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ABSTRACT. We consider the estimation problem of an unknown drift parameter within classes of
non-degenerate diffusion processes. The Maximum Likelihood Estimator (MLE) is analyzed with
regard to its pathwise stability properties and robustness towards misspecification in volatility and
even the very nature of noise. We construct a version of the estimator based on rough integrals
(in the sense of T. Lyons) and present strong evidence that this construction resolves a number of
stability issues inherent to the standard MLEs.

1. INTRODUCTION

Let W be d-dimensional Wiener process and A € V := L (R? R¢). Consider sufficiently regular
h:R?—R?and £:R? — L (RY,R?) so that
(1.1) dX, = Ah(X;)dt +2(X;)dw,

has a unique solution, started from Xy = x¢. The important example of multidimensional Ornstein-
Uhlenbeck dynamics, for instance, falls in the class of diffusions considered here (take h(x) =
x,g = 0 and constant, non-degenerate diffusion matrix ¥). We are interested in estimating the
drift parameter A, given some observation sample path {X; (0) = @ : t € [0,T]}. More precisely,
we are looking for a Maximum Likelihood Estimator (MLE) of the form

AT :AT ((D) :AT(X) ev

relative to the reference measure given by the law of X, viewed as measure on pathspace, in the
case A =0.

Example 1. (Scalar Ornstein-Uhlenbeck process) Taked =1, h(x) =x,L =0 >0andA=a cR.
Then it is well-known that
A X} —xj—o’T
(1.2) Ar(X) = T)TCO—G
2 [y X7 dt

Despite its simplicity, the above example exhibits a few interesting properties: First, it is not well-
defined for every possible path, and indeed X = 0 leaves us with an ill-defined division by zero.
Secondly, provided we stay away from the zero-path, we have pathwise stability in the sense that
two observation X and X which are uniformly close on [0, T] plainly give rise to close estimations
Ar(X)~Ar(X). At last, the estimator depends continuously on the parameter &, despite the fact
that pathspace measure associated to different values of ¢ are actually mutually singular.

In order to understand such stability question in greater generality, we now review the MLE con-
struction for a general diffusion as given in (1.1). To this end, recall that by by Girsanov’s theorem,
under the standing assumption that C := XX is non-degenerate, the corresponding measures
on pathspace, say P4 and P, are absolutely continuous so that the MLE method is applicable.
Standard computations, partially reviewed below, show that one has

(1.3) IrAr = St € V*,

where I € L(V,V*). (Of course, we may identify R? and V with their duals; note also that V* and
L(V,V*) respectively can be thought of as (1,1) resp. (2,2)-tensors.). In fact, in tensor notation
(cf. Corollary 12) we find

T
Vo3 ST:/ h(Xs) @ C (X,) dXs,
0

T
L(V,V") 3 IT:/O h(X,) ®C\(X,) @h(X,) ds,
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where the dX-integral is understood in Ité6 sense. Of course, degeneracy may be a problem, for
instance when h = 0. That being said, and although we are short of a reference, we believe it is
folklore of the subject that, for reasonably non-degenerate i (such as 4 (x) = x in the Ornstein-
Uhlenbeck case) one has a.s. invertibility of I and thus an a.s. well-defined estimator

(14) AT ((O) :IflsT.

May that be as it is, below we shall also give a simple sufficient condition on & under which this
holds true. Let us also note that St involves a stochastic (here: 1t6) integral so that St is also only
defined up to null-sets. At this stage, one has (at best) a measurable map A7 : C ([O, T] ,Rd) -V

with the usual null-set ambigui’[y.1 The following questions then arise rather naturally - and our
attempt to answer them form the subject of this paper.

(Q1) Under what conditions on & (and ) is It = I (X (w)) actually invertible? A minimum re-
quest would be that invertibility holds for P*-a.e. X (0) = , but is there perhaps a pathwise
condition?

(Q2) Assuming suitably invertibility of I7, is the estimation problem well-posed? In other words, if
X ~ X (e.g. in the sense that SUP;c(o,7] }Xt —X’,\ << 1 or perhaps a more complicated metric)
is it true that

(Q3) Write A‘T’ to indicate the MLE under volatility specification ¥ = ol. Assume we are not
entirely certain about the value of o. Is it true - a rather sensible request from a user’s
perspective - that

o~6 = AT ~AS?

From a stochastic analysis perspective, (Q3) is a difficult question also because the respective
pathspace measures are singular whenever ¢ # 6. Hence, it is not even clear if one is allowed
to speak Bimultaneouslysf AS for all .2 The situation becomes even worse if one considers all
possible volatility specifications in a class like

Z:={TeLip’:c <2y <cl}.

Indeed, this space is infinite-dimensional, leaving no hope to "fix" things with Kolmogorov type
criteria. On the other hand, explicit computations (e.g. in the Ornstein-Uhlenbeck case, Example
1 and Section 6) show that A is extremely well-behaved in . Hence, we can certainly hope for
some sort of robustness of the MLE with respect to the volatility specification.

The last question we would like to investigate is about misspecification of the noise W. In appli-
cations the assumption of independent increments of W is a strong limitation and a non-trivial
dependence structure in time appears in many real data examples.

(Q4) Suppose that the model is misspecified in the sense that (1.1) is in fact driven by a fractional
Brownian motion W# with Hurst index H. Is the MLE A7 robust in some sense (e.g. when
H ~ 1/2) with respect to this change of the model?

1The situation is reminiscent of SDE theory: the I1t6-map is also a measurable map on pathspace, in general only
defined up to null-sets.

2The situation is reminiscent of stochastic flow theory: for each fixed starting point, SDE solution may be (well-)
defined (up to null-sets), but it is far from clear - and not true in general in infinite dimension! - that one can define
solutions for all starting points on a common set of full measure. The financial theory of uncertain volatility (see [1]
and [11]) also poses related problems.
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Our main theorem provides reasonable answers to question (Q1) to (Q3) based on rough path
theory [14, 15, 5], a short review of which will be given in section 2 below. Let us insist that one
cannot obtain a similar result without rough path metrics and in Section 6.1 below we give an
explicit counterexample. Question (Q4) will be addressed in Section 4.

Theorem 2. (i) Define
(1.5) Ry = {X eC ([O,T] ,Rd> cspan {h(X,) 11 €[0,T]} = Rd} .

Assume that the set of critical points of h has no accumulation points (i.e. on every bounded set,
there is only a finite set of points at which detDh (x) = 0). Then, for every fixed, non-degenerate
volatility function ¥

POX (R,) = 1.
As a consequence, It = It (o) is P**-almost surely invertible so that At = Ar (@) := I ' St(o)
is POX-almost surely well-defined.
(i) Fix o € (1/3,1/2). Then, P*-almost surely, X (®) lifts to a (random) geometric o-Hélder
rough path, i.e. a random element in the rough path space @g ([0, T ,Rd) (as reviewed in the
next section), via the (existing) limit in probability

X () = (X (0) . X(0)) = lim (X”,/X”@dX”)

where X" denotes dyadic piecewise linear approximations to X.
(iii) Define D c 2% (10,T],R?) by
D={(X,X)e ZJ:X €Ry}.
Then, under the assumption of (i), for every fixed, non-degenerate volatility function X,
P> (X (w) € D) = 1.
(iv) There exists a deterministic, continuous [with respect to ac-Hblder rough path metric] map

n D N Rd xd
AT . a
X — AT (X)
so that, for every fixed, non-degenerate volatility function ¥,
(1.6) pO= [AT (X (0)) = Ar(0)] = 1.

In fact, Ay is explicitly given, for (X,X) € D C D¢, by
A(X7X) = I;l (X)ST(X7X)7
where

T
IT(X)-—/ h(Xs) ©C (Xs) @ h(X,) ds,

r(X,X); _/ hi(X X,) 0 dX, —-/ THD(C; ") (X, Z(X,)Z(X,)T]ds

and the odX /nz‘egral3 is understood as a (deterministic) rough integration against X = (X, X).
(v) The map Ar is also continuous with respect to the volatility specification. Indeed, fix c > 0 and
set
E:={TZeLip’:c 1<2xl <ci}.
Then A viewed as map fromD x & — R< s also continuous.

3_.. often written as dX integral in the literature on rough integration ...
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Let us conclude this introduction with several remarks.

Remark 3. The continuity statement in (iv) and (v) also hold with respect to p-variation metric,
p € (2,3). This and other rough path metrics are discussed in Section 2.

Remark 4. By (1.6) the well-known asymptotic properties of the maximum likelihood estimator
like consistency and asymptotic normality (see for example [9]) directly apply to Ar.

Remark 5. We briefly discuss in what sense Theorem 1 provides answers to (Q1)-(Q3) above:

(Q1) Theorem 1(i) gives a pathwise condition for existence of the MLE in terms of the drift coef-
ficient h.

(Q2) The discussion in Section 6.1 shows that the classical MLE violates the pathwise stability
property that (Q2) asks for. In Theorem 1 (ii) to (iv) we show that by considering the signal X
as a rough path we can construct a continuous estimator Ay that overcomes this difficulty.

(Q3) The question of stability in the volatility coefficient o can also be solved by moving to a
rough path space. Indeed, Theorem 1 (v) shows that A‘T’ is continuous with respect to the
observations and the volatility coefficient. Here, the pathwise approach is crucial, since in
the classical setting it is not even clear how to define the estimator as a mapping in both
variables whereas in the rough paths approach this is an obvious consequence.

Remark 6. (Discrete and continuous observations as rough paths)

While our answer to (Q2) above is best possible, in the sense that one cannot hope for pathwise
stability without introducing rough paths (see the explicit counterexample in Section 6.1), it leaves
the user with the question how exactly to understand discrete or continuous data as a rough path.

In essence, this amounts to measure the area associated to some (irregular) observation sample
path. In this direction, one could imagine cases where the measurement of the area is feasible
within the physical system under observation (see for instance [6], where the stochastic area to
the trajectory of a Brownian particle with electric charge is linked to the presence of a magnetic
field). That said, the understanding and classification of real world systems which allow measure-
ments on the level of rough paths is a complex and difficult problem. Let us therefore adopt a
more pragmatic point of view and even give up on the idea of continuous observation. Instead,
we assume given discrete, but high-frequency, data, say N data points on some unit observation
time horizon, say x = {x; : i = 0,...,N}. There is a natural inclusion map i of such a data point
into the space of Lipschitz continuous paths on [0, 1]; simply by piecewise linear interpolation of
the data observed at times 0 =ty < t;.... < ty = 1. This inclusion map is continuous and so is the
resulting estimator*
x = i(x) = A(i(x),

simply because all integrals appearing in the estimator depend now continuously (in the strong
Lipschitz topology!) on i(x). More precisely, given x and € > 0 there exists § s.t. |[x —y| < 0
implies |A(i(x)) — A(i(y))| < €. But in fact, § will also depend on D = (t;) and in fact tend to
zero as mesh(D) — 0. In other words, the continuity properties are getting worse and worse 5
as N — oo (or mesh(D) — 0), which is of course consistent with the lack of (pathwise) continuity
in the continuous time setting. The point is that, with discrete (high-frequency) data, one has
continuous estimators in principle, but with potentially terrible modulus of continuity in practice.
One may then be better off to construct (i(X), [i(X)®di(X)) as rough path, whose a-Hélder
regularity, with oo < 1/2, is uniformly bounded, as mesh(D) — 0.

4. as given in (iv) of Theorem 2, but with odX = di(x) understood as Riemann-Stieltjes differential, well-defined

since i(x) has bounded variation.
5An explicit computation in this spirit is found in [17].
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Remark 7. The interplay of statistics and rough paths is very recent. The first and (to our knowl-
edge) only paper is [16] where the authors consider general rough differential equations driven
by random rough paths and propose parametric estimation of the coefficients based on Lyons’
notion of expected signature. It would then appear that the present paper constitutes the first
attempt to use rough path analysis towards robustness questions related to statistical estimation
of classical diffusion processes.

Acknowledgement 1. J. Diehl is supported by SPP 1324. PK. Friz has received funding from
the European Research Council under the European Union’s Seventh Framework Programme
(FP7/2007-2013) / ERC grant agreement nr. 258237.

2. BRIEF REVIEW OF ROUGH PATHS

In this section we introduce some basic notions from rough paths theory. For a detailed presen-
tation in @ much more general setting we refer to [14, 15, 5]. We start by giving a definition of
Hélder continuous rough paths that is suitable for our purpose. Let X : [0,7] — R? be a smooth
path and define the second order iterated integrals X : [0,7]*> — RY ® R of X by

t
Xs,t ::/ Xs,r®era
s

where X, = X, — X, are the increments of X. Smoothness of X is understood such that the
integral in the definition of X is well-defined. Then the pair (X, X) has the analytic property

[ Kl S =]
(ANA) { Xor] < It — 52

for any a0 < 1 and satisfies the algebraic relation

(ALG) : Xs,t + X5 QX u+ Xt,u = Xs,m

(ALG/) 2 Sym (Xs,t) = Xs,t ®Xs,t7
for s,¢,u € [0,T]. More generally speaking, these two conditions are used to define a rough path
in RY.
Definition 8. Fix a € (1/3,1/2]. Any X = (X,X) for which (ANA) , + (ALG) holds is called (weak
a-Hélder) rough path. If also (ALG') is satisfied call it geometric. The space of a-Hdlder rough

paths and its subset of geometric rough paths are denoted by 2% ([0,T],R?) and 2¢ ([0,T],R9)
respectively.

Rough paths arise naturally as sample paths of stochastic processes. The basic example is a
d-dimensional Brownian motion B enhanced with its iterated integrals

1
IEBs,t = / Bs,r®dBr € RdXda
s

where the integral on the right-hand side can be understood in 1t6 or Stratonovich sense leading
to 1té or Stratonovich enhanced Brownian motion, respectively. Then with probability one B =
(B,B) € 2*([0,T],R?) for any o € (1/3,1/2) and T > 0. We also say that we can lift B to a
rough path B by adding the second order terms B. A similar rough paths lift is given in our main
result for the solution of (1.1).

To investigate stability questions for the parameter estimation problem in a pathwise sense we
need suitable metric on 2% ([0,7],R?). It turns out that an adequate metric on 2% ([0,T],R¢)
can be defined from (ANA) , as follows.



6

Definition 9. ForX,Y € 2% ([0,T],RY) the a-Hélder rough path metric is given by

X, —Y Xe =Y
Pa(X,Y) := sup —’ oLl (i’t| + —| S o
s#t€[0,T) |t - S| s#t€[0,T] |t - S|

Remark 10. In the original formulation of rough paths theory in [12] paths were measured in p-
variation instead of the o.-Hélder distance that we use here. Note that the results in this work can
equivalently be formulated in the p-variation setting. This holds true in particular for the continuity
of the map Ar in Theorem 2(iv) and (v). We have chosen here the a.-Holder formulation, since
most readers will already be familiar with classical Hélder spaces.

We conclude this section with rough integrals and its relation to stochastic integration. Let &
be a partition of [0,7] and denote by || the length of its largest element. For X = (X,X) €
2% ([0,T],R?) and a > 1/3 we aim at integrating F (X) for F € €2(RY,.Z(R¢,R™)) against X. It
is well known that classical Young integration is possible for expressions of the form

/O "R dx,

only if X € €% for a > 1/2. This excludes for example paths of Brownian motion which are of
order o < 1/2. This barrier was overcome by rough paths theory by taking into account “second
order” terms. Indeed, one can show that the limit in

T
| P aX,i= lim Y F(X)Xe+ DF(X) X,
0 |'}|HO(S,I)EW

exists and is called a rough integral (cf. [12, 5]). By taking X = B to be 1td6 enhanced Brownian
motion we recover with probability one the It6 integral in a path-wise sense. The rough integral
will be crucial for us to define a robust version of the MLE in Section 5.

3. MLE FOR DIFFUSION DRIFT PARAMETERS

3.1. Basics. In this section we prove part (i) of the main theorem. In fact, we find it notationally
convenient to consider a slightly more general setup. Namely, let W be d-dimensional Wiener
process on (Q,.7, (% )>0,P), A € V (some fixed finite dimensional vector space),

ﬁRWeL@WW)ZﬁVHL@VKQ
say Lipschitz continuous, so that the stochastic differential equation
X() = X0.

has a unique solution. We are interested in estimation of A, as function of some observed sample
path X = X (w) : [0,T] — R when the coefficients f and X are known.

Theorem 11. Write P = P4 for the path-space measure induced by the soluz‘ion X to (3.1). As-
sume C = XX s (everywhere in space) non- degenerate (say c'1 < C~! < I for some ¢ > 0).
Then the V-valued MLE (relative to P°), A = Ar, is characterized by

(3.2) IrAr = St



where ;
Sy = / f(x,)Tcl(x,) dx; € V*
0
and .
= [ 706) € ) £(X) ds €L(V, V).

Proof. The statement follows from standard theory of likelihood inference for diffusion processes
(see e.g [9] and [10]). O

This immediately leads to the identification of the MLE in the setting of our main theorem.

Corollary 12. Consider h: R? — R¢ Lipschitz, A € V := L (R?,R?) and ¥ as before so that (1.1)
has a unique solution X started from Xy = xy. Then the MLE is characterized by

(3.3) IrAr = Sr,
where .
Sp = / h(Xs) ©C\(X,) dX, € V*
and ; ’
It :/0 h(X) @C~ 1 (X,) @ h(X,) ds € L(V x V,R) =2 L(V,V*).

Proof. Consider A = (A,
f=1®h, in coordinates

) € L(RY,R?) = V. Then it suffices to apply the previous result with

k.j -
(1) = (wisf).
so that (with summation over up-down indices)
£ (x) Al = ARR (x).

We think of I7 as quadratic form (say Q) on V, in coordinates
T . T
(A IrA) = ZA;/O W C ! hldsA] =: <A,/O (heC'&h) dsA> :
i7k M—/
J,l

Al
=0

4. MISSPECIFICATION OF THE NOISE

In this section we investigate the behavior of the MLE under misspecification of the noise W in
the sense that we suppose that the true model has a driving process with non-trivial dependence
structure in time. In fact, for the sake of argument, we shall consider (1.1) with fractional Brownian
noise. For further simplicity assume X = I so that the dynamics are

(4.1) dx/" =Ah(X")dt+aw/,

started from a fixed starting point xo, with W# a multi-dimensional Volterrra fractional Brownian
motion with Hurst index H € (0,1), i.e.

t
WtH:/ K" (t,5)dW,
0
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where W is a standard Brownian motion, K7 (z,s) = (t —s)"~'/2 is the Volterra kernel.® Note that
WH|H:1/2 =W is a standard Brownian motion and that X/ — X, e.g. in probability uniformly on
[0,T] as H — 1/2, where

(4.2) dX, = Ah(X,)dt +dW,.

(Thanks to addivity of the noise in (4.1) this is a truly elementary statement.) Suppose now that
the true dynamics correspond to (4.1) with H = 1/2 — &. Clearly, for € << 1, the model (4.2),
mathematically much easier, is still a good description of the true dynamics. In particular, we can
perform classical MLE estimation on (4.2) and write down the estimator A = IT‘15T as was done
n (1.4). Recall that this estimator will involve, in general and through Sr, 1té integrals, defined
as limit of left-point Riemann-Stieltjes approximations. But unfortunately, such Riemann-Stieltjes
approximations may blow up when applied to fractional Brownian sample paths ' rougher 'than
Brownian motion.”. Our proposed solution here is to use the rough path estimator Ar. Not only
does it remain well-defined when H = 1/2 — ¢, but also behaves continuously in H. This is spelled
out fully in the following theorem.

Theorem 13. Suppose that H € (1/3,1). Then, for every o € (1/3,H), there exists a geometric
a-Hélder rough path lift XH = (X# XH) of X¥ (natural in the sense that X! is the common rough
path limit, in probability, of piecewise linear -, mollifier or Karhunen-Loeve approximations to X').
Moreover, there is a continuous modification of XH : H € (1/3,1). As a consequence, AT(XH) is
well-defined and robust with respect to the Hurst parameter,

Ar(x? x") = Ar(X,X)

almost surely, as H — 1/2, where (X,X) is the lift X of X from Theorem 2.
Proof. Without loss of generality T = 1. It is a well-known fact (Section 15 in [5]) that for fixed
H € (1/3,1], X! can be lifted to an a-Hélder rough path XH = (x# xH)

We will apply Kolmogorov’s continuity theorem to construct W that is almost surely continuous
in H. First

Ryu_yu (5,1) = E[(WH —wi)(wH —wl')]
< sup E[(WH —wH?

t€l0,1]
f , 2
— sup (|t—r|H_l/2—|t—r|H_1/2> dr
t€[0,1]70
_/ rH 12 _1/2)2dr
=O(|H — H| ).

We can now apply Remark 15.38 in [5] to get
Elpo(W", W1 < ClH —H'|°,

5The results of this section also hold true for classical fractional Brownian motion, using the kernel given in [3].
The only difference is that the estimates in the proof of Theorem 13 become more technical.

"This is well known and in fact easy to see: just consider the left-point Riemann Stieltjes approximations to the
lto-integral [, W#dW* where W is a scalar fractional Brownian motion. When H > 1/2 one has convergence to the
Young integral (actually equal to (1/2)(W#)2. When H = 1/2 one has convergence to the Itd integral. When H < 1/2
the approximations diverge, as may be seen by computing their (exploding) variance.
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for some ¢,C large enough and 6 > 0 small enough. Applying Kolmogorov’s continuity criterion
we get a version of WX that is continuous in H. Since X is the solution to an rough differential
equation driven by W i.e. the continuous image of W# | it is clear that X¥ is also continuous in
H (with respect to a-Hoélder rough path topology). The convergence of AT(XH,XH) follows now
from Theorem 2(iv). O

5. PROOF OF MAIN RESULT (THEOREM 1)

Proof of (i). We need to understand when Ir is non-degenerate. To this end, pick any non-zero

M = (M}) € V. Then, with g = Mh (in coordinates, g' = Y, Mih, also (g,C"'g) = Zi7jgiCiTj]gj)
we have

(M, IrM) = /OT <g,C*1g>ds >0

and since (g,C'g) > 0 we see that (M, IrM) vanishes iff
(g,C" gy = (Mh(X),C" (X)Mh(X.))=0
on [0, T]. Thanks to (assumed) non-degeneracy of C this happens iff
Mh(X)=0

on [0,T] which is equivalent to (M was non-zero, hence kerM C R?)

{h(X;):1€[0,T]} C kerM C R,
This leads us to the following (pathwise) condition.

span{h(X;):1 € [0,T]} =R,

It remains to see that this happens with P%*-probability one, given the stated non-degeneracy
condition on &. This is certainly true when # is the identity map on R¢, for the non-degeneracy
of C will guarantee that with probability one the process explores every neighborhood of every
point of his trajectory. This follows for example from the (functional) law of the iterated logarithm
for diffusions (Strassen’s law), e.g. Proposition 4.1 in [2]. By assumption, critical points of 4 do
not accumulate so a.s. there exists times ¢* at which detDh (X;+) # 0. But & is a diffeomorphism
in a neighborhood of X;+, so that {h(X;) : ¢ € [t*,¢" + €]} also explores its neighborhood a.s. and
hence cannot be confined in a (linear) subspace. And it follows that, V7' > 0,

pO< (span{h(X,) 1€[0,T]) = Rd> —1.

(A determinist understanding of what it means to explore every neighborhood can be given in
terms of "true roughness"[8, 4].)

under consideration is standard in rough path theory, see for example Section 14 in [5].

(iii) Then follows as combination of points (i) and (ii).
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Proof of (iv). Recall that for (X,X) € 7 we have
AX,X) =11 (X)S7(X,X),

where

T
Ir(X) = /O h(Xs) ©C (Xs) @ h(X,) ds
XXJ—Z/h (X;) 0dX}

_22 Z [ )axncjk ( )+axnh( )C]k (X) Zn,m(Xs'>21<,nz<Xs)d~9

0 n,m
_ Z/ hi(X X 5) 0 dX —%/OT Tr[D(hiC;l)(XS)Z(XS)Z(XS)T]dS

where the dX integral is understood as a rough path integral ([12], Section 10.6 in [5] or [7]). Note
that in the definition of S; we have formally rewritten the Ito integrals in St in terms of Stratonovich
integrals.

Now Sr(X,X) is continuous in rough path metric by the just mentioned references. Moreover
I7(X) is obviously continuous in supremum metric, and hence is its inverse (everywhere defined
on D by (i)).

Finally, by Proposition 17.1 in [5], S7(X,X)|x—x(e) coincides with St(®). Ir(X)|x—x(e) trivially
coincides with I7 (@) since it only depends on the path (the first level of the rough path). Hence
A7 (X(w)) =Ar () a.s. under PO~

Proof of (v). This boils down to continuity of the rough integrals as functions of integrand 1-form,
see for example Theorem 10.47 in [5].

6. EXPLICIT COMPUTATIONS FOR ORNSTEIN-UHLENBECK DYNAMICS

As our main example we consider the two-dimensional Ornstein-Uhlenbeck process. This class
of processes was first used by Ornstein and Uhlenbeck to describe the movement of a particle
due to random impulses known as physical Brownian motion (see [6] for a detailed analysis in a
rough path context). Later these dynamics were applied in finance in several different contexts to
model interest rates (Vasicek model), currency exchange rates and commodity prices.

Our goal in this section is twofold. First of all we calculate A7 in explicit form in order to see
its dependence on iterated integrals of the observed path. Then we give a counterexample that
demonstrates the stability problems that the classical MLE A7 exhibits.

Let A € L(R?,R?), h(x) = x for all x, g = 0 and ¥ = I such that we obtain the following model
dXt — Adet + dVV,,
Xo=xp € Rz.
According to Corollary 12 the likelihood estimator A7 € R?*? is characterized by

(6.1) ItAr = St,
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with

T
IT:/ X, ®@1®Xds
0
T
ST:/ X ®1dX;.
0

For explicit computations we consider Ay = (41,d2,43,44)" as element in R*. Then (6.1) trans-
lates to

MAr = b,
where
IxWxWar [TxMxPar 0 0
IxWxPar [TxPxPar 0 0
M:= 0 0 IxWxWar [TxMxPar
0 0 Tx\VxPar [TxPxPdr
and
I xMax M
T v (2) 5 (1)
bim | 1070
I x\Max;
I xPax?
Which gives
4 1
62) Ar=| T | =
ar | T xOar 17 xPxPar - 7 xOxPar ) xOxPar
ar
Jo x{)d f X X — [y XX X X
—foTX fX d +f X ax " 7 xx
foTX f XX Jy X, (z)foTXr(z)X(z)
Ty x @) (T (1) x(2)
— Jo xPax? [ x d”“‘f xVax? [7 xVx

6.1. Failure of continuity for the MLE. For d > 2 pathwise stability (i.e. in supremum norm) fails
in general for the MLE A7. We demonstrate this in the setting of the 2-dimensional OU process
of the previous section. We construct a path x and a sequence of paths (x(”)) such that x(" — x
uniformly, but
A (")) = Ar (x)] — o0

as n — oo. This means that observations can be arbitrarily close in uniform norm, but the corre-
sponding estimates for A diverge. At the core of this robustness problem lies as we will see below
the fact that multi-dimensional iterated integrals (as the ones appearing in A7) are discontinuous
in sup-norm.

We start with an example of x € C ([0, 1],R?), piecewise smooth, with span{x; : 0 <7 < 1} = R?,
together with uniform approximation x) for which

/x(") Qdx'" /x®a’x.
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Considerx(t) = (¢,0) on [0,1/2],and then x () = (1/2,t — 1/2) on (1/2,1]. (The "full span"condition
(1.5) is then satisfied.) Write x = (x, [ x ® dx). Consider then dyadic piecewise linear approxi-
mations to x, e.g. on a dyadic level n = 2 we have 2" = 4 intervals and, trivially, x" () = (¢,0)
on I} =[0,1/4] and x"(¢) = (£,0) on I, = [1/4,1/2] and so on. Trivially (x" =x Vn > 1), X" =
(x", [x" ® dxX") — x, even in rough path metrics. Attach now a loop at the end of each dyadic
interval. To this end run at double speed, leaving time for the loop. That is, still with n = 2,

) (1) — (21,0) on [0,1/8§]

X (1) = (1/4,0)+r, (27 —1) on [1/8,1/4].
This way, at time 1/4, the end point of I;, we are at the same point as before, x" (¢) |t:1/4 =
X (1) li—1/4 = x(t) |;14- And so on.

More generally, for arbitrary n > 1, x") (r) = x () for all dyadic times r = 1/2". And, as long as
rn — 0, x(") — x uniformly on [0, 1]. A necessary condition for (rough path) convergence of x(") — x
is the (pointwise) convergence

%,1/2(36(")) — 1 2(x) = 0.

where the &rea";(x) of x = (x1,x2) on (s,t) is given as

) = [ @) =06t - [ @) -n6) )

Itis easy to see that < ; (x¥)) is the sum of the areas of all the (2"~ loops (over [0,1/2]) upon
which x(™) was constructed from x. That is,
1) =21

Evaluating the first component 4! of the likelihood estimator Ay from (6.2) for x = (x1,x2) and
T =1 yields
_ Jo x1(r)xa(r)dr

foTxl(”)xl(”)drfoTXZ(r)XZ(r)d”— foTxl(F)XZ(F)drfoTxl(V)XZ(V)dV
=:U(x) 7(x).
The prefactor U(x), consisting only of Riemann integrals, is continuous in supremum and also

U(x\")) converges to a finite limit as n — co. Taking now r, = 2~"/* we obtain for the distance of
the corresponding estimates

ak.(x™) — AIT(X)’ - )U(xw))%j(x(n)) U@~ 2 e

ar (x) 20,1 (%)

as n — oo. The estimation problem is hence not well-posed if one measures distance of paths in
supremum norm. We emphasize that stronger pathspace norms such as a-Hélder with o < 1/2
will not help; see [13]. For the desired stability, it is crucial to use rough path spaces.
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