
Weierstraß-Institut
für Angewandte Analysis und Stochastik
Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 0946 – 8633

A coupling of discrete and continuous optimization to solve

kinodynamic motion planning problems

Chantal Landry1, Wolfgang Welz2, Matthias Gerdts3

submitted: December 17, 2013

1 Weierstrass Institute
Mohrenstr. 39
10117 Berlin
Germany
E-Mail: chantal.landry@wias-berlin.de

2 Institute of Mathematics
Technische Universität Berlin
Str. des 17. Juni 136
10623 Berlin
Germany
E-Mail: welz@math.tu–berlin.de

3 Institute of Mathematics and Applied Computing (LRT)
University of the Federal Armed Forces at Munich
Werner-Heisenberg-Weg 39
85577 Neubiberg
Germany
E-Mail: matthias.gerdts@unibw.de

No. 1900

Berlin 2013

2010 Mathematics Subject Classification. 49J15, 49M25, 49N90, 70E60, 90C30, 90C35.

Key words and phrases. Trajectory planning, optimal control problem, collision avoidance, graph search algorithm, initialization,
robotics.

This work was partially supported by the German Research Foundation MATHEON.

Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax: +49 30 20372-303
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/

Abstract

A new approach to find the fastest trajectory of a robot avoiding obstacles, is presented. This op-
timal trajectory is the solution of an optimal control problem with kinematic and dynamics constraints.
The approach involves a direct method based on the time discretization of the control variable. We
mainly focus on the computation of a good initial trajectory. Our method combines discrete and
continuous optimization concepts. First, a graph search algorithm is used to determine a list of via
points. Then, an optimal control problem of small size is defined to find the fastest trajectory that
passes through the vicinity of the via points. The resulting solution is the initial trajectory. Our ap-
proach is applied to a single body mobile robot. The numerical results show the quality of the initial
trajectory and its low computational cost.

1 Introduction

Time-optimal kinodynamic motion planning refers to the computation of the fastest trajectory of a robot
that must avoid obstacles (kinematic constraints) and observe the dynamic laws and the bounds on the
velocity or the acceleration (dynamics constraints). This expression was first introduced by Donald et
al. in [8] in 1993. However, finding the optimal collision-free trajectory is an old and still topical subject in
robotics, which received several names: minimum time path planning [14, 18], optimal robot path planning
using the minimum-time criterion [4], trajectory planning or modeling [9, 28].

Gilbert and Johnson were the first to formulate the kinodynamic planning as an optimal control problem
[18]. In their formulation, the objective function is the travel time, the dynamics laws are a set of ordinary
differential equations and the collision avoidance is a state constraint. In addition, box constraints and
boundary conditions are prescribed. There exist several approaches to solve this optimal control problem.
The first approach was introduced by Gilbert and Johnson in [18] and extended by other authors, such as
Bobrow [4] and Dubowsky et al. [9]. The technique first discretizes the state variable with B-splines and
then looks for a control variable that satisfies the dynamics constraints and minimizes the travel time. It is
often assumed that the control variable has a bang-bang behaviour. The technique involves then finding
the switching points [5]. This first approach does not guarantee that the resulting trajectory is the fastest
one, since the control variable is not necessarily optimal.

Another approach involves path planning techniques. Path planning uses a graph search algorithm to
find a collision free path. For that purpose, a graph is defined on the workspace. The technique looks for
a collision-free path on the graph. The simplest method in graph algorithm is A∗ algorithm or Dijkstra’s
algorithm. In the last years, several efficient methods have been developed such as Rapid-Exploring Tree
(RRT) or Probabilistic Roadmap Planner (PRM) [16, 21]. The resulting path is collision-free, but does not
take into consideration the dynamics constraints. One idea was then to build a trajectory that satisfies
the dynamics constraints by smoothing the path and finding the control variables, so that the dynamics
constraints are observed. Again, this method does not guarantee to find the optimal solution.

LaValle and Kuffner developed a new approach which solves the drawback of path planning [22]. The
path is not searched in the workspace, but in the state space. That is, LaValle and Kuffner consider the
bounds on the velocity and build a graph, so that a motion between two nodes is dynamically possible.

1

This new approach still does not lead to the optimal solution, but at least can handle the dynamics
constraints.

We model the kinodynamic planning with an optimal control problem like Gilbert and Johnson or Bobrow
did. However, we use a different technique to solve the optimal control problem. We prefer to discretize
the control variable since the goal is to find the best control, so that the travel time is minimized and the
kinematic and dynamics constraints are satisfied.

The weakness of gradient based methods for continuous optimization problems and optimal control prob-
lems is their dependence on a good initialization, especially if obstacles have to be avoided. Without a
good initial trajectory, the chances to reach the optimal solution are low. Gilbert and Johnson [14] and
other authors need a collision-free trajectory to find a solution. However, nobody explains how to obtain
such a trajectory. Another option is to take the straight line that joins the initial to the final position as initial
trajectory. But, this initialization may contain collision. Therefore, the straight line is not good enough for
complicated trajectories.

In this article, we propose a method that automatically compute a good initial trajectory. This method
combines discrete and continuous optimization methods. A path planning algorithm is first applied to get
a list of via points. Then, the initial trajectory is obtained by computing the fastest trajectory that passes
through the vicinity of the via points. We will not use sophisticated path planning algorithm such as RRT
or PRM. Our goal is to find a rough collision-free path, since the path is then post processed through an
optimal control problem.

This article is divided as follows. In the next section, we formulate the kinodynamic motion planning prob-
lem as an optimal control problem. Then, our numerical method, which is based on the time discretization
of the control variable, is given. Section 3 is devoted to the computation of a good initial trajectory. In Sec-
tion 4, we study more precisely the collision avoidance constraint and see which numerical difficulties this
constraint can cause. Depending on the quality of the initial trajectory, the kinodynamic planning problem
may be slightly modified. Numerical results are presented for a two dimensional mobile robot in Section
5. Finally, conclusions and extensions to three dimensional problems are given in Section 6.

2 Problem formulation

Let us consider a two dimensional robot that is composed of a convex compact polyhedron. Extensions
to more complicated robots are given at the end of Subsection 2.1 and in Section 6. The robot evolves in
a space that contains fixed obstacles. These obstacles are also convex compact polyhedra. We are inter-
ested in finding the fastest collision-free trajectory of the robot that moves between two given positions.
We start this section by introducing the model to find such a trajectory.

2.1 Kinodynamic motion planning

Let P0 ∈ R2 be the initial position and Pf ∈ R2 the goal position. To describe the motion of a robot
betweenP0 andPf , we need to define several variables. Let r, v and a, respectively, denote the position,
velocity and acceleration of the center of gravity of the robot in the two dimensional plane. Since the robot
can rotate, let θ denote the angle of rotation of the robot and µ be the velocity of the angle of rotation.
Finally, let tf be the travel time between P0 and Pf . The motion of the robot on the time interval [0, tf]
is then given by the following dynamic laws:

r′(t) = v(t), v′(t) = a(t) and θ′(t) = µ(t). (1)

2

In this paper, a trajectory from P0 to Pf is defined by the pair (t, r(t))t∈[0,tf] that satisfies r(0) = P0

and r(tf) = Pf . We assume that the robot does not have any velocity and angle at the start and goal
position. Therefore, the following boundary conditions are defined

r(0) = P0, v(0) = 0, θ(0) = 0, r(tf) = Pf , v(tf) = 0, θ(tf) = 0. (2)

With the robot, we associate a Cartesian coordinate system, called body frame, whose origin is located
at the center of gravity of the robot. In this coordinate system, the vertices of the robot are stored in
the matrix R0. If n is the number of vertices in the robot, then R0 ∈ Rn×2. With the workspace, we
associate another coordinate system, that is called world frame. The coordinates of the vertices at time
t in the world frame are obtained by rotating R0 of angle θ(t) and then applying a translation of vector
r(t) [21]. Let R(t) be the matrix of the vertices at time t. Then, we have:

R(t)> =

(
cos(θ(t)) − sin(θ(t))
sin(θ(t)) cos(θ(t))

)
R>0 + r(t) · e>n , (3)

where en is the vector that contains n components, which are all equal to 1. Hence, the product r(t) ·e>n
yields a 2× n matrix. In what follows, R designates the robot as a convex compact polyhedron and the
matrix of vertices at the same time.

Let us assume that the workspace containsK fixed obstacles, which are convex compact polyhedra and
denoted by Hk, k = 1, . . . ,K . A trajectory is collision-free if and only if R(t) and the polyhedra Hk,
k = 1, . . . ,K , are disjoint for all t in [0, tf]. There exists several manners to express that the robot R
does not intersect any obstacle. For instance, we can use arguments from linear programming. Let us
describe the polyhedra with the following sets of inequalities

R = {y ∈ R2 |Ay ≤ b} and Hk = {y ∈ R2 |Cky ≤ pk},

with A ∈ Rn×2, b ∈ Rn, C ∈ Rnk×2 and pk ∈ Rnk , where nk is the number of vertices in Hk.

Then, Farkas’s lemma [2] implies that R and Hk do not intersect if and only if there exists a vector
wk ∈ Rn+nk such that

wk ≥ 0,

(
A
Ck

)>
wk = 0 and

(
b
pk

)>
wk < 0. (4)

Hence, the polyhedraR andHk do not collide as long as such a vectorwk exists. The collision avoidance
criterion is here expressed with algebraic relations, which is very convenient. However, this criterion leads
also to a kinodynamic planning problem of a huge size since a vectorwk must be found for each obstacle.
Moreover, the non-uniqueness of wk may produce numerical difficulties. Please see [13, 20] for more
details on this formulation.

A second way to characterize the collision avoidance is to maintain a positive distance between the robot
and the obstacles. To this end, we use the signed distance between two objects, which is negative if
the objects intersect and non-negative otherwise. The signed distance between intersecting polyhedra is
defined as follows [7, 17, 19]:

d(R,H) = −‖w‖2, (5)

where d is the distance function andw is the smallest translational vector, so that int(R+w)∩H = ∅.
An illustration is given in Figure 1.

3

H

R

w

Figure 1: The polyhedra H and R overlap. The vector w is the smallest vector such that R + w and H
come into contact, where R+ w is the polyhedron R translated by w.

If the polyhedra are disjoint, then d is simply the Hausdorff distance. In summary, the distance function
between two convex compact polyhedra is given by

d(R,Hk) =

{
−‖w‖2, if R ∩Hk 6= ∅,
dist(R,Hk), otherwise,

where dist is the Hausdorff distance.

The collision avoidance constraint is then obtained by imposing that the minimum distance between the
robot and the obstacles is larger than a safety margin, that is

min
k=1,...,K

d(R,Hk) ≥ ε, (6)

where ε > 0 is the safety margin.

In contrast to (4), the collision avoidance criterion leads to considerably fewer constraints, since it contains
only one inequality. However, the difficulty here is the discontinuity of the derivative of d, which may cause
problems when solving the kinodynamic motion problem. Note that d is Lipschitz continuous only and we
may use subgradients at the points of non-differentiability.

As many authors [4, 14], we prefer the second approach with its small size. Therefore, combining (1), (2)
with (6), we obtain the kinodynamic motion planning problem between P0 and Pf

(P) : min tf subject to the constraints:

• equations of motion: r′(t) = v(t), a.e. in [0, tf],

v′(t) = a(t), a.e. in [0, tf],

θ′(t) = µ(t), a.e. in [0, tf],

• collision avoidance: min
k=1,...,K

d(R(t), Hk) ≥ ε, a.e. in [0, tf],

• boundary conditions: r(0) = P0, v(0) = 0, θ(0) = 0,

r(tf) = Pf , v(tf) = 0, θ(tf) = 0,

• box constraints: a ≤ a(t) ≤ a and µ ≤ µ(t) ≤ µ, a.e. in [0, tf],

where a, a ∈ R2 and µ, µ ∈ R are given lower and upper bound values.

The problem (P) is an optimal control problem where the state variables are the position, r, the velocity,
v, and the angle of rotation, θ. The control variables are the acceleration of the center of gravity, a, and
the velocity of the rotation angle µ. Let us store the variables in the following vectors:

4

� the state variable: x = (x1, x2, x3, x4, x5) = (r, v, θ) ∈ Rnx ,

� the control variable: u = (u1, u2, u3) = (a, µ) ∈ Rnu .

with nx = 5 and nu = 3.

Other cost functions, such as minimizing the energy consumption, can be defined in (P). Hence, the
objective function is replaced by the more general formulation: ϕ(x(0), x(tf), tf). In other words, the
objective function depends on the initial state, the final state and the travel time.

Since the matrix of vertices R(t) depends on r(t) and θ(t) (compare (3)), the distance function is
rewritten in the form d(x(t), Hk). Let us now define the following functions:

� g : Rnx → R s.t. g(x) = min
k=1,...,K

d(x,Hk),

� f : Rnx × Rnu → Rnx s.t. f(x, u) =

 x3
x4
u

,

� c : Rnx × Rnx → R2nx s.t. c(x(0), x(tf)) =



r(0)− P0

v(0)
θ(0)
r(tf)− Pf
v(tf)
θ(tf)

.

With these new definitions and after transformation onto the fixed time interval T := [0, 1], the optimal
control problem (P) to find the time-optimal kinodynamic motion planning can be rewritten as follows

(OCPc) min ϕ(x(0), x(1), tf)

with respect to x ∈Wnx
1,∞(T), u ∈ Lnu

∞ (T)

s.t. x′(t)− tf f(x(t), u(t)) = 0, a.e. in T, (7)

g(x(t)) ≥ ε, a.e. in T, (8)

c(x(0), x(1)) = 0, (9)

u(t) ∈ U , a.e. in T, (10)

where U := {u = (a, µ) ∈ Rnu | a ≤ a ≤ a, µ ≤ µ ≤ µ}.

As usual Lnu
∞ (T) denotes the Banach space of essentially bounded functions mapping from T into Rnu

and Wnx
1,∞(T) denotes the Banach space of absolutely continuous functions with essentially bounded

derivative that map from T into Rnx .

In (OCPc), the dynamics constraints are the dynamic laws (7) and the box constraints (10). The state
constraint (8) and the boundary conditions (9) define the kinematic constraints. Moreover, let us observe
that the constraint (8) is not continuously differentiable because of the distance function d.

In the case of a three-dimensional robot, the kinodynamic planning problem (OCPc) would have the
same structure. The changes are the meaning of the variables and the definition of the function f in the
ordinary differential equations. Hence, the development in the next sections to solve (OCPc) can also
be applied in the three-dimensional case.

5

2.2 Numerical method

Most of the methods which have been developed to solve (OCPc), first discretize the state variable
x and then look for a control that satisfies the dynamics constraints and minimizes the cost functional
[4, 18]. Such methods will never guarantee that the final solution leads to the optimal trajectory.

Since (OCPc) contains state constraints and the dimension of the state variable is small, we choose to
use a direct method [13]. But, in contrary to [4, 18], we discretize the control variable and then utilize an
explicit integration scheme to solve the ordinary differential equations. The time discretization of (OCPc)
leads to a non-linear optimization problem.

Let us consider a grid with a fixed step-size:

GN := {tk = k h | k = 0, 1, . . . , N}, with h = tf/N.

The control variable is approximated with B-splines as follows

uh(t;u0, . . . , uN+r−2) :=

N+r−2∑
i=0

Bir(t)ui,

whereBir, i = 0, . . . , N+r−2, are elementary B-splines of order r onGN and (u0, . . . , uN+r−2)
> ∈

Rnu(N+r−1) is the vector of de Boor points. The choice of B-splines is convenient since the elementary
functions have a local support only.

As the elementary B-splines of order r sum up to one for all t ∈ T , the box constraints uh(t) ∈ U are
satisfied, if

ui ∈ U , i = 0, . . . , N + r − 2.

The ordinary differential equations (7) are integrated by an explicit one-step method, such as Runge-Kutta
method. According to (7), the integration scheme depends on the initial value x0 = (P0, 0, 0, 0) ∈ Rnx ,
the travel time tf and the de Boor points ui, i = 0, . . . , N + r − 2. Let us store these variables in the
following vector

z := (x0, u0, . . . , uN+r−2, tf)> ∈ Rnz ,

with nz = nx + (N + r − 1)nu + 1. Then, the one-step integration method with increment function Φ
leads to the state approximations

xk+1(z) = xk(z) + hΦ(tk, xk(z), uh(tk;u0, . . . , uN+r−2), tf , h),

k = 0, . . . , N − 1, (11)

at the grid points tk, k = 0, . . . , N .

Introducing both the control and state approximations into the optimal control problem (OCPc) leads to:

(NLP) min
z

J(z)

s.t. c(x0, xN (z)) = 0,

g(xk(z)) ≥ ε, k = 0, . . . , N,

z ∈ Z,

where J(z) := ϕ(x0, xN (z), tf), Z := {z ∈ Rnz | z ≤ z ≤ z} with z = (x0, a, µ, . . . , a, µ, t),
z = (x0, a, µ, . . . , a, µ, t) and t, t ≥ 0 are given lower and upper bound values.

6

The problem (NLP) is a finite dimensional non-linear optimization problem, that we solve by using
a Sequential Quadratic Programming (SQP) method. SQP methods are iterative methods [1]. At each
iteration, a quadratic programming (QP) sub-problem is being solved to find a search direction. Let L be
the Lagrange function of (NLP) and let λ, σ = (σ0, . . . , σN) and ζ be the multipliers associated to
the constraints. Then, the Lagrange function is given by

L(z, λ, σ, ζ) = J(z) + λ>c(x0, xN (z))−
N∑
k=0

σk(g(xk(z))− ε) + ζ>z.

The quadratic programming sub-problems are obtained by linearising the equality and inequality con-
straints as follows

(QP) min
d

1

2
d>∇2

z,zL(z, λ, σ, ζ)d+∇J(z)>d

subject to c(x0, xN (z)) +A(z)d = 0,

g(xk(z)) + ξ>d ≥ ε, k = 0, . . . , N,

z + d ∈ Z,

where ξ is a subgradient of g(xk(z)), d is the search direction to define the next iterate and A(z)> :=
[∇c1(x0, xN (z)) · · · ∇c2nx(x0, xN (z))] is the Jacobian matrix of the boundary constraint c.

The exact Hessian matrix ∇2
z,zL(z, λ, σ, ζ) is not well defined at the points of non-differentiability of

g. Therefore, we prefer to approximate the Hessian by using BFGS update formulas [3, 26]. Let B`
denote the approximation of the Hessian at iteration `. The BFGS update formulas guarantee that B`
is symmetric and positive definite. Thus the quadratic sub-problems are strictly convex. The local SQP
method to solve (NLP) can now be sketched:

Prototype local SQP algorithm to solve (NLP)

1 Choose z(0) ∈ Z , λ(0), ζ(0) and σ(0). Initialize B0 with the identity matrix. Set ` := 0.

2 If (z(`), λ(`), ζ(`), σ(`)) is a KKT point, STOP.

3 Compute a KKT point d of the following quadratic sub-problem:

(QP`) min
d

1

2
d>B`d+∇J(z(`))>d

subject to c(x0, xN (z(`))) +A(z(`))d = 0,

g(xk(z
(`))) + ξ>d ≥ ε, k = 0, . . . , N,

z(`) + d ∈ Z,

where ξ is a subgradient of g(xk(z
(`))).

4 Set z(`+1) := z(`) + d. Update λ(`+1), ζ(`+1) and σ(`+1) with the Lagrange multipliers for the
constraints in (QP`). Compute B`+1 according to BFGS formulas. Set ` := `+ 1 and go to 2.

At each iteration ` of the SQP algorithm, an update z(`) is obtained. From this vector, a trajectory
(tk, rk(z

(`)))k=0,...,N is built by integrating the ordinary differential equations as explained in (11), where
xk(z

(`)) = (rk(z
(`)), vk(z

(`)), θk(z
(`))). Therefore, a sequence of trajectories is issued from the SQP

method.

7

Without a good initialization of the starting point z(0), the SQP method might not converge. In order
to achieve convergence from remote points, the SQP algorithm can be augmented by a globalization
strategy. See [27, 29] for line-search based methods and [10, 11] for filter methods. However, for our
particular problem, a good initialization of z(0) can be found. A method to compute such an initialization
for (NLP) is developed in the next section. This method is based on the coupling of discrete and
continuous optimization.

3 Initialization

In kinodynamic planning, everyone agrees with the significance of a good initial trajectory [18, 31], but
nobody provides a method to find such a trajectory. This trajectory must be close to the optimal trajec-
tory and very often collision-free. Let us consider the example depicted in Figure 2-(a) to illustrate this
necessity. The workspace is a rectangle. The black quadrilateral is an obstacle and is in contact with the
boundary of the workspace. We need to find a way to indicate in which direction the robot must move
to reach Pf . If z(0) were initialized such that the associated trajectory were the segment [P0, Pf], the
robot would move through the obstacle. The solver would then attempt to drive the trajectory downwards
in order to eliminate any collision. But, no such trajectory can succeed since the robot cannot reach Pf
by passing on the left of the obstacle without moving outside the workspace. Here, a good initial direction
would be to go first upwards and then turn left.

In this section, we develop a two-step method to compute a starting point z(0) such that the associated
initial trajectory (tk, rk(z

(0)))k=0,...,N has a favorable shape. First, a path-planning algorithm is used
to find via points. These points indicate the robot the direction to reach Pf . In the second step, z(0) is
computed, so that the initial trajectory passes through the neighborhood of the via points.

3.1 Computation of the via points

Path-planning involves searching a collision-free path in the workspace between two given positions.
Several techniques exist such as graph search algorithms, cell decomposition, potential field method,
probabilistic roadmap (PRM) or rapid exploring random trees (RRT). See [16, 21] for an exhaustive
review. Here, we do not need to use sophisticated methods. We look for a path that is collision-free, but
not necessary the shortest. In addition, the path must have a small number of turns. If many changes
of direction occur (Figure 2-(a) illustrates such a case), then the second step, presented in the next
subsection, could misbehave. To find such a path, we use an adaptation of classical roadmap methods
such as Dijkstra’s algorithm.

Let ρ be the radius of the smallest circle that contains the entire robot. Let cover the workspace by a
regular grid. Here, grid nodes only exist, if they do not correspond to a coordinate lying on an obstacle or
too close to an obstacle, i.e. the distance between the robot and the obstacle is smaller than ρ.

For simplicity, we only allow horizontal and vertical movements and the distance between two grid points
is set to the constant δ. Further, let s and τ be the closest grid points to P0 and Pf respectively. Since
many turns may pose a problem, one solution is to calculate the shortest s-τ -path with the least amount
of turns instead. This is a concept which is a common approach in many path planning problems [6, 25].
It can easily be achieved by a modification of the Dijkstra’s algorithm: Each time the distance for a new
node v is being calculated by extending an existing path over the edge (u, v), we add M to the path
cost, if this extension introduces a turn in u.

8

Unfortunately, even if M is chosen larger than the number of nodes in the grid, it can still happen, that
there are multiple turn-minimal shortest s-u path of which only one can be extended to a shortest turn-
minimal s-v path containing u.

The easiest way to deal with such turn minimal paths is a graph modification: One original grid node is
split up into four nodes, one for every possible direction. These nodes are then connected in such a way,
that edges corresponding to turns have cost M and the other edges have cost 0. This blows up the size
of graph by a factor of four, but Dijkstra’s algorithm can still be used on this extended graph.

Another way of representing turn costs is by a so-called pseudo-dual graph. In such a graph the edges
are represented by nodes and the turn costs as well as the distance penalties by arcs [32].

Figure 2-(b) shows the result of such a turn-minimal computation.

(a) (b)

Figure 2: (a) One possible path from P0 to Pf that uses the least amount of edges in the grid. (b) This
path uses the same amount of edges, i.e. has the same length, as the path in (a), but contains only two
turns.

By definition, all paths on the grid are feasible. All nodes that could possibly conflict with any obstacle
are not included in the graph. So far, we only performed shortest path computations. Due to the nature
of such paths, trajectories are often favoured which pass by an obstacle as close as possible. However,
these parts of the path make it harder for the exact trajectory computation. In some situations it would
be much better to take a path that is slightly longer, but on the other hand keeps a larger distance to
the obstacles. This can be achieved by adding specific costs to the nodes. These costs should depend
on the distance of node to its nearest obstacle and should drastically decrease with increasing obstacle
distance.

However, in this context it makes no longer sense to find the shortest path with least turns. We want
to explicitly allow some additional turns, if that helps to avoid close obstacles. Thus, we introduce the
concept of turn costs to penalize paths with a higher amount of turns without forbidding them explicitly.

Shortest path with turn costs can be solved with the presented modifications of Dijkstra’s algorithm alone,
by either connecting the four newly created nodes with respect to the given turn costs for 90 ◦, 180 ◦ and
270 ◦ turns or by using the pseudo-dual approach.

Turn costs together with the distance dependent node penalties now give us good options to alter the
resulting path in such a way that it is balanced and will most probably also lead to a good starting solution.

9

(a) (b)

Figure 3: (a) Path that avoids close obstacles without taking to many turns. However, his path is slightly
longer than the length of the shortest path in Figure 2. (b) Smoothened version of the path in (a).

So far, the resulting path only contains right angles, which is also not very well suited for further trajectory
calculations. It is necessary to smoothen the path even further. One approach, that showed significant
improvements in practical experiments, is the following: Starting in s we move along the so far calculated
path and check for each such node vi, whether the line segment svi−1 from the point corresponding
to s to the point corresponding to vi has a distance to all obstacles of at least ρ and therefore can be
used by the robot without any collisions. When we reached a point vi where such a collision occurs, we
make svi−1 the beginning of our new smoothened path. We then continue along the original path further
until we find a node vj where vi−1vj is too close to an obstacle and add vi−1vj−1 to the smoothened
path. This procedure is continued until we have reached τ . See Figure 3-(b) for an example of such a
smoothened path. The inner nodes vi in the smoothened path are the via points that will be used in the
next sub-section.

Applying this smoothing process we do not longer explicitly avoid trajectories which are too close to the
obstacles. However, by using the nodes of a shortest path that takes this distance into account, we assure
that at least the start and end nodes of the line segments are farther away. This fact leads to sufficiently
good trajectories.

To speed up the path computation process the grid is created dynamically: The node obstacle penalties
are only calculated when the specific node is visited for the first time in the shortest path calculation.
There is also no need to generate and store the edges in advance, since they are implicitly given by the
node coordinates.

3.2 Computation of the initial trajectory

In Section 3.1, the via points were computed as the nodes of a smoothened path between P0 and Pf .
Let nI be the number of via points and Pi be the ith via point.

We search for an initial value of z(0). The initialization is such that the associated initial trajectory is the
fastest trajectory that passes through the neighborhood of the via points.

10

Let us start by recalling the definition of the unknown vector z:

z(0) := (x0, u
0
0, . . . , u

0
N+r−2, t

0
f).

In our case, x0 is known since x0 = (r(0), v(0), θ(0)) = (P0, 0, 0). The remaining unknowns,
that are the de Boor points u0i , i = 1, . . . , N + r − 2 and the initial travel time t0f , are initialized by
solving an optimal control problem, which is very similar to (OCPc). In this new problem, no obstacle
is considered. Instead, a penalty term that forces the trajectory to pass through the neighborhood of the
via points is added in the objective function. The penalty term is of the form ‖Pi − r(t)‖2 < εr, where
εr is a positive parameter. The penalty means that the center of gravity of the robot must be, at time t,
in the ball centered at Pi and of radius εr. This condition must not be applied at all t ∈ [0, t0f], but only

during a small time interval, included in [0, t0f]. Finding the time subinterval depends on the via points
and the number N of grid points used in the time discretization of (OCPc). Naturally, the control grid of
(OCPc) and of the new optimal control problem for the initialization, is the same.

In Section 2, the control grid GN was defined. In practice, the number N must be determined. This
number is chosen proportional to the length of the path computed in the discrete search. Let dl define
the distance travelled by the robot between two time-steps of GN . The variable dl is a desired distance
that is fixed at the beginning. Let L be the length of the path starting from P0, passing through Pi,
i = 1, . . . , nI , and ending at PF , as illustrated in Figure 3-(a). By definition, we have:

L :=

nI∑
i=0

Li =

nI∑
i=0

‖
−−−−→
PiPi+1‖2, where PnI+1 = PF .

Then, the number of grid points is defined as

N =


b Ldlc, if L

dl − b
L
dlc ≤ 0.5,

b Ldlc+ 1, otherwise,

where b·c is the floor function.

The initial trajectory (tk, rk(z
0))k=0,...,N is such that the trajectory passes through a neighborhood of

the via points Pi, i = 1, . . . , nI , at certain time steps. These time steps are chosen according to the
distance travelled by the robot from the initial position to the via point. For each point Pi, we set the index
of the time steps, k(i), as follows:

k(i) :=

⌊∑i
k=0 Lk
L

N

⌋
+ 1, i = 1, . . . , nI .

Finally, we check if there is always at least one time step between two via points, that is k(i+1)−k(i) >
1. If this is not the case, a time step is added between k(i) and k(i+1). In other words, the index k(i+1)
is moved forward from one, that is k(i + 1) := k(i + 1) + 1. Similarly, the number of grid points is
changed into N = N + 2 to be sure that there is at least one time step between PnI and PF . This trick
yields to a better behaviour of the algorithm that computes the initial trajectory.

The initial trajectory is the fastest trajectory which joins P0 to PF and passes through the neighborhood
of Pi at tk(i), i = 1, . . . , nI . To find this initial trajectory, we solve an optimal control problem where
the conditions at the via points are specified as a penalty term in the objective function. Therefore, the

11

problem reads

(OCPI) min c1 tf + c2

∫ tf

0
p(t)dt

s.t. x′(t)− tff(x(t), u(t)) = 0, a.e. in T,

c(x(0), x(1)) = 0,

u(t) ∈ U , a.e. in T,

where

p(t) :=

{
max(‖Pi − r(t)‖2 − εr, 0)2, if ∃i ∈ {1, . . . , nI} s.t. |t− tk(i)| ≤ h

2 ;

0, otherwise;

where h is the fixed step size of GN and c1 and c2 are positive constants.

The penalty term p is positive when the position of the center of gravity during [tk(i) − h
2 , tk(i) + h

2] is
not located in the ball centered at Pi and of radius εr. As soon as the center of gravity of the robot is in
the ball, the penalty term is equal to 0.

The constraints in (OCPI) already appear in (OCPc). Indeed, only the collision avoidance constraint
in (OCPc) was removed to define (OCPI). Thus, (OCPI) has a smaller size and does not contain
non-differentiable constraints anymore.

To solve (OCPI), the same technique as for (OCPc) is used. If u∗I,i, i = 0, . . . , N + r − 2, is the
optimal control variable of (OCPI) and if t∗f,I is the optimal travel time of (OCPI), then the unknown

vector z(0) is initialized as follows:

t0f = t∗f,I and u0i = u∗I,i, i = 0, . . . , N + r − 2.

Furthermore, the lower bound t and upper bound t, defined in Z , can be set as follows: t = 1
10 t

0
f and

t = 10 t0f .

Numerical examples are given in Figure 4. The workspace is a rectangle that contains four obstacles
(black quadrilateral). For each example, P0, Pf and the via points are represented by a black square.
The grey line is the initial trajectory obtained by solving (OCPI), where the crosses indicate the center
of gravity of the robot at the time steps tk, k = 0, . . . , N .

We can observe that all initial trajectories are good candidates since they pass between the right obsta-
cles to reach Pf . The optimal trajectory and the initial trajectory are actually homotopic relative to their
endpoints.

Since (OCPI) does not take into consideration the obstacles, the initial trajectory is not necessarily
collision-free. However, in that case, the robot overlaps the obstacles only slightly. The trajectory in Fig-
ure 4-(b) illustrates such a situation. The slight collisions do not have any consequences on the solving
algorithm of (OCPc), as we will see in the next section.

For the examples defined in the workspace of Figure 4, the number of via points varies between 1 and 3.
If there is no obstacle betweenP0 andPf , no via point is defined and the initial trajectory is a straight line.
Since no via point exists and no collision can happen, (OCPI) and (OCPc) are equivalent: the penalty
term in (OCPI) is equal to 0 and the state constraint in (OCPc) can be omitted. In this particular case,
(OCPI) gives the optimal solution.

Through these examples, we can see that a few number of via points suffices to compute the initial
trajectory. If this number were large, or if the initial path would have unnecessary turns, then the number

12

0 5 10 15 20 25
0

2

4

6

8

10

12

14

16

18

P0

P1

P2
Pf

0 5 10 15 20 25
0

2

4

6

8

10

12

14

16

18

P0

P1

P2

P3Pf

(a) (b)

Figure 4: Examples of initial trajectories and their associated via points which come from the path planing
algorithm.

of time steps N would become large, since the path is longer and we require that at least one time step
exists between tk(i) and tk(i+1). It may then be more difficult to find a trajectory that passes through the
neighborhood of all the via points and satisfies the dynamics constraints.

4 Fastest collision-free trajectory

In the previous section, a two-step method was introduced to find an initial value for the control variable
z(0) in the local SQP algorithm. The initialization is such that z(0) satisfies the lower and upper bounds
on z, i.e. z(0) ∈ Z . Furthermore, the associated initial trajectory (tk, r(z

(0)))Nk=0 is homotopic to the
optimal trajectory.

According to the local SQP algorithm, the Lagrange multipliers λ(0), ζ(0) and σ(0) must also be initial-
ized. Let us remind that the constraints related to λ(0) and ζ(0) appear both in (OCPI) and (OCPc).
Consequently, these multipliers can be initialized with the solution of (OCPI), that is:

λ(0) = λ∗I and ζ(0) = ζ∗I ,

where λ∗I and ζ∗I are the multipliers issued from (OCPI).

The last multiplier, σ = (σ0, . . . , σN), corresponds to the inequality constraints defined in (NLP):

g(xk(z)) ≥ ε, k = 0, . . . , N.

These inequalities describe the collision avoidance between the robot and the obstacles. The comple-
mentarity condition in the Karush-Kuhn-Tucker conditions implies that σk is equal to 0 if the inequality
constraint is inactive [26]. This means that σk is zero when no collision occurs between the robot and the
obstacles at tk. Because the initial trajectory is almost collision-free, we set σ to 0.

With this initialization, (OCPc) can be solved as described in Section 2. A sequence of quadratic pro-
gramming problems based on the linearization of the constraints is built. However, since the state con-
straint is not continuously differentiable, the solving algorithm might not converge. In this case, we ob-
served that the state constraint, the box constraints and the boundary conditions are fulfilled, but the

13

Karush-Kuhn-Tucker conditions of (QP`) remain unsatisfied. This is due to the discontinuity of the gra-
dient of g. When such a situation occurs and the number of iterations in the SQP method is larger than a
threshold I , the optimal solution will be never found. However, the current trajectory is not so bad, since
the robot does not intersect the obstacles (the state constraint is satisfied). Hence, our idea is to stop the
SQP method and consider a new problem, where the collision avoidance is no more written as a state
constraint, but expressed as a penalty term. Here is the new model

(OCPp) min α tf + β

∫ tf

0
(min(g(x(t))− ε, 0))2 dt

s.t. x′(t)− tf f(x(t), u(t)) = 0, a.e. in T,

c(x(0), x(1)) = 0,

u(t) ∈ U , a.e. in T,

where α and β are positive parameters.

This model is again an optimal control problem, but without any state constraint. The penalty term in the
objective function is equal to 0 if the trajectory is collision-free. To solve (OCPp), the numerical method
introduced in Section 2 is used. No problem of discontinuity of the derivatives exists here since the term
related to the distance is to the power 2 and thus it is continuously differentiable.

The initial value of z(0), λ(0), ζ(0) and σ(0) are the last value of z(`), λ(`), ζ(`) and σ(`) obtained in the
SQP method to solve (OCPc). The corresponding initial trajectory is collision-free. Consequently, the
penalty term is equal to 0. The term becomes positive as soon as the robot approaches an obstacle, that
is when the distance between them is smaller than the safety margin ε.

The goal of (OCPp) is to minimize the travel time of a collision-free trajectory, while preventing it from
collision with the penalty term. The goal of (OCPc) was more to transform the initial trajectory into
a collision-free one. If the initial trajectory is already collision-free, that is if g(xk(z

(0))) ≥ ε, k =
0, . . . , N , then (OCPp) is solved directly. A summary of this strategy is presented in Figure 5. First, the
via points are computed by using a path planning algorithm. Then, (OCPI) is solved to find a good initial
trajectory. If this trajectory intersects some obstacles, then (OCPc) is considered. If (OCPc) does not
succeed, but the constraints are satisfied, then (OCPp) is called. On the contrary, if the initial trajectory
is collision-free, then (OCPp) is solved.

5 Numerical results

To solve (OCPI), (OCPc) and (OCPc) numerically, we use the package OCPID-DAE1 developed
by M. Gerdts (see www.optimal-control.de). The method introduced in Section 2 is implemented in this
package. B-splines of first order (r = 1) are chosen to approximate the control variables. The classical
Runge-Kutta method is utilized to integrate the ordinary differential equations.

Two main approaches exist to compute d(R,Hk), the Hausdorff distance between the robot R and an
obstacle Hk. The first approach is Gilbert, Johnson and Keerthi’s algorithm published in 1988 [15] and
referred as GJK. Gilbert et al. established that the distance d is equivalent to the Hausdorff distance
of the Minkowski difference R − Hk from the origin O. If R and Hk are separated, then O is outside
R−Hk. In the case of a collision, O is inside R−Hk. Furthermore, the Hausdorff distance is equal to
the norm of the vector w that characterizes the penetration depth (see (5)).

The second approach is Lin and Canny’s algorithm [23, 24]. This algorithm determines the closest pair
of features between the polyhedra, where the features of a polyhedron are its vertices, its edges and its

14

Path planning
via points Pi, i = 1, . . . , nI

(OCPI)

initial trajectory
collision-free collision

(OCPp)

g in penalty term
(OCPc)

g in state constraint

no conv.

convergence

Fastest collision-free
trajectory

Figure 5: Scheme of the strategy to find the fastest collision-free trajectory of a robot between two given
positions.

faces located on its boundary. The distance d(R,Hk) is then equal to the distance between the features
of the closest pair. The approach is fast, easy to implement and perfectly suited when polyhedra move
slightly between two time steps. In that case, the method is of order 1. However, the approach is not
adapted for penetrating polyhedra. Consequently, we apply Lin and Canny’s algorithm as long as R and
Hk are separated. Once d(R,Hk) is smaller than ε, GJK is used in order to get a signed distance if R
and Hk overlap.

Let us consider the two-dimensional example presented in Figure 6-(a). The workspace is the rectangle
[0, 26]× [0, 18]. The black quadrilaterals are the obstacles. The robot is a square whose vertices in the
body frame are

R0 =


−0.5 0.5
−0.5 −0.5

0.5 −0.5
0.5 0.5

 .

The bounds on the acceleration of the robot are a> = (1.0, 1.0) and a = −a. The bounds on the
velocity of the rotation angle are µ = π

10 and µ = −µ.

The points Vi, i = 0, . . . , 6 in the workspace define possible starting and end positions for the robot.
We compute the fastest collision-free trajectory for any pair (P0, Pf) with P0 ∈ {V0, . . . , V6} and
Pf ∈ {V0, . . . , V6} \ {P0}. For the numerical computations, we set the safety margin ε to 0.05,
the distance dl to 0.6 and the threshold I in (OCPc) to 30. The parameters in the objective function
in (OCPI) are chosen as follows: εr = 0.5 and c1 = c2 = 1

(1+pI)2
, where pI is the maximum

distance between the via points and the line passing through P0 and Pf . Finally, α and β in (OCPp)
are respectively set to 1 and 104.

The numerical results are presented in Table 1. The starting and end positions of the trajectory are
indicated in the first two columns. In the third column, the number of time steps for the discretization

15

is shown. The columns ItI , Itc and Itp give the number of iterations used in the SQP method to solve
(OCPI), (OCPc) and (OCPp) respectively. The columns D stand for the minimum distance between
the robot and the obstacles along the trajectory, that is:

D = min
0≤k≤N

g(xk(z)).

This distance is given for the initial trajectory (fifth column) and the final trajectory (tenth column). For
(OCPc), we quantify the satisfaction of the constraints (CN) and the Karus-Kuhn-Tucker conditions
(KKT). More precisely, CN and KKT are defined by

CN = max

(
max

1≤i≤nz

(0, zci − zi), max
1≤i≤nz

(0, zi − zci),

max
0≤k≤N

(0, ε− g(xk(z
c))), ‖c(x0, xN (zc))‖∞

)
,

KKT = ‖∇zL(zc, λc, σc, ζc)‖∞,

where zc, λc, σc and ζc are the outputs of (OCPc). If (OCPc) converges, then zc is the optimal
solution and (tk, rk(z

c))k=0,...,N is the fastest collision-free trajectory. Finally, the last column in Table 1
stands for the computational time, which is given in second.

The sequence of the columns follows the strategy presented in Figure 5. This means that (OCPI) is
solved first. If D is smaller than the safety margin ε, then (OCPc) is considered. If (OCPc) does not
succeed after I = 30 iterations, but the constraints are satisfied (CN almost 0), then (OCPp) is called.
On the contrary, if D is larger than ε, then (OCPp) is solved. In that case, the components for Itc, CN
and KKT in Table 1 are left blank. Similarly, a blank in Itp means that we do not need to call (OCPp) for
solving the kinodynamic problem.

0 5 10 15 20 25
0

2

4

6

8

10

12

14

16

18

V0

V1

V2V3

V4

V5

V6

0 5 10 15 20 25
0

2

4

6

8

10

12

14

16

18

V0

V5

V4

V6

(a) (b)

Figure 6: (a) The workspace with four obstacles (quadrilaterals) and seven points V0 to V6 between
which the optimal trajectory is computed. (b) The optimal trajectory between V0 and V4 and between V5
and V6. The black squares are the via points, the light grey line is the initial trajectory and the dark grey
line is the optimal trajectory. The robot is indicated at several time steps by a white square.

All the possible trajectories between the points V0 to V6 are computed successfully. Moreover, the compu-
tational time is always a matter of few seconds. The initial trajectories are mostly with collision. However,
the penetration depth is not large and (OCPc) always succeeds in finding a collision-free trajectory (CN

16

P0 Pf N ItI D Itc CN KKT Itp D CPU
V0 V1 38 182 -0.885 34 0.2E-05 0.5E-02 205 0.050 4.027
V0 V2 43 83 0.250 163 0.050 2.639
V0 V3 20 10 1.435 0 1.435 0.066
V0 V4 30 219 -0.597 31 0.1E-06 0.2E+00 159 0.050 2.696
V0 V5 28 22 -0.258 13 0.5E-14 0.2E-12 0.050 0.468
V0 V6 43 75 -0.763 38 0.1E-05 0.6E-02 323 0.050 6.932
V1 V0 37 173 -0.557 53 0.8E-06 0.5E-01 277 0.049 6.171
V1 V2 33 91 -0.175 31 0.3E-05 0.1E+00 124 0.057 2.520
V1 V3 36 125 -0.017 39 0.3E-05 0.4E+00 103 0.049 3.625
V1 V4 32 122 -0.339 30 0.8E-08 0.1E-02 221 0.050 3.347
V1 V5 30 55 -1.036 33 0.2E-05 0.4E+00 123 0.050 2.556
V1 V6 14 8 2.000 0 2.000 0.052
V2 V0 44 136 0.269 51 0.050 1.628
V2 V1 32 94 -0.461 32 0.5E-07 0.3E-02 59 0.050 1.760
V2 V3 29 21 0.240 12 0.158 0.225
V2 V4 47 200 -0.398 30 0.5E-06 0.1E-01 54 0.050 3.611
V2 V5 16 9 0.129 0 0.129 0.088
V2 V6 33 87 -0.543 37 0.9E-06 0.6E-02 193 0.050 2.987
V3 V0 20 10 1.532 0 1.532 0.066
V3 V1 38 164 -0.654 30 0.1E-05 0.2E-02 143 0.050 3.467
V3 V2 29 21 0.240 12 0.158 0.281
V3 V4 29 80 0.021 5 0.2E-10 0.2E-11 0.050 0.417
V3 V5 13 4 0.254 0 0.254 0.049
V3 V6 44 337 -0.515 32 0.7E-07 0.1E+00 163 0.049 5.807
V4 V0 31 174 0.042 33 0.1E-05 0.1E+00 140 0.050 2.577
V4 V1 34 204 -0.418 30 0.5E-06 0.2E-01 121 0.050 3.476
V4 V2 44 184 -0.092 30 0.5E-07 0.1E-01 127 0.050 3.885
V4 V3 29 136 0.080 18 0.102 0.518
V4 V5 29 25 -0.835 18 0.3E-10 0.3E-11 0.050 0.670
V4 V6 38 197 -0.537 46 0.1E-05 0.2E-02 113 0.050 4.659
V5 V0 27 7 -0.014 7 0.1E-11 0.9E-13 0.050 0.324
V5 V1 30 49 -1.076 31 0.4E-14 0.4E-12 0.050 1.068
V5 V2 16 9 0.108 0 0.108 0.104
V5 V3 13 4 0.254 0 0.254 0.046
V5 V4 30 58 -0.141 25 0.4E-14 0.5E-13 0.050 0.934
V5 V6 30 149 -1.088 17 0.2E-11 0.1E-12 0.050 0.882
V6 V0 43 257 -0.481 30 0.4E-05 0.7E-01 421 0.050 9.052
V6 V1 14 8 2.000 0 2.000 0.048
V6 V2 32 112 -0.541 43 0.9E-05 0.1E+00 177 0.050 3.098
V6 V3 42 153 -0.193 30 0.3E-06 0.3E-02 47 0.049 3.136
V6 V4 38 228 -0.558 41 0.5E-07 0.2E-01 119 0.050 4.005
V6 V5 30 151 -0.797 30 0.7E-05 0.3E-01 180 0.081 2.733

Table 1: Numerical results for the trajectories between the points V0 to V6. N is the number of time
steps in the discretization. ItI , Itc and Itp are the number of iterations in the SQP method for (OCPI),
(OCPc) and (OCPp) respectively. D is the minimum distance between the robot and the obstacles
along the trajectory. CN is the norm of the constraints and KKT is the maximum norm of the gradient
of the Lagrange function for (OCPc). CPU is the computational time (s) including the initial via point
computations.

17

close to 0). About half of the trajectories cannot be solved by (OCPc). This result is expected since
the collision avoidance constraint is not continuously differentiable. In all these cases, the Karush-Kuhn-
Tucker conditions are not satisfied due to the gradient of the collision avoidance constraint (KKT larger
than 10−3). But, the box constraints, the boundary condition and the collision avoidance constraint are
fulfilled (CN small).

When there is no obstacle between P0 and Pf (as between V0 and V3 or between V1 and V6), (OCPI)
finds the solution directly. Indeed, the distance D is positive and Itp is equal to 0, meaning that the
initial trajectory is optimal. For all the other trajectories, (OCPp) always succeeds in finding the optimal
trajectory.

In Figure 6-(b), the optimal trajectory between V0 and V4 and between V5 and V6 are illustrated. The
robot is the white square, that is shown for several time steps. The small black squares are the via points.
The light grey trajectory is the initial trajectory, whereas the final trajectory is dark grey. The markers on
the curve indicate the position of the center of gravity of the robot at the time steps tk, k = 0, . . . , N , of
the discretization.

For both examples, the initial trajectory is good, in the sense that the trajectory indicates between which
obstacles the optimal trajectory must pass. Furthermore, we can observe that the final trajectory is correct
and fully satisfies the dynamics constraints. Such trajectories cannot be found by interpolating the path
planning since the optimal trajectory can be removed from the points defining the path in order to satisfy
the dynamics constraints.

Finally, the time evolution of the control variable u = (u1, u2, u3) = (a, µ) for the trajectories in
Figure 6-(b) is given in Figure 7. We can observe that the control variable has not necessarily a bang-
bang behaviour. This indicates that we should use a direct method to solve the optimal control problems,
and not look for the switching points as developed in Bobrow et al. [5].

0 2 4 6 8 10

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

u
1

u
2

u
3

0 2 4 6 8 10

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

u
1

u
2

u
3

(a) (b)

Figure 7: Time evolution of the control variable for the trajectory (a) between V0 and V4 and (b) between
V5 and V6.

18

6 Conclusion

A new approach to solve the kinodynamic motion planning problem was presented. The method involves
solving a sequence of optimal control problems. The same direct method was utilized to solve the optimal
control problems. The main focus was on the computation of a good initial trajectory. For that purpose,
a two-step approach was developed. In the first step, a set of via points was computed with a graph
search algorithm. The issuing path had to follow a good balance between the number of turns and the
distance to the obstacles. The second step involved finding the fastest trajectory that passes through the
neighborhood of the via points. The initial trajectory was obtained by solving an optimal control problem.

This new approach was applied to a two-dimensional mobile robot. The numerical results show the
quality of the computed initial trajectory and the low computational time to get the optimal trajectory.
These results are promising for an application of the strategy to 3D robot. The optimal control problems
(OCPI), (OCPc) and (OCPp) remains valid. Therefore, the solving technique is the same direct
method. The first difference is the meaning of the unknowns: in three dimensions, the unknowns are no
more the centre of gravity of the robot and the rotation angle, but the joint angles that link the different
bodies of the robot [13, 21]. The second difference is the definition of the ordinary differential equations.

The computation of the via points for 3D robot is very similar to the 2D-case. The underlying grid for these
3D instance has one dimension per joint and the arc weights correspond to the time needed to travel from
one grid node to another. Moving multiple joints at the same time is allowed so that also diagonal edges
are included in the grid. Now all the methods from 2D, such as turn costs and obstacle distance, can be
applied. Only the smoothening part gets more complicated from an algorithmic point of view. It can no
longer be calculated by line-polygon intersection, since in 3D intersections of moving polyhedra need to
be calculated.

Eventually, we outline two possible improvements to our strategy. First, the discontinuity in the derivative
of the distance function can be better handled in (OCPc) by using some bundle methods [30]. Second,
a better determination of the time steps tk(i) for which a condition of the form ‖Pi − r(t))‖2 is imposed
in (OCPI), can be established. The idea would be to consider such time steps as a free variable in
(OCPI), as it is done in Example 1.2.1 in [12].

References

[1] A. Barclay, P. E. Gill, and J. Ben Rosen. SQP methods and their application to numerical optimal
control, 1997.

[2] L.D. Berkovitz. Convexity and Optimization in Rn. John Wiley & Sons, New York, 2001.

[3] J. T. Betts. Practical methods for optimal control using nonlinear programming, volume 3 of Ad-
vances in Design and Control. Society for Industrial and Applied Mathematics (SIAM), Philadelphia,
PA, 2001.

[4] J.E. Bobrow. Optimal robot path planning using the minimum-time criterion. IEEE Journal of
Robotics and Automation, 4:443–450, 1988.

[5] J.E. Bobrow, S. Dubowsky, and J.S. Gibson. Time-optimal control of robotic manipulators along
specified paths. The International Journal of Robotics Research, 4:3–17, 1985.

[6] R. Bohlin. Robot Path Planning. Chalmers University of Technology, 2002.

19

[7] S. A. Cameron and R. K. Culley. Determining the minimum translational distance between two
convex polyhedra. In Proceedings of International Conference on Robotics and Automation, pages
591–596, 1986.

[8] B. Donald, P. Xavier, J. Canny, and J. reif. Kinodynamic motion planning. Journal of the Association
for Computing Machinery., 40:1048–1066, 1993.

[9] S. Dubowsky, M. A. Norris, and Z. Shiller. Time optimal trajectory planning for robotic manipulators
with obstacle avoidance: a CAD approach. In Proc. of IEEE Int. Conf. on Robotics and Automation,
pages 1906–1912, 1989.

[10] R. Fletcher and S. Leyffer. Nonlinear programming without a penalty function. Mathematical Pro-
gramming, 91(2):239–269, 2002.

[11] R. Fletcher, S. Leyffer, and P. Toint. On the global convergence of a filter–SQP algorithm. SIAM
Journal on Optimization, 13(1):44–59, 2002.

[12] M. Gerdts. Optimal Control of ODEs and DAEs. De Gruyter Textbook. De Gruyter, 2012.

[13] M. Gerdts, R. Henrion, D. Hömberg, and C. Landry. Path planning and collision avoidance for robots.
Numerical Algebra, Control and Optimization, 2(3):437 – 463, 2012.

[14] E.G. Gilbert and D.W. Johnson. Distance functions and their application to robot path planning in
the presence of obstacle. IEEE Journal of Robotics and Automation, RA-1:21–30, 1985.

[15] E.G. Gilbert, D.W. Johnson, and S.S. Keerthi. a fast procedure for computing the distance between
complex objects in three-dimensional space. IEEE Journal of Robotics and Automation, 4(2):193–
203, April 1988.

[16] C. Goerzen, Z. Kong, and B. Mettler. A survey of motion planning algorithms from the perspective
of autonomous UAV guidance. Journal of Intelligent and Robotic Systems, 57(1-4):65–100, 2010.

[17] G. D. Hart and M. Anitescu. An O(m+n) measure of penetration depth between convex polyhedral
bodies for rigid multibody dynamics, 2010.

[18] D.W. Johnson and E.G. Gilbert. Minimum time robot path planning in the presence of obstacles. In
Decision and Control, 1985 24th IEEE Conference on, volume 24, pages 1748–1753, 1985.

[19] Y. J. Kim, M. C. Lin, and D. Manocha. DEEP: Dual-space expansion for estimating penetration
depth between convex polytopes. In IEEE Conference on Robotics and Automation, pages 921–
926, 2002.

[20] C. Landry, M. Gerdts, R. Henrion, and D. Hömberg. Path-planning with collision avoidance in auto-
motive industry. In System Modeling and Optimization, 25th IFIP TC 7 Conference, Berlin, Germany,
September 12-16, 2011, Revised Selected Papers IFIP AICT 391, Springer, Heidelberg; Approx. IX,
575 pp, 2013.

[21] S. M. LaValle. Planning Algorithms. Cambridge University Press, Cambridge, U.K., 2006.

[22] S.M. LaValle and J.J. Kuffner. Randomized kinodynamic planning. International Journal of Robotics
Research, 20(5):378–400, 2001.

[23] M. C. Lin. Efficient Collision Detection for Animation and Robotics. PhD thesis, Department of
Electrical Engineering and Computer Science, University of California, Berkeley, 1993.

20

[24] M. C. Lin and J. F. Canny. A fast algorithm for incremental distance calculation. In IEEE International
Conference on Robotics and Automation, pages 1008–1014, 1991.

[25] A. Maheshwari, J.-R. Sack, and H. N. Djidjev. Link distance problems. Handbook of Computational
Geometry, pages 519–558, 1999.

[26] J. Nocedal and S. J. Wright. Numerical optimization. Springer Series in Operations Research and
Financial Engineering. Springer, New York, second edition, 2006.

[27] M.J.D. Powell. A fast algorithm for nonlinearly constrained optimization calculations. In G.A. Watson,
editor, Numerical Analysis, volume 630 of Lecture Notes in Mathematics, pages 144–157. Springer
Berlin Heidelberg, 1978.

[28] S. F. P. Saramago and V. Steffen. Trajectory modeling of robot manipulators in the presence of
obstacles. Journal of Optimization Theory and Applications, 110:17–34, 2001.

[29] K. Schittkowski. On the convergence of a sequential quadratic programming method with an aug-
mented lagrangian line search function 2. Mathematische Operationsforschung und Statistik. Series
Optimization, 14(2):197–216, 1983.

[30] H. Schramm and J. Zowe. A version of the bundle idea for minimizing a nonsmooth function: con-
ceptual idea, convergence analysis, numerical results. SIAM J. Optim., 2(1):121–152, 1992.

[31] C. Sprunk, B. Lau, P. Pfaffz, and W. Burgard. Online generation of kinodynamic trajectories for
non-circular omnidirectional robots. In Robotics and Automation (ICRA), 2011 IEEE International
Conference on, pages 72–77, 2011.

[32] S. Winter. Modeling costs of turns in route planning. GeoInformatica, 6(4):345–361, 2002.

21

