

2

)
(ui − ui+1) = gi h

2 (30)

for i = 1, . . . , n. If i > j, then ui−1 ≥ ui ≥ ui+1 due to (28) and hence the first term on
the left-hand side of (30) is nonpositive. Therefore, (30) can be satisfied with gi > 0 only if
the second term on the left-hand side of (30) is positive, which implies that ui > ui+1 and
βi = 1. Furthermore, for any i ∈ {1, . . . , n} such that gi = 0 and ui 6= ui+1, one deduces
from (30) that

ui − ui−1
ui+1 − ui

=
ε+ βi ε̃−

b h

2

ε+ βi ε̃+
b h

2

< 1 . (31)

If gi = 0 and ui = ui+1, then obviously also ui = ui−1.
Finally, let gi = 0, i = 1, . . . , n. If uk = uk+1 for some k ∈ {0, . . . , n}, then according to

(30) with i = k and i = k + 1, one obtains uk = uk−1 (if k > 0) and uk+1 = uk+2 (if k < n).
Thus, one deduces that u0 = u1 = · · · = un+1. Therefore, if uL > uR, one gets ui 6= ui+1

for i = 0, . . . , n and hence (29) implies that u0 > u1 > · · · > un+1. Consequently, for any
i ∈ {1, . . . , n}, the left-hand side of (31) is positive and therefore βi = 1. �

Corollary 3. Let ε̃ = b h/2 − ε. Let u0, . . . , un+1 be a solution of the nonlinear problem
(14)–(16) with gi ≥ 0, i = 1, . . . , n. Let j ∈ {0, . . . , n + 1} satisfy uj ≥ ui, i = 0, . . . , n + 1.
Then either j ≥ n or gj+1 = · · · = gn = 0 and uj = uj+1 = · · · = un.

If i ∈ {1, . . . , n} and gi = 0, then either ui−1 = ui = ui+1 or ui = ui−1 and βi = 1.
Consequently,

gi = 0 , i = 1, . . . , n ⇒ ui = uL , i = 1, . . . , n .
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Proof. Let j < n and i ∈ {j + 1, . . . , n}. Then the left-hand side of (30) is nonpositive due
to (28) and hence (30) cannot hold with gi > 0. Therefore, gj+1 = · · · = gn = 0. If gi = 0
for some i 6= j, then it follows from (28) and (30) that ui = ui−1, which completes the proof
of the first statement of the corollary. If j ∈ {1, . . . , n} and gj = 0, then uj = uj−1 since
otherwise uj > uj−1 and, in view of (30), uj > uj+1 and βj = 0, which is in contradiction
with (16). Thus, for any i ∈ {1, . . . , n} such that gi = 0 one has ui = ui−1 and it follows
from (30) that ui = ui+1 or βi = 1. �

Remark 2. Let uL > uR and gi = 0 for i = 1, . . . , n. It follows from Corollaries 2 and 3
that if a solution of the nonlinear problem (14)–(16) exists, then it is determined uniquely.
It is the solution of (9) with ε replaced by ε + ε̃. Thus, the nonlinear problem is solvable if
this solution leads to β1 = · · · = βn = 1 in case of ε̃ > b h/2 − ε and to βn = 1 in case of
ε̃ = b h/2− ε. If ε̃ = b h/2− ε, this means that βi = 1 for ui−1 = ui 6= ui+1. This is the case
for (12) and (20) but not necessarily for (21). If ε̃ > b h/2− ε, the solution is given by (10)
with g = 0 and Pe replaced by

Pe∗ =
b h

2 (ε+ ε̃)
.

Then, for any i ∈ {1, . . . , n},

ui − ui−1
ui+1 − ui

=
1− Pe∗

1 + Pe∗
<

1

3
for ε̃ ∈

(
b h

2
− ε, b h

2

]
.

Thus, the nonlinear problem is solvable if βi is defined by (12) or by (20) with L ∈ [1/3, 1).
On the other hand, if βi satisfies (16) and βi = 0 for (ui − ui−1)(ui+1 − ui) ≥ 0, then the
nonlinear problem is not solvable for any data. Unfortunately, also the favorable choice (21)
does not lead to a solvable nonlinear problem in general. We shall return to this choice in
Section 9, where it will be used for deriving a convenient definition of βi.

6. The solution of the nonlinear system and the choice of ε̃

In this section we report some numerical results obtained by solving the nonlinear problem
(14), (15). We start by briefly describing the solution algorithm. The problem (14), (15) was
solved by a fixed-point iteration: one chooses an initial guess u0 for the solution u := {ui}n+1

i=0

and computes a sequence {uk} where each uk with k = 1, 2, . . . solves the linearized problem
(14), (15) with βi determined by means of the already known discrete solution uk−1. In our
case, the initial guess u0 was computed as the solution of (14), (15) with βi = 1, i = 1, . . . , n.
We shall prove in Section 7 that the linear problems defining this fixed-point algorithm are
well-posed. The iteration was stopped if the coefficients βi did not change.

Since this section focuses on the choice of ε̃, we only shall present results obtained for
βi defined by (12). To suppress the influence of the rounding errors on the validity of the
conditions in (12) for setting βi = 1, we replaced (12) by

βi =


1 if ui + τ < ui+1 and 2ui + τ < ui−1 + ui+1

or ui − τ > ui+1 and 2ui − τ > ui−1 + ui+1 ,
0 otherwise ,

(32)
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with a suitable positive constant τ . In the computations presented in this section, we used
τ = 10−12. For τ = 0, the relations (12) and (32) are equivalent.

As we pointed out in the previous section, any ε̃ satisfying (23) can be used in (15).
Then, a natural question is which choice of ε̃ is most convenient. It is well known that if all
the coefficients βi in (15) are set to 1, then

ε̃ =
b h

2

(
coth Pe− 1

Pe

)
(33)

is optimal in the sense that, for constant g, the discrete solution is nodally exact, i.e.,
ui = u(xi) for i = 1, . . . , n, see [5]. On the other hand, in general, the parameter ε̃ cannot
be chosen in such a way that the discrete solution is nodally exact if the coefficients βi are
defined by (12). However, it is well known that the performance of most stabilized methods is
primarily affected by the amount of artificial diffusion introduced near the numerical layers,
and quite insensitive to the changes on it far away from them. Thus, since we expect that
βi = 1 in numerical boundary layers, it may be of advantage to use ε̃ given by (33) also
when the coefficients βi are defined by (12). Then what is required is that the exact solution
solves the scheme (15) for the nodes xi where βi = 1. Note that the parameter ε̃ defined in
(33) is larger than ε̃ from (13) and smaller than ε̃ from (18).

In what follows, we shall compare solutions of the problem given by (14), (15), (32) for
ε̃ defined by (13), (18), and (33). We shall consider

b = g = 1 , uL = uR = 0 , (34)

and various choices of ε and n.
First, we notice that if ε̃ is defined by (13), it is easy to verify that, for the data (34) and

any ε and n,
ui = i h , i = 0, . . . , n , un+1 = 0

is a solution of (14), (15) with βi given by (32) or any βi satisfying (16) (it is the only
solution of the respective nonlinear problem). In this case, βn = 1 and if βi is defined by
(32) or (12), one has βi = 0 for i = 1, . . . , n − 1. Since the discrete solution is independent
of ε, one cannot expect a good approximation of the exact solution for the whole range of
the values of ε. Indeed, according to (7), the error of the discrete solution satisfies

ui − u(xi) =
e−(1−xi)/ε − e−1/ε

1− e−1/ε
, i = 0, . . . , n , (35)

so that the largest error appears at the node xn and, for ε ≤ 0.1, one has

un − u(xn) =
e−h/ε − e−1/ε

1− e−1/ε
> 0.135 for Pe→ 1 .

To see the impact of the nonlinear artificial diffusion in (15) on the discrete solutions, we
computed the errors (

1

n

n∑
i=1

(u(xi)− ui)2
)1/2

(36)
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ε = 10−2 ε ∈ {10−4, 10−6}

Figure 1: Dependence of the errors of the solutions of (14), (15), (32) on h for ε ∈ {10−2, 10−4, 10−6} and ε̃
defined by (13), (33), and (18).

ε̃ from (13) ε̃ from (33) ε̃ from (18)

Figure 2: Comparisons of the exact solution (green) and solutions of (14), (15), (32) for ε = 0.03, n = 15,
and ε̃ defined by (13), (33), and (18).

for different values of h, the three definitions of ε̃ (cf. (13), (33), and (18)), and for ε ∈
{10−2, 10−4, 10−6}. If ε̃ is defined by (13), we set ε̃ = 0 for Pe ≤ 1 (this situation occurs only
for ε = 10−2). The results are depicted in Fig. 1, where we observe that the best results are
obtained for ε̃ defined by (33). For large Péclet numbers, comparable errors are also obtained
for ε̃ defined by (13). The choice (18) always adds too much artificial diffusion and leads to
the worst results. To further stress this, Fig. 2 depicts the discrete solutions corresponding
to Pe = 25/24 and clearly demonstrates the differences between the three choices of ε̃.

One final comment is in place for the case where ε̃ is given by (13). In this case, according
to (35), the error (36) is bounded by e−h/ε. This shows that, for ε = 10−6 (and partly also
for ε = 10−4), the errors depicted in Fig. 1 are results of rounding errors and are much larger
than actual values of the errors.

7. Solvability of the linear subproblems

At the beginning of the previous section, the solution of the nonlinear problem (14), (15)
using a fixed-point iteration was described. In this section, we shall discuss under which
conditions the corresponding linear subproblems are uniquely solvable.
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We shall consider the following more general problem: given positive numbers d1, . . . , dn,
find u1, . . . , un such that

−di (ui−1 − 2ui + ui+1) + ui+1 − ui−1 = g̃i , i = 1, . . . , n , (37)

where u0 = uL and un+1 = uR. This problem corresponds to (15) for di = 2 (ε + βi ε̃)/(b h)
and g̃i = 2h gi/b.

The following theorem proves the unique solvability of problem (37) in the case that the
coefficients di are allowed to take the values 1 and d with d > 0. As a consequence, the
unique solvability of the linearized problem (15) with ε̃ given by (13) follows.

Theorem 2. Let d1, . . . , dn ∈ {1, d} with an arbitrary d > 0. Then problem (37) has a
unique solution.

Proof. It suffices to show that the homogeneous problem corresponding to (37) has only
the trivial solution, i.e., that if

−di (ui−1 − 2ui + ui+1) + ui+1 − ui−1 = 0 , i = 1, . . . , n , (38)

with u0 = un+1 = 0, then
u1 = u2 = · · · = un = 0 . (39)

Let 1 ≤ K ≤ L ≤ n and dK = dK+1 = · · · = dL = d. Multiplying the i-th equation in
(38) by ui and summing up over i = K, . . . , L, one obtains

d u2K + d
L−1∑
i=K

(ui − ui+1)
2 + d u2L − (1 + d)uK−1 uK + (1− d)uL uL+1 = 0 . (40)

Thus, if d1 = d2 = · · · = dn = d, one may set K = 1 and L = n, and (40) readily implies
(39). Of course, this result also follows from the equivalence between (8) and (9) and the
fact that (8) is uniquely solvable.

It remains to investigate the case when the values of di are not all equal. Let K ∈
{1, . . . , n} be the smallest index such that dK = d and let L ∈ {K, . . . , n} be the largest
index such that dK = dK+1 = · · · = dL = d. Then, for any i ∈ {1, . . . , K−1}, one has di = 1
and hence ui = ui−1. Consequently, ui = 0 for i = 0, . . . , K − 1. Furthermore, if L < n,
then dL+1 = 1 and hence uL+1 = uL, which implies that d u2L + (1 − d)uL uL+1 ≥ 0. This
inequality is satisfied also if L = n since then uL+1 = 0. Thus, one deduces from (40) that

d u2K + d

L−1∑
i=K

(ui − ui+1)
2 ≤ 0 ,

which gives 0 = uK = uK+1 = · · · = uL. Repeating the above arguments until L = n, one
obtains (39). �

The following theorem proves the unique solvability of (37) for a more general choice of
d1, . . . , dn.
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Theorem 3. Let d1, . . . , dn ∈ (0, 1]. Then problem (37) has a unique solution. Furthermore,
if d1, . . . , dn ∈ [δ, 1 + δ] with δ ∈ (0, 1], then problem (37) has a unique solution as well.
However, for any δ > 0, there are d1, . . . , dn ∈ (0, 1 + δ] such that problem (37) is not
uniquely solvable.

Proof. We introduce the n× n matrices

B = diag(d1, d2, . . . , dn) , C = tridiag(−1, 2,−1) , E = tridiag(−1, 0, 1) .

Then the matrix corresponding to (37) is BC + E. This matrix will be transformed by
operations which preserve full rank such that it becomes possible to see that its determinant
does not vanish.

Let G = (gij)
n
i,j=1 be a symmetric matrix given by

gij = (n− i+ 1) j , j = 1, . . . , i , i = 1, . . . , n .

Then CG = (n+ 1) I, where I is the identity matrix. Setting Q = (BC + E)G, one obtains
a matrix with the entries

qij = −2 j + 2 (n+ 1) for i = 1, . . . , j − 1 ,

qjj = −2 j + (n+ 1) (1 + dj) ,

qij = −2 j for i = j + 1, . . . , n ,

where j = 1, . . . , n. Now, let us define the matrix Z = (zij)
n
i,j=1 by

zij =
1

n+ 1
(qij − qi+1,j) , i = 1, . . . , n− 1 , znj =

1

n+ 1

(
2 qnj +

n−1∑
i=1

qij

)
,

where j = 1, . . . , n. Then det(BC + E) 6= 0 if and only if detZ 6= 0 and one has

zii = 1 + di , zi,i+1 = 1− di+1 , zij = 0 for j 6∈ {i, i+ 1} , i = 1, . . . , n− 1 ,

znj = −1 + dj , j = 1, . . . , n− 1 , znn = 2 dn .

Let Zij be the (n− 1)× (n− 1) matrix obtained from Z by removing the i-th row and j-th
column. Then

detZnj =

j−1∏
k=1

(1 + dk)
n∏

l=j+1

(1− dl) . (41)

Let n be odd and denote

z̃nj =
n∑

i=1
i is odd

zij , j = 1, . . . , n .

Then, for j = 1, . . . , n, one has

z̃nj = 2 dj if j is odd , z̃nj = 0 if j is even .
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Thus,

detZ = 2
n∑

j=1
j is odd

dj detZnj . (42)

If d1, . . . , dn ∈ (0, 1], then detZnj ≥ 0, j = 1, . . . , n − 1, and detZnn > 0 so that detZ > 0.
If n is even, then

detZ = (1 + d1) detZ11 + (1− d1) detZn1 . (43)

Since Z11 has the same structure as Z and has an odd number of rows and columns, one has
detZ11 > 0 for d1, . . . , dn ∈ (0, 1]. Moreover, detZn1 ≥ 0 in view of (41) and hence again
detZ > 0, which proves the first part of the theorem.

Now let d1, . . . , dn ∈ [δ, 1 + δ] with δ ∈ (0, 1]. We denote

As =
s∏

k=1

(1 + dk) , Bs =
n∏

l=s

(1− dl) , s = 1, . . . , n ,

and we set A0 = 1. If Bs < 0, then, for some k ∈ {1, . . . , n}, we have |1−dk| ≤ δ. Therefore,
since |1− dl| ≤ 1 for any l ∈ {1, . . . , n}, one gets

Bs ≥ −δ , s = 1, . . . , n . (44)

First, let n be odd and let us prove that, for any odd m ∈ {1, . . . , n}, the matrices Znj satisfy

n∑
j=m

j is odd

dj detZnj ≥ dnAm−1 . (45)

In view of (41), this inequality holds for m = n. Let us assume that (45) holds for a given
odd m ∈ {3, . . . , n}. Then, again in view of (41),

n∑
j=m−2
j is odd

dj detZnj ≥ dnAm−1 + dm−2Am−3Bm−1

> dnAm−3 + dm−2Am−3
[
dn (1 + dm−1) +Bm−1

]
> dnAm−3

since dn (1 + dm−1) > δ and Bm−1 ≥ −δ, see (44). Thus, (45) holds for any odd m ∈
{1, . . . , n} and hence, setting m = 1 and using (42), one gets detZ ≥ 2 dn. If n is even, then
detZ11 ≥ 2 dn and hence, according to (43), detZ = (1 + d1) detZ11 +B1 > 2 dn +B1 ≥ dn.

Finally, let us consider any δ > 0 and set

d1 = d2 = · · · = dn−2 = 1 , dn−1 = 1 + δ , dn =
δ

3 δ + 4
.

Then d1, . . . , dn ∈ (0, 1 + δ] and

detZ = 2n−2 det

(
1 + dn−1 1− dn
−1 + dn−1 2 dn

)
= 0 .

Consequently, the matrix corresponding to (37) is singular and hence problem (37) is not
uniquely solvable. �

The following corollary states the unique solvability of the linearized problem (14), (15)
for any ε̃ satisfying (23).
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Corollary 4. Consider any ε̃ ∈ [0, b h/2] and any β1, . . . , βn ∈ [0, 1]. Then the linear prob-
lem (14), (15) has a unique solution.

Proof. Since (15) is equivalent to (37) with d1, . . . , dn ∈ [1/Pe, 1 + 1/Pe], the statement
follows immediately from Theorem 3. �

8. Solvability of the nonlinear problem

The computations reported in Section 6 were the ones for which convergence of the
fixed-point iteration was achieved. However, some other computations we performed did not
converge at all. In some cases, a convergence was obtained after changing the value of τ
in (32) (although we realized that the iterative process was still very sensitive to rounding
errors). For some other cases though, we were not able to find any way to achieve a conver-
gence and hence no solution at all was found. The ultimate conclusion of these numerical
experiments was that the nonlinear problem (14)–(16) is not solvable in general. In this
section we first describe examples of data for which the nonlinear problem has no solution,
thus proving the above claim. This lack of solvability is due to the discontinuous character of
the coefficients βi. As a matter of fact, at the end of the present section we shall prove that
the problem (14), (15) is solvable if one considers coefficients βi depending on the discrete
solution in a continuous way.

Let us start with the following remark. If the nonlinear problem (14), (15) with some
functions βi satisfying (16) has a solution, then there are numbers β̄1, . . . , β̄n ∈ {0, 1} such
that, after having computed the solution u = {ui}n+1

i=0 of (14), (15) with βi = β̄i, i = 1, . . . , n,
one has βi(u) = β̄i, i = 1, . . . , n. Since there are only 2n admissible choices of β̄1, . . . , β̄n,
one can easily check (at least for small n) whether the nonlinear problem is solvable or not.
In what follows, we shall consider the three choices of ε̃ tested in Section 6 and, for each of
them, we shall present an example of data such that the nonlinear problem (14), (15) is not
solvable for any functions βi satisfying (16) and

βi = 0 if ui 6= ui+1 and
ui − ui−1
ui+1 − ui

> 1 . (46)

These requirements are met by all the three choices (12), (20), and (21). In all the cases, we
shall use

n = 4 , uL = uR = 0 . (47)

First, let us study the problem (14), (15), (12) with ε̃ defined by (13). We consider the
data

ε = 0.03 , b = 1 , g1 = 6 , g2 = −6 , g3 = 3 , g4 = −2 . (48)

As explained above, for each of the 16 possible choices of β̄1, . . . , β̄4, we compute the solution
u = {ui}5i=0 of (14), (15) with βi = β̄i, i = 1, . . . , 4. These solutions together with the
values of β1(u), . . . , β4(u) computed according to (12) are shown in Figs. 3 and 4. Since
(β1(u), . . . , β4(u)) always differs from (β̄1, . . . , β̄4), one concludes that the nonlinear problem
(14), (15), (12) does not have any solution. Note that, for all choices of β̄1, . . . , β̄4 except
β̄1 = · · · = β̄4 = 1, there always exists j ∈ {1, 2, 3, 4} such that β̄j = 0 and the solution u has
an extremum at the node xj so that βj(u) = 1 as soon as (16) holds. If β̄1 = · · · = β̄4 = 1,
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1 1 0 1 → 1 1 1 1 1 1 1 1 → 1 1 1 0

0 0 1 0 → 1 1 0 1 0 0 0 0 → 1 1 0 1

Figure 3: Solutions u of (14), (15) with βi = β̄i, i = 1, . . . , 4 for the data (47), (48) and ε̃ defined by
(13). The numbers left to ‘→’ represent β̄1, . . . , β̄4, the numbers right to ‘→’ represent β1(u), . . . , β4(u)
corresponding to the respective solution according to (12).

one observes that β4(u) = 0 as soon as (46) holds. This shows that the problem (14), (15)
is not solvable for any functions βi satisfying (16) and (46).

Similar non-existence studies were performed for the case in which ε̃ is defined by (33)
and (18). For both cases we were able to find various right-hand sides for which the discrete
problem does not have a solution. For example, if ε̃ is defined by (33), then the nonlinear
problem with any βi satisfying (16) and (46) is not solvable for the following data:

ε = 0.09 , b = 1 , g1 = 6 , g2 = g3 = g4 = 1 . (49)

Finally, if ε̃ is defined by (18), then the nonlinear problem with any βi satisfying (16) and
(46) is not solvable, e.g., for

ε = 0.064 , b = 1 , g1 = g2 = g3 = g4 = 1 . (50)

We have verified that the nonexistence of a solution to the nonlinear problem (14), (15) in
the cases presented in this section is not caused by rounding errors.

Now, as we already stated, we present a result ensuring the solvability of the nonlinear
problem (14), (15) under the hypothesis of continuity of the coefficients βi.

Theorem 4. Let βi : Rn+2 → [0, 1], i = 1, . . . , n, be continuous functions and let ε̃ ∈
[0, b h/2]. Then there exists a solution of the nonlinear problem (14), (15).

Proof. We set β(u) := {βi(u)}ni=1 with u = {ui}n+1
i=0 . We also denote M(β) ∈ Rn×n the

matrix corresponding to system (15) for a particular choice of the coefficients β ∈ Rn. Then
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0 1 0 0 0 1 1 0 1 0 0 0

1 0 1 0 1 1 0 0 1 1 1 0

0 0 0 1 0 0 1 1 0 1 0 1

0 1 1 1 1 0 0 1 1 0 1 1

Figure 4: Solutions u of (14), (15) with βi = β̄i, i = 1, . . . , 4 for the data (47), (48) and ε̃ defined by
(13). The numbers below the graphs represent β̄1, . . . , β̄4. For all solutions, the formula (12) gives β1(u) =
β2(u) = β3(u) = β4(u) = 1.

the nonlinear problem (14), (15) can be written as: Find u ≡ {ui}ni=1 such that

M(β(u))u = g̃(u) , (51)

where u = {ui}n+1
i=0 with u0 = uL, un+1 = uR, and g̃(u) = {g̃i(u)}ni=1 with g̃i(u) = gi for
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i = 2, . . . , n− 1, and

g̃1(u) = g1 + (ε+ β1(u) ε̃)
uL
h2

+ b
uL
2h

, g̃n(u) = gn + (ε+ βn(u) ε̃)
uR
h2
− b uR

2h
.

Since |βi(u)| ≤ 1 for i = 1, . . . , n, one has

‖g̃(u)‖ ≤ ‖g‖+
ε+ b h

h2
(|uL|+ |uR|) ∀ u ∈ Rn+2 , (52)

where ‖ · ‖ denotes the Euclidean norm on Rn and g = {gi}ni=1.
Corollary 4 guarantees that the matrix M(β) is invertible for all β belonging to the

hypercube [0, 1]n. Then, since the determinant of a matrix is a continuous function of its
entries, there exists σ0 > 0 such that

| detM(β)| ≥ σ0 ∀ β ∈ [0, 1]n .

Hence, the function β 7→ [M(β)]−1 is continuous on [0, 1]n, and there exists C > 0 such that

‖[M(β)]−1‖ ≤ C ∀ β ∈ [0, 1]n , (53)

where we use the matrix norm induced by the Euclidean norm on Rn. Consequently, there
exists a constant C0 > 0 such that

∀ β ∈ [0, 1]n, v ∈ Rn, u ∈ Rn+2 : M(β)v = g̃(u) ⇒ ‖v‖ ≤ C0 . (54)

In view of (52) and (53), the constant C0 depends on the data of (6) and, possibly, on h,
but it does not depend on u.

Let now T : Rn → Rn be the mapping defined by

Tu := [M(β(u))]−1g̃(u) ∀ u ≡ {ui}ni=1 ∈ Rn ,

where u = {ui}n+1
i=0 with u0 = uL and un+1 = uR. Then T is continuous and, according

to (54), it maps the closed ball B(0, C0) := {v ∈ Rn ; ‖v‖ ≤ C0} into itself. Applying
Brouwer’s fixed point theorem, there exists u ∈ B(0, C0) such that Tu = u, i.e., u satisfies
(51). �

9. An example of continuous βi and properties of the resulting solvable nonlinear
discrete problem

In this section we propose a definition of continuous coefficients βi that, according to
Theorem 4, leads to a solvable nonlinear discrete problem, prove a corresponding (weaker)
variant of the discrete maximum principle, and present a few numerical results.

For i = 1, . . . , n, let us denote the derivatives of the discrete solution to the left and to
the right of a point xi by

u′i− =
ui − ui−1

h
, u′i+ =

ui+1 − ui
h

,
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Figure 5: Values of βi from (12) in dependence on u′i− and u′i+.

respectively. If βi are defined by (12), then

βi =

{
1 if u′i+ > max{0, u′i−} or u′i+ < min{0, u′i−} ,
0 if min{0, u′i−} ≤ u′i+ ≤ max{0, u′i−} ,

for i = 1, . . . , n, see Fig. 5. Note that βi is discontinuous along the lines u′i− = u′i+ and
u′i+ = 0. Similarly, βi is discontinuous if it is defined by (20) or (21).

Our aim is to introduce continuous coefficients βi to guarantee the solvability of the
nonlinear problem (14), (15). Based on the relation (21) and the discussion at the end of
Section 4 and in Remark 2, we propose to set (cf. Fig. 6)

βi =



1 if (u′i+ ≥ ∆ + max{0, 2u′i−} or u′i+ ≤ −∆ + min{0, 2u′i−}) ,
and (u′i−, u

′
i+) 6∈ (−∆, D/2)× (0, D + ∆) ,

and (u′i−, u
′
i+) 6∈ (−D/2,∆)× (−D −∆, 0) ,

0 if min{0, 2u′i−} ≤ u′i+ ≤ max{0, 2u′i−} ,
or (u′i−, u

′
i+) ∈ [0, D/2]× [0, D] ,

or (u′i−, u
′
i+) ∈ [−D/2, 0]× [−D, 0] ,

(55)

with positive parameters ∆ ≤ D. Furthermore, we require that βi is continuous and that it
is linear in each of the eight dark shadow subregions in Fig. 6. These requirements define the
function βi uniquely. The parameters D and ∆ should be proportional to a characteristic
derivative ∆u/∆x, see (22).

Unfortunately, with the new definition of the coefficients βi, we cannot guarantee the
validity of the discrete maximum principle formulated in Theorem 1. Nevertheless, the
following result shows that a possible violation of the discrete maximum principle is not
significant if the parameter D or the mesh width h are small. The constant δ in the following
theorem is related to the above definition of βi by δ = D + ∆.

Theorem 5. Consider any ε̃ satisfying (23). Let u0, . . . , un+1 be a solution of the nonlinear
problem (14), (15) with any functions β1, . . . , βn ∈ [0, 1] satisfying

βi = 1 if ui < min{ui−1, ui+1 − δ h} or ui > max{ui−1, ui+1 + δ h}
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Figure 6: Definition of continuous βi according to (55).

for some δ > 0 and i = 1, . . . , n. Then

gi ≤ 0 ⇒ ui ≤ max{ui−1, ui+1} or ui ≤ min{ui−1, ui+1}+ δ h ,

gi ≥ 0 ⇒ ui ≥ min{ui−1, ui+1} or ui ≥ max{ui−1, ui+1} − δ h ,

for i = 1, . . . , n. Moreover, for any k, l ∈ {0, 1, . . . , n+ 1} with k + 1 < l, one has

gi ≤ 0 , i = k + 1, . . . , l − 1 ⇒ ui < max{uk, ul}+ δ h , i = k, . . . , l ,

gi ≥ 0 , i = k + 1, . . . , l − 1 ⇒ ui > min{uk, ul} − δ h , i = k, . . . , l .

Proof. Consider any i ∈ {1, . . . , n} and let gi ≤ 0. If ui − ui+1 6∈ [0, δ h], then ui ≤
max{ui−1, ui+1} since the proof of Theorem 1 can be repeated without any changes. For
ui−ui+1 ∈ [0, δ h] it will be shown that ui ≤ min{ui−1, ui+1}+ δ h. To this end, assume that
ui > min{ui−1, ui+1}+ δ h. Then

ui+1 + δ h ≥ ui ≥ ui+1 , ui > ui−1 + δ h .

Therefore, using (30) and noting that (ui − ui+1) is estimated either from below or from
above depending on the sign of the term in front of it, one derives

0 ≥ gi h
2 =

(
ε+ βi ε̃+

b h

2

)
(ui − ui−1) +

(
ε+ βi ε̃−

b h

2

)
(ui − ui+1)

>

(
ε+ βi ε̃+

b h

2

)
δ h+ min

{
0, ε+ βi ε̃−

b h

2

}
δ h > 0 ,

which is a contradiction. Therefore, ui ≤ min{ui−1, ui+1}+ δ h.
Now consider any k, l ∈ {0, 1, . . . , n+1} with k+1 < l and let gi ≤ 0 for i = k+1, . . . , l−1.

First, we shall prove that, for any i ∈ {k + 1, . . . , l − 1}, the following implication holds:

ui−1 ≤ ui and ui > ui+1 ⇒ uk > ui+1 . (56)
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Thus, consider any i ∈ {k+ 1, . . . , l− 1} such that the left-hand side of (56) is satisfied. Let
m ∈ {k, . . . , i − 1} be such that us ≤ us+1 for s = m, . . . , i − 1. We assume that m cannot
be further decreased, i.e., either m = k or um−1 > um. According to (30), one has

0 ≥
(
ε+ βi ε̃+

b h

2

)
(ui − ui−1) +

(
ε+ βi ε̃−

b h

2

)
(ui − ui+1)

>

(
ε+

b h

2

)
(ui − ui−1)−

b h

2
(ui − ui+1) . (57)

If m < i− 1, then for s = m+ 1, . . . , i− 1, one derives in view of (30)

0 ≥
(
ε+ βs ε̃+

b h

2

)
(us − us−1) +

(
−ε− βs ε̃+

b h

2

)
(us+1 − us)

≥
(
ε+

b h

2

)
(us − us−1)− ε (us+1 − us) . (58)

Summing up the inequalities (57) and (58), one obtains

0 >

(
ε+

b h

2

) i∑
s=m+1

(us − us−1)− ε
i−1∑

s=m+1

(us+1 − us)−
b h

2
(ui − ui+1)

=

(
ε+

b h

2

)
(ui − um)− ε (ui − um+1)−

b h

2
(ui − ui+1) ≥

b h

2
(ui+1 − um) .

Therefore, um > ui+1, which is true also if m = i−1 according to (57). If m = k or us > us+1

for s = k, . . . ,m−1, then the right-hand side of (56) holds. Otherwise m ≥ k+2 and there is
i′ ∈ {k+1, . . . ,m−1} for which ui′+1 > ui+1 and the left-hand side of (56) is satisfied. Hence
the inequality uk > ui+1 follows by induction. For proving the statement of the theorem,
let j ∈ {k, . . . , l} be such that uj = max{uk, uk+1, . . . , ul} and let uj > max{uk, ul}. Then
uj > uj+1 since otherwise uj = uj−1 in view of (30) and hence uj = uk by induction. Thus,
one has uk > uj+1 according to (56). Finally, applying the first part of the theorem, one
obtains uj ≤ min{uj−1, uj+1}+ δ h < uk + δ h ≤ max{uk, ul}+ δ h.

The implications for gi ≥ 0 follow analogously. �
Theorem 5 shows that if the discrete maximum principle is violated then the discrete

solution is locally near to a constant function provided that δ or h are sufficiently small.
Globally, the violation of the discrete maximum principle is smaller or equal to δ h.

Remark 3. Using a similar construction as above, one could modify the definition (21) in
such a way that the resulting function βi is continuous and equals 1 whenever the discrete
solution attains an extremum at the node xi. Then the statements of Theorem 5 hold with
δ = 0. However, the resulting method then adds artificial diffusion of magnitude ε̃ in regions
where the discrete solution is constant, which is not desirable. Moreover, due to rounding
errors, an approximation of a constant solution u typically possesses a lot of negligible ex-
trema that also should not lead to adding a significant amount of artificial diffusion. The
continuous function βi defined at the beginning of this section satisfies this requirement.
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Now let us report a few numerical results for βi defined by (55). We used ∆ = D = 0.5 so
that δ = 1. For decreasing δ, we encountered increasing difficulties with the solution of the
nonlinear problem, whereas the resulting approximate solution was not affected significantly.
We again applied the fixed-point iteration described at the beginning of Section 6 that was
terminated if absolute values of all components of the residual vector were smaller than
5 · 10−14.

First, we repeated the computations of Section 6 and realized that all results are very
similar for the continuous βi, at least for Pe ≥ 1 (for Pe < 1, a difference stems from using
L = 0.5 instead of L = 1, cf. the end of Section 4). Then, we considered the counterexamples
from Section 8 for which the discrete problems with discontinuous βi were not solvable. Now,
solutions could be computed and we obtained the following values of β1, . . . , β4:

data (48): β1 = 1 , β2 = 1 , β3 = 1 , β4 = 0.041172246777 ,

data (49): β1 = 0 , β2 = 0 , β3 = 0.016194286589 , β4 = 1 ,

data (50): β1 = 0 , β2 = 0 , β3 = 0.018436266748 , β4 = 1 .

Finally, we investigated numerically a possible violation of the discrete maximum principle
by the method (14), (15) if βi are defined by (55). We used ε̃ from (33) and considered the
problem (6) with the data

b = 1 , g = 0 , uL = 1 , uR = 0 , (59)

and various values of ε > 0. According to (7), the exact solution of this problem is a
decreasing function with values in the interval [0, 1]. For small ε, the solution is nearly
constant except for a small neighborhood of the right boundary point. Therefore, this
problem is suitable for testing the validity of the discrete maximum principle by comparing
the maximum value of the approximate solution

umax
h = max

i=0,...,n+1
ui

with the value 1. We used several values of ε and, for each of them, we computed approximate
solutions for all values of h ≡ 1/(n + 1) ≤ 0.25 leading to Pe ≥ 1. It turns out that it is
reasonable to consider separately moderate Péclet numbers and large Péclet numbers. More
precisely, we separately considered Pe ∈ [1, 20) and Pe ∈ [20,∞). We denote by MAX
the maximum of umax

h − 1 over all h for which the Péclet number belongs to the respective
interval, by RMAX the maximum of (umax

h − 1)/h and by PeRMAX the value of Pe for which
the maximum RMAX is attained. The results are summarized in Table 1. We observe that
the results are in agreement with Theorem 5 and that the largest violations of the discrete
maximum principle appear for small Péclet numbers, i.e., when the mesh width approaches
the thickness of the boundary layer. The numerical results also suggest that the violation of
the discrete maximum principle is bounded by 0.2 min{h, ε ln(1/ε)} and is often significantly
smaller so that it is negligible in the most cases. The results presented for Pe ∈ [20,∞) are
influenced by rounding errors and hence differ from values that would be obtained in exact
arithmetic.
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Table 1: Violation of the discrete maximum principle for the data (59) and continuous βi given by (55).

Pe ∈ [1, 20) Pe ∈ [20,∞)

ε MAX RMAX PeRMAX MAX RMAX PeRMAX

10−1 6.62−3 2.65−2 1.25 no Pe ≥ 20
10−2 3.55−3 9.27−2 1.85 no Pe ≥ 20
10−3 7.14−4 1.28−1 2.79 4.88−15 4.88−14 25.0
10−4 1.06−4 1.40−1 3.77 5.60−14 9.23−13 21.6
10−5 1.41−5 1.47−1 4.80 4.81−13 5.59−10 21.6
10−6 1.77−6 1.51−1 5.84 6.06−12 6.92−8 22.9

10. Conclusions and outlook

An algebraic flux correction scheme of TVD-type, proposed in [15], was studied in this
work for 1D steady-state convection–diffusion equations. The discrete operator was refor-
mulated as a nonlinear finite difference operator with a parameter vector. Possible choices of
this parameter vector were studied numerically. A fixed point iteration was used for solving
the nonlinear problem. The main results of this work are about properties of the nonlinear
problem and the linear subproblems (discrete maximum principle, solvability). Counterex-
amples concerning the existence of a solution of the nonlinear problem were provided. A
modification of the scheme was proposed for which the existence of a solution and a weak
variant of the discrete maximum principle were proved. The unique solvability of the linear
subproblems was studied under rather general conditions on the parameter vector of the
scheme.

Future work will study alternative algebraic flux correction schemes proposed, e.g., in
[18]. As first step, it has to be ensured that a solution of these nonlinear schemes exists. If
this point is positively clarified, it makes sense to investigate the (order of) convergence to a
solution. Of course, numerical analysis for multi-dimensional problems is of utmost interest.
From our experience so far, we think that such an analysis should initially consider model
problems, simple domains, and structured grids.
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[19] Dmitri Kuzmin and Matthias Möller. Algebraic flux correction I. Scalar conservation
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