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ABSTRACT. We analyze a-posteriori error estimation and adaptive refinement algorithms for stochastic
Galerkin Finite Element methods for countably-parametric, elliptic boundary value problems. A residual
error estimator which separates the effects of gpc-Galerkin discretization in parameter space and of the
Finite Element discretization in physical space in energy norm is established. It is proved that the adap-
tive algorithm converges, and to this end we establish a contraction property satisfied by its iterates. It is
shown that the sequences of triangulations which are produced by the algorithm in the FE discretization
of the active gpc coefficients are asymptotically optimal. Numerical experiments illustrate the theoretical
results.

INTRODUCTION

The efficient numerical solution of high-dimensional, parametric elliptic partial differential equations
(PDEs for short) has attracted considerable attention in recent years, in particular in the context of
uncertainty quantification (UQ), but also in connection with reduced basis approximation, optimization,
and other computational techniques.

Depending on the particular goal of computation, numerical methods for parametric PDEs have par-
ticular advantages: we mention only the computation of ensemble averages (which take the form of
integrals over the entire parameter space with respect to a probability measure on that space and
which are treated by high-dimensional numerical integration), but also questions of optimization where
a parsimonious, parametric numerical representation of the parametric solution with uniform, guaran-
teed accuracy on the entire parameter space is required.

A major issue in the design and analysis of efficient algorithms for these purposes has been the issue
of intrusive vs. nonintrusive algorithms: the former are, roughly speaking, methods which require some
degree of redesign of existing simulation code, whereas the latter rely on (possibly parallel) numerical
solution with existing (sometime referred to as “legacy”) code of the parametric PDEs in a number of
(judiciously chosen) parameter values from a possibly infinite-dimensional parameter domain Γ . Exam-
ples include methods for numerical integration (eg. [14, 16]) of mathematical expectations, and sparse,
adaptive interpolation methods aiming at the adaptive computation of interpolants of the parametric
PDE solution with uniform accuracy over the entire parameter spaces (eg. [4, 3]).

As a rule, nonintrusive, collocation type methods are not amenable to reliable computable error bounds
for the parametric surrogate solutions, likewise the results of approximate numerical integration; in
order to ensure control of discretization errors in the context of UQ, therefore, the question of reli-
able or even guaranteed error bounds (in particular upper bounds) in the numerical solution of high-
dimensional parametric PDE problems is of some interest. In the present paper, we continue our inves-
tigation [6] which analyzed intrusive so-called stochastic Galerkin discretizations of parametric elliptic
PDEs. Here, approximations with respect to the parameter are achieved by Galerkin projection in mean
square with respect to a probability measure π on the parameter domain Γ . Using Galerkin projections
on generalized polynomial chaos bases on Γ instead of collocation of the parametric PDE problem re-
quires modifications of the computational procedure which are, however, manageable in the context
of Finite Element Methods (FEMs) for elliptic problems as we explained in [6]: most routines for gen-
eration of stiffness and mass matrices which are available in existing FE codes can be reused. In
particular, due to the tensor product structure, the stiffness matrix corresponding to stochastic Galerkin
discretization never needs to be formed explicitly, and efficient matrix-vector multiplications can be re-
alized for the factored form of the matrix. Again, we refer to [6] for details on this. In that reference also
the issue of numerical a-posteriori discretization error control has been addressed and, in particular,
reliable computable a-posteriori error estimators for the (mean-square) discretization error have been
derived. The possibility to treat high- or even infinite-dimensional problems efficiently by adaptive nu-
merical methods is based on sparsity of coefficient sequences in polynomial chaos type expansions of
the parametric solutions; we refer to [5] for sparsity results for the presently considered problems.
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In the present work, we show that these error estimators have an intrinsic structure which allows to sep-
arate (in the sense of mean square with regard to the probability measure π in Γ and with respect to
the natural energy inner product of the problem of interest) the contributions of the stochastic Galerkin
discretization in the parameter domain as well as of the Finite Element discretization in the physical
domain. With this separation at hand, we show that it is possible to design adaptive refinement strate-
gies in both the parameter domain Γ and the physical domain. Also, we prove in the present paper
convergence and certain optimality properties of such an adaptive refinement strategy. In particular,
we show that the proposed strategy produces a sequence of finitely supported stochastic Galerkin FE
solutions which converges in mean square with respect to π in Γ and with respect to the energy norm
V in the physical domain, and we establish that the FE mesh sequences generated by the proposed
adaptive strategy for each of the gpc coefficients is, in a suitable sense, asymptotically optimal.

As in [6], we consider here only an elementary, second order linearly elliptic problem in divergence form
whose dependence on the parameter vector is affine. We hasten to add, however, that the principal
conclusions of the present work also apply to more general, affine-parametric, linear elliptic problems,
such as linear elasticity or Stokes, or parabolic evolution problems with parametric uncertainty as con-
sidered in [10].

The outline of the present paper is as follows: in Section 1, we specify the model problem and establish
basic properties of its solution. Tensor product bases of FE bases and generalized polynomial chaos
bases are introduced in Section 2. Section 3 then reviews the residual error estimator from [6] for the
stochastic Galerkin truncation error, whereas Section 4 is devoted to computable error estimators for
the spatial discretization error; here, we use a more or less standard residual error estimator, but remark
that other error estimators can be used here as well. In Section 5, we present the adaptive stochastic
Galerkin FEM algorithm. The algorithm is similar to the one proposed in [6], but differs from it in that
a single finite element mesh is used for all active modes of the solution, as well as in several details
which we have found to yield quantitative improvements in extensive numerical experiments which we
performed since [6] (some of which are reported in the present paper’s section 8). Section 6 establishes
the convergence of the adaptive algorithm (without rates), in particular the crucial contraction property.
Section 7 establishes an optimality property of the iterates which are produced by the algorithm in the
physical domain. Finally, Section 8 contains several illustrative numerical examples.

1. MODEL PROBLEM

1.1. A parametric elliptic boundary value problem. For a bounded Lipschitz domain D ⊂ Rd and
a function

(1.1) a(y, x) = ā(x) +
∞∑
m=1

ymam(x), x ∈ D,

depending on a sequence of scalar parameters ym, we consider the elliptic boundary value problem

(1.2)

{−∇ · (a∇u) = f in D,

u = 0 on ∂D.

For example, (1.1) may come from a Karhunen–Loève expansion of a random field. In order to ensure
convergence in (1.1) and positivity of a, we assume |ym| ≤ 1, i.e. y := (ym)∞m=1 ∈ Γ := [−1, 1]∞,
and ā, am ∈ W 1,∞(D) with

(1.3) ess inf
x∈D

ā(x) > 0,
∞∑
m=1

∥∥∥am
ā

∥∥∥
L∞(D)

≤ γ < 1.
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Let V := H1
0 (D) with the ā-dependent norm ‖v‖V :=

√
(v, v)V induced by the inner product

(1.4) (w, v)V :=

∫
D

ā(x)∇w(x) · ∇v(x) dx.

The operator

(1.5) A(y) : H1
0 (D)→ H−1(D), v 7→ −∇ · (a(y)∇v), y ∈ Γ,

can be expanded as

(1.6) A(y) = Ā+
∞∑
m=1

ymAm, y ∈ Γ,

with unconditional convergence in L(V, V ∗) for the components

(1.7) Ā : H1
0 (D)→ H−1(D), v 7→ −∇ · (ā∇v)

and

(1.8) Am : H1
0 (D)→ H−1(D), v 7→ −∇ · (am∇v), m ∈ N.

The operator equation

(1.9) A(y)u(y) = f, y ∈ Γ,

constitutes a weak formulation in space of the parametric boundary value problem (1.2).

1.2. Weak formulation. The weak formulation of (1.2) with respect to the parameter y requires a mea-
sure on the parameter domain Γ = [−1, 1]∞. We consider symmetric product Borel measures; from
a probabilistic point of view, this entails that the parameters ym are independent and have symmetric
distributions.

For each m ∈ N, let πm be a symmetric Borel probability measure on [−1, 1];1 then

(1.10) π :=
∞⊗
m=1

πm

is a probability measure on Γ with the Borel σ-algebra. For the sake of clarity and ease of notation,
we forbid the measures πm from being finite convex combinations of Dirac measures, as this leads to
finite instead of countably infinite bases in Section 2.1 below.

Integrating (1.9) with respect to π leads to the weak formulation

(1.11)

∫
Γ

〈A(y)u(y), v(y)〉 dπ(y) =

∫
Γ

∫
D

f(x)v(y, x) dx dπ(y) ∀v ∈ L2
π(Γ ;V ).

The left hand side of (1.11) is a scalar product

(1.12) (w, v)A :=

∫
Γ

〈A(y)w(y), v(y)〉 dπ(y) =

∫
Γ

∫
D

a(y, x)∇w(y, x) · ∇v(y, x) dx dπ(y)

on L2
π(Γ ;V ), which induces the energy norm ‖·‖A. In particular, existence and uniqueness of the

solution u of (1.11) are a consequence of the Riesz isomorphism, and u coincides with the solution of
(1.9) for π-a.e. y ∈ Γ .

The operator

(1.13) A : L2
π(Γ ;V )→ L2

π(Γ ;V ∗), v 7→ [y 7→ A(y)v(y)]

1i.e. πm is invariant under the transformation ym 7→ −ym.
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allows (1.11) to be written succinctly asAu = f , and the inner product (1.12) is (w, v)A = 〈Aw, v〉.
Due to (1.6),

(1.14) A = idL2
π(Γ )⊗Ā+

∞∑
m=1

Km ⊗ Am,

where Km : L2
π(Γ )→ L2

π(Γ ) refers to multiplication by ym, which has operator norm at most 1 since
|ym| ≤ 1.2

2. GALERKIN APPROXIMATION

2.1. Tensor product orthogonal polynomial basis. For each m, let (Pm
n )∞n=0 denote an orthonor-

mal polynomial basis of L2
πm([−1, 1]) with deg(Pm

n ) = n. As a consequence of the symmetry of the
measure πm, such bases satisfy recursion formulas

(2.1) βmn P
m
n (ym) = ymP

m
n−1(ym)− βmn−1P

m
n−2(ym), n ≥ 1,

with the initialization Pm
0 := 1 and βm0 := 0, and are unique e.g. if βmn are chosen as positive for all

n ≥ 1, which we assume.

In case of a uniform distribution dπm(ym) = 1
2

dym, the polynomials (Pm
n )∞n=0 are Legendre polyno-

mials, and βmn = (4 − n−2)−1/2. Alternatively, if dπm(ym) = 1
π
(1 − y2

m)−1/2 dym, then (Pm
n )∞n=0

are Chebyshev polynomials of the first kind, with βm1 = 1/
√

2 and βmn = 1/2 for n ≥ 2. Further
examples are tabulated e.g. in [9, 11].

Tensor products of the orthonormal polynomials Pm
n across all dimensions m ∈ N are indexed by the

set

(2.2) F := {µ ∈ N∞0 ; # suppµ <∞}

of finitely supported integer sequences, where supp(µ) = {m ∈ N ; µm 6= 0}. For any µ ∈ F , the
function Pµ :=

⊗∞
m=1 P

m
µm is expressed as the finite product

(2.3) Pµ(y) =
∞∏
m=1

Pm
µm(ym) =

∏
m∈suppµ

Pm
µm(ym)

for y = (ym)∞m=1 ∈ Γ since Pm
0 = 1 for all m due to the normalization of the measure πm. The

recursion (2.1) implies

(2.4) ymPµ(y) = βmµm+1Pµ+εm(y) + βmµmPµ−εm(y), y ∈ Γ,

where εm := (δmn)∞n=1 denotes the Kronecker sequence for the coordinate m, and we set Pµ := 0 if
any µm < 0.

The tensorized polynomials (Pµ)µ∈F form an orthonormal basis of L2
π(Γ ). Equation (2.4) indicates

the representation of the multiplication operator Km in this basis.

Lemma 2.1. The map Km : `2(F) → `2(F) given by (cµ)µ∈F 7→ (βmµm+1cµ+εm + βmµmcµ−εm)µ∈F
has operator norm at most one.

Proof. Due to (2.4), Km is the representation of multiplication by ym in the orthonormal basis (Pµ)µ∈F .
By Parseval’s identity, the operator norm of Km on `2(F) coincides with that of Km on L2

π(Γ ), and
this is at most 1 since |ym| ≤ 1. �

2The tensor product⊗ is meant with regards to the usual representation of the Bochner space L2
π(Γ ;V ) as the Hilbert

tensor product space L2
π(Γ )⊗ V , and similarly for V ∗ in place of V .
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For any subset Λ ⊂ F , we define supp(Λ) ⊂ N as the set of active dimensions in Λ,

(2.5) suppΛ :=
⋃
µ∈Λ

suppµ.

The boundary of Λ is the infinite set

(2.6) ∂Λ := {ν ∈ F \ Λ ; ∃m ∈ N : ν − εm ∈ Λ ∨ ν + εm ∈ Λ}.

Restricting m in (2.6) to the support supp(Λ) leads to the active boundary

(2.7) ∂◦Λ := {ν ∈ F \ Λ ; ∃m ∈ suppΛ : ν − εm ∈ Λ ∨ ν + εm ∈ Λ},

which is a finite set with cardinality at most 2(# suppΛ)#Λ if Λ is finite.

A set Λ ⊂ F is monotone if µ− εm ∈ Λ for all µ ∈ Λ and m ∈ supp(µ). If Λ is monotone, then ∂Λ
and ∂◦Λ consist only of ν = µ + εm with µ ∈ Λ, and consequently the cardinality of ∂◦Λ is at most
(# suppΛ)#Λ.

2.2. Polynomial expansion. The expansion of the solution u of (1.11) with respect to the basis
(Pµ)µ∈F of L2

π(Γ ) has the form

(2.8) u(y, x) =
∑
µ∈F

uµ(x)Pµ(y),

with coefficients uµ in V = H1
0 (D) and convergence inL2

π(Γ ;V ). The vector of coefficients (uµ)µ∈F ∈
`2(F ;V ) is determined by the infinite coupled system

(2.9) Āuµ +
∞∑
m=1

Am(βmµm+1uµ+εm + βmµmuµ−εm) = fδµ0 ∀µ ∈ F .

The coefficients βmn in this system are the coefficients in the recursion formula (2.1).

For any subset Λ ⊂ F , the Galerkin projection of u onto

(2.10) V(Λ) :=

{
vΛ(y, x) =

∑
µ∈Λ

vΛ,µ(x)Pµ(y) ; vΛ,µ ∈ V ∀µ ∈ Λ
}
⊂ L2

π(Γ ;V )

is the unique uΛ ∈ V(Λ) satisfying

(2.11)

∫
Γ

〈A(y)uΛ(y), vΛ(y)〉 dπ(y) =

∫
Γ

∫
D

f(x)vΛ(y, x) dx dπ(y) ∀vΛ ∈ V(Λ).

If Λ is finite, then the sequence of coefficients (uΛ,µ)µ∈Λ ∈ V Λ =
∏

µ∈Λ V of uΛ is determined by
the finite system

(2.12) ĀuΛ,µ +
∞∑
m=1

Am(βmµm+1uΛ,µ+εm + βmµmuΛ,µ−εm) = fδµ0 ∀µ ∈ Λ,

where uΛ,ν := 0 for ν ∈ F \ Λ. The infinite sum in (2.12) can be restricted to the finite set supp(Λ)
since uΛ,µ±εm = 0 for all m ∈ N \ supp(Λ).

2.3. Finite element approximation. We discretize (1.11) further by restricting to a finite element
space Vp(T ) of continuous piecewise polynomials of a fixed degree p on a conforming simplicial
mesh T of D. For any finite set Λ ⊂ F ,

(2.13) Vp(Λ, T ) :=

{
vN(y, x) =

∑
µ∈Λ

vN,µ(x)Pµ(y) ; vN,µ ∈ Vp(T ) ∀µ ∈ Λ
}
⊂ V(Λ)
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is a finite-dimensional subspace of L2
π(Γ ;V ), and the Galerkin approximation of u in Vp(Λ, T ) is the

unique uN ∈ Vp(Λ, T ) satisfying

(2.14)

∫
Γ

〈A(y)uN(y), vN(y)〉 dπ(y) =

∫
Γ

∫
D

f(x)vN(y, x) dx dπ(y) ∀vN ∈ Vp(Λ, T ).

The sequence of coefficients (uN,µ)µ∈Λ ∈ Vp(T )Λ =
∏

µ∈Λ Vp(T ) constitutes the finite element
approximation of the system (2.12), determined by

(2.15) 〈ĀuN,µ, vN〉+
∞∑
m=1

〈Am(βmµm+1uN,µ+εm + βmµmuN,µ−εm), vN〉 = 〈fδµ0, vN〉

for all vN ∈ Vp(T ) and all µ ∈ Λ, where uN,ν := 0 for ν ∈ F \ Λ.

More specifically, we consider meshes resulting from refinements of a prescribed conforming simplicial
mesh Tinit ofD. For each cell T ∈ Tinit, let a sequence of bisections of T into uniformly shape regular
simplices be prescribed, and let T consist of all conforming simplicial meshes of D attainable through
these bisections. We assume T ∈ T.

We denote the set of facets of the mesh T by S = S(T ), which are divided into interior facets S ∩D
and exterior facets S ∩ ∂D. For any cell T ∈ T , the set S ∩ ∂T consists of the facets of T in the
boundary of T . Similarly, for any T ∈ T , ∂T ∩ D denotes the facets in the boundary of T in the
interior of D.

We define local mesh size parameters by hT := |T |1/d for T ∈ T , and the resulting piecewise
constant function hT on T taking the value hT (x) = hT for x ∈ T .

The set T is partially ordered by the relation T1 � T2 denoting that T2 is finer than T1, i.e. T2 can
be obtained from T1 through a suitable refinement. Furthermore, for any T1, T2 ∈ T, the overlay
T := T1 ⊕ T2 is the coarsest mesh in T with T1 � T1 ⊕ T2 and T2 � T1 ⊕ T2. By [2, Lem. 3.7], the
cardinality of T1 ⊕ T2 is bounded by

(2.16) #(T1 ⊕ T2) ≤ #T1 + #T2 −#T0

where T0 is any mesh T0 ∈ T with T0 � T1 and T0 � T2, e.g. T0 = Tinit.

3. ESTIMATION OF THE TRUNCATION ERROR

3.1. Expansion of the residual. The residualR(wΛ) ∈ L2
π(Γ ;V ∗) of the any approximation wΛ of

u in V(Λ) is

(3.1) R(wΛ) := f −AwΛ = A(u− wΛ).

It can be expanded asR(wΛ) =
∑

ν∈F rν(wΛ)Pν with convergence inL2
π(Γ ;V ∗) for the coefficients

(3.2) rν(wΛ) = fδν0 − ĀwΛ,ν −
∞∑
m=1

Am(βmνm+1wΛ,ν+εm + βmνmwΛ,ν−εm), ν ∈ F ,

i.e.

(3.3) 〈rν(wΛ), v〉 =

∫
D

fδν0v − σν(wΛ) · ∇v dx ∀v ∈ V

for

(3.4) σν(wΛ) := ā∇wΛ,ν +
∞∑
m=1

am∇(βmνm+1wΛ,ν+εm + βmνmwΛ,ν−εm), ν ∈ F .
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Noting that rν(wΛ) is nonzero only for ν in Λ∪∂Λ, we have the decompositionR(wΛ) = RΛ(wΛ)+
R∂Λ(wΛ) for

(3.5) RΞ(wΛ) :=
∑
ν∈Ξ

rν(wΛ)Pν , Ξ ⊂ F ,

and consequently

(3.6) ‖R(wΛ)‖2
L2
π(Γ ;V ∗) = ‖RΛ(wΛ)‖2

L2
π(Γ ;V ∗) + ‖R∂Λ(wΛ)‖2

L2
π(Γ ;V ∗).

Lemma 3.1. For any wΛ ∈ V(Λ),

‖wΛ − u‖2
A ≥

1

1 + γ

(
‖RΛ(wΛ)‖2

L2
π(Γ ;V ∗) + ‖R∂Λ(wΛ)‖2

L2
π(Γ ;V ∗)

)
,(3.7)

‖wΛ − u‖2
A ≤

1

1− γ
(
‖RΛ(wΛ)‖2

L2
π(Γ ;V ∗) + ‖R∂Λ(wΛ)‖2

L2
π(Γ ;V ∗)

)
.(3.8)

Proof. By the Riesz representation theorem in L2
π(Γ ;V ∗),

‖u− wΛ‖2
A = sup

v∈L2
π(Γ ;V )

|〈A(u− wΛ), v〉|2

‖v‖2
A

= sup
v∈L2

π(Γ ;V )

|〈R(wΛ), v〉|2

‖v‖2
A

,

and (1 − γ)‖v‖2
L2
π(Γ ;V ) ≤ ‖v‖2

A ≤ (1 + γ)‖v‖2
L2
π(Γ ;V ) due to (1.3). The assertion follows with

(3.6). �

The component ‖RΛ(wΛ)‖2
L2
π(Γ ;V ∗) of (3.6) can be interpreted as an interior residual in the sense that

it gauges the distance of wΛ to uΛ.

Lemma 3.2. For any wΛ ∈ V(Λ),

(3.9)
1

1 + γ
‖RΛ(wΛ)‖2

L2
π(Γ ;V ∗) ≤ ‖wΛ − uΛ‖2

A ≤
1

1− γ
‖RΛ(wΛ)‖2

L2
π(Γ ;V ∗).

Proof. For any vΛ ∈ V(Λ),

〈A(uΛ − wΛ), vΛ〉 = 〈A(u− wΛ), vΛ〉 = 〈R(wΛ), vΛ〉 = 〈RΛ(wΛ), vΛ〉.

The assertion follows as in the proof of Lemma 3.1 using

‖uΛ − wΛ‖A = sup
vΛ∈V(Λ)

|〈A(uΛ − wΛ), v〉|
‖vΛ‖A

= sup
vΛ∈V(Λ)

|〈RΛ(wΛ), vΛ〉|
‖v‖A

. �

Remark 3.3. Using Lemma 3.2, a statement similar to that of Lemma 3.1 for the Galerikin projection
wΛ = uN in a subspace of V(Λ) could be derived by means of Galerkin orthogonality

(3.10) ‖uN − u‖2
A = ‖uN − uΛ‖2

A + ‖uΛ − u‖2
A,

with each term on the right corresponding to one component of the residual. However, this leads to
R∂Λ(uΛ) in place ofR∂Λ(uN), which is less accessible.

We estimate the two terms of (3.6) separately, beginning withR∂Λ(wΛ).

3.2. Upper bounds for the tail of the residual. Let Λ ⊂ F be a finite set. For any wΛ ∈ V(Λ) and
any ν ∈ ∂Λ, let

(3.11) ζν(wΛ) :=
∞∑
m=1

∥∥∥am
ā

∥∥∥
L∞(D)

(
βmνm+1‖wΛ,ν+εm‖V + βmνm‖wΛ,ν−εm‖V

)
.
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The sum in (3.11) is a finite sum over supp(Λ) since all other terms are zero. For any subset∆ ⊂ ∂Λ,
let

(3.12) ζ(wΛ, ∆) :=

(∑
ν∈∆

ζν(wΛ)2

)1/2

.

Lemma 3.4. If 0 ∈ Λ, then for any wΛ ∈ V(Λ),

(3.13) ‖R∂Λ(wΛ)‖L2
π(Γ ;V ∗) ≤ ζ(wΛ, ∂Λ).

Proof. By Parseval’s identity,

‖R∂Λ(wΛ)‖2
L2
π(Γ ;V ∗) =

∑
ν∈∂Λ

‖rν(wΛ)‖2
V ∗ .

Since ν 6= 0, (3.3) and the Cauchy–Schwarz and triangle inequalities lead to

‖rν(wΛ)‖V ∗ = sup
v∈V

1

‖v‖V

∣∣∣∣ ∫
D

σν(wΛ) · ∇v dx

∣∣∣∣ ≤ ζν(wΛ).

�

Due to the infinite cardinality of ∂Λ, ζ(wΛ, ∂Λ) is defined as an infinite sum in (3.12). However, for
ν ∈ ∂Λ \ ∂◦Λ, i.e. ν = µ+ εm with µ ∈ Λ and m ∈ N \ supp(Λ),

(3.14) ζν(wΛ) =
∥∥∥am
ā

∥∥∥
L∞(D)

βm1 ‖wΛ,µ‖V .

Summing these terms over all inactive dimensions m leads to the lumped error indicator

(3.15)

ζ̄µ(wΛ, Λ) :=

( ∑
m∈N\suppΛ

ζµ+εm(wΛ)2

)1/2

= ‖wΛ,µ‖V
( ∑
m∈N\suppΛ

(∥∥∥am
ā

∥∥∥
L∞(D)

βm1

)2
)1/2

for µ ∈ Λ. The infinite sum remaining in ζ̄µ(wΛ, Λ) is independent of wΛ and µ, depending only on
supp(Λ); we assume that it can be computed. Then ζ(wΛ, ∂Λ) is represented by the finite sum

(3.16) ζ(wΛ, ∂Λ)2 =
∑
ν∈∂◦Λ

ζν(wΛ)2 +
∑
µ∈Λ

ζ̄µ(wΛ, Λ)2.

3.3. Lipschitz continuity of the error indicator. The error indicator ζ(wΛ, ∂Λ) depends Lipschitz-
continuously on the approximation wΛ in V(Λ).

Lemma 3.5. For all vΛ, wΛ ∈ V(Λ),

(3.17) |ζ(vΛ, ∂Λ)− ζ(wΛ, ∂Λ)| ≤ γ‖vΛ − wΛ‖L2
π(Γ ;V ).

Proof. Let eΛ := vΛ − wΛ ∈ V(Λ). For any ν ∈ ∂Λ,∣∣ζν(vΛ)2 − ζν(wΛ)2
∣∣ =

∣∣ζν(vΛ)− ζν(wΛ)
∣∣(ζν(vΛ) + ζν(wΛ)

)
≤ ζν(eΛ)sν

with sν := ζν(vΛ) + ζν(wΛ). Appropriately rearranging terms and applying the Cauchy–Schwarz
inequality, Lemma 2.1 and (1.3),∑

ν∈∂Λ

ζν(eΛ)sν ≤
∑
µ∈Λ

‖eΛ,µ‖V
[ ∞∑
m=1

∥∥∥am
ā

∥∥∥
L∞(D)

(
βmµm+1sµ+εm + βmµmsµ−εm

)]

≤ γ

(∑
µ∈Λ

‖eΛ,µ‖2
V

)1/2( ∑
ν∈∂Λ

s2
ν

)1/2

,
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and (
∑

ν∈∂Λ s
2
ν)

1/2 ≤ ζ(vΛ, ∂Λ)+ζ(wΛ, ∂Λ) by the triangle inequality. The error indicator ζ satisfies∣∣ζ(vΛ, ∂Λ)− ζ(wΛ, ∂Λ)
∣∣(ζ(vΛ, ∂Λ) + ζ(wΛ, ∂Λ)

)
=
∣∣ζ(vΛ, ∂Λ)2 − ζ(wΛ, ∂Λ)2

∣∣
≤
∑
ν∈∂Λ

∣∣ζν(vΛ)2 − ζν(wΛ)2
∣∣,

and the assertion follows by inserting the above estimate for |ζν(vΛ)2 − ζν(wΛ)2| and cancelling
ζ(vΛ, ∂Λ) + ζ(wΛ, ∂Λ) since

∑
µ∈Λ‖eΛ,µ‖2

V = ‖eΛ‖2
L2
π(Γ ;V ). �

4. A SPATIAL ERROR INDICATOR

4.1. Residual-based estimation of the spatial error. For all wN ∈ Vp(Λ, T ), T ∈ T and µ ∈ Λ,
let

(4.1) ηµ,T (wN) :=
(
h2
T‖ā−1/2(fδµ0 +∇ · σµ(wN))‖2

L2(T ) + hT‖ā−1/2[[σµ(wN)]]‖2
L2(∂T∩D)

)1/2
,

where [[·]] denotes the normal jump over S ∈ S(T ), i.e. if S̄ = T̄1 ∩ T̄2 and ni is the exterior unit
normal to Ti, then

(4.2) [[σ]] := σ|T1 · n1 + σ|T2 · n2.

Summing over µ ∈ Λ, we define the error indicator for the cell T as

(4.3) ηT (wN , Λ) :=

(∑
µ∈Λ

ηµ,T (wN)2

)1/2

,

and for any subsetM⊂ T , these terms combine to

(4.4) η(wN , Λ,M) :=

( ∑
T∈M

ηT (wN , Λ)2

)1/2

.

Similarly, we define the oscillation of wN ∈ Vp(Λ, T ) as

(4.5) oscµ,T (wN) :=
(
h2
T‖ā−1/2(id−Π2p−2)(fδµ0 +∇ · σµ(wN))‖2

L2(T )

+ hT‖ā−1/2(id−Π2p−1)[[σµ(wN)]]‖2
L2(∂T∩D)

)1/2
,

where p is the local polynomial degree of the finite element space Vp(T ) and Πn denotes the orthog-
onal projection in L2(T ) with respect to the weight ā−1 onto polynomials of degree n. Summing over
µ ∈ Λ and T ∈M ⊂ T gives the total oscillations

oscT (wN , Λ) :=

(∑
µ∈Λ

oscµ,T (wN)2

)1/2

,(4.6)

osc(wN , Λ,M) :=

( ∑
T∈M

oscT (wN , Λ)2

)1/2

,(4.7)

whereM is any nonempty subset of T . These terms are used only in our analysis, and do not need
to be computed in our adaptive algorithm. We note that the error indicator dominates the oscillation,

(4.8) oscT (wN , Λ) ≤ ηT (wN , Λ)

for all T ∈ T , see [2, Rem. 2.1].
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4.2. Equivalence to the interior residual. Up to a term involving the oscillation in the lower bound,
the spatial error indicator is equivalent to the residual of the Galerkin projection in Vp(Λ, T ). The
constants cη and Cη appearing in Theorem 4.1 are independent of the set Λ of active indices since,
as described in the proof, bounds for each coefficient of the residual hold with uniform constants.

Theorem 4.1. The Galerkin projection uN of u onto Vp(Λ, T ) satisfies

(4.9) cη
(
η(uN , Λ, T )2 − osc(uN , Λ, T )2

)
≤ ‖RΛ(uN)‖2

L2
π(Γ ;V ∗) ≤ Cηη(uN , Λ, T )2

with constants cη, Cη > 0 depending only on ā, p and the shape regularity of T, but not on Λ.

Proof. For any µ ∈ Λ, the proof of [7, Thm. 6.1] extends verbatim to arbitrary polynomial degrees p to
show

|〈rµ(uN), v − INv〉|2 ≤ Cη‖v‖2
V

∑
T∈T

ηµ,T (uN)2

for all v ∈ V , where IN denotes the Clément interpolation operator onto Vp(T ). By Galerkin orthog-
onality, 〈rµ(uN), v〉 = 〈rµ(uN), v − INv〉, and thus

‖rµ(uN)‖2
V ∗ ≤ Cη

∑
T∈T

ηµ,T (uN)2.

Similarly, the standard estimates from [18, 15] based on cell and facet bubble functions lead to the
lower bound (∑

T∈T

ηµ,T (uN)2

)1/2

≤ c

[
‖rµ(uN)‖V ∗ +

(∑
T∈T

oscµ,T (uN)2

)1/2
]

for all µ ∈ Λ. Consequently,

cη

[∑
T∈T

ηµ,T (uN)2 −
∑
T∈T

oscµ,T (uN)2

]
≤ ‖rµ(uN)‖2

V ∗

for cη = 1/2c2, and the assertion follows by summing over µ ∈ Λ. �

Theorem 4.1 and Lemma 3.2 provide the following bounds for the spatial error of uN ∈ Vp(Λ, T ), i.e.
the energy norm of the difference between uN and the semidiscrete approximation uΛ.

Corollary 4.2. The Galerkin projection uN in Vp(Λ, T ) satisfies

(4.10)
cη

1 + γ

(
η(uN , Λ, T )2 − osc(uN , Λ, T )2

)
≤ ‖uN − uΛ‖2

A ≤
Cη

1− γ
η(uN , Λ, T )2.

Similarly, Lemma 3.1, Lemma 3.4 and Theorem 4.1 lead to the following upper and lower bounds for
the full error of uN in the energy norm.

Corollary 4.3. The energy norm error of the Galerkin projection uN in Vp(Λ, T ) satisfies

‖uN − u‖2
A ≥

cη
1 + γ

(
η(uN , Λ, T )2 − osc(uN , Λ, T )2

)
,(4.11)

‖uN − u‖2
A ≤

Cη
1− γ

(
η(uN , Λ, T )2 + ζ(uN , ∂Λ)2

)
.(4.12)

The upper bound from Corollary 4.2 can be refined to estimate the difference of two discrete solutions
with different spatial meshes. In this case, the error indicator is restricted to just the refined elements,
and the estimate can thus be viewed as a local upper bound. We refer to [2, Lem. 3.6] for a proof.
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Lemma 4.4. Let T , T ∗ ∈ T such that T ∗ is a refinement of T , and let uN ∈ Vp(Λ, T ) and u∗N ∈
Vp(Λ, T ∗) be the respective Galerkin projections. Then

(4.13) ‖uN − u∗N‖2
A ≤ C̄ηη(uN , Λ,M)2

whereM = T \ (T ∗ ∩ T ) is the set of refined cells and C̄η is a uniform constant on T independent
of Λ.

4.3. Lipschitz continuity of the spatial error indicator. Similarly to the error indicator ζ(wN , ∂Λ),
the spatial error indicator ηT (wN , Λ) depends Lipschitz-continuously on the argumentwN inVp(Λ, T ).

For any finite set Λ ⊂ F and any T ∈ T, we introduce the constant

(4.14) ca,δ(Λ, T ) := max

{∥∥∥∥hT∇ϕā
∥∥∥∥
L∞(D)

/∥∥∥ϕ
ā

∥∥∥
L∞(D)

; ϕ ∈ {ā} ∪ {am ; m ∈ suppΛ}
}
,

i.e. the gradients of all am with m ∈ supp(Λ) satisfy

(4.15)

∥∥∥∥hT∇amā

∥∥∥∥
L∞(D)

≤ ca,δ(Λ, T )
∥∥∥am
ā

∥∥∥
L∞(D)

and the same estimate holds for ā in place of am. This constant is always finite since supp(Λ) is a
finite set, but ca,δ(Λ, T ) may degenerate if Λ is enlarged without appropriate refinements of T .

The proof of the following statement mirrors that of Lemma 3.5. The seminorm |·|L2
π(Γ ;V |T ) refers to

the restriction of the Bochner norm in L2
π(Γ ;V ) to any subdomain T ⊂ D, which in the following will

be a triangular or tetrahedral element T ∈ T .

Lemma 4.5. For all vN , wN ∈ Vp(Λ, T ) and all T ∈ T ,

(4.16) |ηT (vN , Λ)− ηT (wN , Λ)| ≤
(
ca,δ(Λ, T ) + ĉη

)
(1 + γ)|vN − wN |L2

π(Γ ;V |T )

with a uniform constant ĉη on T.

Proof. Let µ ∈ Λ and eN := vN − wN . We split ηµ,T (wN) into η0
µ,T (wN) := hT‖ā−1/2(fδµ0 +∇ ·

σµ(wN))‖L2(T ) and η1
µ,T (wN) := h

1/2
T ‖ā−1/2[[σµ(wN)]]‖L2(∂T∩D).

Let cinv > 0 such that, uniformly for all T ∈ T and all T ∈ T , ‖ā1/2∆vN‖L2(T ) ≤ cinvh
−1
T |vN |V,T

and ‖ā1/2∇vN · nT‖L2(∂T∩D) ≤ cinvh
−1/2
T |vN |V,T for all vN ∈ Vp(T ).

The first of the above inverse inequalities ‖ā1/2∆vN‖L2(T ) ≤ cinvh
−1
T |vN |V,T for vN ∈ Vp(T ) implies

|η0
µ,T (vN)− η0

µ,T (wN)| ≤ hT‖ā−1/2∇ · σµ(eN)‖L2(T )

≤ α0
0|eN,µ|V,T +

∞∑
m=1

α0
m

(
βmµm+1|eN,µ+εm|V,T + βmµm|eN,µ−εm|V,T

)
for α0

0 := ca,δ(Λ, T ) + cinv and α0
m := (ca,δ(Λ, T ) + cinv)‖am/ā‖L∞(D). Furthermore, using that

‖ā1/2∇vN · nT‖L2(∂T∩D) ≤ cinvh
−1/2
T |vN |V,T for all vN ∈ Vp(T ),

|η1
µ,T (vN)− η1

µ,T (wN)| ≤ h
1/2
T ‖ā

−1/2[[σµ(eN)]]‖L2(∂T∩D)

≤ α1
0|eN,µ|V,T +

∞∑
m=1

α1
m

(
βmµm+1|eN,µ+εm |V,T + βmµm|eN,µ−εm|V,T

)
with α1

0 := 2cinv and α1
m := 2cinv‖am/ā‖L∞(D).

Noting that∣∣ηµ,T (vN)2 − ηµ,T (wN)2
∣∣ =

∣∣η0
µ,T (vN)− η0

µ,T (wN)
∣∣s0
µ +

∣∣η1
µ,T (vN)− η1

µ,T (wN)
∣∣s1
µ
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for siµ := ηiµ,T (vN) + ηiµ,T (wN), the above estimates combine to

|ηT (vN , Λ)2 − ηT (wN , Λ)2| ≤
∑
µ∈Λ

∣∣ηµ,T (vN)2 − ηµ,T (wN)2
∣∣

≤
∑
µ∈Λ

|eN,µ|V,TSµ ≤
(∑

µ∈Λ

|eN,µ|2V,T
)1/2(∑

µ∈Λ

S2
µ

)1/2

with

Sµ = α0
0s

0
µ +

∞∑
m=1

α0
m

(
βmµm+1s

0
µ+εm + βmµms

0
µ−εm

)
+ α1

0s
1
µ +

∞∑
m=1

α1
m

(
βmµm+1s

1
µ+εm + βmµms

1
µ−εm

)
and due to Lemma 2.1,(∑

µ∈Λ

S2
µ

)1/2

≤
(
α0

0 +
∞∑
m=1

α0
m

)(∑
µ∈Λ

(s0
µ)2

)1/2

+

(
α1

0 +
∞∑
m=1

α1
m

)(∑
µ∈Λ

(s1
µ)2

)1/2

≤
(
α0

0 + α1
0 +

∞∑
m=1

α0
m + α1

m

)(
ηT (vN , Λ) + ηT (wN , Λ)

)
.

The assertion with ĉη = 3cinv follows using

|ηT (vN , Λ)2 − ηT (wN , Λ)2| =
∣∣ηT (vN , Λ)− ηT (wN , Λ)

∣∣(ηT (vN , Λ) + ηT (wN , Λ)
)
. �

The spatial error indicators are also continuous in their second argument, as described in the following
statement.

Lemma 4.6. Let 0 ∈ Λ ⊂ Λ∗ ⊂ F , T ∈ T and wN ∈ Vp(Λ, T ). Then

(4.17) η(wN , Λ
∗ \ Λ, T ) ≤

(
2ca,δ(Λ

∗, T ) + ĉη,ζ
)
ζ(wN , ∂Λ ∩ Λ∗)

with a uniform constant ĉη,ζ on T.

Proof. By definition, using ην,T (wN) = 0 for ν ∈ Λ∗ \ (Λ ∪ ∂Λ),

η(wN , Λ
∗ \ Λ, T )2 =

∑
T∈T

∑
ν∈∂Λ∩Λ∗

ην,T (wN)2

As in the proof of Lemma 4.5, we split ην,T (wN) into η0
ν,T (wN) := hT‖ā−1/2(fδν0+∇·σν(wN))‖L2(T )

and η1
ν,T (wN) := h

1/2
T ‖ā−1/2[[σν(wN)]]‖L2(∂T∩D) for any ν ∈ ∂Λ ∩ Λ∗ and T ∈ T .

Let cinv > 0 such that the inverse inequalities ‖ā1/2hT ∆vN‖L2(D) ≤ cinv‖vN‖V and∑
T∈T hT‖ā1/2∇vN · nT‖L2(∂T∩D) ≤ c2

inv‖vN‖V hold for all vN ∈ Vp(T ) uniformly on T.

Due to first of the above the inverse inequalities and using wN,ν = 0,(∑
T∈T

η0
ν,T (wN)2

)1/2

=

∥∥∥∥ā−1/2hT

∞∑
m=1

∇ ·
(
am(βmνm+1∇wN,ν+εm + βmνm∇wN,ν−εm)

)∥∥∥∥
L2(D)

≤
∞∑
m=1

∥∥∥∥hT∇amā

∥∥∥∥
L∞(D)

(
βmνm+1‖wN,ν+εm‖V + βmνm‖wN,ν−εm‖V

)
+ cinv

∞∑
m=1

∥∥∥am
ā

∥∥∥
L∞(D)

(
βmνm+1‖wN,ν+εm‖V + βmνm‖wN,ν−εm‖V

)
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With (4.15), the last term is bounded by (ca,δ(Λ
∗, T ) + cinv)ζν(wN). Similarly, the triangle inequality

on the skeleton S of T leads to(∑
T∈T

η1
ν,T (wN)2

)1/2

≤
∞∑
m=1

∥∥∥am
ā

∥∥∥
L∞(D)

βmνm+1

(∑
T∈T

hT
∥∥ā1/2[[∇wN,ν+εm ]]

∥∥2

L2(∂T∩D)

)1/2

+
∞∑
m=1

∥∥∥am
ā

∥∥∥
L∞(D)

βmνm

(∑
T∈T

hT
∥∥ā1/2[[∇wN,ν−εm ]]

∥∥2

L2(∂T∩D)

)1/2

and the inverse inequality
∑

T∈T hT‖ā1/2∇vN ·nT‖L2(∂T∩D) ≤ c2
inv‖vN‖V for vN ∈ Vp(T ) implies(∑

T∈T

η1
ν,T (wN)2

)1/2

≤ 2cinvζν(wN).

Combining these bounds, we have(∑
T∈T

ην,T (wN)2

)1/2

≤
(
(ca,δ(Λ

∗, T ) + cinv)2 + 4c2
inv

)1/2
ζν(wN),

and the assertion follows by summing over ν ∈ ∂Λ ∩ Λ∗. �

A continuity property similar to that in Lemma 4.5 holds for the oscillation oscT (wN , Λ). The proof of
the following lemma is analogous to the above argument; see also [2, Lem. 3.3].

Lemma 4.7. For all vN , wN ∈ Vp(Λ, T ) and all T ∈ T ,

(4.18) |oscT (vN , Λ)− oscT (wN , Λ)| ≤
(
ca,δ(Λ, T ) + ĉosc

)
(1 + γ)|vN − wN |L2

π(Γ ;V |T )

with a uniform constant ĉosc on T.

5. THE ADAPTIVE ALGORITHM

5.1. Modules. Given a mesh T ∈ T and a finite set Λ ⊂ F containing 0, we assume that a routine

(5.1) uN ← Solve[Λ, T ]

is available which returns the exact Galerkin projection uN determined by (2.14) in the space Vp(Λ, T )
from (2.13), for a fixed local polynomial degree p.

The error indicators from Sections 3.2 and 4.1 are computed by the modules

(ηT (uN , Λ))T∈T , η(uN , Λ, T )← Estimatex[uN , Λ, T ],(5.2)

(ζν(uN))ν∈∂◦Λ, ζ(uN , ∂Λ), (‖uN‖V )µ∈Λ ← Estimatey[uN , Λ],(5.3)

where (3.16) is used to compute ζ(uN , ∂Λ) as a finite sum. These error indicators are subsequently
used to mark cells of the spatial mesh T for refinement, and to activate indices in ∂Λ.

We consider separate marking and refinement procedures for T and Λ. For a parameter 0 < ϑx < 1,
let the routine

(5.4) M← Markx[ϑx, (ηT (uN , Λ))T∈T , η(uN , Λ, T )]

return a subsetM⊂ T satisfying the Dörfler property

(5.5) η(uN , Λ,M) ≥ ϑxη(uN , Λ, T ),

and let the module

(5.6) T ∗ ← Refinex[T ,M]
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construct a conforming mesh T ∗ ∈ T in which at least all elements ofM have been bisected at least
once compared to T . These methods are standard to adaptive finite element algorithms, and do not
depend on Λ ⊂ F .

A similar routine that constructs a finite set ∆ ⊂ ∂Λ with

(5.7) ζ(uN , ∆) ≥ ϑyζ(uN , ∂Λ)

for a parameter 0 < ϑy < 1 is discussed in the next section. Let

(5.8) Λ∗ ← Refiney[Λ,∆]

return a set Λ ∪ ∆ ⊂ Λ∗ ⊂ Λ ∪ ∂Λ. A simple choice is Λ∗ := Λ ∪ ∆, but we do not assume this
particular definition, and indeed a larger set may be chosen in order to ensure favorable properties of
Λ∗, such as monotonicity.

Finally, in order to control the constant ca,δ(Λ, T ) from (4.14), we select an arbitrary c̄a,δ > 0 and,
for each m ∈ N, presume that a mesh Ta,m ∈ T is given such that ‖hTa,m∇am/ā‖L∞(D) ≤
c̄a,δ‖am/ā‖L∞(D). Similarly, let Tā ∈ T such that ‖hTā∇ā/ā‖L∞(D) ≤ c̄a,δ. For any subset S ⊂ N,
let

(5.9) Ta,S := Tā ⊕
⊕
m∈S

Ta,m

be the overlay of the meshes corresponding to m ∈ S. Then ca,δ(Λ, Ta,suppΛ) ≤ c̄a,δ for any finite
Λ ⊂ F .

5.2. Marking of parametric modes. A typical way to ensure the Dörfler property (5.7) while minimiz-
ing the size of ∆ is to sort ν ∈ ∂Λ according to ζν(uN) and construct ∆ by successively selecting
those ν with maximal ζν(uN) until (5.7) is fulfilled. However, this is infeasible due to the infinite cardi-
nality of ∂Λ.

The routine

(5.10) ∆← Marky[ϑy, (ζν(uN))ν∈∂◦Λ, ζ(uN , ∂Λ), (‖uN,µ‖V )µ∈Λ]

functions by a slight extension of the above algorithm. Initially, only indices ν in the finite set ∂◦Λ
are considered for inclusion in ∆. Whenever an index of the form ν = µ + εm with µ ∈ Λ and
m = max(suppΛ) is added to ∆, the error indicator ζν′(uN) = ‖am/ā‖L∞(D)β

m
1 ‖uN,µ‖V for

ν ′ = µ + εm′ with m′ = min(N \ suppΛ) is constructed and inserted into the sorted list of error
indicators. Similarly, whenever such a ν ′ is added to ∆, the index ν ′′ = µ + εm′′ is subsequently
considered for the next larger m′′ in N \ supp(Λ). Thus, at every step, only a finite subset of ∂Λ is
considered for addition to ∆. The dynamic computation of ζν(uN) for ν ∈ ∂Λ \ ∂◦Λ is inexpensive
due to the simple structure (3.14). This process is continued until the Dörfler property (5.7) is satisfied.

Remark 5.1. If ‖am/ā‖L∞(D)β
m
1 are arranged in decreasing order and supp(Λ) = {1, . . . ,M} for

an M ∈ N, then Marky constructs a set ∆ of minimal cardinality subject to the Dörfler property (5.7)
since indices ν ∈ ∂Λ \ ∂◦Λ are considered in decreasing order of ζν(uN), and these error indicators
are bounded by ζν(uN) with ν ∈ ∂◦Λ. Furthermore, supp(Λ ∪∆) = {1, . . . ,M ′} for an M ′ ∈ N,
ensuring the optimality of a subsequent marking, after the refinement to Λ∗ := Λ∪∆, or after applying
some other reasonable refinement strategy.

5.3. Adaptive algorithm. The above modules combine to form the adaptive stochastic Galerkin finite
element algorithm ASGFEM. In each iteration, either a spatial refinement is performed or the set of
active indices is enlarged, depending on which error indicator is larger.

The following statement is a direct consequence of Corollary 4.3 and the termination criterion of the
algorithm.
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uε ← ASGFEM[ε, Λ0, T0, %, ϑx, ϑy]

for j = 0, 1, 2, . . . do
uj ← Solve[Λj, Tj]
(ζj,ν)ν∈∂◦Λj , ζj, (‖uj,µ‖V )µ∈Λj ← Estimatey[uj, Λj]
(ηj,T )T∈Tj , ηj ← Estimatex[uj, Λj, Tj]
if η2

j + ζ2
j ≤ ε2 then

return uε ← uj

if ηj ≥ %ζj then
Λj+1 ← Λj
Mj+1 ← Markx[ϑx, (ηj,T )T∈Tj , ηj]
Tj+1 ← Refinex[Tj,Mj]

else
∆j ← Marky[ϑy, (ζj,ν)ν∈∂Λj , ζj, (‖uj,µ‖V )µ∈Λj ]
Λj+1 ← Refiney[Λj, ∆j]
Tj+1 ← Tj ⊕ Ta,suppΛj+1

Theorem 5.2. Let ε > 0, Λ0 ⊂ F be finite and contain 0, T0 ∈ T with Ta,suppΛ0 � T0, % > 0 and
0 < ϑx, ϑy < 1. If ASGFEM[ε, Λ0, T0, %, ϑx, ϑy] terminates, it returns an approximate solution uε
with

(5.11) ‖uε − u‖2
A ≤

Cη
1− γ

ε2.

We tacitly assume that the assumptions of Theorem 5.2 hold in the following. In particular, Λ0 ⊂ F is
any finite set containing 0, and T0 ∈ T is adapted to ā in the sense that Ta,suppΛ0 � T0.

6. CONTRACTION PROPERTY

6.1. A preliminary estimate. Our analysis is adapted from [2]. The following statement is an analogue
to [2, Cor. 3.4].

Lemma 6.1. For any nonempty finite sets Λ ⊂ Λ∗ ⊂ F and any meshes T � T ∗ ∈ T, let
M := T \ (T ∗ ∩ T ) denote the set of refined cells in T ∗ compared to T , and let ∆ := ∂Λ ∩ Λ∗.
For any vN ∈ Vp(Λ, T ), v∗N ∈ Vp(Λ∗, T ∗), χ, τ > 0 and κ ≥ 0,

(6.1) η(v∗N , Λ
∗, T ∗)2 + κζ(v∗N , ∂Λ

∗)2

≤ (1 + χ)
[
η(vN , Λ, T )2 − λη(vN , Λ,M)2

]
+ (1 + τ)κζ(vN , ∂Λ)2 −

[
(1 + τ)κ− c̄2

ζ(1 + χ)
]
ζ(vN , ∆)2

+ [(1 + χ−1)c̄2
η + (1 + τ−1)κγ2](1− γ)−1‖vN − v∗N‖2

A

with λ = 1− 21/d, c̄ζ := 2ca,δ(Λ
∗, T ∗) + ĉη,ζ and c̄η := [ca,δ(Λ

∗, T ∗) + ĉη](1 + γ).

Proof. Let vN ∈ Vp(Λ, T ) and v∗N ∈ Vp(Λ∗, T ∗). Since Vp(Λ, T ) ⊂ Vp(Λ∗, T ∗), Lemma 4.5
together with Young’s inequality imply

η(v∗N , Λ
∗, T ∗)2 ≤

∑
T ∗∈T ∗

[
ηT ∗(vN , Λ

∗) + c̄η|vN − v∗N |L2
π(Γ ;V |T ∗)

]2
≤ (1 + χ)η(vN , Λ

∗, T ∗)2 + (1 + χ−1)c̄2
η‖vN − v∗N‖2

L2
π(Γ ;V )
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with c̄η := [ca,δ(Λ
∗, T ∗) + ĉη](1 + γ). Due to Lemma 4.6, for c̄ζ := 2ca,δ(Λ

∗, T ∗) + ĉη,ζ ,

η(vN , Λ
∗, T ∗)2 ≤ η(vN , Λ, T ∗)2 + c̄2

ζζ(vN , ∆)2.

Let T ∈ M ⊂ T and let T ∗(T ) := {T ∗ ∈ T ∗ ; T ∗ ⊂ T}. For any µ ∈ Λ, [[σµ(vN)]] = 0 on
all facets of T ∗ in the interior of T since vN is continuous on T . Furthermore, hT ∗ = |T ∗|1/d ≤
(|T |/2)1/d = 2−1/dhT for all T ∗ ∈ T ∗(T ). Thus

η(vN , Λ, T ∗)2 ≤ η(vN , Λ, T \M)2 + 2−1/dη(vN , Λ,M)2

= η(vN , Λ, T )2 − λη(vN , Λ,M)2

with λ = 1− 21/d.

Similarly, Lemma 3.5 and Young’s inequality imply

ζ(v∗N , Λ
∗)2 ≤

(
ζ(vN , ∂Λ

∗) + γ‖vN − v∗N‖L2
π(Γ ;V )

)2

≤ (1 + τ)ζ(vN , ∂Λ
∗)2 + (1 + τ−1)γ2‖vN − v∗N‖2

L2
π(Γ ;V ).

Since ζν(vN) = 0 for ν ∈ ∂Λ∗ \ ∂Λ and ∆ = ∂Λ ∩ Λ∗ = ∂Λ \ ∂Λ∗,

ζ(vN , ∂Λ
∗)2 = ζ(vN , ∂Λ)2 − ζ(vN , ∂Λ \ ∂Λ∗)2 = ζ(vN , ∂Λ)2 − ζ(vN , ∆)2.

The assertion follows with ‖vN − v∗N‖2
L2
π(Γ ;V ) ≤ (1− γ)−1‖vN − v∗N‖2

A. �

6.2. Convergence of the adaptive algorithm. We show in Theorem 6.2 that for certain ωη, ωζ > 0,
the adaptive algorithm ASGFEM is a contraction for the quasi-error

(6.2) ‖uN − u‖2
A + ωηη(uN , Λ, T )2 + ωζζ(uN , ∂Λ)2.

As is evident from the proof, it is vital that ωη and ωζ may be distinct constants; indeed, ωζ may be
larger than ωη by a factor depending on c̄a,δ.

Theorem 6.2. Let % > 0 and 0 < ϑx, ϑy < 1, and let uj , Tj , Mj , ∆j , ηj and ζj denote the
sequences of approximate solutions, finite element meshes, marked cells, marked indices and error
indicators, respectively, generated in ASGFEM. There exist constants 0 < δ < 1, ωη > 0 and ωζ > 0
such that

(6.3) ‖uj+1 − u‖2
A + ωηη

2
j+1 + ωζζ

2
j+1 ≤ δ

(
‖uj − u‖2

A + ωηη
2
j + ωζζ

2
j

)
for all j ∈ N0.

Proof. We abbreviate ej := ‖uj − u‖A and dj := ‖uj − uj+1‖A. Lemma 6.1 implies

η2
j+1 + κζ2

j+1 ≤ (1 + χ)[η2
j − λη(uj, Λj,Mj)

2]

+ (1 + τ)κζ2
j − [(1 + τ)− (1 + χ)c̄2

ζκ
−1]κζ(uj, ∆j)

2

+ [(1 + χ−1)c̄2
η + (1 + τ−1)κγ2](1− γ)−1d2

j

with λ = 1−21/d, c̄ζ := 2c̄a,δ+ĉη,ζ and c̄η := (c̄a,δ+ĉη)(1+γ) provided that (1+τ) ≥ (1+χ)c̄2
ζκ
−1.

Using Galerkin orthogonality to expand e2
j+1 = e2

j − d2
j leads to

e2
j+1 + ω(η2

j+1 + κζ2
j+1) ≤ e2

j −
[
1− ω

(
(1 + χ−1)c̄2

η + (1 + τ−1)κγ2
)
(1− γ)−1

]
d2
j

+ ω(1 + χ)[η2
j − λη(uj, Λj,Mj)

2]

+ ω(1 + τ)κζ2
j − ω[(1 + τ)− (1 + χ)c̄2

ζκ
−1]κζ(uj, ∆j)

2.

We set ω := ω(χ, τ, κ) := (1 − γ)/[(1 + χ−1)c̄2
η + (1 + τ−1)κγ2] such that the term containing

dj drops from this estimate. We expand e2
j = (1− α)e2

j + αe2
j with 0 < α < 1 and apply the upper
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bound (4.12) to αe2
j to get

e2
j+1 + ω(η2

j+1 + κζ2
j+1) ≤ (1− α)e2

j + αCη(1− γ)−1(η2
j + ζ2

j )

+ ω(1 + χ)[η2
j − λη(uj, Λj,Mj)

2]

+ ω(1 + τ)κζ2
j − ω[(1 + τ)− (1 + χ)c̄2

ζκ
−1]κζ(uj, ∆j)

2.

If ηj ≥ %ζj , then∆j = ∅, thus ζ(uj, ∆j) = 0, and by the Dörfler property (5.5), using (1+βx)τκζ
2
j ≤

(1 + βx)τκ%
−2η2

j for any βx > 0,

e2
j+1 + ω(η2

j+1 + κζ2
j+1) ≤ (1− α)e2

j

+ ω
[
(1 + χ)(1− λϑ2

x) + (1 + βx)τκ%
−2 + αCη(1− γ)−1ω−1

]
η2
j

+ ω(1− βxτ + αCη(1− γ)−1ω−1κ−1)κζ2
j .

Conversely, if ηj < %ζj , thenMj = ∅ and consequently η(uj, Λj,Mj) = 0. The Dörfler property
(5.7) along with (1 + βy)χη

2
j ≤ (1 + βy)χ%

2ζ2
j for βy > 0 imply

e2
j+1 + ω(η2

j+1 + κζ2
j+1) ≤ (1− α)e2

j + ω(1− βyχ+ αCη(1− γ)−1ω−1)η2
j

+ ωκ
[
(1 + τ)− ϑ2

y

(
(1 + τ)− (1 + χ)c̄2

ζκ
−1
)

+ (1 + βy)χ%
2κ−1 + αCη(1− γ)−1ω−1κ−1

]
ζ2
j .

All of the factors in the above estimates must be made less than one while ensuring (1 + τ) ≥
(1 + χ)c̄2

ζκ
−1. We select κ > c̄2

ζ and

0 < τ < min
(
ϑ2
y(1− c̄2

ζκ
−1)(1− ϑ2

y)
−1, λϑ2

x%
2κ−1

)
such that 1+τ−ϑ2

y(1+τ−c̄2
ζκ
−1) < 1 and 1−λϑ2

x+τκ%−2 < 1. Next, we choose χ > 0 sufficiently

small such that χ ≤ (1 + τ)κc̄−2
ζ − 1, which implies (1 + τ) ≥ (1 + χ)c̄2

ζκ
−1, simultaneously with

1 + τ − ϑ2
y((1 + τ) − (1 + χ)c̄2

ζκ
−1) + χ%2κ−1 < 1 and (1 + χ)(1 − λϑ2

x) + τκ%−2 < 1. This
permits βx > 0 with (1 + χ)(1 − λϑ2

x) + (1 + βx)τκ%
−2 < 1 and βy > 0 with 1 + τ − ϑ2

y((1 +

τ)− (1 +χ)c̄2
ζκ
−1) + (1 + βy)χ%

2κ−1 < 1. Finally, we choose α > 0 sufficiently small such that all
the factors in the above estimates remain smaller than one. The assertion follows with δ equal to the
maximum of these factors, ωη := ω and ωζ := κω. �

6.3. Contraction of the spatial error. Theorem 6.2 achieves a contraction of the quasi-error (6.2)
by balancing a potential increase in one error indicator with a decrease in the other. If the adaptive
algorithm ASGFEM performs only spatial refinements within a succession of iterations, and the set
Λ of active indices in F therefore remains fixed, then a similar contraction property holds for just the
spatial error, with constants independent of Λ. This is elaborated in following theorem, which follows
[2, Thm. 4.1].

Theorem 6.3. Let % > 0 and 0 < ϑx < 1, and let uj , Tj ,Mj , Λj and ηj denote the sequences
of approximate solutions, finite element meshes, marked cells, active indices and error indicators, re-
spectively, generated in ASGFEM. There exist constants 0 < δx < 1 and ωx > 0 such that for any
j ∈ N0 with Λj+1 = Λj =: Λ,

(6.4) ‖uj+1 − uΛ‖2
A + ωxη

2
j+1 ≤ δx

(
‖uj − uΛ‖2

A + ωxη
2
j

)
.

Proof. We abbreviate ej := ‖uj−uΛ‖A and dj := ‖uj−uj+1‖A. Lemma 6.1 with κ = 0 and∆ = ∅
implies

η2
j+1 ≤ (1 + χ)[η2

j − λη(uj, Λj,Mj)
2] + (1 + χ−1)c̄2

η(1− γ)−1d2
j ,

with c̄ζ := 2c̄a,δ + ĉη,ζ for any χ > 0. Since e2
j+1 = e2

j − d2
j by Galerkin orthogonality, and using the

Dörfler property (5.5), we have

e2
j+1 + ωxη

2
j+1 ≤ e2

j − [1− ωx(1 + χ−1)c̄2
η(1− γ)−1]d2

j + ωx(1 + χ)(1− λϑ2
x)η

2
j
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for any ωx > 0. We choose ωx := (1 − γ)/[(1 + χ−1)c̄2
η], depending on χ, such that the term

involving dj drops. Expanding e2
j as (1 − α)e2

j + αe2
j with 0 < α < 1 and applying Corollary 4.2 to

αe2
j leads to

e2
j+1 + ωxη

2
j+1 ≤ (1− α)e2

j + ωx[C1(χ) + C2(χ, α)]η2
j

with C1(χ) = (1 +χ)(1− λϑ2
x) and C2(χ, α) = α(1 +χ−1)Cη c̄

2
η(1− γ)−2. Estimate (6.4) follows

with δx = max(1 − α,C1(χ) + C2(χ, α)) < 1 by selecting χ > 0 sufficiently small such that
C1(χ) < 1, and then choosing α > 0 sufficiently small such that C2(χ, α) < 1− C1(χ). �

7. QUASI-OPTIMALITY OF THE SPATIAL DISCRETIZATION

7.1. The total spatial error. Let wN ∈ Vp(Λ, T ) be any approximation of u for a finite set Λ ∈ F
and a mesh T ∈ T. The total spatial error

(7.1)

(
‖wN − uΛ‖2

A +
cη

1 + γ
osc(wN , Λ, T )2

)1/2

combines the energy-norm error with the oscillation. Due to Corollary 4.2 and (4.8), for the Galerkin
projection uN ∈ Vp(Λ, T ),

cη
1 + γ

η(uN , Λ, T )2 ≤ ‖uN − uΛ‖2
A +

cη
1 + γ

osc(uN , Λ, T )2

≤
(

cη
1 + γ

+
Cη

1− γ

)
η(uN , Λ, T )2,

(7.2)

i.e. the total spatial error is equivalent to the spatial error indicator. Furthermore, uN is a quasi-optimal
approximation of uΛ in Vp(Λ, T ) with respect to the total spatial error.

Lemma 7.1. If ca,δ(Λ, T ) ≤ c̄a,δ, then the Galerkin projection uN ∈ Vp(Λ, T ) satisfies

(7.3) ‖uN − uΛ‖2
A +

cη
1 + γ

osc(uN , Λ, T )2

≤ Ĉ inf
wN∈Vp(Λ,T )

(
‖wN − uΛ‖2

A +
cη

1 + γ
osc(wN , Λ, T )2

)
with a constant Ĉ := 2 max(1, cη(c̄a,δ + ĉosc)

2(1 + γ)(1− γ)−1) independent of T and Λ.

Proof. Let wN ∈ Vp(Λ, T ). Due to Lemma 4.7,

osc(uN , Λ, T )2 ≤ 2 osc(wN , Λ, T )2 +
2(c̄a,δ + ĉosc)

2(1 + γ)2

1− γ
‖wN − uN‖2

A.

By Galerkin orthogonality, ‖wN − uN‖2
A ≤ ‖wN − uΛ‖2

A and ‖uN − uΛ‖2
A ≤ ‖wN − uΛ‖2

A.
Consequently,

‖uN − uΛ‖2
A +

cη
1 + γ

osc(uN , Λ, T )2 ≤ Ĉ

(
‖wN − uΛ‖2

A +
cη

1 + γ
osc(wN , Λ, T )2

)
with Ĉ as in the statement of the lemma, and the assertion follows by taking the infimum over wN ∈
Vp(Λ, T ). �

Similar to [2, Lem. 5.9], there is an intimate connection between a reduction of the total spatial error
and the Dörfler property (5.5).

Lemma 7.2. Let uN , u∗N denote the Galerkin solutions in Vp(Λ, T ) and Vp(Λ, T ∗), respectively, for
meshes T , T ∗ with T � T ∗ and ca,δ(Λ, T ∗) ≤ c̄a,δ, and let

(7.4) ‖u∗N − uΛ‖2
A +

cη
1 + γ

osc(u∗N , Λ, T ∗)2 ≤ cred

(
‖uN − uΛ‖2

A +
cη

1 + γ
osc(uN , Λ, T )2

)
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with cred < 1/2. Then

(7.5) η(uN , Λ,M) ≥ ϑxη(uN , Λ, T )

for the setM := T \ (T ∗ ∩ T ) of refined cells and ϑ2
x = (1− 2cred)ϑ̂2

x, where

(7.6) ϑ̂x :=

(
1 + C̄η

(1 + γ

cη
+ 2(c̄a,δ + ĉosc)

1 + γ

1− γ

))−1/2

.

Proof. Due to the lower bound in Corollary 4.2,

cη
1 + γ

η(uN , Λ, T )2 ≤ ‖uN − uΛ‖2
A +

cη
1 + γ

osc(uN , Λ, T )2.

Inserting the estimate (7.4), we have

(1− 2cred)
cη

1 + γ
η(uN , Λ, T )2 ≤ ‖uN − uΛ‖2

A +
cη

1 + γ
osc(uN , Λ, T )2

− 2‖u∗N − uΛ‖2
A − 2

cη
1 + γ

osc(u∗N , Λ, T ∗)2.

By Galerkin orthogonality and Lemma 4.4,

‖uN − uΛ‖2
A − 2‖u∗N − uΛ‖2

A ≤ ‖uN − u∗N‖2
A ≤ C̄ηη(uN , Λ,M)2.

Furthermore, since oscT (uN , Λ) ≤ ηT (uN , Λ) for all T ∈M by (4.8) and

oscT (uN , Λ)2 ≤ 2 oscT (u∗N , Λ)2 + 2(c̄a,δ + ĉosc)(1 + γ)|uN − u∗N |L2
π(Γ ;V |T )

by Lemma 4.7 for T ∈ T \M, employing the local upper bound Lemma 4.4 again, we have

osc(uN , Λ, T )2 − 2 osc(u∗N , Λ, T ∗)2

≤ η(uN , Λ,M)2 + 2(c̄a,δ + ĉosc)
1 + γ

1− γ
‖uN − u∗N‖2

A

≤
(

1 + 2C̄η(c̄a,δ + ĉosc)
1 + γ

1− γ

)
η(uN , Λ,M)2.

Thus

(1− 2cred)
cη

1 + γ
η(uN , Λ, T )2

≤
(
C̄η +

cη
1 + γ

(
1 + 2C̄η(c̄a,δ + ĉosc)

1 + γ

1− γ

))
η(uN , Λ,M)2,

which is (7.5). �

7.2. An approximation class. For any finite set Λ ⊂ F and any N ∈ N, let

(7.7) ΣN(u, Λ) := inf
(
‖w∗N − uΛ‖2

A +
cη

1 + γ
osc(w∗N , Λ, T ∗)2

)1/2

where the infimum is taken over all meshes T ∗ ∈ T with #T ∗−#Tinit ≤ N and ca,δ(Λ, T ∗) ≤ c̄a,δ,
and all w∗N ∈ Vp(Λ, T ∗). Furthermore, for any s > 0, let

(7.8) |u|s,Λ := sup
{
ε
(

min{N ∈ N0 ; ΣN(u, Λ) < ε}
)s

; ε ≥ č‖uΛ − u‖A
}

for a constant č > 0 specified in (7.14) below. We consider u to be in the approximation class As if

(7.9) |u|As := sup{|u|s,Λ ; Λ ⊂ F finite, 0 ∈ Λ} <∞.
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In this case, for any finite set Λ ⊂ F containing 0 and any error tolerance ε ≥ č‖uΛ − u‖A, i.e.
no smaller than the error effected by the restriction to the set Λ, up to a constant factor, there is an
approximation w∗N ∈ Vp(Λ, T ∗) with total spatial error

(7.10) ‖w∗N − uΛ‖2
A +

cη
1 + γ

osc(w∗N , Λ, T ∗)2 ≤ ε2

for a mesh T ∗ ∈ T of size

(7.11) #T ∗ −#Tinit ≤ ε−1/s|u|1/sAs

satisfying ca,δ(Λ, T ∗) ≤ c̄a,δ, i.e. the total spatial error decays as

(7.12)
(
‖w∗N − uΛ‖2

A +
cη

1 + γ
osc(w∗N , Λ, T ∗)2

)1/2

≤ |u|As(#T ∗ −#Tinit)
−s.

The full error of this approximation is bounded by ‖w∗N−u‖A ≤ (1+ č−2)1/2ε and decays at the same
rate s with respect to the size of the mesh T ∗ asΛ is suitably enlarged to maintain ‖uΛ−u‖A ≤ č−1ε.

7.3. Quasi-optimal convergence. We make the following assumptions:

1 The routine M ← Markx[ϑx, (ηT (uN , Λ))T∈T , η(uN , Λ, T )] constructs a set M ⊂ T of
minimal cardinality satisfying the Dörfler property (5.5).

2 The Dörfler constant ϑx from (5.5) satisfies 0 < ϑx < ϑ̂x for ϑ̂x from (7.6).
3 The distribution of refinement facets in Tinit satisfies (b) of [17, Sec. 4].

Lemma 7.2 and the assumed optimal marking lead to a bound on the cardinality of the setsMj of
marked cells in ASGFEM, following [2, Lem. 5.10]. We abbreviate

(7.13) cred :=
1

2

(
1− ϑ2

x

ϑ̂2
x

)
> 0

and define the constant č left arbitrary in Section 7.2 as

(7.14) č :=

(
credcη(1− γ)

(1 + %−2)ĈCη(1 + γ)

)1/2

.

Lemma 7.3. If u ∈ As, then

(7.15) #Mj ≤ |u|1/sAs c
−1/2s
red Ĉ1/2s

(
‖uj − uΛj‖2

A +
cη

1 + γ
osc(uj, Λj, Tj)2

)−1/2s

for all j ∈ N0 with ηj ≥ %ζj .

Proof. Let j ∈ N0 with ηj ≥ %ζj , such that a spatial refinement is performed and thusMj is defined
in ASGFEM. Let ε2 = credĈ

−1[‖uj − uΛj‖2
A + cη(1 + γ)−1 osc(uj, Λj, Tj)2], which satisfies

ε2 ≥ credcη

Ĉ(1 + γ)
η2
j ≥

credcη

Ĉ(1 + γ)(1 + %−2)
(η2
j + ζ2

j )

≥ credcη(1− γ)

Ĉ(1 + γ)(1 + %−2)Cη
‖uj − u‖2

A ≥ č2‖uΛj − u‖2
A

due to (7.2), (4.12) and Galerkin orthogonality. Thus the assumption u ∈ As implies that there exist
T ε ∈ T and wεN ∈ Vp(Λj, T ε) such that ca,δ(Λj, T ε) ≤ c̄a,δ, #T ε −#Tinit ≤ ε−1/s|u|1/sAs and

‖wεN − uΛj‖2
A +

cη
1 + γ

osc(wεN , Λj, T ε)2 ≤ ε2.
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Let u∗N be the Galerkin solution in Vp(Λj, T ∗) for the overlay T ∗ := T ε ⊕ Tj . Since T ε � T ∗,
Lemma 7.1 implies

‖u∗N − uΛj‖2
A +

cη
1 + γ

osc(u∗N , Λj, T ∗)2

≤ Ĉ
(
‖wεN − uΛj‖2

A +
cη

1 + γ
osc(wεN , Λj, T ∗)2

)
≤ Ĉε2 = cred

(
‖uj − uΛj‖2

A +
cη

1 + γ
osc(uj, Λj, Tj)2

)
,

where we used the monotonicity of the oscillation with respect to the mesh T ∈ T in the second
estimate. Consequently, Lemma 7.2 implies that the setM∗ := T \ (T ∗ ∩ T ) satisfies the Dörfler
property η(uj, Λj,M∗) ≥ ϑxη(uj, Λj, Tj). Due to the minimality of #Mj and using (2.16) in the
last step,

#Mj ≤ #M∗ ≤ #T ∗ −#Tj ≤ #T ε −#Tinit.

The assertion follows by applying the bound #T ε −#Tinit ≤ ε−1/s|u|1/sAs and inserting the definition
of ε. �

Using the above tools, we derive the following optimality statement by an argument similar to [2,
Thm. 5.11]. As illustrated by a comparison with (7.12), within any succession of spatial refinements
in ASGFEM, the convergence of the total spatial error achieves the maximal rate s afforded by the
approximation class As.

Theorem 7.4. If u ∈ As, then for any j0 ∈ N0 and any j ≥ j0 with Λj = Λj0 =: Λ,

(7.16)
(
‖uj − uΛ‖2

A +
cη

1 + γ
osc(uj, Λ, Tj)2

)1/2

≤ C|u|As
(
#Tj −#Tj0

)−s
with a constant C depending only on T, ϑx/ϑ̂x, cη, Cη, c̄a,δ, γ, ωx, δx and %.

Proof. Let j ≥ j0 with Λj = Λj0 . Due to [1, Thm. 2.4], [17, Thm. 6.1], and Lemma 7.3,

#Tj −#Tj0 ≤ cT

j−1∑
k=0

#Mk ≤M

j−1∑
k=0

(
‖uk − uΛ‖2

A +
cη

1 + γ
osc(uk, Λ, Tk)2

)−1/2s

with M = |u|1/sAs cTc
−1/2s
red Ĉ1/2s and a constant cT depending only on T. For any j0 ≤ k ≤ j − 1, the

lower bound in Corollary 4.2 implies

‖uk − uΛ‖2
A + ωxη

2
k ≤

(
1 + ωx

1 + γ

cη

)
‖uk − uΛ‖2

A + ωx osc(uk, Λ, Tk)2

≤
(

1 + ωx
1 + γ

cη

)(
‖uk − uΛ‖2

A +
cη

1 + γ
osc(uk, Λ, Tk)2

)
.

Furthermore, the contraction property from Theorem 6.3 implies

‖uk − uΛ‖2
A + ωxη

2
k ≥ δk−jx

(
‖uj − uΛ‖2

A + ωxη
2
j

)
.

Consequently,

#Tj −#Tj0 ≤M
(

1 + ωx
1 + γ

cη

)1/2s(
‖uj − uΛ‖2

A + ωxη
2
j

)−1/2s
j−1∑
k=0

δ(j−k)/2s
x

and since 0 < δx < 1, the remaining sum is

j−1∑
k=0

δ(j−k)/2s
x ≤

∞∑
i=1

δi/2sx =
δ

1/2s
x

1− δ1/2s
x

=: D.
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The assertion follows with the estimate

‖uj − uΛ‖2
A +

cη
1 + γ

osc(uj, Λ, Tj)2 ≤ max
(

1,
cη

ωx(1 + γ)

)(
‖uj − uΛ‖2

A + ωxη
2
j

)
from (4.8). �

By a similar argument as in Theorem 7.4 leveraging the contraction property in Theorem 6.2 of the full
error, we derive in Theorem 7.6 a statement concerning the convergence behavior of ASGFEM across
both types of refinements.

Lemma 7.5. For all j ∈ N,

(7.17) #Tj ≤ #T0 + #Ta,suppΛj + cT

j−1∑
k=0

#Mk

with a constant cT depending only on T, where we defineMk := ∅ if ηk < %ζk.

Proof. If ηk ≥ ζk, then [1, Thm. 2.4] and [17, Thm. 6.1] imply

#Tk+1 −#Tk ≤ cT#Mk.

Conversely, if ηk < %ζk, then Tk+1 = Tk ⊕ Ta,suppΛk+1
, and thus (2.16) implies

#Tk+1 −#Tk ≤ #Ta,suppΛk+1
−#Ta,suppΛk

since Ta,suppΛk � Tk and Ta,suppΛk � Ta,suppΛk+1
. The assertion follows by summing over k =

0, . . . , j − 1. �

Theorem 7.6. If u ∈ As, then for all j ∈ N0,

(7.18)
(
‖uj − u‖2

A + ωηη
2
j + ωζζ

2
j

)1/2 ≤ C|u|As
(
#Tj −#T0 −#Ta,suppΛj

)−s
with a constant C depending only on T, ϑx/ϑ̂x, cη, Cη, c̄a,δ, γ, ωη, ωζ , δ and %.

Proof. Lemmas 7.5 and 7.3 imply

#Tj −#T0 −#Ta,suppΛj ≤ cT

j−1∑
k=0

#Mk

with #Mk = 0 if ηk < %ζk and

#Mk ≤ |u|1/sAs c
−1/2s
red Ĉ1/2s

(
‖uk − uΛ‖2

A +
cη

1 + γ
osc(uk, Λ, Tk)2

)−1/2s

if ηk ≥ %ζk. In this latter case, we use the upper bound in Corollary 4.3 and the lower bound in
Corollary 4.2 to estimate

‖uk − u‖2
A + ωηη

2
k + ωζζ

2
k ≤

(Cη(1 + %−2)

1− γ
+ ωη + ωζ%

−2
)
η2
k

≤ E
(
‖uk − uΛ‖2

A +
cη

1 + γ
osc(uk, Λ, Tk)2

)
with E := cη(1 + γ)−1[Cη(1 + %−2)(1− γ)−1 + ωη + ωζ%

−2]. Theorem 6.2 provides the bound

‖uk − u‖2
A + ωηη

2
k + ωζζ

2
k ≥ δj−k

(
‖uj − u‖2

A + ωηη
2
j + ωζζ

2
j

)
,

and thus

#Tj −#T0 −#Ta,suppΛj ≤ |u|
1/s
As cTc

−1/2s
red Ĉ1/2sE1/2sD

(
‖uj − u‖2

A + ωηη
2
j + ωζζ

2
j

)−1/2s

with D = δ1/2s(1− δ1/2s)−1. �
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Since the error indicator ηj alone is equivalent to the total spatial error by (7.2), the estimate in Theo-
rem 7.6 carries over to the total spatial error with a different constant, thereby extending Theorem 7.4
to the full set of approximations generated in ASGFEM.

Remark 7.7. Theorem 7.6 can be interpreted as a bound on the number of cells in the mesh Tj ,

(7.19) #Tj ≤ #T0 + #Ta,suppΛj
+ C1/s|u|1/sAs

(
‖uj − u‖2

A + ωηη
2
j + ωζζ

2
j

)1/2s
.

If the meshes Tā and Ta,m are minimal in T with respect to the partial order� subject to the conditions
‖hTā∇ā/ā‖L∞(D) ≤ c̄a,δ and ‖hTa,m∇am/ā‖L∞(D) ≤ c̄a,δ‖am/ā‖L∞(D), then Ta,suppΛj is minimal
in T subject to ca,δ(Λj, Ta,suppΛj) ≤ c̄a,δ, i.e. for any mesh T ∈ T, ca,δ(Λj, T ) ≤ c̄a,δ implies
Ta,suppΛ � T . In particular, the term #Ta,suppΛj

in (7.19) is minimal subject to ca,δ(Λj, Tj) ≤ c̄a,δ,

and the spatial refinement performed in ASGFEM in the case ηj−1 < %ζj−1 is the minimal refinement
required to ensure this property.

8. NUMERICAL EXAMPLES

The implementation of the proposed adaptive algorithm of Section 5 uses the open source framework
ALEA [8] which was already the basis for the ASGFEM presented in [7]. In comparison to that paper,
the main difference here is the use of a single adaptively refined mesh for all gpc modes. Moreover,
higher order conforming finite element spaces are employed. By the restriction to a single mesh, the
projection of solutions between different meshes is no longer required which was one of the main
computational tasks of the first adaptive algorithm. Hence, this approach represents a substantial sim-
plification for the actual implementation and evaluation of the numerical solution. In order to distinguish
the two approaches, we denote by ASGFEM2 the algorithm presented in this paper and the preceding
algorithm by ASGFEM1. The implementation of ASGFEM2 is based on the code of ASGFEM1 and
follows to a large extend the description given in [7]. There, the construction of the operator and the
treatment of inhomogeneous Dirichlet boundary conditions in the given setting was discussed. For the
adaptive algorithm of Section 5, a different bound for the tail estimation and a modified marking strat-
egy had to be implemented. Apart from these extensions, only minor adjustments of the existing code
were required.

The evaluation of the energy error of the numerical solution with regard to some reference solution is
described in Section 8.1. The performance of the new algorithm employed to some of the benchmark
problems from [7] is assessed in Section 8.2.

Since the construction of different adapted meshes with ASGFEM1 results in an optimised sparse
representation of the problem, it is interesting to compare the adaptive approaches for multi (sparse)
and single mesh adaptivity. This is done in Section 8.3. A central observation in [13] is that higher
order approximations can (under certain conditions) compensate for sparsity which is illustrated by the
results.

8.1. Evaluation of the error. For experimental verification of the reliability of the error estimator, a
reference error is computed by Monte Carlo simulations. For this, a set of M independent realizations
{y(i)}Mi=1 of the stochastic parameters is computed. The y(i)

m are sampled according to the probability
measure πm of the random variable ym. The mean-square error e of the parametric SGFEM solution
uN ∈ VN is approximated by a Monte Carlo sample average

‖e‖2
V =

∫
Γ

‖u(y)− uN(y)‖2
V dπ(y)

≈ 1

M

M∑
i=1

‖ũ(y(i))− uN(y(i))‖2
V .(8.1)
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Here, the samples y(i) ∈ Γ of parameter sequences are assumed to be statistically independent and
identically distributed with law π. Note that the sampled solutions ũ(y(i)) are approximations of the
exact u(y(i)) = A−1(y(i))f since the operator is discretized on a reference mesh which is the joint
finest mesh of all polynomial degrees in each experiment, respectively. Moreover, the expansion (1.1)
of the random field a(y, x) is truncated to the maximal length occuring in the approximate parametric
solutions. We choose M = 150 for the Monte Carlo approximation of the reference error (8.1) which
proved to be sufficient to assess the reliability of the error estimator.

8.2. The stochastic diffusion problem. We examine numerical simulations for the stationary diffu-
sion problem (1.2) in a plane, polygonal domainD ⊂ R2. Recall from Section 1 that x = (x1, x2) ∈ D
denotes points in D and y = (y1, y2, . . . ) ∈ Γ denotes the parameter sequence in the coeffi-
cient (1.1).

As in [7], the expansion coefficients of the stochastic field (1.1) are chosen to be

(8.2) am(x) := αm cos(2πβ1(m)x1) cos(2πβ2(m)x2)

where αm is of the form ᾱm−σ̃ with σ̃ > 1 and some 0 < ᾱ < 1/ζ(σ̃) with the Riemann zeta function
ζ . Then, (1.3) holds with γ = ᾱζ(σ̃). Moreover,

(8.3) β1(m) = m− k(m)(k(m) + 1)/2 and β2(m) = k(m)− β1(m)

with k(m) = b−1/2 +
√

1/4 + 2mc, i.e., the coefficient functions am enumerate all planar Fourier
sine modes in increasing total order. To illustrate the influence which the stochastic coefficient plays in
the adaptive algorithm, we examine the expansion with slow and fast decay of αm, setting σ̃ in (8.2) to
either 2 or 4. The computations are carried out with conforming FEM spaces of polynomial degree 1,
2 and 3.

For the adaptive algorithm of Section 5.3 the parameters are chosen as

ϑx = 2/5, ϑy = 10 and ε = 10−8 .

The employed quadrature is exact for polynomials up to degree 20.

8.2.1. Square domain. The first example is the stationary diffusion equation (1.2) on the unit square
D = (0, 1)2 with homogeneous Dirichlet boundary conditions and with right-hand side f = 1. The
results of the adaptive algorithm of Section 5.3 for a slow decay of the coefficients with σ̃ = 2 and a
fast decay with σ̃ = 4 are shown in Figures 1 and 2. The amplitude ᾱ in (8.2) was chosen as γ/ζ(σ̃)
with γ = 0.9, resulting in ᾱ ≈ 0.547 for σ̃ = 2 and ᾱ ≈ 0.832 for σ̃ = 4. Depicted is the residual
estimator, the reference error obtained by Monte Carlo sampling, the efficiency of the estimator and
the number of active multi-indices. The observed convergence rate of 1/2 for P1 FEM with respect
to the total number of degrees of freedom, which is the convergence rate for a single non-parametric
problem, coincides with the approximation rates predicted by [5, 12]. Both σ̃ = 2 and σ̃ = 4 afford
sufficient summability of the coefficients of the solution to attain the convergence rate of the spatial
discretization for a single non-parametric problem, as elaborated in [5, 12]. For quadratic and cubic
FEM spaces, the convergence rate increases, also see Figure 9. However, the rate achieved with P3 is
not consistently better than that of a P2 discretisation as the error estimator in Figure 1 might suggest.

The efficiency indices for the different polynomial degrees are similar and lie between 1 and 10. Since
the reliability bound of the error estimator contains unknown constants, the purpose of the efficiency
graphs in this and the next subsection is mainly to illustrate the progression of the estimator/error ratio
for polynomial FE degrees 1-3 and not to show the accuracy of the error estimator. We further observe
that the number of activated gpc modes increases substantially with the polynomial degree of the FE
approximation. At the same time, the grids remain relatively coarse in comparison to the P1 FEM. This
feature is illustrated in Figure 3 which depicts the number of mesh cells and active multi-indices in
the course of the adaptive algorithm. One the one hand, higher order FEM activate significantly more
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FIGURE 1. Convergence of the error estimator in the energy norm with FEM of de-
gree 1,2 and 3 for the stationary diffusion problem on the square with homogeneous
Dirichlet boundary conditions for slow (σ̃ = 2, left) and fast (σ̃ = 4, right) decay. Total
number of degrees of freedom and efficiency of the error estimator with respect to the
MC reference error.
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FIGURE 2. Convergence of the error in the energy norm with FEM of degree 1,2 and 3
for the stationary diffusion problem on the square with homogeneous Dirichlet bound-
ary conditions for slow (σ̃ = 2, left) and fast (σ̃ = 4, right) decay. Total number of
degrees of freedom and active multi-indices.

multi-indices (more than 100) while the mesh is kept relatively coarse at the same time. On the other
hand, P1 FEM leads to a strongly refined mesh and only few activated multi-indices (less than 10).
Of course, higher order finite elements methods compensate for the coarser mesh through the higher
local polynomial degree. The relation of active multi-indices to total energy error is depicted in Figure 4.
This illustrates the independence of the multi-index activation with regard to the polynomial degree of
the spatial approximation.

A comparison with regard to the two decay rates reveals that the adaptive algorithm activates more
multi-indices in the case of slower decay (left-hand side in all figures with σ̃ = 2) since more terms
in (1.1) are required for an accurate representation than for faster decay (right-hand side in all figures
with σ̃ = 4).

8.2.2. L-shaped domain. A standard benchmark problem for deterministic a posteriori error estimators
is the stationary diffusion problem (1.2) on the L-shaped domainD = (−1, 1)2 \ (0, 1)× (−1, 0). It is
well-known that the solution exhibits a singularity at the reentrant corner at (0, 0) which is resolved by
a pronounced mesh refinement in its vicinity. The convergence of the error estimator and its efficiency
with regard to the error determined by (8.1) are depicted in Figure 5. In Figure 6, the error and the
number of active multi-indices are shown. The relation of active multi-indices to total energy error is
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FIGURE 3. Number of mesh cells and active multi-indices with FEM of degree 1,2
and 3 for the stationary diffusion problem on the square with homogeneous Dirichlet
boundary conditions for slow (σ̃ = 2, left) and fast (σ̃ = 4, right) decay with respect to
total number of degrees of freedom.
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FIGURE 4. Number of active multi-indices with FEM of degree 1,2 and 3 for the sta-
tionary diffusion problem on the square domain with homogeneous Dirichlet boundary
conditions for slow (σ̃ = 2, left) and fast (σ̃ = 4, right) decay with respect to the
energy error.
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FIGURE 5. Convergence of the error estimator in the energy norm with FEM of degree
1,2 and 3 for the stationary diffusion problem on the L-shaped domain with homoge-
neous Dirichlet boundary conditions for slow (σ̃ = 2, left) and fast (σ̃ = 4, right) decay.
Total number of degrees of freedom and efficiency of the error estimator with respect
to the MC reference error.

depicted in Figure 8. As before, the multi-index activation is (nearly) independent of the polynomial
degree of the spatial approximation.
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FIGURE 6. Convergence of the error in the energy norm with FEM of degree 1,2 and 3
for the stationary diffusion problem on the L-shaped domain with homogeneous Dirich-
let boundary conditions for slow (σ̃ = 2, left) and fast (σ̃ = 4, right) decay. Total
number of degrees of freedom and active multi-indices.
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FIGURE 7. Number of mesh cells and active multi-indices with FEM of degree 1,2
and 3 for the stationary diffusion problem on the L-shaped domain with homogeneous
Dirichlet boundary conditions for slow (σ̃ = 2, left) and fast (σ̃ = 4, right) decay with
respect to total number of degrees of freedom.

In order to assess the relation between deterministic and stochastic refinement, Figure 7 depicts the
number of mesh cells and active multi-indices in the course of the adaptive algorithm. Opposite to the
experiment on the square in Subsection 8.2.1, the mesh is strongly refined for all polynomial degrees
up to about 103 degrees of freedom to resolve the corner singularity. Subsequently, the higher order
spatial discretisations favour the refinement of the stochastic space by activation of new multi-indices
while the low-order P1 FEM results in a continued strong refinement of the mesh. Similar to the pre-
vious experiment, the efficiency indices lie closely together between 1 and 10. Preasymptotically, the
difference between the two decay rates with regard to the activated multi-indices is less pronounced
than before. This is due to the delayed stochastic refinement which is an effect of the initial singularity
resolution of the adaptive algorithm. Moreover, the P3 FEM only leads to marginal improvements of the
error convergence over P2 FEM, also see Figure 10.

8.3. Comparison of adaptive algorithms. This section is devoted to the comparison of the adaptive
algorithms ASGFEM1 of [7] and ASGFEM2 of Section 5.

In Figure 9, the error graphs for the stationary diffusion problem of Section 8.2.1 for σ̃ = 2 and
σ̃ = 4 are depicted for the sparse ASGEM1 and ASGFEM2 with polynomial degrees 1, 2 and 3. The
parameters for ASGFEM1 are set to

c̄Q = 1, c̄η = 1, ϑη = 2/5, ϑζ = 10−1, ϑδ = 10, χ = 1/10, ε = 10−8
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ary diffusion problem on the L-shaped domain with homogeneous Dirichlet boundary
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FIGURE 9. Convergence of the error in the energy norm for the stationary diffusion
problem on the square domain with homogeneous Dirichlet boundary conditions for
slow (σ̃ = 2, left) and fast (σ̃ = 4, right) decay. Comparison of ASGFEM1 (sparse)
and ASGFEM2 for polynomial degrees 1,2 and 3.

with the same ASGFEM2 parameters as above.

It can be observed that the sparse ASGFEM1 with different adapted meshes performs better than AS-
GEM2 with affine FEM. In particular, the error reduction seems more uniform and the error is smaller
than the one obtained with ASGFEM2 for affine FEM. However, for higher order approximations, the
new adaptive algorithm with a single joint mesh outperforms the adapted sparse ASGFEM1 approxi-
mations by nearly an order of magnitude for P3 FEM. Moreover, the error reduction rate increases with
higher employed polynomial degree.

In the next comparison in Figure 10, we examine the two adaptive algorithms for the stationary diffusion
problem on the L-shaped domain as given in Section 8.2.2. The parameters for ASGFEM1 are set to

c̄Q = 1, c̄η = 1, ϑη = 3/5, ϑζ = 10−2, ϑδ = 1, χ = 1/10, ε = 10−8

with the parameters of ASGFEM2 as before.

We observe that ASGFEM1 and ASGFEM2 exhibit nearly identical convergence of the error for affine
finite element spaces. Opposite to the previous comparison, the P1 error graphs lie closely together.
Again, for higher order FEM, both the convergence rate and the constants exhibited with ASGFEM2
are improved over ASGFEM1. However, as mentioned earlier, the error reduction rate of P3 does not
appear to improve significantly over P2 FEM.
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REFERENCES

[1] P. BINEV, W. DAHMEN, AND R. DEVORE, Adaptive finite element methods with convergence rates, Numer. Math., 97
(2004), pp. 219–268.

[2] J. M. CASCON, C. KREUZER, R. H. NOCHETTO, AND K. G. SIEBERT, Quasi-optimal convergence rate for an adaptive
finite element method, SIAM J. Numer. Anal., 46 (2008), pp. 2524–2550.

[3] A. CHKIFA, A. COHEN, R. DEVORE, AND C. SCHWAB, Adaptive algorithms for sparse polynomial approximation of
parametric and stochastic elliptic pdes, M2AN Math. Mod. and Num. Anal., (2011).

[4] A. CHKIFA, A. COHEN, AND C. SCHWAB, High-dimensional adaptive sparse polynomial interpolation and applications
to parametric pdes, Journ. Found. Comp. Math., (2013).

[5] A. COHEN, R. DEVORE, AND C. SCHWAB, Analytic regularity and polynomial approximation of parametric and sto-
chastic elliptic PDE’s, Anal. Appl. (Singap.), 9 (2011), pp. 11–47.

[6] M. EIGEL, C. GITTELSON, C. SCHWAB, AND E. ZANDER, Adaptive stochastic galerkin fem, Tech. Rep. 2013-01,
Seminar for Applied Mathematics, ETH Zürich, 2013.

[7] M. EIGEL, C. J. GITTELSON, C. SCHWAB, AND E. ZANDER, Residual-based a posteriori error estimation for stochastic
galerkin finite element methods. to be published in CMAME 2013.

[8] M. EIGEL AND E. ZANDER, ALEA - A Python Framework for Spectral Methods and Low-Rank Approximations in
Uncertainty Quantification, https://bitbucket.org/aleadev/alea.

[9] W. GAUTSCHI, Orthogonal polynomials: computation and approximation, Numerical Mathematics and Scientific Com-
putation, Oxford University Press, New York, 2004. Oxford Science Publications.

[10] C. GITTELSON, R. ANDREEV, AND C. SCHWAB, Optimality of adaptive galerkin methods for random parabolic partial
differential equations, Tech. Rep. 2013-09, Seminar for Applied Mathematics, ETH Zürich, 2013.

[11] C. J. GITTELSON, Stochastic Galerkin approximation of operator equations with infinite dimensional noise, Tech. Rep.
2011-10, Seminar for Applied Mathematics, ETH Zürich, 2011.

[12] , Convergence rates of multilevel and sparse tensor approximations for a random elliptic PDE, SIAM J. Numer.
Anal., 51 (2013), pp. 2426–2447.

[13] , High-order methods as an alternative to using sparse tensor products for stochastic galerkin FEM, Computers
& Mathematics with Applications, (2013), pp. –.

[14] F. KUO, C. SCHWAB, AND I. H. SLOAN, Multi-level quasi-monte carlo finite element methods for a class of elliptic
partial differential equations with random coefficients, Tech. Rep. 2012-25, Seminar for Applied Mathematics, ETH
Zürich, 2012.

[15] R. H. NOCHETTO, K. G. SIEBERT, AND A. VEESER, Theory of adaptive finite element methods: an introduction, in
Multiscale, nonlinear and adaptive approximation, Springer, Berlin, 2009, pp. 409–542.

[16] C. SCHILLINGS AND C. SCHWAB, Sparse, adaptive smolyak quadratures for bayesian inverse problems, Inverse Prob-
lems, 29 (2013).

[17] R. STEVENSON, The completion of locally refined simplicial partitions created by bisection, Math. Comp., (2008),
pp. 227–241.

[18] R. VERFÜRTH, A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Teubner Verlag
and J. Wiley, Stuttgart, 1996.


