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Abstract

We show that Lp vector fields over a Lipschitz domain are integrable to higher expo-

nents if their generalized divergence and rotation can be identified with bounded linear

operators acting on standard Sobolev spaces. A Div-Curl Lemma-type argument provides

compact embedding results for such vector fields. We investigate the regularity of the solu-

tion fields for the low-frequency approximation of the Maxwell equations in time-harmonic

regime. We focus on the weak formulation ’in H’ of the problem, in a reference geometrical

setting allowing for material heterogeneities.

1 Introduction

In a bounded domain Ω ⊂ R
3 assume that the electromagnetic properties are determined

by the following low-frequency approximation ([Bos04], pages 42–46) of Maxwell’s equations in
time-harmonic regime

curlH = J , (1)

divB = 0 , (2)

ı ω B + curlE = 0 , (3)

whereH , J ,B,E are complex-valued unknown vector fields called the magnetic field strength,
the electrical current density, the magnetic induction and the electric field strength. The constant
ω is a characteristic alternating frequency in the assumed time-harmonic oscillation. It is usual
to supplement these equations by Ohm’s law in the electrical conductors

J = σ (E + v ×B) + Jg in Ωc , (4)

where the given vector field v represents the velocity of the medium assumed stationary, Jg

is the given density of a source current, and the proportionality factor σ is called the electri-
cal conductivity. In order to determine the electric field outside of the conductors, the Poisson
equation

divD = 0 in Ωnc (5)

is considered. If the involved materials are not ferromagnetic, the constitutive relations between
the fields B and H , and between E and D in Ω are linear

B = µH , D = εE , (6)

with proportionality factors µ, ε called the magnetic permeability and the electrical permittivity of
the medium. At interior interfaces in Ω, the fields B, H, E have to satisfy the natural interface
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conditions: Assuming a partition of Ω =
⋃m
i=1 Ωi, where Ω1, . . . ,Ωm are subdomains that

represent heterogeneous materials

[
H × ν

]
= 0 ,

[
B · ν

]
= 0 ,

[
E × ν

]
= 0 on ∂Ωi ∩ ∂Ωj, i 6= j (7)

with [·] denoting as usual the difference between the value of the enclosed quantity from the side
of Ωi to its value from the side of Ωj (the ’jump’ of this quantity), across the surface ∂Ωi ∩ ∂Ωj .
We denote ν is a unit normal to the corresponding surface. At the outer boundary ∂Ω the
conditions

B · ν = 0 , E × ν = 0 on ∂Ω (8)

are considered. These conditions model a magnetic shield, but are also frequently used in prac-
tical models in connection with sufficiently large a region Ω to avoid the conditions of vanishing
at infinity.

We call (P ) the problem of finding fields H, J, B, E, D that satisfy (1), (2), (3), (4) and (5)
together with the constitutive relations (6) and the interface and boundary conditions (7) and (8).

The system (1), (2), (3), (4) and (5) of PDEs is a very well known model for electromagnetic
processes at low-frequency, for example industrial high-temperatures applications with heating
based on the Joule effect (examples in [Bos04, HMRR10, HR11, KPS04, DKS+11]). It is justified
to use this simplification of Maxwell’s equations under several conditions: The ratio displacement
current over ohmic current |∂tD|/|σE| ≈ |ε ω|/|σ| has to be comparatively small throughout
all conductors of the system; The hypothesis of charge neutrality ρ ≈ 0 must be valid; The
equation divD = ρ ≈ 0 must be eliminated in the electrical conductors. There are well-
known drawbacks and possible medicines of the model ([Bos04] for an introduction) as well as
recent interesting discussions for the range of its validity in the context of complex applications
([DGM12]).

From the point of view of applied analysis, the solvability of the problem (P ) has been success-
fully discussed in the past. In the case of variable, discontinuous and even anisotropic material
properties and of the presence of nonsmooth interfaces in the domain, even refined results of
classical potential theory cannot be applied. It is necessary to resort to the theory of generalized

electromagnetics in Hilbert spaces, and the use of decomposition theorems of the space L2 ex-
posed e. g. in [PM99], that in some cases can even help fixing nonlinear constitutive relations
instead of (6) ([Pic84b]1). Weak approaches of the system (1), (2), (3), (4) and (5) are charac-
terized by the a priori choice of a ’main unknown’ since it is possible to reduce everything to a
system of equations for only one of the fields. Recently the problem ’in E’ has raised much in-
terest ([TY12, You12, AvH12, NT13] among others); The current formulation ’in J’ remains more
or less marginal ([MS96, GK06] among others); the problem ’in H’ has a long history (especially
in the context of magnetohydrodynamics: [LS60, LS77, DL72, Dru09a, Dru09b, Dru09c] among
others) and has the advantage not to involve any kind of degeneracy in the equations; Finally,
let us mention numerous models and approaches based on the introduction of vector potentials
([RT92, KPS04, HR11] among others).

1R. Picard wrote 1984: During the last 25 years research in this field has included more and more the use of

Hilbert space settings. The strength of this method consists in the fact that it is capable of dealing with anisotropic,

inhomogeneous media and nonsmooth data and boundary in considerable generality and relative ease.
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For a weak solution ’in H’ to the problem (P ), the generalized theory of electromagnetics gives
the following basic informations (see for example [DL76], [PM99] or [Bos04]):

H ∈ {ψ ∈ L2(O; C
3) : curlψ ∈ L2(O; C

3), div(µψ) = 0, γν(µψ) = 0} , (9)

where the operators curl and div are intended in the generalized sense, and γν is the abstract
trace operator. Our interest in the equations of electrotechnics started from a multiphysics appli-
cation in crystal growth: see [Dru09a]. In this coupled problem involving also the Navier-Stokes
equations and the heat equation the use of weak solution fields led to considerable difficulties:
The mechanical force influencing the fluid motion (Lorentz force) and the heat source density
resulting from the Joule effect are given by the quadratic expressions J × B = curlH × µH
and σ−1J · J = σ−1 curlH · curlH . Therefore, if one’s knowledge about the regularity of
H is limited to (9), we cannot expect in general more than L1-terms, yielding a very bad cou-
pling to PDEs for momentum and energy balance. This is to say that the regularity theory in
Lp spaces, p > 2 for the field H and its rotation is not insignificant for applied analysis in
general, and for the analysis of models occurring in industrical applications of basic importance:
[Dru09a, DKS+11, DDKS12].

In our previous study [Dru07], the question of the higher integrability of the Lorentz force was
asked already. Surveying the recent literature on elliptic problems/interface problems (essen-
tially [Zan00, ERS07, ABDG98, HDKRS08]), we could gather some sufficient conditions for
the domain and the (scalar) magnetic permeability µ that yield |H| ∈ Lq(Ω) for an exponent
q > 3. Unfortunately, this result relied on a global C1 assumption for the interfaces between
the different materials in the domain Ω. In the presence of interior polyhedral interfaces and
multiple junctions, the optimal exponent of higher integrability for H , and its relationship to the
diffusion coefficient and the geometry of the problem, are comparatively very intricated subjects
(see the interesting study [NS99]) : concrete answers like in [Mer03, Dau92] seem difficult to
provide in this way of investigation for general situations). In this case, due to the existence of so
called singular epxonents, the higher-integrability for the gradient of solutions to the transmis-
sion problem for the operator − div(µ∇u) – thus also for the field H in the Maxwell equations
here considered (see below for details) – is known to turn even arbitrary little: Examples in
[Mer03, NS99, ERS07].

Later (essentially in [Dru09a] and in [DKS+11]) we investigated the higher integrability of J =
curlH and of the heat source density. Here also, we used strong regularity assumptions (glob-
ally C1) on the interfaces. Only afterwards we realized that the higher-integrability of | curlH|
is a problem essentially independent on whether |H| itself is higher-integrable, due to the fact
that the field J is localized in the conductors. For simplicity, we shall restrict our investigation
to a model geometrical setting described hereafter. We consider bounded domains Ωi ⊂ R

3,
i = 1, . . . , 4, that represent disjoint materials with different electromagnetic properties such
that Ω =

⋃4
i=1 Ωi.
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Figure 1: Transversal cut
through a model axisym-
metric configuration Ω:
note the domain G (blue
boundary), the surface S
separating the conduc-
tors (magenta), and the
contact line K (red)

We assume that the set Ω is simply connected. We moreover
assume that the domains Ω1, . . . ,Ω3 are enclosed by the do-
main Ω4, in the sense that the set R

3 \ Ω4 is disconnected, or
equivalently that dist(Ωi, ∂Ω) > 0 for i = 1, 2, 3. There is
a common interface between the domains Ω1 and Ω2, that is,
S := ∂Ω1 ∩ ∂Ω2 is a nontrivial two-dimensional submanifold.
We introduce the domain G := Ω1 ∪ S ∪ Ω2 as the region that
one tries to influence, whereas Ω3 is the region where the current
source is given. There is no common interface between Ω3 andG.

For the sake of generality, we assume that the coefficients σ, µ
and ε take values in the set C

3×3
sym of symmetric real matrices, and

are piecewise uniformly continuous with respect to the partition of
Ω. Moreover, there are positive real numbers σ0, σ1, µ0, µ1 and
ε0, ε1 such that for all η ∈ R

3 both the real and imaginary part of
the coefficients satisfy

σ0 |η|
2 ≤ σ(x)η · η ≤ σ1 |η|

2 for all x ∈ Ωc

ε0 |η|
2 ≤ ε(x)η · η ≤ ε1 |η|

2 for all x ∈ Ωnc

µ0 |η|
2 ≤ µ(x)η · η ≤ µ1 |η|

2 for all x ∈ Ω .

(10)

Theorem 1.1. Assume that Ω is a simply connected Lipschitz domain, and that Ω3 is also

Lipschitzian. Assume that S = ∂Ω1 ∩ ∂Ω2 is a surface of class C1, and that for i = 1, 2,

the surface Γi := ∂Ωi \ S is of class C1 as well. Let σ : Ωc → C
3×3
sym , ε : Ωnc → C

3×3
sym

and µ : Ω → C
3×3
sym be piecewise uniformly continuous and satisfy (10). Assume that v ∈

W 1,∞
0 (Ωc; R

3). Assume that Jg ∈ L2(Ωc0; C
3).

Then, there are q > 3 and r > 2 such that if Jg ∈ Lq(Ωc0; C
3), every weak solution to the

problem (P ) satisfies

|J |, |E| ∈ Lq(Ω), |H|, | curlE| ∈ Lr(Ω) .

Moreover, if µ is a sufficiently small perturbation of the identity, the same is valid for a r > 3.

The first section in the article is devoted to the proof of a general embedding inequality for vector
fields that satisfy a divergence and a rotation constraint. This result might possess interest as
an application-independent tool.

In the second section we apply the result to the regularity analysis for the problem (P ).

2 Embedding results for vector fields that satisfy a rotation

and a divergence constraint

Several embedding results have been stated in the past for vector fields that satisfy a rotation
and a divergence constraint, and in general also a constraint on the normal or on the tangential
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values taken at the boundary. For a typical example we quote the inequality

‖∇ψ‖[L2(O)]9 ≤ c (‖ψ‖[L2(O)]3 + ‖ curlψ‖[L2(O)]3 + ‖ divψ‖L2(O)) , (11)

valid in every domainO ⊂ R
3 of class C2 (see [DL76], Ch. 7, Th. 6.1 for a proof) with c = c(O)

for all ψ ∈ W 1,2(O; R
3) such that ψ · ν = 0 on ∂O. The inequality (11) is known in the

context of differential geometry as Gaffney’s inequality, see [Pic84a]). Inequalities of this type
can be generalized in smooth domains to the case 1 < p < +∞, as was shown in [vW92], Th.
2.1. For nonsmooth domains, the Gaffney inequality continues to be valid on convex polyhedra
(see [GR86] and references), but examples of Lipschitz domains in three space dimensions are
known for which (11) fails (singular exponents). One can still hope, though, to prove an em-
bedding result into Sobolev spaces of fractional order: [ABDG98, Cos90], overview in [Mon03].
In this paper we go for an embeddment into higher Lp−spaces allowing curl and div to be
abstract (distribution valued) operators.

We first recall basic notions concerning the generalized operators curl and div in Lebesgue
spaces and in the dual of a Sobolev space over a Lipschitz domain. In the second and third
subsection, we then investigate embedding and compact embedding results. We here can re-
strict to real-valued vector fields: this is completely sufficient for the purpose.

2.1 The generalized operators curl and div

Let O ⊂ R
3 be a bounded domain, and 1 < p < +∞. Throughout the section, we denote

p′ := p
p−1

and the optimal embedding exponent for the space W 1,p(O) into a Lebesgue space

Lp
∗

d(Sd), Sd ⊂ O a d-dimensional Lipschitz submanifold, is given by

p∗d :=





d p
3−p

for 1 ≤ p < 3

1 ≤ s <∞ arbitrary for p = 3

+∞ for p > 3

, d = 2, 3 . (12)

We also consider a mapping a ∈ L∞(O; R
3×3
sym ) that satisfies the ellipticity condition

a0 |η|
2 ≤ a(x)η · η ≤ a1 |η|

2 for all η ∈ R
3, for almost all x ∈ O , (13)

with two constants 0 < a0 ≤ a1 < +∞. We commence recalling the well-known definition
and properties of vector fields having a rotation/divergence in Lp-spaces2.

Definition 2.1. For a vector field ψ ∈ L1(O; R
3):

(1) We write curlψ ∈ Lp(O; R
3) if there exists ξ ∈ Lp(O; R

3) such that
∫
O
ψ · curl Φ =∫

O
ξ · Φ for all Φ ∈ C∞

c (O; R
3). The uniquely determined vector field ξ is called the

generalized rotation of ψ, and we define curlψ := ξ;

2These spaces are have been used by numerous authors, mostly in the case p = 2. It would be of interest to
trace the original idea.
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(2) We write diva ψ ∈ Lp(O) if there exists a function ζ ∈ Lp(O) such that
∫
O
aψ · ∇φ =

−
∫
O
ζ φ for all φ ∈ C∞

c (O). The uniquely determined function ζ is called the generalized

a-divergence (the generalized divergence for a = Id) of ψ, and we define diva ψ := ζ .

On the basis of Definition 2.1, we then introduce

Lpcurl(O) := {ψ ∈ Lp(O; R
3) : curlψ ∈ Lp(O; R

3)} ,

Lpdiva
(O) :=

{
ψ ∈ Lp(O; R

3) : diva ψ ∈ Lp(O)} .
(14)

These spaces are Banach spaces with respect to the graph topology. For p = 2, they are Hilbert
spaces. The notations H(O; curl) = L2

curl(O) and H(O; diva) = L2
diva

(O) are also in
common use. For vector fields that belong to a space (14), it is possible to define a trace operator
on surfaces. Denote ν the outward-pointing unit normal to ∂O. For Φ, ψ ∈ C∞(O; R

3) the
Gauss theorem implies the identity

∫

O

ψ · curl Φ −

∫

O

curlψ · Φ =

∫

∂O

(ν × ψ) · Φ =:
〈
γτ (ψ), Φ

〉
. (15)

Thanks to results for the density of the smooth functions in the spaces (14), it can be shown (see
for example [DL76], [PM99] in the case p = 2 and Lemma A.5 for the general case) that the
operator γτ (ψ) extends to a linear bounded operator on the space Lpcurl(O) with values in the

dual space [W 1/p,p′(∂O; R
3)]∗ (γτ (ψ) extends even over [Lp

′

curl(O)]∗ in a certain sense, but
this is more delicate: [Mon03], pages 57–60). Similarily, for ψ ∈ C∞(O; R

3) and φ ∈ C∞(O),
the Gauss integral theorem implies that

∫

O

aψ · ∇φ+

∫

O

div(aψ)φ =

∫

∂O

ψ · aν φ =:
〈
γaν(ψ), φ

〉
. (16)

The operator γaν extends to a linear bounded operator on the space Lpdiv(O) with values in
[W 1/p,p′(∂O)]∗. The kernel spaces of these operators are needed. We define

Lpdiva,0
(O) := {ψ ∈ Lpdiva

(O) : diva ψ = 0 a. e. in O} ,

Lpcurl,0(O) := {ψ ∈ Lpcurl(O) : curlψ = 0 a. e. in O} ,

Lpdiva +γaν ,0
(O) := {ψ ∈ Lpdiva,0

(O) : γaν(ψ) = 0 in [W 1/p,p′(∂O)]∗} ,

Lpcurl+γτ ,0
(O) := {ψ ∈ Lpcurl,0(O) : γτ (ψ) = 0 in [W 1/p,p′(∂O; R

3)]∗} .

(17)

In connection with higher integrability results for solutions to the Maxwell equations, it is now
convenient to allow for the rotation or divergence of a vector field being in the dual of a Sobolev
space. This idea is already used in the context of the celebrated Div-Curl Lemma (see [GM08]
for an overview over recent generalizations of the original ideas by L. Tartar).

Definition 2.2. Let O be a Lipschitz domain, X = W 1,p(O; R
3) and Y := W 1,p(O), 1 ≤

p < +∞. For a vector field ψ ∈ [L1(O)]3

(1) We write curlψ ∈ X∗ if there is c = cψ such that
∣∣∫
O
ψ · curl Φ

∣∣ ≤ c ‖Φ‖X for all

Φ ∈ C∞(O; R
3) such that curl Φ · ν = 0 on ∂O.
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(2) We write curlψ ∈ X∗ and γτ (ψ) ∈ X∗ (short: curl +γτ ∈ X∗) if there is c = cψ such

that
∣∣∫
O
ψ · curl Φ

∣∣ ≤ c ‖Φ‖X for all Φ ∈ C∞(O; R
3).

(3) We write diva ψ ∈ Y ∗ if there is c = cψ such that |
∫
O
aψ · ∇φ| ≤ c ‖φ‖Y for all

φ ∈ C∞
c (O).

(4) We write diva ψ ∈ Y ∗ and γaν(ψ) ∈ Y ∗ (short: diva +γaν ∈ Y ∗) if there is c = cψ such

that |
∫
O
aψ · ∇φ| ≤ c ‖φ‖Y for all φ ∈ C∞(O).

On the basis of Definition 2.2, we introduce

Lp(O | curl ∈ X∗) := {ψ ∈ Lp(O; R
3) : curlψ ∈ X∗} ,

Lp(O | curl +γτ ∈ X∗) := {ψ ∈ Lp(O; R
3) : (curl +γτ )ψ ∈ X∗} ,

Lp(O | diva ∈ Y ∗) := {ψ ∈ Lp(O; R
3) : diva ψ ∈ Y ∗},

Lp(O | diva +γaν ∈ Y ∗) := {ψ ∈ Lp(O; R
3) : (diva +γaν)ψ ∈ Y ∗} .

(18)

These spaces are Banach spaces with respect to the natural graph-topology. The definitions (2),
(3) and (4) are natural and straightforward. The choice of the test function Φ in the definition of
(1) needs however explanation. Indeed, it seems more natural in analogy to the Definition 2.1 to
choose test functions Φ ∈ C∞

c (O; R
3) (equivalently: Φ ∈ C∞(O; R

3) such that γτ (Φ) = 0)
in order to define the weak curl operator. But in the context of Lipschitz domains, this would
provide insufficient information for our purpose: This is mainly related to the following simple
statement about the existence of a vector potential and the subsequent Remark 2.4.

Lemma 2.3. Let O be a bounded Lipschitz domain such that ∂O is Lipschitz diffeomorphic

to the unit sphere, and 1 < p < +∞. For every ψ ∈ Lpdiv,0(O) there is a vector potential

Φ ∈ W 1,p(O; R
3) such that curl Φ = ψ almost everywhere inO, and a constant c = c(p, O)

such that ‖Φ‖W 1,p(O; R3) ≤ c ‖ψ‖Lp(O; R3).

Proof. Let BR(x0) be a ball that compactly contains O. Let ψ ∈ Lpdiv,0(O). Due to Lemma
A.2, we find an extension Eψ ∈ Lpdiv +γν ,0

(BR). The Theorem 3.3 in [Gri90] directly yields the
claim.

Remark 2.4. If the domain O is of class C1, there is instead an ’improved’ statement. For

ψ ∈ Lpdiv +γν ,0
(O), the vector potential Φ ∈ W 1,p(O; R

3) can be chosen such that Φ = 0
on ∂O. This follows from the same argument as Lemma 2.3, since we can apply the Theorem

3.3 of [Gri90] directly in the domain O. For a Lipschitz domain we can show that there is a

vector potential in Lpcurl(O | γτ = 0), but not preserve its Sobolev quality. This is the reason

that dictates the choice of Φ in the Definition 2.2, (1).

The next Lemma shows that in the Definition 2.2, (1) of the weak curl operator, we can also
choose the test vector fields in a Sobolev space, which we shall need later.

Lemma 2.5. Assume thatψ ∈ Lr(O; R
3) for a 1 < r < +∞ and that curlψ ∈ [W 1,p(O; R3)]∗

for a r′ ≤ p < +∞ (sense of Definition 2.2). Then, the inequality
∣∣∣∣
∫

O

ψ · curl Φ

∣∣∣∣ ≤ ‖ curlψ‖[W 1,p(O;R3)]∗ ‖ curl Φ‖Lp(O;R3) ,

is valid for all Φ ∈ W 1,p(O; R3) such that γν(curl Φ) = 0.
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Proof. Assume that Φ ∈W 1,p(O; R3) satisfies γν(curl Φ) = 0. Due to the Lemma A.6, there
is a sequence {un} ⊂ C∞

c (O; R
3), div un = 0 such that un → curl Φ in the norm of

Lpdiv(O). Owing to the Helmholtz decomposition, there is an analytic vector potential Φn such
that curl Φn = un in R

3, and due to the Calderon-Zygmund inequality (see [Gri90], Th. 3.3),
also

‖Φn‖W 1,p(O; R3) ≤ c ‖un‖Lp(O; R3) .

Using the definition of curlψ ∈ [W 1,p(O; R3)]∗, we obtain that

∣∣∣∣
∫

O

ψ · curl Φn

∣∣∣∣ ≤ ‖ curlψ‖[W 1,p(O;R3)]∗ ‖Φn‖W 1,p(O; R3)

≤ c ‖ curlψ‖[W 1,p(O;R3)]∗ ‖un‖Lp(O; R3)

→ c ‖ curlψ‖[W 1,p(O;R3)]∗ ‖ curl Φ‖Lp(O; R3) .

Extracting a weakly convergent subsequence and using p ≥ r′ it follows
∫
O
ψ · curl Φn →∫

O
ψ · curl Φ.

Finally, we note a localization property of the spaces in (18).

Lemma 2.6. Let O ⊂ R
3, and U ⊆ O be Lipschitz domains, and 1 < p < +∞. Let

ψ ∈ Lq
′

(O; R
3), q = p∗3 (cf. (12)) satisfy one of the conditions characterizing the spaces (18):

curl, curl +γτ ∈ [W 1,p(O, R
3)]∗ or diva, diva +γaν ∈ [W 1,p(O)]∗. If η ∈ C∞

c (U ∪ (U ∩
∂O)), then the vector field η ψ satisfies the same condition with respect to U .

Proof. The proof is similar in each of the four cases. Exemplarily, we show that

ψ ∈ Lq
′

(O | curl ∈ [W 1,p(O, R
3)]∗) ⇒ η ψ ∈ Lq

′

(U | curl ∈ [W 1,p(U ; R
3)]∗) .

For Φ ∈ C∞(U ; R
3) such that γνU

(curl Φ) = 0, the trivial extension of the field ηΦ clearly
belongs toC∞(O; R

3). Moreover, if ∂U∩∂O has positive surface measure, then curl Φ·ν = 0
thereon. Thus, due to the choice of η, we obtain that γν(curl(ηΦ)) = 0 with respect to ∂O.
Since it is assumed that ψ ∈ Lq

′

(O | curl ∈ [W 1,p(O, R
3)]∗)

∣∣∣∣
∫

O

ψ · curl(ηΦ)

∣∣∣∣ ≤ ‖ curlψ‖[W 1,p(O,R3)]∗ ‖ηΦ‖W 1,p(O,R3)

≤ cη ‖ curlψ‖[W 1,p(O,R3)]∗ ‖Φ‖W 1,p(U,R3) .

It follows that
∣∣∣∣
∫

U

η ψ · curl Φ

∣∣∣∣ ≤
∣∣∣∣
∫

O

ψ · (Φ ×∇η)

∣∣∣∣ + cη ‖ curlψ‖[W 1,p(O,R3)]∗ ‖Φ‖W 1,p(U,R3)

≤ cη ‖ψ‖L[p∗3]′ (O; R3)
‖Φ‖

Lp∗3 (U ; R3)
+ cη ‖ curlψ‖[W 1,p(O,R3)]∗ ‖Φ‖W 1,p(U,R3)

≤ cη ‖ψ‖L[p∗3]′(O | curl∈[W 1,p(O,R3)]∗) ‖Φ‖W 1,p(U,R3) .
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2.2 Embedment into a higher Lebesque space over a Lipschitz domain.

For a symmetric matrix of measurable coefficients a satisfying the ellipticity condition (13), the
embedding results that we are going to prove first rely on the following abstract assumption:

Assumption 2.7. There is a number q1 > 2 so that for every p ∈ [q′1, q1], every F ∈

[W 1,p′(O)]∗ such that F (1) = 0 and G ∈ [W 1,p′

0 (O)]∗ the weak Neumann/Dirichlet prob-

lem with homogeneous transmission conditions

∫

O

a∇u · ∇φ = F (φ), for all φ ∈ W 1,p′(O) , (19)

∫

O

a∇u · ∇φ = G(φ), for all φ ∈ W 1,p′

0 (O) (20)

possesses an up to constants unique solution u ∈W 1,p(O)/a unique solution u ∈ W 1,p
0 (O).

Remark 2.8. If a = Id, the Theorem 1.6 in [Zan00] (Neumann problem) and [JK95] (Dirichlet

problem) show that the Assumption 2.7 is satisfied for a q1 > 3 that depends only on the domain

O (see [Dau92] for similar results on curvilinear polyhedra). In order to single this case out, we

call q0 > 3 the optimal exponent in the case a = Id.

We begin with elementary decomposition results of Helmoltz type in Lipschitz domains.

Lemma 2.9. LetO ⊂ R
3 be a simply connected bounded Lipschitz domain. Letψ ∈ Lp(O; R

3),

with p ∈ [q′1, q1], where q1 > 2 is the constant of condition 2.7. Then, there are

(1) A vector field Φ ∈ W 1,p(O; R
3) such that γν(curl Φ) = 0, and a function u ∈ W 1,p(O)

such that ψ = curl Φ + a∇u almost everywhere in O. Moreover, there is a constant

c = c(p, O, a) independent on ψ such that

‖Φ‖W 1,p(O; R3) + ‖u‖W 1,p(O) ≤ c ‖ψ‖Lp(O; R3) .

(2) A vector field Φ ∈ W 1,p(O; R
3), and a function u ∈ W 1,p

0 (O) such that ψ = curl Φ +
a∇u almost everywhere in O, as well as a constant c = c(p, O, a) independent on ψ
such that

‖Φ‖W 1,p(O; R3) + ‖u‖W 1,p(O) ≤ c ‖ψ‖Lp(O; R3) .

Proof. Due to the condition 2.7, the weak Neumann problem
∫

O

(a∇u− ψ) · ∇φ = 0, for all φ ∈ W 1,p′(O) ,

possesses an up to constants unique solution u ∈ W 1,p(O) with continuity estimate. We
easily verify that f ∈ Lpdiv +γν ,0

(O). Applying Lemma 2.3, there is a vector potential Φ ∈
W 1,p(O; R

3) such that

‖Φ‖W 1,p(O; R3) ≤ c̄ ‖ψ − a∇u‖Lp(O; R3) ≤ c ‖ψ‖Lp(O; R3) . (21)
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In addition γν(curl Φ) = γν(ψ− a∇u) = 0. This establishes the validity of the first decompo-
sition.

For the second decomposition, the Assumption 2.7 implies that the weak Dirichlet problem

∫

O

(a∇u− ψ) · ∇φ = 0, for all φ ∈ W 1,p′

0 (O) ,

possesses a unique solution u ∈ W 1,p
0 (O) with continuity estimate. The vector field f :=

a∇u− ψ belongs to Lpdiv,0(O). Thus, there is a vector potential Φ ∈ W 1,p(O; R
3) such that

curl Φ = f almost everywhere in O, and such that ‖Φ‖W 1,p(O; R3) ≤ c̄ ‖f‖[Lp(O; R3) with a
constant c̄ that depends only on O and on p.

In order to make our main statements independent of the condition of a simply connected do-
main, note the following remark.

Remark 2.10. For a bounded Lipschitz domain O, there are m ∈ N and a family of simply

connected Lipschitz domains {Ui}i=1,...,m such that Ui ⊆ O and O =
⋃m
i=1 Ui. There are

functions η1, . . . , ηm such that
∑m

i=1 ηi ≡ 1 in O and ηi ∈ C∞
c (Ui ∪ [∂O∂Ui]).

Proof. The definition of a Lipschitz boundary implies that there is a finite covering of ∂O with
balls {Bri(xi)}i=1,...,k, where k ∈ N, and ri > 0 and xi ∈ ∂O for i = 1, . . . , k. Since the
portion of the boundary ∂O ∩ Bri(xi) is the graph of a Lipschitz continuous function in some
Euclidean coordinates, the set Ui := Bri(xi) ∩ O is diffeomorphic to a half-ball and therefore

simply connected. The set O0 := O \
⋃k
i=1Bri(xi) is compactly included in O, and therefore,

there is a finite covering of O0 with balls {Bri(xi)}i=k+1,...,k+l, where l ∈ N, and ri > 0 and
xi ∈ O and Bri(xi) ⊂ O compactly for i = k + 1, . . . , k + l. We set m = k + l. We choose
a smooth partition of unity η1, . . . , ηm subordinated to the covering O ⊂

⋃m
i=1Bri(xi).

Our embedding result for vector fields with rotation and a divergence constraint is next stated.

Proposition 2.11. LetO ⊂ R
3 be a bounded Lipschitz domain, and q1 > 2 the same constant

as in Lemma 2.9. Then, for all p ∈]2, q1]

(1) The space Lq
′

1(O | curl ∈ [W 1,p′(O; R3)]∗) ∩ Lq
′

1(O | diva +γaν ∈ [W 1,p′(O)]∗) em-

beds continuously in [Lp(O)]3;

(2) The spaceLq
′

1(O | curl +γτ ∈ [W 1,p′(O; R3)]∗)∩Lq
′

1(O | diva ∈ [W 1,p′(O)]∗) embeds

continuously in [Lp(O)]3;

Proof. We first assume that O is simply connected.

(1): Let ψ ∈ Lq
′

1(O | curl ∈ [W 1,p′(O; R3)]∗)∩Lq
′

1(O | diva +γaν ∈ [W 1,p′(O)]∗). For V ∈
Lq1(O; R

3), we find according to Lemma 2.9 a Helmoltz decomposition V = curl Φ + a∇u
with Φ ∈W 1,q1(O; R

3) such that γν(curl Φ) = 0, and a function u ∈ W 1,q1(O).
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Therefore, using only the definition of the generalized operators curl (see also Lemma 2.5) and
diva and the continuity of the decomposition of V for all p ∈ [q′1, q1] it follows that

∣∣∣∣
∫

O

ψ · V

∣∣∣∣ ≤
∣∣∣∣
∫

O

ψ · curl Φ

∣∣∣∣ +

∣∣∣∣
∫

O

aTψ · ∇u

∣∣∣∣
≤ ‖ curlψ‖[W 1,p′(O;R3)]∗ ‖Φ‖W 1,p′ (O; R3) + ‖(diva +γaν)ψ‖[W 1,p′(O)]∗ ‖u‖W 1,p′ (O)

≤ c (‖ curlψ‖[W 1,p′(O;R3)]∗ + ‖(diva +γaν)ψ‖[W 1,p′(O)]∗) ‖V ‖Lp′ (O; R3) .

Elementary arguments show that ψ ∈ Lp(O; R
3) satisfies the embedding inequality.

(2): Let ψ ∈ Lq
′

1(O | curl +γτ ∈ [W 1,p′(O; R3)]∗)∩Lq
′

1(O | diva ∈ [W 1,p′(O)]∗). For V ∈
Lq1(O; R

3), we find according to Lemma 2.9 a Helmoltz decomposition V = curl Φ + a∇u
with Φ ∈W 1,q1(O; R

3), and a function u ∈ W 1,q1
0 (O). Therefore

∣∣∣∣
∫

O

ψ · V

∣∣∣∣ ≤
∣∣∣∣
∫

O

ψ · curl Φ

∣∣∣∣ +

∣∣∣∣
∫

O

aTψ · ∇u

∣∣∣∣
≤ ‖ curlψ + γτ‖[W 1,p′ (O;R3)]∗ ‖Φ‖W 1,p′ (O; R3) + ‖ div aψ‖

[W 1,p′

0 (O)]∗
‖u‖

W 1,p′

0 (O)

≤ c (‖ curlψ + γτ‖[W 1,p′ (O;R3)]∗ + ‖ div aψ‖
[W 1,p′

0 (O)]∗
) ‖V ‖Lp′ (O; R3) .

Assume now that the domain O is not simply connected. Then, recalling the Remark 2.10, we
denote ψi := ηi ψ for i = 1, . . . ,m, and the Lemma 2.6 in the respective case (1), (2) implies
that

(1) ψi ∈ Lq
′

1(Ui | curl ∈ [W 1,p′(Ui; R
3)]∗) ∩ Lq

′

1(Ui | diva +γaν ∈ [W 1,p′(Ui)]
∗);

(2) ψi ∈ Lq
′

1(Ui | curl +γτ ∈ [W 1,p′(Ui; R
3)]∗) ∩ Lq

′

1(Ui | diva ∈ [W 1,p′(Ui)]
∗);

As Ui is a simply connected domain for all i = 1, . . . ,m, the first step of the proof implies the
embedding for Ui, and since ψ =

∑m
i=1 ψ

i, the claim follows.

We now note a result concerning the relationship between the generalized operators in Defini-
tion 2.1 and the abstract operators in Definition 2.2.

Lemma 2.12. Let O be a bounded, simply connected Lipschitz domain, q′0 ≤ p ≤ q0 for

the q0 > 3 of Remark 2.8, and q := min{ 3p
4p−3

, 1}. Then, every ψ ∈ Lpcurl(O) belongs to

Lp(O | curl ∈ [W 1,q(O; R
3)]∗). There is ψ̃ ∈ W 1/p′,p(∂O; R

3) such that ‖ψ̃‖W 1/p′,p(∂O; R3) ≤
c ‖ψ‖Lp

curl(O), and such that the functional curlψ possesses the representation

(curlψ)(Φ) :=

∫

O

curlψ · Φ +

∫

∂O

(ν × ψ̃) · Φ, Φ ∈ W 1,q(O; R
3), γν(curl Φ) = 0 .

Proof. Let ψ ∈ Lpcurl(O). The vector field f := curlψ belongs by assumption to Lpdiv,0(O).

Thus, there is a vector potential ψ̃ ∈ W 1,p(O; R
3) such that curl ψ̃ = f = curlψ almost ev-

erywhere in O, and such that ‖ψ̃‖W 1,p(O; R3) ≤ c̄ ‖f‖Lp(O; R3) (Lemma 2.3). Since we assume

that O is simply connected, we find a function u ∈W 1,p(O) such that ψ − ψ̃ = ∇u.
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For arbitrary Φ ∈ W 1,q(O; R
3) such that γν(curl Φ) = 0, the definition of γν yields

∫
O
∇u ·

curl Φ = 0. Therefore
∫

O

ψ · curl Φ =

∫

O

ψ̃ · curl Φ =

∫

O

curl ψ̃ · Φ +

∫

∂O

(ν × ψ̃) · Φ

=

∫

O

curlψ · Φ +

∫

∂O

(ν × ψ̃) · Φ .

Using the Sobolev embedding Theorems, it follows that

∣∣∣∣
∫

O

ψ · curl Φ

∣∣∣∣ ≤ ‖ curlψ‖Lp(O; R3) ‖Φ‖Lp′ (O; R3) + ‖ν × ψ̃‖
Lp∗2 (∂O; R3)

‖Φ‖
L[p∗2]′ (∂O; R3)

≤ c ‖ψ‖Lp
curl(O) ‖Φ‖W 1,q(O; R3) .

which proves the claim.

Remark 2.13. It is only a matter of definition to show that a vector field ψ ∈ Lpdiva
(O) belongs

to Lp(O | diva ∈ [W 1,q(O)]∗) for q := min{1, 3p
4p−3

}.

In the paper [Dru07], we considered for 1 < p, r <∞ and a = Id the spaces

Wp,r
a,ν(O) :=

{
ψ ∈ Lpcurl(O) ∩ Lpdiva

(O) : γν(aψ) ∈ Lr(∂O)
}
. (22)

For the sake of generality, we also introduce

Wp,r
a,τ (O) :=

{
ψ ∈ Lpcurl(O) ∩ Lpdiva

(O) : γτ (ψ) ∈ Lr(∂O; R
3)

}
. (23)

For these spaces, we now give a more general proof of the embedding result than in [Dru07].

Corollary 2.14. Let O ⊂ R
3 be a bounded Lipschitz domain such that the Assumption 2.7

is valid for a q1 ≤ q0 (with q0 sastisfying Remark 2.8). For all p ∈ [q′1, q1], the spaces

Wp,r
a,ν(O), Wp,r

a,τ (O) embed continuously in [Ls(O)]3 for s := min
{

3 r
2
, p∗3, q1

}
.

Proof. Without loss of generality, we can assume that the domain O itself is simply connected.
Otherwise we use the argument of Proposition 2.11, coveringO with simply connected Lipschitz
domains U1, . . . , Um, and localizing ψ =

∑m
i=1 ηi ψ, with ηi ψ ∈ Wp,r

a,ν(Ui) or in Wp,r
a,τ (Ui).

For ψ in Wp,r
a,ν(O), Lemma 2.12 yields ψ ∈ Lp(O | curl ∈ [W 1,q(O)]∗), q = min{3p/(4p−

3), 1}. Owing to the estimate

|〈γν(aψ), φ〉| ≤ ‖γν(aψ)‖Lr(∂O) ‖φ‖Lr′ (∂O) ≤ c ‖γν(aψ)‖Lr(∂O) ‖φ‖W 1,3r/(3r−2)(O) ,

Lemma 2.12 also yields ψ ∈ Lp(O | diva +γaν ∈ [W 1,max{q, 3r/(3r−2)}(O)]∗). The Proposi-
tion 2.11 yields the claim.
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2.3 Compact embedding

In view of the embedding inequalities of the previous section, it is also possible to throw a bridge
to the DIV-CURL Lemma: [RRT87, GM08]. We assume thatO is a Lipschitz domain, and define
q1 > 2 the exponent of Assumption 2.7. Then, the following basic statement is valid:

Lemma 2.15. Let p ∈ [q′1, q1]. Consider sequences {wn}n∈N ⊂ Lp(O; R3) and {vn}n∈N ⊂
Lp

′

(O; R3) such that wn → w in Lp(O; R3) and vn → v in Lp
′

(O; R3) weakly. Assume that

one of the following is valid:

(1) The sequence {curlwn} is compact in [W 1,p′(O; R
3)]∗ and the sequence {(diva +γaν)(vn)}

is compact in [W 1,p(O; R
3)]∗;

(2) The sequence {(curl +γτ )(wn)} is compact in [W 1,p′(O; R
3)]∗ and the sequence {diva vn}

is compact in [W 1,p(O; R
3)]∗;

Then wn · vn → w · v weakly as measures in O.

Proof. We prove only (1) since the proof of the other statement is completely similar. Owing to
the covering/localization argument of the proof of Proposition 2.11, it is always possible to cover
O with simply connected Lipschitz domains U1, . . . , Um, such that the sequenceswin := ηiwn
and vin = ηi vn possess the same properties (1) or (2) with respect ot Ui (Lemma 2.6). Thus, it
is no loss of generality to assume O simply connected.

Then, due to Lemma 2.9, there are decompositions vn = curl Φn+∇un andwn = curl Ψn+
∇hn such that γν(curl Φn) = 0 = γν(curl Ψn) and moreover

‖Φn‖W 1,p′ (O; R3) + ‖∇un‖W 1,p′ (O) ≤ c, ‖Ψn‖W 1,p(O; R3) + ‖∇hn‖W 1,p(O) ≤ c .

Owing to standard theorems of functional analysis, we can extract subsequences and find Φ ∈
W 1,p′(O; R

3), Ψ ∈W 1,p(O; R
3), u ∈W 1,p′(O) and h ∈W 1,p(O) such that

∇Φn → ∇Φ, ∇un → ∇u weakly in Lp
′

(O)

∇Ψn → ∇Ψ, ∇hn → ∇h weakly in Lp(O)

Φn → Φ, un → u in Lp
′

(O)

Ψn → Ψ, hn → h in Lp(O) .

(24)

For ζ ∈ C∞(O) arbitrary
∫

O

ζ wn · vn =

∫

O

ζ wn · curl Φn +

∫

O

ζ wn · ∇un (25)

=

∫

O

wn · curl(ζ Φn) −

∫

O

wn · (Φn ×∇ζ) +

∫

O

ζ (curl Ψn + ∇hn) · ∇un .

Using integration by parts,
∫

O

ζ curl Ψn · ∇un = −

∫

O

un curl Ψn · ∇ζ . (26)
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Moreover
∫

O

ζ∇hn · ∇un =

∫

O

ζ vn · ∇hn −

∫

O

ζ curl Φn · ∇hn

=

∫

O

vn · ∇(ζ hn) −

∫

O

vn · ∇ζ hn +

∫

O

curl Φn · ∇ζ hn .

(27)

Thus
∫

O

ζ wn · vn =

∫

O

wn · curl(ζ Φn) +

∫

O

vn · ∇(ζ hn)

+

∫

O

∇ζ · {Φn × wn − un curl Ψn − hn∇un} .

Owing to (24), the products wn×Φn, un curl Ψn and hn∇un all weakly convege in L1(O) to
the natural limit, that is
∫

O

∇ζ · {Φn × wn − un curl Ψn − hn∇un} →

∫

O

∇ζ · {Φ × w − u curl Ψ − h∇u} .

By assumption, there are a functional W ∈ [W 1,p′(O; R
3)]∗ and a subsequence such that

curlwn → W strongly in [W 1,p′(O; R
3)]∗. As wn → w weakly in Lp, we easily obtain the

representation W (Φ) =
∫
O
w · curl Φ for all Φ ∈ W 1,p′(O; R

3) such that γν(curl Φ) = 0.
Similarily, there is V ∈ [W 1,p(O; R

3)]∗ and a subsequence such that div vn + γνvn → V
strongly in [W 1,p′(O)]∗, and again, we easily obtain the representation V (h) =

∫
O
v · ∇h. It

follows that
∫

O

wn · curl(ζ Φn) →

∫

O

w · curl(Φ ζ),

∫

O

vn · ∇(ζ hn) →

∫

O

v · ∇(ζ h) .

Thus, performing backward the manipulations (25), (26), (27), we see that
∫
O
ζ wn · vn →∫

O
ζ w · v which is the claim.

The compact embedding result for the usual spaces Lpcurl(O) ∩ Lpdiva
(O) is next given, and

generalizes well known properties ([Pic84a] or [Mon03], Th. 4.7).

Corollary 2.16. Let O ⊂ R
3 be a bounded Lipschitz domain such that the Assumption 2.7 is

valid for a q1 ≤ q0 (q0 = the exponent of Remark 2.8). Then, for all p ∈ [q′1, q1], such that

p > 6/5, and all 4/3 < r < +∞, the spaces Wp,r
a,ν(O), Wp,r

a,τ (O) embed compactly into

L2(O; R
3).

Proof. For p ≥ 6/5 and r ≥ 4/3, the spacesWp,r
a,ν(O), Wp,r

a,τ (O) are embedded inL2(O; R
3)

(Lemma 2.14).

We at first assume that O is simply connected. Let {ψn} be a uniformly bounded sequence in
Wp,r

a,ν(O). For a subsequence, ψn → ψ weakly in Lpcurl(O). Define An := ψn − ψ. Due to
Lemma 2.12 (see also the proof of Lemma 2.14), it follows that An belongs to Lp(O | curl ∈
[W 1,q(O; R

3)]∗), q = min{1, 3p/(4p − 3)}, and the sequence {An} is uniformly bounded
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in this space. Let δ > 0 be an arbitrarily ’small’ number. Owing to the Hahn-Banach theorem,
there is for each n ∈ N a Φn ∈W 1,q+δ(O; R

3) such that

‖ curlAn‖[W 1,q+δ(O; R3)]∗ = (curlAn)(Φn), ‖Φn‖W 1,q+δ(O; R3) = 1 . (28)

Owing to well-known properties of Sobolev spaces, we can extract a subsequence such that
Φn → Φ in Ls(O; R

3) for all s ≤ q∗3 and in Lt(∂O; R
3) for all t ≤ q∗2 . Using the repre-

sentation statement in Lemma 2.12, there is moreover a sequence {Ãn} uniformly bounded in

W 1,p(O; R
3), and a sequence {∇un} bounded in Lp(O; R

3) such that An = Ãn + ∇un,
and such that

(curlAn)(Φn) =

∫

O

curlAn · Φn +

∫

∂O

(ν × Ãn) · Φn →

∫

∂O

(ν × Ã) · Φ .

Now, since An → 0 weakly in Lp, we realize that Ã = ∇u, and therefore, the condition
γν(curl Φ) = 0 garanties that

∫

∂O

(ν × Ã) · Φ =

∫

O

∇u · curl Φ = 0 .

Thus, the identity (28) and the weak convergence of ψn in Lp yield

lim sup
n→∞

‖ curl(ψn − ψ)‖[W 1,q+δ(O; R3)]∗ = 0 .

We thus see that {curlψn} is compact in [W 1,q+δ(O; R
3)]∗.

On the other hand, ψn ∈ Wp,r
a,ν(O) also implies as in the Lemma 2.14 that the sequence {ψn}

is uniformly bounded in Lp(O | diva +γaν ∈ [W 1,s(O)]∗), s = max{q, 3r/(3r− 2)}. Using
the representation

(diva ψ + γaνψ)(φ) = −

∫

O

div aψ φ+

∫

O

aψ · ν φ, φ ∈ W 1,s(O) ,

We can show that {(diva +γaν)(ψn)} is compact in [W 1,s+δ(O)]∗.

We now want to apply the Lemma 2.15 with wn := ψn, vn := aψn and p = 2. In order to
obtain that {curlψn} is compact in [W 1,2(O; R

3)]∗ and {(diva +γaν)(ψn)} is compact in
[W 1,2(O)]∗, it is sufficient to verify that

q < 2, s < 2 ,

which exactly corresponds to the condition p > 6/5, r > 4/3. Owing to the Lemma 2.15, we
now obtain for ζ ≡ 1 that

∫
O
ψn · aψn →

∫
O
ψ · aψ, and the strong convergence in L2 easily

follows.

If the domainO is not simply connected, we use a localization strategy as in the proof of Proposi-
tion 2.11 or Lemma 2.15. For each domain of the coveringU1, . . . , Um, the compact embedding
of Wp,r

a,ν(Ui), W
p,r
a,τ (Ui) into L2(Ui; R

3) is valid, and the claim follows.
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2.4 Verification of the abstract condition

In order to obtain the embedding result 2.11, 2.14, and the compactness result 2.16 it remains
to verify the abstract condition 2.7. Its validity and the size of the optimal exponent q1 depend
on the matrix a and on the regularity of the domain. In the case of a general L∞ matrix, it is
possible to estimate q1 from below in function of the two numbers a0 and a1 of the condition
(13) only.

Proposition 2.17. Let O be a simply connected Lipschitz domain, and assume that a ∈
L∞(O; R

3×3
sym ) satisfies (13). Then the following is valid:

(1) The Assumption 2.7 is always valid for a q1 = q1(O, a0/a1) > 2;

(2) For all q ∈ [q′0, q0], there is a constant c = c(O, q) such that under the restriction c (1 −
a0/a1) < 1, the Assumption 2.7 is valid with q1 = q.

Proof. These are well-known properties. The first one relies on a perturbation argument orig-
inally exposed in [Mey63]. The second one is a simple application of the Banach perturbation
argument. See [Dru07] for details.

If the matrix a is piecewise uniformly continuous, it is often possible to refine the estimate in
function of the structure of the surface where a is discontinuous. This is a topic of general
interest, but in our context we shall restrict to a few geometrical structures of relevance for the
model setting described in the Introduction. The following statement is proved in [ERS07].

Proposition 2.18. Let O be a bounded Lipschitz domain. Assume that there is a domainO1 ⊂
O compactly, O1 of class C1, and set O2 := O \ O1. Assume that the matrix a is symmetric,

satisfies (13), and belongs to C(Oi; R
3×3
sym ) for i = 1, 2. Then, there is q1 > 3 such that the

Assumption 2.7 is valid. If O itself is of class C1, then every q1 < +∞ satisfies the Assumption

2.7.

Proposition 2.19. Let O be a bounded Lipschitz domain of the following structure:

(1) The boundary of O consists of two open surfaces Γ1, Γ2 of class C1 meeting at a closed

line K ;

(2) The domain O consists of two subdomains O1, O2 separated by an open surface S of

class C1 with K as its boundary.

Assume that the matrix a satisfies (13), and belongs to C(Oi; R
3×3
sym ) for i = 1, 2. Then, there

is q1 > 3 such that the Assumption 2.7 is valid.

Proof. We observe that there is a diffeomorphism of classC0,1(O) as well asC1(Oi), i = 1, 2
that maps the domain O onto the reference configuration of the paper [HDKRS08]. We apply
the results of this paper.
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Remark 2.20. These statements provide sufficient conditions for the validity of the fundamental

assumption. In particular the Proposition 2.19 allows for a geometrical setting of a certain com-

plexity. However for the setting of the introduction, characterized by the presence of an interior

triple line of contact, and assume that the matrix a belongs toC(Ωi; R
3×R

3) for i = 1, . . . , 4.

Then, only the statements of Proposition 2.17 are in general available, and there is a counterex-

ample in the paper [ERS07] that shows that q1 in general does not exceed 2 of more than an

aritrarily little quantity. Note that the latest mentioned and other similar counterexamples (see

[Mer03], [Mey63] and references) are all based on letting the ratio a0/a1 tend to zero. Therefore,

it is reasonable though not justified from the purely scientific point of view to expect that many

a particular situation in which the ratio is moderate or the geometry favourable will allow for a

significant higher integrability of the fields. This will require further investigation.

3 Application to the Maxwell equations

Throughout the section, we consider the model geometrical setting of the Introduction. Since
we want to allow for the motion of some of the conductors, we assume that a velocity vector
v : Ωc −→ R

3 is given. We denote by v̄ the extension by zero of v to Ωnc. We derive a
variational formulation of (P ) in the fashion of [LS60] starting from the equation (1) and (4):
They yield

curlH = σ (E + v ×B) + Jg in Ωc . (29)

We introduce the space of real-valued vector fields

H(Ω) := {ψ ∈ L2
curl(Ω) : curlH = 0 in Ωnc} .

as the standard test space for the problem. The relation (29) yields for ψ ∈ H(Ω) arbitrary
∫

Ωc

σ−1 curlH · curlψ =

∫

Ωc

E · curlψ +

∫

Ωc

{v × µH + σ−1Jg} · curlψ .

Since ψ ∈ H(Ω) has a vanishing rotation in the non-conductors, the conditions (3) and (7), (8)
yield for ψ smooth enough

∫

Ωc

E · curlψ =

∫

Ω

E · curlψ =

∫

Ω

curlE · ψ .

Therefore, all ψ ∈ H(Ω) satisfy the integral identity

ı ω

∫

Ω

µH · ψ +

∫

Ω

σ−1 curlH · curlψ =

∫

Ω

(v̄ × µH) · curlψ + Fg(ψ)

Fg(ψ) :=

∫

Ωc

σ−1Jg · curlψ .
(30)

Remark 3.1. For the sake of generality, we can consider also in (30) arbitrary an abstract

element Fg ∈ [H(O)]∗ that satisfies the condition

Fg(∇φ) = 0 for all φ ∈ C∞
c (Ω) . (31)
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Definition 3.2. We call a vector field H ∈ H(Ω) a weak solution to the problem (P ) if the

relation (30) is satisfied for all ψ ∈ H(Ω).

The existence of weak solutions is a well-known consequence of the Lax-Milgram Lemma and
its generalizations (see [DKS+11]). Uniqueness is valid if ‖v‖L∞(Ωc; R3) is comparatively not too
large: [Dru09a]. For the existence proof, it is important to ensure that the conditions div µH = 0
and γν(µH) = 0 are implicitely satisfied in the weak sense. Under the assumption (31) for Fg,
this is always the case. Since the test space H(Ω) contains theL2-gradient fields, we can insert
into (30) the field ψ = ∇φ, φ ∈ C1(Ω; R

3) arbitrary, and obtain with the aid of Lemma 3.1
that ı ω

∫
Ω
µH · ∇φ = Fg(∇φ) = 0.

We now turn to the regularity topic and the proof of Theorem 1.1. The Remark 2.20 shows that
even in the case of a scalar coefficient function µ, a ’large’ higher-integrability of the magnetic
field H is not to expect from the sole informations div(µH) ∈ L2(Ω), | curlH| ∈ L2(Ω) and
γν(µH) = 0.

Lemma 3.3. Let H ∈ H(Ω) be a weak solution to (P ) in the sense of Definition 3.2 with

Jg ∈ L2(Ωc; C
3). Then, there is r > 2 such that H ∈ Lr(Ω; R

3). If µ is a sufficiently small

perturbation of the identity, the same is valid for a r > 3.

Proof. Obviously, H ∈ W2,∞
µ,ν (Ω) (cf. (22)). In view of Proposition 2.17, the Assumption 2.7 for

a = µ is valid in general for a q1 > 2, and for a q1 > 3 if µ is a small perturbation of the identity.
Thus, Corollary 2.14 yields the statement.

It turns out that the problem of the higher integrability of the current J = curlH has more often
a positive answer, due to the following Remark.

Remark 3.4. For the setting of the introduction, there is always a q1 > 3 such that the Assump-

tion 2.7 is valid for O = Ωc and every piecewise continuous a satisfying (13). Indeed, the set

Ωc has the structure Ωc = G ∪ Ω3 (G = Ω1 ∪ Ω2 ∪ S). The set Ω3 is a domain with Lipschitz

boundary. Thus, owing to Proposition 2.18, there is q1 > 3 such that the Assumption 2.7 is valid

for O = Ω3. The set G has precisely the structure described in Proposition 2.19. Again, there

is q1 > 3 such that the Assumption 2.7 is valid for O = G.

Lemma 3.5. Assume that H ∈ H(Ω) is a weak solution to (P ) in the sense of Defini-

tion 3.2 under the assumptions of Theorem 1.1. Assume that Jg ∈ Lq(Ωc0; C
3) for a 2 <

q ≤ min{6, q1} with q1 > 3 according to Remark 3.4. Assume moreover that that v ∈
W 1,∞

0 (Ωc; R
3). Then the auxiliary vector field w := σ−1 curlH ∈ L2(Ω; C

3) belongs to

L2(Ω; C
3 | curl ∈ [W 1,q′(Ωc; C

3)]∗ and to L2
divσ +γσν ,0

(Ω; C
3). Moreover

‖ curlw‖[W 1,q′ (Ωc; C3)]∗ ≤ c ((1 + ‖v‖W 1,∞
0 (Ωc; R3)) ‖Fg‖[H(Ω)]∗ + ‖Fg‖[W 1,q′ (Ω; R3)]∗) .

Proof. For all ψ ∈ H(Ω), we rewrite the relation (30) in the form

∫

Ω

w · curlψ = −

∫

Ω

ı ω µH · ψ +

∫

Ω

v̄ × µH · curlψ + Fg(ψ) .
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Consider Φ ∈ W 1,2(Ωc; R
3) such that γνc(curl Φ) = 0. We extend curl Φ by zero outside of

Ωc and we find a potential Φ̃ ∈ W 1,2(R3; R
3) such that curl Φ̃ = curl Φ in Ωc and curl Φ̃ = 0

in R
3 \ Ωc. For all 1 < p ≤ 2, the Lemma 2.3 moreover implies that

‖Φ̃‖W 1,p(R3; R3) ≤ c ‖ curl Φ‖Lp(Ωc; R3) .

Observe in particular that Φ̃ ∈ H(Ω), and follows that

∣∣∣∣
∫

Ωc

w · curl Φ

∣∣∣∣ =

∣∣∣∣
∫

Ωc

w · curl Φ̃

∣∣∣∣ ≤ ω ‖µH‖L2(Ω) ‖Φ̃‖L2(Ω)

+ ‖v × µH‖Lq(Ωc) ‖ curl Φ̃‖Lq′ (Ωc)
+ ‖Fg‖[W 1,q′ (Ω; R3)]∗ ‖Φ̃‖W 1,q′ (Ω; R3)

≤ c (‖µH‖L2(Ω) + ‖v × µH‖Lq(Ωc) + ‖Fg‖[W 1,q′ (Ω; R3)]∗) ‖Φ‖W 1,q′ (Ωc)
. (32)

Consider for aribtary i ∈ {1, 2, 3} the auxiliary vector field b := viH .

‖ curl b‖L2(Ωc) ≤ ‖v‖L∞ ‖ curlH‖L2 + ‖∇vi ×H‖ ≤ ‖vi‖W 1,∞
0 (Ωc)

‖H‖L2
curl(Ω)

‖ div µb‖L2(Ωc) = ‖µH · ∇vi‖L2(Ωc) ≤ ‖vi‖W 1,∞
0 (Ωc)

‖H‖L2(Ωc)

γνc(b) = vi γνc(µH) = 0 .

Thus, b ∈ W2,∞
µ, ν (Ωc). Due to Remark 3.4, the Lemma 2.14 yields

‖b‖Lq(Ωc) ≤ c ‖v‖W 1,∞
0 (Ωc; R3) ‖H‖L2

curl(Ωc) .

Thus vH belongs to Lq(Ωc; C
3) with corresponding continuity estimate, and (32) implies that

∣∣∣∣
∫

O

w · curl Φ

∣∣∣∣
≤ c ((1 + ‖v‖W 1,∞

0 (Ωc; R3)) ‖H‖L2
curl(Ω) + ‖Fg‖[W 1,q′ (Ω; R3)]∗) ‖Φ‖W 1,q′ (Ωc; R3)

≤ c ((1 + ‖v‖W 1,∞
0 (Ωc; R3)) ‖Fg‖[H(Ω)]∗ + ‖Fg‖[W 1,q′ (Ω; R3)]∗) ‖Φ‖W 1,q′ (Ωc; R3)

According to the Definition 2.2 of the weak rotation operator, we obtain thatw ∈ L2(Ωc; C
3 | curl ∈

[W 1,q′(Ωc; R
3)]∗) with inequality. On the other hand, div(σ w) = div curlH = 0 in the weak

sense, and since curlH = 0 in Ω\Ωc, γν(curlH) = 0 and we obtain that (divσ +γσνc)w =
0.

Thus, we obtain the following result directly from Lemma 2.11.

Corollary 3.6. Assumptions of Lemma 3.5. Then, there is q > 3 such that for all p ∈ [2, q],
every weak solution to (P ) with Jg ∈ Lp(Ωc0; C

3) satisfies curlH ∈ Lp(Ω; C
3) with estimate

‖ curlH‖Lp(Ω; C3) ≤ c ‖Jg‖Lp(Ωc; C3) .

We now investigate the regularity of the electric field E. The recovering method for the field E
from the weak problem ’in H’ was exposed already in [LS60].
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We first find a vector potentialA ∈ W 1,2(R3; C
3) such that curlA = µH in Ω and curlA = 0

in R
3 \ Ω. Since R

3 \ Ω is simply connected, the latest implies that A = ∇p in R
3 \ Ω, with a

function p ∈W 2,2(R3 \ Ω). Thus, for ψ ∈ H(Ω) arbitrary,

∫

Ω

µH · ψ =

∫

Ω

curlA · ψ =

∫

Ω

A · curlψ + 〈γτ (ψ), A〉

=

∫

Ω

A · curlψ + 〈γτ (ψ), ∇p〉 .

If we now choose a smooth function ζ which on ∂Ω is equal to one, and vanishes uniformly
outside of a neighbourhood that does not intersect Ωc, and an extension p̃ ∈ W 2,2(R3) such
that p̃ = p in R

3 \ Ω (Extension theorem: [KJF77], 6.5.1), we can use the representation (15)
for the operator γτ yields

〈γτ (ψ), ∇p〉 = 〈γτ (ψ), ∇(ζ p̃) =〉 =

∫

O

curlψ︸ ︷︷ ︸
=0 on supp(ζ)

·∇(p̃ ζ) = 0 .

Thus
∫

Ω
µH · ψ =

∫
Ω
A · curlψ. Owing to the weak formulation (30), we easily show using

Lemma 2.3 that
∫

Ωc

{ı ω A+ σ−1 curlH − v̄ × µH − σ−1Jg} ·  = 0

for all  ∈ L2(Ωc; R
3) : div  = 0, γν() = 0 weakly with respect to Ωc .

The classical Helmoltz decomposition of L2(Ωc; R
3) implies that there is χc ∈W 1,2(Ωc) such

that

ı ω A+ σ−1 curlH − v̄ × µH − σ−1Jg = ∇χc a. e. in Ωc . (33)

To obtain the electric field outside of the conductors, we note that γν(curlA) = γν(µH) = 0
with respect to ∂Ω. Thus A = ∇χ0 on ∂Ω with χ0 ∈ W 3/2,2(∂Ω; C). We introduce the weak
solution χnc ∈ W 1,2(Ω \ Ωc; C) to the Dirichlet problem χnc = χc on ∂Ωc, χ

nc = χ0 on ∂Ω
and

∫

Ωnc

ε∇χnc · ∇φ =

∫

Ωnc

ı ω εA · ∇φ, for all φ ∈ W 1,2
0 (Ωnc) . (34)

We then define E := −ı ω A+ ∇χnc in the nonconductors.

Corollary 3.7. Assumptions of Theorem 1.1. Define r > 2 as in Lemma 3.3 and q > 3
as in Lemma 3.5. The electric field belongs to Ls(Ω; C

3), s = min{q, p, r∗3} whenever

curlH, Jg ∈ Lp(O; C
3). Moreover curlE ∈ Lr(Ω; C

3).

Proof. Owing to Lemma 3.3, the field µH belongs toLr(Ω; C
3). Therefore, the vector potential

A can be chosen in W 1,r(R3; C
3). Since the identity (4), (33) is valid in the conductors, we

directly obtain that E ∈ Lp(Ωc; C
3) whenever curlH, Jg ∈ Lp(O; C

3). On the other hand,
we also obtain from (33) for the scalar potential that ∇χc ∈ Ls(Ωc; C

3) with s = min{p, r∗3}.
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The trace of χc on the boundary of the domain G remains of class W 1/s′,s(∂G; C) for s =
min{p, r∗3}.

Since the set Ωnc is Lipschitz and ε ∈ C(Ωnc; C
3 × C

3), the Proposition 2.18 implies that the
Asssumption 2.7 is valid for O = Ωnc and a = ε with a q1 > 3. Thus, the gradient of the
solution χnc to the problem (34) belongs to Ls̄(Ωnc; C

3) with s̄ = min{s, q1}, and we obtain
that E ∈ Ls̄(Ωnc; C

3). Since curlE = −ı ω µH , the last claim is obvious.

A Extension and approximation properties

Let O ⊂ R
3 be a bounded Lipschitz domain, and 1 < p < +∞. In this section we prove a few

elementary properties extension and density properties for the spaces Lpdiv(O) and Lpcurl(O).
The most of it is of course well known from all insiders: see [Mon03], Chapter 3 for an impressive
collection of theorems about the Hilbert space case. Nevertheless it is often difficult to quote
books our papers that exactly contain the statements needed, and moreover often interesting to
provide alternative proofs.

We begin with the space Lpdiv(O). Due to the close relation of the divergence operator to
the gradient operator, it turns out that everything follows from the basic properties of Sobolev
spaces.

Lemma A.1. Let U ⊆ R
3 be a Lipschitz domain.

(1) For all f ∈ [W 1,p(U)]∗, there are g ∈ Lp
′

(U) and h ∈ Lp
′

(U ; R
3) such that ‖g‖p

′

Lp′ (U)
+

‖h‖p
′

Lp′ (U ; R3)
= ‖f‖p

′

[W 1,p(U)]∗ and such that

f(φ) =

∫

U

{g φ+ h · ∇φ}, for all φ ∈W 1,p(U) . (35)

(2) For all f ∈ [W 1,p(U)]∗, such that f(1) = 0 there is h ∈ Lp
′

(U ; R
3) and a constant

c = c(U, p) such that ‖h‖Lp′ (U ; R3) ≤ c ‖f‖[W 1,p(U)]∗ and such that

f(φ) =

∫

U

h · ∇φ, for all φ ∈ W 1,p(U) . (36)

Proof. This is a standard exercise of functionalanalysis. We prove only the second statement.
We denote W 1,p

M (U) := {φ ∈ W 1,p(U) :
∫
U
φ = 0}. Due to the Poincaré inequality,

the W 1,p-gradient half-norm ‖φ‖W 1,p
M (U) := ‖∇φ‖Lp(U ; R3) is a norm on W 1,p

M (U). Consider

a mapping T ∈ L (W 1,p
M (U), Lp(U ; R

3)) defined via Tφ := ∇φ. The range of T is a
closed subspace of Lp(O; R

3). For y ∈ Range(T ), there is a unique φ ∈ W 1,p
M (U) such

that y = Tφ, and moreover ‖y‖Lp(U ; R3) = ‖φ‖W 1,p
M (U). Thus, calling c0 the constant of the

Poincaré inequality the functional G(y) := f(φ) satisfies

|G(y)| = |f(φ)| ≤ ‖f‖[W 1,p(U)]∗ ‖φ‖W 1,p(U)

≤ c0 ‖f‖[W 1,p(U)]∗ ‖∇φ‖Lp(U ; R3) = c ‖f‖[W 1,p(U)]∗ ‖y‖Lp(U ; R3) .
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It follows that ‖G‖[Range(T )]∗ ≤ c ‖f‖[W 1,p(U)]∗ . Owing to the Hahn-Banach Theorem, there
is a norm preserving extendion for the functional G to the entire Lp(U ; R

3). Thus, applying
the reprentation theorem for [Lp(U ; R

3)]∗, we find h ∈ Lp
′

(U ; R
3) such that ‖h‖Lp′ =

‖G‖[Lp]∗ = ‖G‖[Range(T )]∗ and such that G(y) =
∫
O
h · y for all y ∈ Lp(O; R

3). Thus, for
y = Tφ, φ ∈W 1,p(U), we obtain the representation (36).

Corollary A.2. Let O be a Lipschitz domain, 1 < p < ∞, and assume that Õ is a bounded

domain such that O ⊂ Õ compactly. There are

(1) A linear bounded extension operator Ep ∈ L (Lpdiv(O), Lpdiv(Õ)), such that Epψ = ψ in

O and γν̃(Epψ) = 0.

(2) A linear bounded extension operator Ep ∈ L (Lpdiv,0(O), Lpdiv +γν ,0
(Õ)), such that Epψ =

ψ in O.

Proof. (1): Let ψ ∈ Lpdiv(O). Owing to the definition of the operator γν , the operator γν(ψ)
belongs to [W 1/p,p′(∂O)]∗. Due to the trace theorem, the operator γν(ψ) ◦ trace belongs to
W 1,p′(Õ \ O). Applying the Lemma A.1, we find g ∈ Lp(Õ \ O) and h ∈ Lp(Õ \ O; R

3)
such that

∫

Õ\O

{g φ+ h · ∇φ} = −〈γν(ψ), φ〉, for all φ ∈W 1,p′(Õ \O) .

In particular for φ ∈W 1,p′(Õ), the representation formula (16) implies that

∫

Õ\O

{g φ+ h · ∇φ} = −〈γν(ψ), φ〉 = −

∫

O

{divψ φ+ ψ · ∇φ} .

By definition, the vector field Epψ := ψ inO, Epψ := h in Õ\O possesses the weak divergence
div Epψ = χO divψ + χÕ\O g. Thus, Epψ ∈ Lpdiv(Õ \O). Choosing functions with compact

support in Õ \O, we easily show that γν̃(Epψ) = 0. It follows from the estimate in Lemma A.1
that

‖g‖p
Lp(Õ\O)

+ ‖h‖p
Lp(Õ\O; R3)

= ‖γν(ψ)‖p
[W 1,p′(Õ\O)]∗

≤ c ‖ψ‖p
Lp

div(O)
,

which prove that Ep ∈ L (Lpdiv(O), Lpdiv(Õ)).

(2): Let ψ ∈ Lpdiv,0(O). Then, the operator γν(ψ) satisfies −〈γν(ψ), 1〉 = 0. Applying the

Lemma A.1 we find h ∈ Lp(Õ \O; R
3) such that

∫

Õ\O

h · ∇φ = −〈γν(ψ), φ〉 = −

∫

O

ψ · ∇φ φ ∈ W 1,p′(Õ) .

The claim follows.

Corollary A.3. The set C∞(O; R
3) is dense in Lpdiv(O).
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Proof. For ε > 0, denote φε the kernel of the standard Dirac sequence. For ψ ∈ Lpdiv(O), we
define ψε := φε ? Epψ ∈ C∞

c (R3). Then ψε → ψ in Lp(O; R
3). Since div Epψ ∈ Lp(R3)

has also compact support, we easily verify that

divψε = φε ? (div Epψ) → div Epψ in Lp(R3; R
3) .

For the spaces Lpcurl(O), we do not see the means of reducing the elementary extension and
approximation properties to the ones of Sobolev functions.

Proposition A.4. Assume that Õ is a bounded domain such thatO ⊂ Õ compactly. Then there

is a linear bounded extension operator Ep ∈ L (Lpcurl(O), Lpcurl(Õ)), such that Epψ = ψ in

O and γτ (Epψ) = 0 with respect to ∂Õ.

Proof. Since O is a Lipschitz domain, we can find a finite covering U1, . . . , Um of a neigh-
bourhood of Bρ(∂O) with open smooth sets {Ui}, and a family of bi-Lipschitz transformations
{F i}i=1,...,m, F i ∈ C0,1(Ui, R

3) such that the portion Γi := ∂O ∩ Ui of the boundary is
mapped onto the two-dimensional unit ball B1(0; R

2), such that the domain O−
i := O ∩ Ui

is mapped onto the cylinder Z− := B1(0; R
2)×] − 1, 0[ and the domain O+

i := Ui \ O is

mapped onto Z+ := B1(0; R
2)×]0, 1[. Define U0 := O \

⋃m
i=1 Ui, and η0, . . . , ηm be a

partition of unity for U0, . . . , Um.

For ψ ∈ Lpcurl(O), we denote ψi := ηi ψ ∈ Lpcurl(O). Using for i ≥ 1 the mapping F i and the

formula (3.77) in [Mon03], we can introduce a vector field ψ̂i ∈ Lp(Z−; R
3) via

ψ̂i(x̂) := (dF i(x̂))Tψi(F i(x̂)) , (37)

where x̂ denote the reference coordinates in the zylinder Z := B1(0; R
2)×] − 1, 1[. The

transformation (37) is known to be curl conforming. Indeed, [Mon03], Corollary 3.58 shows that

ĉurlψ̂i = det(dF i) (dF i)−1ψi ◦ F i ∈ Lp(Z−; R
3) .

Thus, ψ̂i ∈ Lp
dcurl

(Z−). In order to extend the vector field, we define a reflexion R(x̂) : Z− →

Z+ via Ri(x̂) := x̂i for i = 1, 2 and R3(x̂) := −x̂3. We define an extended vector ψ̂i ∈
Lp(Z; R

3) setting

ψ̂i(Rx̂) := (dR(x̂))−T ψ̂i(x̂) =

{
ψ̂ij(x̂) for j = 1, 2

−ψ̂ij(x̂) for j = 3 .
(38)

This is again a curl conforming transformation, and we verify that

∫

Z

ψ̂i · ĉurlΦ̂ =

∫

Z

ξ · Φ̂ with ξ :=

{
ĉurlψ̂i in Z−

det(dR)−1 (dR)ĉurlψ̂i ◦R in Z+ .

Thus, ψ̂i ∈ Lp
dcurl

(Z). We transfom back according to (37), and obtain an extension vector

ψi ∈ Lpcurl(Ui). In order to obtain Ep ∈ L (Lpcurl(O), Lpcurl(Õ)), we choose a smooth function
ζρ that vanishes outsideBρ(O)∩Õ and is equal to one onO. We define Epψ := ζρ

∑m
i=0 ψ

i ∈
Lpcurl(R

3).
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Exactly in the manner of Corollary A.3, we can now prove:

Corollary A.5. The set C∞(O; R
3) is dense in Lpcurl(O).

Of importance are also approximation results for functions with compact support. We prove only
the one statement which we use in the paper.

Lemma A.6. Assume that there is a Lipschitz continuous diffeomorphism F ∈ C0,1(R3; R
3)

such that ∂O = F (∂B1(0)). The setC∞
c (O; R

3)∩Lpcurl,0(O) is dense in Lpcurl+γτ ,0
(O), and

C∞
c (O; R

3) ∩ Lpdiv,0(O) is dense in Lpdiv +γν ,0
(O).

Proof. We prove for 1 < p < +∞ that every vector field ψ ∈ Lpdiv(O) such that divψ = 0
and γν(u) = 0 can be approximated by a sequence {un} ⊂ C∞

c (O; R
3) in the norm of

Lpdiv(O). The proof is again based on divergence/rotation preserving coordinate-transformations
(see [Mon03], pages 77–80). By assumption, there is a Lipschitz continuous diffeomorphism F
mapping the unit ball onto O. For ψ ∈ Lpdiv(O), the vector field ψ̂ := det(dF ) dF−1ψ ◦ F

belongs to Lpdiv +γν̂ ,0
(B1(0)). We extend ψ̂ by zero to R

3 \B1(0), and for x̂ ∈ R
3 and n ∈ N,

we define ψ̂n(x̂) := ψ̂((1 − 1/n) x̂), which is a divergence-free vector field in the reference
coordinates, whose support is contained in B1−1/n(0). We obtain a divergence free Lp vector

field with compact support in O via wn ◦ F := 1
det(dF )

dF ψ̂n, and a smooth solenoidal vector

field in R
3 via

ψn(x) := (φ1/4n ? wn)(x) ,

where φ is the standard convolution kernel. Using standard properties of the Dirac-convolution
sequence, it is readily verified that ψn → ψ in Lp(O; R

3) and Lpdiv(O). Similar arguments are
valid for the density in Lpcurl+γτ ,0

(O).
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